高纯硅的制备
- 格式:doc
- 大小:14.50 KB
- 文档页数:2
制备高纯硅的新方法和机理高纯硅是一种非常重要的材料,在电子、半导体、光电和化学工业等领域有着广泛的应用。
目前,制备高纯硅的主要方法是化学气相沉积和单晶生长技术。
然而,这些方法的制备成本较高、制程复杂、设备要求较高、生产效率低、产量小等问题,限制了高纯硅的生产和应用。
为了突破传统制备高纯硅的方法,研究人员们不断探索新的方法和机理。
最近,一项研究成果吸引了人们的眼球:利用CO2气体还原SiO2制备高纯硅。
这项研究由中国科学院物理研究所(IOP)的研究团队和斯坦福大学的研究团队合作完成。
他们利用压电式压实石英粉末,形成带有微孔的固体石英砖,然后在高温高压条件下,将CO2气体引入石英砖内部进行还原反应。
研究人员发现,通过该新方法制备的高纯度硅的纯度可以达到99.9999%以上,比传统方法更高。
那么,这种新方法如何实现CO2气体还原SiO2呢?在传统制备高纯硅的方法中,坩埚中的化学物质在高温条件下会发生还原反应。
而在这种新方法中,研究人员发现,石英砖内微孔处积累的CO2气体可以使固体石英发生还原反应,从而制备高纯硅。
具体来说,CO2气体还原SiO2的反应式为:SiO2 + CO2 = Si + 2CO。
然而,要使这种反应发生,需要在高温、高压条件下进行。
研究人员将石英砖加热至高温高压状态并引入CO2气体,使CO2气体在石英砖内部进行还原反应。
实验表明,该反应产生的CO可重新还原SiO2,实现循环使用。
相较于传统的制备高纯硅方法,这种新方法有着明显的优点。
首先,CO2气体天然存在,成本较低。
其次,该方法的制备成本较低,因为该方法不需要太多的设备和材料。
另外,该方法生产成本低,效率高,产量大。
在实际应用中,这种新方法有着很大的潜力。
例如,可以在石油储罐和CO2储罐附近建造制备高纯硅的厂房,使得CO2得到高效利用。
除此之外,该研究还揭示了CO2气体与金属离子相互作用的机理,这对认识CO2在地球化学和环境方面的行为具有一定的价值。
高纯硅材料的制备与应用分析1.引言高纯硅是一种非常重要的材料,其制备和应用在许多领域都有着广泛的应用。
高纯硅制备的方法主要包括化学还原法、物理还原法、气相沉积法、单晶生长法等。
高纯硅的应用领域主要包括电子信息、半导体、太阳能电池等。
2.高纯硅材料的制备2.1化学还原法化学还原法是通过还原剂还原硅化合物,生成高纯金属硅的制备方法。
制备方法采用的还原剂主要是钠、钠铝合金、镁、硅等。
化学还原法制备高纯硅的过程主要分为两步,首先要处理原料,使它变成可还原的硅化合物,其次要加入还原剂进行还原。
化学还原法制备高纯硅的优点是操作简单易行,还原效率高;其缺点是在制备过程中需要使用大量有毒物质,对环境和人体都有一定的危害。
2.2物理还原法物理还原法是一种利用化合物的分解反应使其分解成元素的方法,如高温汽化法、熔融法等。
物理还原法制备高纯硅的优点是制备工艺简单,设备和环境要求不高;其缺点是成本较高,制备效率较低。
2.3气相沉积法气相沉积法是将气态前体分解成固态产物的方法,主要用于制备细小颗粒的硅,如制备硅纳米颗粒。
气相沉积法制备高纯硅的优点是反应温度低,制备过程中无需使用有毒或危险的化学试剂;其缺点是成本较高,需要较为专业的设备和技术。
2.4单晶生长法单晶生长法是一种非常高级的制备方法,是将单晶硅晶体从溶液中生长出来的方法。
该方法制备的高纯硅质量稳定,纯度高,但制备成本和难度都比较大。
3.高纯硅材料的应用3.1电子信息领域高纯硅在电子信息领域应用非常广泛。
比如,高纯硅晶片被广泛应用于集成电路制造中,作为电路的基础材料,以提高电子设备的性能和稳定性。
