第二章 流加发酵与高密度培养
- 格式:ppt
- 大小:1.34 MB
- 文档页数:50
发酵工艺优化前言:发酵工艺的优化在发酵行业起到很大的作用,尤其是在发酵生产中,它是提高发酵指标的一项非常,有用的技术手段.同时也是搞发酵行业的人的必备知识要求之一,借此我想通过和大家交流共同提高发酵方面的知识水平.一、发酵工艺优化方法与思路:发酵工艺优化的方法有很多,它们之间不是孤立的,而是相互联系的。
在一种发酵中,往往是多种优化方法的结合,其目的就是发酵是细胞大规模培养技术中最早被人们认识和利用的。
发酵技术在医药、轻工、食品、农业、环保等领域的广泛应用,使这一技术在国民经济发展中发挥着越来越重要的作用。
为了提高发酵生产水平,人们首先考虑的是菌种的选育或基因工程的构建。
而实际上,发酵工艺的优化,包括生物反应器中的工程问题,也同样非常重要。
发酵环境条件的优化是发酵过程中最基本的要求,也是最重要、最难掌握的技术指标。
温度、pH值、溶氧、搅拌转速、氨离子、金属离子、营养物浓度等的优化控制,依据不同的发酵而有所不同。
同时,微生物在生长的不同阶段、生产目的代谢产物的不同时期,对环境条件可能会有不同的要求。
因此,应该在生物反应器内,使温度、pH值、溶氧、搅拌转速等不断变换,始终为其提供最佳的环境条件,以提高目的产物的得率,在发酵放大实验中,一般都很注重寻找最佳的培养基配方和最佳的温度、pH值、溶氧等参数,但往往忽视了细胞代谢流的变化。
例如:在溶解氧浓度的测量与控制时,关心的是最佳氧浓度或其临界值,而不注意细胞代谢时的摄氧率;用氨水调节pH值时,关心的是最佳pH值,却不注意添加氨水时的动态变化及其与其他发酵过程的参数的关系,而这些变化对细胞的生长代谢却非常重要。
注意:大家可以从以下各个方面进行交流.尽量能够分类进行叙述,我总结了以下几累,也不是很全,当然从其他的方面进行交流也可以,但是希望你注明附加说明!二. 好氧发酵1. PH工艺的优化2. 溶氧工艺的优化3.原材料工艺的优化4.消毒(灭菌)工艺的优化5.菌种制备工艺的优化6.小试到中试,中试到生产等扩大实验的工艺优化7.成本工艺优化8.种子罐工艺的优化9.发酵罐工艺参数控制的优化10.仪表控制的工艺优化11.环境的工艺优化12.染菌处理的工艺优化13.紧急情况处理的工艺优化(停电\停水\停气\停汽等)14.补料工艺的优化15.倒种工艺的优化16发酵设备的工艺优化17.其他的工艺优化三. 厌氧工艺的优化四.固体发酵的工艺优化五.其他1. PH工艺的优化A.配料中的PH 很重要,其中有配前PH,配后PH,消前PH,消后PH,接种前PH,工艺控制PH等,配前PH,配后PH,可以用来检测厡材料的质量,初步估计配料的情况,如果出了错误,有时候可以从PH中的变化看出来,能够减少错误的发生.B.另外,每次有新的配方我们总是要用PH方法检测其中的每种厡材料是否会和其他的发生反应,可以互相两两混合,检测PH的变化,也可以用来作为配微量元素的检测.C.消前PH可以用来减少消毒过程对培养基的破坏,因为培养基在消毒中会有PH的变化,在不同的PH条件下对培养基破坏也不一样,因此可以在消毒的时候选择合适的PH,消毒完后可以调节过来,这样一来可以对PH敏感的一些原材料减少破坏,这种方法在生产中已经取得了初步的成绩,提高了指标.D.