风力发电机并网讲解
- 格式:ppt
- 大小:535.50 KB
- 文档页数:29
变速恒频风力发电机空载并网控制随着环境保护和可持续发展的重要性日益凸显,风力发电作为一种清洁、可再生的能源,得到了广泛应用。
在风力发电机组中,变速恒频风力发电机是一种常见的类型。
本文将重点探讨变速恒频风力发电机空载并网控制的原理、优缺点及应用。
变速恒频风力发电机组是一种通过风轮捕捉风能,并将其转换为电能的技术。
与恒速恒频风力发电机相比,变速恒频风力发电机具有更高的风能利用率和更宽的转速范围。
其工作原理是,通过调整风轮转速,以适应风速的变化,从而保持发电机输出频率的稳定。
空载并网控制是指风力发电机在不带负载的情况下与电网连接。
实现空载并网的关键在于控制风轮转速和发电机电流,以确保发电机与电网的同步。
常见的空载并网控制策略包括以下两种:直接并网法:在风速达到额定值后,风轮直接驱动发电机进入同步状态,然后进行并网。
此种方法简单直接,但并网瞬间会产生较大的冲击电流。
软并网法:通过控制风轮和发电机的转速,缓慢地将发电机接入电网,从而避免冲击电流的产生。
这种方法需要更多的控制环节和算法,但其并网效果较直接并网法更为平稳。
优点: a.由于能够适应风速的变化,所以具有较高的风能利用率; b.通过调整转速,可以减轻风轮和发电机的机械应力,提高设备的寿命;c.与恒速恒频风力发电机相比,其启动和停止更为灵活。
缺点: a.控制系统的设计较为复杂,需要精确的转速和电流控制; b.并网过程中可能产生较大的冲击电流,对电网造成一定的影响; c.需要采取措施来应对电网的波动,以保证系统的稳定运行。
变速恒频风力发电机空载并网控制在现代风力发电场中得到了广泛应用。
例如,根据某风力发电场的数据,采用变速恒频风力发电机空载并网控制后,该风电场的年发电量增加了30%,同时设备维护成本降低了20%。
这充分证明了变速恒频风力发电机空载并网控制在提高发电效率和降低运行成本方面的优势。
变速恒频风力发电机空载并网控制是风力发电技术中的重要一环。
通过控制风轮转速以适应风速的变化,保持发电机输出频率的稳定,可以实现高效的电能转换。
风力发电机并网控制三种方式
链接:/tech/6262.html
风力发电机并网控制三种方式
风力发电机的并网控制直接影响到风力发电机能否向输电网输送电能以及机组是否受到并网时冲击电流的影响。
并网控制装置有软并网,降压运行和整流逆变三种方式。
软并网装置:
异步发电机直接并网时,其冲击电流达到额定电流的6~8倍时,为了减少直接并网时产生的冲击电流及接触器
的投切频率,在风速持续低于启动风速一段时间后,风力发电才与电网解列,在此期间风力发电机处于电动机运行状态,从电网吸收有功功率。
降压运行装置:
软并网装置只在风力发电机启动时运行,而降压运行装置始终运行,控制方法也比较复杂。
该装置在风速低
于风力发电机的启动风速时将风力发电机与电网切断,避免了风力发电机的电动机运行状态。
整流逆变装置:
整流逆便是一种较好的并网方式,它可以对无功功率进行控制,有利于电力系统的安全稳定运行,缺点是造
价高。
随着风电场规模的不断扩大和大功率电力电子设备价格的降低,将来这种并网装置可能会得到广泛的应用。
风电场接入电力系统的方案主要由风电场的最终装机容量和风电场在电网所处的位置来确定。
原文地址:/tech/6262.html
页面 1 / 1。
风力发电机组的并网当平均风速高于3m/s时,风轮开头渐渐起动;风速连续上升,当v4m/s时,机组可自起动直到某一设定转速,此时发电机将按掌握程序被自动地联入电网。