同时,高纯硅也被用于制造各种半导体器件,如大功率齐纳二极管、三极管等。
3.2半导体领域高纯硅在半导体领域也是应用广泛的一种材料。
半导体中的硅材料是高纯度、高品质、高稳定性的,是制造半导体器件中不可或缺的一种材料。
同时,在半导体领域中,高纯硅材料还可用于制造光电子元器件、光伏电池等。
硅的制备技巧硅是一种非金属元素,常见于地壳中,广泛用于电子、光电、太阳能、半导体等领域。
硅的制备技巧可以分为以下几个步骤:1. 选矿:硅的原料主要来自硅矿石,常见的硅矿石有石英砂、石英岩、长石等。
在选矿过程中,需要进行矿石脱硬化、破碎、筛分等处理,以获得纯度较高的硅矿石。
2. 熔炼:将选矿获得的硅矿石与焦炭等还原剂一起放入电炉或燃煤炉中进行高温熔炼。
熔炼过程中,焦碳发生燃烧反应产生高温,使硅矿石中的二氧化硅与还原剂发生反应生成金属硅,同时生成一些副产物如一氧化碳等。
待熔炼完全后,通过冷却结晶获得硅锭。
3. 纯化:硅锭中的杂质较多,需要进行进一步的纯化处理。
常用的方法有熔炼法和化学法。
熔炼法是将硅锭再次进行高温熔炼,利用硅与杂质的不同熔点差异,使杂质在熔点较低的温度下蒸发出去;化学法则是利用酸碱等溶液对硅锭进行溶解、析出,实现纯化。
经过纯化处理后的硅锭质量更高,纯度更好。
4. 精炼:硅锭的纯度对于一些特殊应用要求较高,需要进行进一步的精炼。
其中最常用的方法是氧化氯法。
通过将硅锭加入氯化氢酸溶液中,产生氯化硅;随后加入氧气反应,将氯化硅氧化为二氧化硅,并以气体形式脱出。
这样可使硅锭的纯度达到99.9999%以上,符合高纯硅的应用要求。
5. 切割与加工:经过精炼的硅锭可以被切割成硅片或硅棒,用于制备各种电子器件。
切割常用的方法有切割盘切割法和线切割法。
硅片或硅棒经过切割后,可以进行去边、抛光、清洗等工艺,以便后续加工和使用。
总结起来,硅的制备技巧包括选矿、熔炼、纯化、精炼和切割等步骤。
不同的应用领域对硅的纯度要求不同,制备过程中需要根据实际需求选择合适的工艺方法,以确保硅的质量和纯度。
硅的制备技术一直在不断发展,以满足各项科技的需求。
工业硅工艺流程范文工业硅是指电子级硅(Electronic Grade Silicon,EGS),也叫高纯硅(High Purity Silicon,HPS),主要用于集成电路、太阳能电池等高科技领域。
其工艺流程主要包括原料制备、精炼、氧化、熔融、单晶生长和切片等环节。
1.原料制备:工业硅主要以石英砂(二氧化硅SiO2)为原料。
首先,石英砂经过洗涤,去除杂质,并通过碱法或酸法处理,使其达到高纯度要求。
然后,将经过处理的石英砂与碳素混合,在电炉中高温还原,生成纯度较高的硅。
2.精炼:经过还原反应得到的硅块有较高的杂质含量,需要通过精炼过程进一步提高纯度。
常用的精炼方法有多晶硅精炼和溅射法。
多晶硅精炼是将硅块放入感应电炉中,通过高频感应加热使硅块熔化,并通过熔体中杂质的扩散减少杂质含量。
溅射法则是通过在硅块表面喷射氢氩混合气体,在高温下使硅表面溅射熔融,杂质被气体溅射剥离。
3.氧化:精炼后的硅块需要进行氧化处理,以形成二氧化硅保护层。
常用的氧化方法是干法和湿法氧化。
干法氧化是将硅块暴露在氧气或氧化氢气氛中,在高温下表面氧化生成二氧化硅层。
湿法氧化则是将硅块浸泡在含硝酸的溶液中,使硅块表面产生一层二氧化硅薄膜。
4.熔融:经过氧化处理后的硅块会被切割成圆柱形的硅棒。
硅棒通过放入石英坩埚中,在真空或惰性气氛中高温加热,使硅块熔化。
熔融硅在坩埚中凝固形成硅单晶。
5. 单晶生长:在熔融硅凝固的基础上,需要进行单晶生长过程,使硅单晶逐渐生长。
常用的单晶生长方法有Czochralski法和浮区法。