工艺控制的PH,在发酵的产抗期间,通过在不同的发酵时间调整不同的PH,可以减少杂质的产生,同时还可以缓解溶氧,比如在头孢发酵中,通过在后期调整PH可以减少DCPC的含量,给提取工序带来很大的好处,E.补料罐通过PH的调节可以更好的通过流加物料而不影响发酵.(部分发酵在不同时期的PH有所不同,所以通过补料罐的调整可以对发酵指标有所提高)F.发酵过程中的PH调节可以通过各种方法,不一定要添加氨水和氢氧化钠,可以添加玉米桨等其他的物料来进行调节.G.控制放罐时的PH可以对后面的过滤有所影响,所以一定要控制好放罐前的PHH.绘制种子瓶和种子罐以及发酵罐等整个发酵过程的PH生长曲线,可以用来参考控制工艺,检测无菌情况的发生.六、A. 华东理工大学的张嗣良提出了“以细胞代谢流分析与控制为核心的发酵工程学”的观点。
发酵工艺:工程菌高密度发酵工艺开发策略8项(以大肠杆菌为例)利用重组DNA技术获取的生物药物在人类文明史上具有划时代的意义。
许多价值高产量低的功能蛋白如干扰素、白细胞介素、集落刺激因子、生长激素、胰岛素、人血白蛋白、蛋白酶等都在工程菌中获得了高效率表达。
由于工程菌高密度培养能够提高单位体积的产量,在工业生产上可以提高效率降低成本。
所以,高密度培养一直都是发酵工程师们所追捧的热点。
本文就工程大肠杆菌高密度发酵工艺开发中涉及的关键控制点加以探讨。
1工程菌种稳定可靠的菌种是工业化大生产的有力保障,直接关系到生产效率和成本高低。
不同于传统诱变育种模式,在对待工程菌菌种问题上,有人认为基因工程菌种构建完成后无需经过严格单克隆筛选,既节约时间成本又大大减少了工作量,这其实是一个认识误区。
这样做出来的菌种很难连续稳定传代50次以上,给中试放大以及后续的长期稳定生产留下了隐患。
业内一般以能否稳定遗传50代作为判断工程菌种优劣的一个标准。
发酵所需的接种量不是越大越好,要适当。
接种量过小导致适应期过长,菌种易提前老化,也增加了杂菌污染的风险。
接种量过大会过早引起溶氧不足,导致发酵失控。
且营养物质消耗过快也会影响后期正常生长。
一般大肠杆菌接种量遵循逐级增大的原则,并将最后一级的放大倍数控制在10倍左右。
种子培养一定要在最佳条件下进行,培养时间不宜过长,当种子生长至最佳状态时果断移种。
如果种子做的不好,其负面影响往往在发酵中后期会有所体现。
工程菌种培养会加入抗生素,不仅是为了抑制杂菌生长,更重要的是为了给菌种形成正向的抗性筛选压力,及时淘汰质粒丢失的菌株或者衰老的菌体,保证质粒携带菌群的正常生长与表达。
2高密度发酵培养基除了必须的碳源以外,有机复合氮源在蛋白表达阶段不可或缺。
有机复合氮源可提供丰富的氨基酸、小肽、嘌呤、嘧啶、维生素、生物素以及一些生物活性物质,能减轻细胞代谢负担,促进外源蛋白表达。
如果酵母膏和蛋白胨是以流加的方式添加时,存在一种非常有趣的代谢机制:当流加培养基中只有酵母膏时,重组蛋白不稳定;而当流加培养基中只有蛋白胨时,大肠杆菌难以再利用其所产生的乙酸。
1、何谓流加发酵?答:所谓流加发酵,即补料分批发酵(Fed-batch fermentation),有时又称半连续培养或半连续发酵,是指在分批发酵过程中间歇或连续地补加新鲜培养基的发酵方法2、写出Monod 方程,并写出其成立的条件和各参数的意义。
答: 条件:温度和pH 恒定时(1)菌体生长为均衡型非结构生长;(2)培养基中只有一种底物是生长限制性底物;(3)菌体产率系数恒定参数意义:μmax 称为最大比生长速率(h-1),Ks 称为半饱和常数(g/L),S 为限制性底物浓度。