一般总是小发电机先并网;当风速连续上升到7~8m/s,发电机将被切换到大发电机运行。
假如平均风速处于8~20m/s,则直接从大发电机并网。
发电机的并网过程,是通过三相主电路上的三组晶闸管完成的。
当发电机过渡到稳定的发电状态后,与晶闸管电路平行的旁路接触器合上,机组完成并网过程,进入稳定运行状态。
为了避开产生火花,旁路接触器的开与关,都是在晶闸管关断前进行的。
(一)大小发电机的软并网程序1)发电机转速已达到预置的切人点,该点的设定应低于发电机同步转速。
2)连接在发电机与电网之间的开关元件晶闸管被触发导通(这时旁路接触器处于断开状态),导通角随发电机转速与同步转速的接近而增大,随着导通角的增大,发电机转速的加速度减小。
3)当发电机达到同步转速时,晶闸管导通角完全打开,转速超过同步转速进入发电状态。
4)进入发电状态后,晶闸管导通角连续完全导通,但这时绝大部分的电流是通过旁路接触器输送给电网的,由于它比晶闸管电路的电阻小得多。
并网过程中,电流一般被限制在大发电机额定电流以下,如超出额定电流时间持续 3.0s,可以断定晶闸管故障,需要平安停机。
由于并网过程是在转速达到同步转速四周进行的,这时转差不大,冲击电流较小,主要是励磁涌流的存在,持续30~40ms。
因此无需依据电流反馈调整导通角。
晶闸管根据0°、15°、30°、45°、60°、75°、90°、180°导通角依次变化,可保证起动电流在额定电流以下。
晶闸管导通角由0°大到180°完全导通,时间一般不超过6s,否则被认为故障。
晶闸管完全导通1s后,旁路接触器吸合,发出吸合命令1s内应收到旁路反馈信号,否则旁路投入失败,正常停机。
第一章绪论风能是一种清洁的、储量极为丰富的可再生能源,它和存在于自然界的矿物质燃料能源,如煤、石油、天然气等不同,它不会随着其本身的转化和利用而减少,因此可以说是一种取之不尽、用之不竭的能源。
而矿物质燃料储量有限,正在日趋减少,况且其带来的严重的污染问题和温室效应正越来越困扰着人们。
因此风力发电正越来越引起人们的关注。
[1]1风力发电概述1.1风力发电现状与展望全球风能资源极为丰富,技术上可以利用的资源总量估计约53×106亿kWh /年。
作为可再生的清洁能源,受到世界各国的高度重视。
近20年来风电技术有了巨大的进步,发展速度惊人。
而风能售价也已能为电力用户所承受:一些美国的电力公司提供给客户的风电优惠售价已达到2~2.5美分/kWh,此售价使得美国家庭有25%的电力可以通过购买风电获得。
2004年欧洲风能协会和绿色和平组织签署了《风力12——关于2020年风电达到世界电力总量的12%的蓝图》的报告,“风力12%”的蓝图展示出风力发电已经成为解决世界能源问题的不可或缺的重要力量。
按照风电目前的发展趋势,预计2008~2012年期间装机容量增长率为20%,以后到2015年期间为15%,2017~2020年期间为10%。
其推算的结果2010年风电装机1.98亿KW,风电电量0.43×104亿kWh,2020年风电装机12.45亿KW,风电电量3.05×104亿kWh,占当时世界总电消费量25.58×104亿kWh的11.9%。
[2]世界风电发展有如下特点:(1)风电单机容量不断扩大。
风电机组的技术沿着增大单机容量、提高转换效率的方向发展。
风机的单机容量已从600KW发展到2000~5000KW,如德国在北海和易北河口已批量安装了单机5000KW的风机,丹麦已批量建设了单机容量2000~2200KW的风机。
新的风电机组叶片设计和制造广泛采用了新技术和新材料,有效地改善并提高了风力发电总体设计能力和水平。