Czochralski法是将硅棒的一段介于液态和固态之间的固液界面放入坩埚,慢慢提拉上升,同时控制坩埚中的温度,使硅单晶沿着提拉方向生长。
浮区法则是将硅棒放入石英管中,在局部升温的条件下,硅表面融化,通过向上或向下移动石英管,使熔融硅憎水性,逐渐凝固成单晶。
6.切片:经过单晶生长后的硅棒需要进行切割,以获得硅片。
硅棒经过机械或化学等方法切割成薄片,然后经过抛光和清洗等步骤,最终得到高纯度的硅片。
高纯硅的制备三个方程式高纯硅(High Purity Silicon)是指硅的纯度高于99.9999%的一种特殊硅材料。
它具有优异的电学性能和热学性能,广泛应用于半导体、光电子、太阳能等领域。
高纯硅的制备主要有三个方程式,分别是氯化硅法、硅烷分解法和溶胶-凝胶法。
下面将对这三个方程式进行详细解释,并符合标题中心扩展下的描述。
一、氯化硅法氯化硅法是制备高纯硅的一种常用方法。
其反应方程式为:Si + 2HCl → SiCl2 + H2↑SiCl2 + H2 → Si + 2HCl该方法的基本步骤是:首先将普通硅与盐酸反应生成氯化硅,然后通过还原反应将氯化硅转化为高纯硅。
这种方法的优点是制备工艺简单,反应条件温和,但是制备出的高纯硅纯度相对较低。
二、硅烷分解法硅烷分解法是制备高纯硅的一种常见方法,其反应方程式为:SiH4 → Si + 2H2↑该方法的基本步骤是:首先制备硅烷气体,然后通过热分解将硅烷分解为高纯硅和氢气。
这种方法制备的高纯硅纯度较高,但是制备工艺较为复杂,需要高温条件下进行。
三、溶胶-凝胶法溶胶-凝胶法是制备高纯硅的一种新型方法,其反应方程式为:Si(OC2H5)4 + 2H2O → SiO2 + 4C2H5OH↑SiO2 → Si + O2↑该方法的基本步骤是:首先将硅醇与水反应生成硅酸酯溶胶,然后通过热分解将硅酸酯凝胶转化为高纯硅。
这种方法制备的高纯硅具有纯度高、晶粒细小等优点,但是制备工艺相对复杂,需要控制好反应条件和凝胶的形成过程。
高纯硅的制备主要有氯化硅法、硅烷分解法和溶胶-凝胶法三种方法。
氯化硅法制备工艺简单,但纯度相对较低;硅烷分解法制备的高纯硅纯度较高,但工艺复杂;溶胶-凝胶法制备的高纯硅纯度高且晶粒细小,但制备工艺较为复杂。
根据不同的应用需求,可以选择适合的制备方法来获得高纯度的硅材料。
高纯硅在半导体工业、光电子领域等有着广泛的应用,其制备方法的研究和改进对于推动相关领域的发展具有重要意义。
硅的提取2008-12-07 20:35高纯硅制备的化学原理(1)高纯硅的制备一般首先由硅石(SiO2)制得工业硅(粗硅),再制成高纯的多晶硅,最后拉制成半导体材料硅单晶。
工业上是用硅石(SiO2)和焦炭以一定比例混合,在电炉中加热至1600~1800℃而制得纯度为95%~99%的粗硅,其反应如下:SiO2+2C=Si+2CO粗硅中一般含有铁、铝、碳、硼、磷、铜等杂质,这些杂质多以硅化构成硅酸盐的形式存在,为了进一步提高工业粗硅的纯度,可采用酸浸洗法,使杂质大部分溶解(有少数的碳化硅不溶)。
其生产工艺过程是:将粗硅粉碎后,依次用盐酸、王水、(HF+H2SO4)混合酸处理,最后用蒸馏水洗至中性,烘干后可得含量为99.9%的工业粗硅。
高纯多晶硅的制备方法很多,据布完全统计有十几种,但所有的方法都是从工业硅(或称硅铁,因为含铁较多)开始,首先制取既易提纯又易分解(即还原)的含硅的中间化合物如SiCl4、SiHCl3、SiH4等,再使这些中间化合物提纯、分解或还原成高纯度的多晶硅,其工艺流程大致如图1:目前我国制备高纯硅多晶硅主要采用三氯氢硅氢还原法、硅烷热解法和四氯化硅氢还原法。
一般说来,由于三氯氢硅还原法具有一定优点,目前比较广泛的被应用。
此外,由于SiH4具有易提纯的特点,因此硅烷热分解法是制备高纯硅的很有发展潜力的方法。
下面我们就分别介绍上述三种方法制备高纯硅的化学原理。
1.三氯氢硅还原法(1)三氯氢硅的合成第一步:由硅石制取粗硅硅石(SiO2)和适量的焦炭混合,并在电炉内加热至1600~1800℃可制得纯度为95%~99%的粗硅。
其反应式如下:SiO2+3C=SiC+2CO(g)↑2SiC+SiO2=3Si+2CO(g)↑总反应式:SiO2+2C=Si+2CO(g)↑生成的硅由电炉底部放出,浇铸成锭。
用此法生产的粗硅经酸处理后,其纯度可达到99.9%。
第二步:三氯氢硅的合成三氯氢硅是由干燥的氯化氢气体和粗硅粉在合成炉中(250℃)进行合成的。
高纯硅的制备一般首先由SiO2制得工业硅粗硅,再制成高纯的,最后拉制成硅单晶.工业上是用SiO2和以一定比例混合,在中加热至1600~1800℃而制得纯度为95%~99%的粗硅,其反应如下:SiO2+2C=Si+2CO粗硅中一般含有铁、铝、碳、硼、磷、铜等杂质,这些杂质多以硅化构成的形式存在,为了进一步提高工业粗硅的纯度,可采用酸浸洗法,使杂质大部分溶解有少数的不溶.其生产工艺过程是:将粗碎后,依次用盐酸、、HF+H2SO4混合酸处理,最后用洗至中性,烘干后可得含量为99.9%的工业粗硅.高纯的制备方法很多,据布完全统计有十几种,但所有的方法都是从工业硅或称,因为含铁较多开始,首先制取既易提纯又易分解即还原的含硅的中间化合物如SiCl4、SiHCl3、SiH4等,再使这些中间化合物提纯、分解或还原成高纯度的目前我国制备高纯硅多晶硅主要采用氢还原法、热解法和四氢还原法.一般说来,由于还原法具有一定优点,目前比较广泛的被应用.此外,由于SiH4具有易提纯的特点,因此热分解法是制备高纯硅的很有发展潜力的方法.下面我们就分别介绍上述三种方法制备高纯硅的化学原理.1.还原法1三氯氢硅的合成第一步:由制取粗硅硅石SiO2和适量的混合,并在内加热至1600~1800℃可制得纯度为95%~99%的粗硅.其反应式如下:SiO2+3C=SiC+2COg↑2SiC+SiO2=3Si+2COg↑总反应式:SiO2+2C=Si+2COg↑生成的硅由底部放出,浇铸成锭.用此法生产的粗硅经酸处理后,其纯度可达到99.9%.第二步:三氯氢硅的合成三氯氢硅是由干燥的气体和粗在合成炉中250℃进行合成的.其主要反应式如下:Si+3HCl=SiHCl3+H2g2三氯氢硅的提纯由合成炉中得到的三氯氢硅往往混有硼、磷、砷、铝等杂质,并且它们是有害杂质,对质量影响极大,必须设法除去.近年来三氯氢硅的提纯方法发展很快,但由于精馏法工艺简单、操作方便,所以,目前工业上主要用精馏法.三氯氢硅精馏是利用三氯氢硅与杂质的沸点不同而分离提纯的.一般合成的三氯氢硅中常含有BCl3、PCl3、四SiCl4、三氯化砷AsCl3、三Al2Cl3等.其中绝大多数的沸点与三氯氢硅相差较大,因此通过精馏的方法就可以将这些杂质除去.但和的沸点与三氯氢硅相近,较难分离,故需采用高效精馏,以除去这两种杂质.精馏提纯的除硼效果有一定限度,所以工业上也采用除硼效果较好的络合物法.三氯氢硅沸点低,易燃易爆,全部操作要在低温下进行,一般操作环境温度不得超过25℃,并且整个过程严禁接触火星,以免发生爆炸性的燃烧.3三氯氢硅的氢还原提纯三氯氢硅和高纯氢混合后,通入1150℃还原炉内进行反应,即可得到硅,总的化学反应是:SiHCl3+H2=Si+3HCl生成的高纯多晶硅淀积在多晶硅载体上.。
生产流程中得到高纯硅的提纯步骤下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by the editor. I hope that after you download them, they can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, our shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!高纯硅在现代科技领域扮演着重要的角色,其广泛应用于光伏、半导体、光学玻璃等领域。
制备高纯硅的主要方法高纯硅是指在硅材料中杂质浓度较低,通常小于1 ppm的一种纯度较高的硅材料。
高纯硅是半导体材料的重要组成部分,在光电子、电子器件和太阳能等领域有广泛应用。
制备高纯硅的方法主要有以下几种:1.股份分散法股份分散法是指通过将具有较高杂质浓度的硅材料与无机溶液反应,然后通过沉淀、过滤等步骤去除杂质。
该方法主要通过化学反应的方式去除杂质,但由于硅与无机溶液反应比较缓慢,需要较长的时间来达到高纯度的要求。
2.化学气相沉积法化学气相沉积法利用化学反应在气相中生成高纯硅材料。
该方法的原理是利用硅源气体与载气反应生成硅,在一定的温度和压力下将硅沉积在基底上。
该方法能够制备高纯度硅材料,但设备复杂,操作难度较大。
3.熔融法熔融法是指将硅材料加热至熔点,并通过熔体的凝固来制备高纯度硅材料。
该方法主要分为单晶和多晶两种。
单晶法通过在熔融硅材料中加入掺杂物,并通过控制凝固速度和结晶条件来制备单晶硅。
多晶法则是将硅材料熔化后,通过控制凝固和结晶条件来制备多晶硅。
熔融法能够制备高质量的硅材料,但设备费用高,操作复杂。
4.化学氧化法化学氧化法是通过将硅杂质与氧气反应生成氧化物,然后通过高温还原得到高纯硅材料。
该方法的原理是利用硅杂质与氧反应生成气态化合物,然后通过还原反应将化合物转化为硅。
化学氧化法能够制备高纯度硅材料,但需要高温条件和反应时间较长。
5.化学还原法化学还原法是通过利用化学反应将硅杂质还原为金属硅。
该方法的原理是在高温条件下,将硅杂质与还原剂反应生成金属硅。
化学还原法不能够制备高纯度硅材料,但操作简单,成本较低。
综上所述,制备高纯硅的主要方法有股份分散法、化学气相沉积法、熔融法、化学氧化法和化学还原法。
这些方法各有优缺点,可以根据具体要求选择适合的方法来制备高纯度硅材料。
制高纯硅的化学方程式-概述说明以及解释1.引言1.1 概述制备高纯硅是一项重要的化学工艺,高纯硅在电子、光伏、半导体和其他领域具有广泛应用。
本文将介绍制备高纯硅的方法和相关化学方程式,并探讨其在不同领域的应用。
通过深入了解高纯硅的制备和应用,可以为相关行业提供参考和指导,促进产业技术的进步和发展。
内容1.2 文章结构本文将首先介绍制备高纯硅的方法,包括传统的化学还原法、气相法和物理方法等。
然后详细讨论制备高纯硅时所涉及的化学方程式,包括反应物、生成物以及反应条件等。
最后,将探讨高纯硅在应用领域的广泛用途,如半导体制造、光伏产业和化工领域。
通过对这些内容的分析,我们可以更好地了解高纯硅的制备方法和应用价值。
1.3 目的:本文旨在探讨制备高纯硅的化学方程式,介绍制备高纯硅的方法以及其在应用领域的重要性。
通过对化学方程式的详细讲解和分析,让读者对高纯硅的制备过程有更深入的了解,同时展望高纯硅在未来的发展前景。
希望通过本文的阐述,能够让读者对高纯硅有更全面的认识,对相关领域的研究和实践有所帮助。
2.正文2.1 制备高纯硅的方法制备高纯硅主要有两种常用的方法,一种是通过硅矿石还原法,另一种是通过硅烷化合物加热分解法。
硅矿石还原法是将硅矿石与焦炭或木炭在高温下进行还原反应,得到冶炼的金属硅,然后再通过化学纯化的方法得到高纯度硅。
这种方法主要用于工业生产中,能够获得较高纯度的硅,但成本较高且工艺较为复杂。
硅烷化合物加热分解法是指利用硅烷类化合物(如三氯硅烷、氢氯硅烷)作为原料,经过氢化后得到高纯度的硅。
这种方法相对来说工艺简单,成本较低,适合实验室小规模制备高纯硅。
除了以上两种常用方法外,还有一些其他制备方法,如溅射法、气相淀积法等,这些方法在特定领域有着独特的应用优势。
总的来说,制备高纯硅的方法有多种多样,选择合适的方法取决于具体的需求和应用场景。
随着技术的不断发展,相信会有更多更高效的制备方法被研发出来。
生产流程中得到高纯硅的提纯步骤1.高纯硅的提纯步骤包括化学提纯和物理提纯两个部分。
The purification steps of high-purity silicon include chemical purification and physical purification.2.化学提纯主要是通过氧化、还原、氯化等化学反应来去除杂质。
Chemical purification mainly involves the removal of impurities through oxidation, reduction, chlorination, and other chemical reactions.3.物理提纯则是利用材料的物理性质来分离和净化硅材料。
Physical purification involves the separation and purification of silicon materials using the physicalproperties of the materials.4.首先,通过矿石选矿将含硅的矿石分离出来。
First, the ore containing silicon is separated through mineral processing.5.然后进行熔炼,将硅矿石加热至高温,分离出硅和其他金属。
Then, smelting is carried out to heat the silicon ore to high temperatures and separate the silicon from other metals.6.提纯过程中需要进行氧化物的还原反应,去除杂质。
Reduction reactions of oxides are needed during the purification process to remove impurities.7.通过酸洗和碱洗去除硅表面的金属氧化物和残余杂质。
三氯氢硅还原法制备高纯硅的过程嘿,朋友们,今天咱们聊聊一个有趣又神秘的话题,那就是三氯氢硅还原法制备高纯硅的过程。
哎呀,这个名字听起来就让人有点儿懵,别担心,咱慢慢来,带你一起走进这个“硅”的世界,保证你听了之后不想打瞌睡!首先呢,硅这个东西,大家都知道吧,基本上是咱们现代生活的好伙伴。
手机、电脑、甚至是你家里的微波炉,里头都少不了它的身影。
想想吧,咱们生活中用到的电子设备,多得让人眼花缭乱,没它可不行。
所以,如何获得高纯度的硅,就变得超级重要。
好啦,咱们现在把目光放在三氯氢硅上。
这个玩意儿听着像是化学课本里跳出来的怪兽,其实它是用来生产硅的关键材料。
它的全名是三氯硅烷,别问我为什么叫这个名字,反正听着就高大上。
用三氯氢硅还原法时,咱们其实是把这个化学物质加热,给它来个“热情洋溢”的大变身。
温度一上去,反应就开始了,简直像做饭一样,翻炒得火热。
就是化学反应的主角登场。
这里就要用到一种还原剂,比如说氢气。
这时候,氢气就像个小英雄,准备把三氯氢硅里的氯原子一一“请出门”。
你可以想象,氯原子被赶出去之后,留下的就是咱们需要的硅。
整个过程就像是在做一场舞台剧,氯原子上演着“我走了,别追我”的戏码,而硅则静静地在一旁,等待着大放异彩。
这个反应不是随便弄弄就能完成的,温度和压力得掌握得当。
要是温度不够,那就像煮水没开,啥也成不了;要是压力太高,那可就像在压力锅里煮菜,哎呀,风险可大了。
这个时候,操控者的经验和技术就显得尤为重要,得像个老道的厨师一样,知道什么时候该加料,什么时候该减温。
搞定了这些之后,反应就开始进入高兴部分,硅开始逐渐沉淀下来。
这个过程就像是大海捞针,得慢慢收集。
在这段时间里,实验室里会充满各种气味和光影,仿佛在上演一场精彩的化学秀。
沉淀下来的硅,表面看上去可能并不起眼,但它的纯度可高得让人惊掉下巴,简直就是“硅中之王”!得到高纯硅后,后续的处理也很重要。
一般来说,咱们需要对它进行进一步的清洗和提纯。
高纯硅的制备原理三步方程式高纯硅,这个词听起来有点复杂,但其实它和我们日常生活中的很多东西都有关系。
你知道吗,咱们的手机、电脑,甚至是太阳能电池板,里面都有高纯硅的身影。
今天就来聊聊高纯硅是怎么来的,顺便把它的制备过程拆分成三步,简单易懂又有趣,让我们一起打破这个神秘的外衣!1. 从沙子开始:硅的来源1.1 沙子是个好东西说到高纯硅,首先得提到硅的来源。
硅的“家”就是沙子,这个平常得不能再平常的东西。
想象一下,你在海边捡贝壳,脚下那一堆细沙,里面就藏着大量的二氧化硅(SiO2)。
不过,这沙子可不是普通的沙子,必须是那种高质量的硅砂,才能保证后续的反应效果。
谁会想用沙滩上的“洗沙水”做出高纯硅呢?所以,挑沙子这件事可得小心翼翼,绝不能马虎。
1.2 高温炼制:疯狂的沙子接下来,我们要把沙子变成硅,首先得让它经历一次“高温炼制”的洗礼。
就像是烧陶瓷,沙子需要在极高的温度下(大约1700摄氏度)被加热。
这一过程让二氧化硅脱去氧元素,形成了金属硅(Si)。
这就像是把一块石头放进烤箱,等它慢慢变成你想要的形状。
这个过程中要用上碳,常用的有木炭和焦炭,它们会帮助“减氧”,让硅顺利出来。
嘿,听着是不是有点像科学实验?2. 精炼过程:去掉杂质2.1 精炼的秘密好了,咱们已经得到了金属硅,但这还不是最终的高纯硅。
接下来就进入了精炼阶段。
想想吧,你的手机里可不想有杂质,显得“掉价”!所以,这个阶段的重点就是去除那些不需要的杂质,保证硅的纯度。
这里就要用到一种叫做“氯化”的反应,把金属硅和氯气结合,生成三氯硅烷(SiCl4)。
这就像是把混在一起的豆子挑拣干净,一颗颗的挑出来,让它们变得光鲜亮丽。
2.2 二次精炼:最终的挑战然后,我们需要把三氯硅烷进行还原,通常用氢气来完成这项工作。
经过这一轮的“洗礼”,咱们就能得到纯度达到99.9999%的高纯硅了!想象一下,经过这么多步骤,这些高纯硅就像是精致的工艺品,绝对让你心动!就好像每次大扫除,最后看到一尘不染的家,心里那个爽啊!3. 应用与展望:高纯硅的未来3.1 无处不在的高纯硅那么,这些高纯硅到底有什么用呢?其实,很多地方都有它的身影。
硅的制备原理
硅的制备原理是通过硅矿石的熔炼和还原工艺来获得纯净的硅。
具体步骤如下:
1. 选矿:首先从自然界的硅矿石中选择富含硅的矿石,常见的硅矿石主要有石英、石英砂、石英砾等。
2. 破碎和磨矿:将选好的矿石经过破碎和磨矿工序处理,使其颗粒度符合冶金过程的要求。
3. 浸取:将细碎的硅矿石与稀硫酸、盐酸等酸性溶液反应浸取,以溶解部分杂质。
4. 沉淀和过滤:将溶液经过沉淀处理,利用化学方法使杂质沉淀出来,然后经过过滤分离固体和液体。
5. 还原:将分离得到的杂质较少的硅溶液与钠或铝粉等还原剂共热,使硅离子与还原剂反应而生成纯硅。
6. 浇铸和制块:经过还原反应后的硅液铸入特定的模具中,冷却并凝固,形成硅块。
7. 精炼:对硅块进行再次加热,使其中的杂质进一步挥发或溶解,从而提高硅的纯度。
8. 制备硅片:将纯净的硅块通过切割、抛光等工艺加工成薄片,用于制造半导体器件。
需要注意的是,硅的制备过程中控制温度、压力和所用原料的纯度等因素对于获得高纯度的硅非常重要。
高纯硅的制备一般首先由硅石(SiO2)制得工业硅(粗硅),再制成高纯的多晶硅,最后拉制成半导体材料硅单晶。
工业上是用硅石(SiO2)和焦炭以一定比例混合,在电炉中加热至1600~1800℃而制得纯度为95%~99%的粗硅,其反应如下:SiO2+2C=Si+2CO
粗硅中一般含有铁、铝、碳、硼、磷、铜等杂质,这些杂质多以硅化构成硅酸盐的形式存在,为了进一步提高工业粗硅的纯度,可采用酸浸洗法,使杂质大部分溶解(有少数的碳化硅不溶)。
其生产工艺过程是:将粗硅粉碎后,依次用盐酸、王水、(HF+H2SO4)混合酸处理,最后用蒸馏水洗至中性,烘干后可得含量为%的工业粗硅。
高纯多晶硅的制备方法很多,据布完全统计有十几种,但所有的方法都是从工业硅(或称硅铁,因为含铁较多)开始,首先制取既易提纯又易分解(即还原)的含硅的中间化合物如SiCl4、SiHCl3、SiH4等,再使这些中间化合物提纯、分解或还原成高纯度的多晶硅
目前我国制备高纯硅多晶硅主要采用三氯氢硅氢还原法、硅烷热解法和四氯化硅氢还原法。
一般说来,由于三氯氢硅还原法具有一定优点,目前比较广泛的被应用。
此外,由于SiH4具有易提纯的特点,因此硅烷热分解法是制备高纯硅的很有发展潜力的方法。
下面我们就分别介绍上述三种方法制备高纯硅的化学原理。
1. 三氯氢硅还原法
(1)三氯氢硅的合成
第一步:由硅石制取粗硅硅石(SiO2)和适量的焦炭混合,并在电炉内加热至1600~1800℃ 可制得纯度为95%~99%的粗硅。
其反应式如下:
SiO2+3C=SiC+2CO(g)↑
2SiC+SiO2=3Si+2CO(g)↑
总反应式: SiO2+2C=Si+2CO(g)↑
生成的硅由电炉底部放出,浇铸成锭。
用此法生产的粗硅经酸处理后,其纯度可达到%。
第二步:三氯氢硅的合成三氯氢硅是由干燥的氯化氢气体和粗硅粉在合成炉中(250℃)进行合成的。
其主要反应式如下:Si+3HCl=SiHCl3+H2(g)
(2)三氯氢硅的提纯
由合成炉中得到的三氯氢硅往往混有硼、磷、砷、铝等杂质,并且它们是有害杂质,对单晶硅质量影响极大,必须设法除去。
近年来三氯氢硅的提纯方法发展很快,但由于精馏法工艺简单、操作方便,所以,目前工业上主要用精馏法。
三氯氢硅精馏是利用三氯氢硅与杂质氯化物的沸点不同而分离提纯的。
一般合成的三氯氢硅中常含有三氯化硼(BCl3)、三氯化磷(PCl3)、四氯化硅(SiCl4)、三氯化砷(AsCl3)、三氯化铝(Al2Cl3)等氯化物。
其中绝大多数氯化物的沸点与三氯氢硅相差较大,因此通过精馏的方法就可以将这些杂质除去。
但三氯化硼和三氯化磷的沸点与三氯氢硅相近,较难分离,故需采用高效精馏,以除去这两种杂质。
精馏提纯的除硼效果有一定限度,所以工业上也采用除硼效果较好的络合物法。
三氯氢硅沸点低,易燃易爆,全部操作要在低温下进行,一般操作环境温度不得超过25℃,并且整个过程严禁接触火星,以免发生爆炸性的燃烧。
(3)三氯氢硅的氢还原
提纯三氯氢硅和高纯氢混合后,通入1150℃还原炉内进行反应,即可得到硅,总的化学反应是:SiHCl3+H2=Si+3HCl
生成的高纯多晶硅淀积在多晶硅载体上。