3、细胞高密度培养过程存在的问题有哪些?其相应解决措施有哪些?答:问题:1.产物或代谢副产物的积累对生长的抑制2.氧的限制3.HCDC 中培养基粘度不断增加,引起混合不充分4.CO2和热量的高释放率解决措施1.控制比生长速率在产生乙酸的临界值以下选择合适的培养基2提高通气速率和搅拌速度富氧空气和纯氧在加压环境下培养 SK S s +=max μμ3有必要研究发酵罐中的搅拌模型,找到改善搅拌的方法。
4通过降低细胞比生长速率而部分的解决把培养温度从37℃降到26-30℃,会降低营养吸收和生长速度,因此会减少有毒副产物和代谢产生的热量。
降低温度也能减少细胞对氧的需求。
降低重组细胞温度也有可能减少包含体形式的蛋白质的产生。
4、无反馈控制的流加策略有哪些?答:开环(无反馈)控制恒速流加——以预先决定的(恒定的)速率流加营养物质,比生长速率逐渐降低。
加速流加——以逐渐增加的速率流加营养物质。
可补偿一些比生长速率的降低。
指数流加——以指数的速率流加营养物质。
可得到恒定的比生长速率。
闭环(反馈)控制即时DO——当DO降低时补加营养物质。
即时pH——主要碳源耗尽引起pH上升时补加营养物质。
二氧化碳释放率(CER)——CER基本正比于碳源的消耗速度。
这一方法最为经常用于控制比生长速率。
细胞浓度——营养物质流加速率由细胞浓度决定。
底物浓度控制——营养物质流加速率直接由主要碳源的浓度控制5、何谓发酵产物的理论得率?可由哪些途径计算得到?答:假设发酵过程中完全没有菌体生成,则YP/S 可达理论最高值,称为理论代谢产物产率 计算途径(a )根据化学计量关系计算例如,由葡萄糖、氨和氧生成谷氨酸的化学计量方程为∶依此计算 =147/180=0.82 (b )由生物化学计量关系计算根据由底物生成目标代谢产物的代谢途径,进行代谢过程中有关NAD(P)+和ATP 等辅底物的物料衡算,结合化学计量关系可求出下式 由该反应式得 =(147×12)/(13×180)=0.75由于NADPH 和ADP 的再生过程要消耗底物,故依这种方法求得的值要小于单纯依据化学计量关系求得的结果。
一种酿酒酵母高密度发酵培养的方法酿酒酵母是一种广泛应用的微生物,被用于生产啤酒、葡萄酒、烈性酒等多种酒类。
为了提高酒类的品质和产量,酵母的高密度发酵培养技术逐渐成为研究热点。
本文将介绍一种酿酒酵母高密度发酵培养的方法。
一、培养基选择培养基是酵母高密度发酵的基础,其成分和配比对发酵效果有着重要的影响。
以葡萄糖、酵母粉为基础配方,加入一定量的氮源、微量元素、维生素等成分,可制备出生长迅速的培养基。
二、罐内发酵方法罐内发酵又称低削减法发酵,是一种高效的酿酒酵母培养技术。
罐内发酵可以利用罐内喷射气体、调节罐体液位和控制酵母密度等手段,实现高密度的酵母发酵过程。
通常,罐体内的酵母密度可以达到10亿/mL以上。
酵母密度越高,发酵剂的产量也越大。
三、发酵过程控制为使酵母高密度发酵过程顺利进行,要对各项发酵参数进行严格控制,包括pH值、温度、氧气供应、液位等。
通常,发酵过程分为两个阶段:生长阶段和发酵期。
在生长阶段,必须控制适宜的温度和氧气供应,促进酵母的快速生长和繁殖。
在发酵期,需要控制pH值和酵母密度,调整发酵条件,使其符合酿酒工艺的要求。
四、灭菌处理培养过程中,为了杜绝污染和保证酿酒酵母的稳定性,必须对生产线上的设备、培养罐和培养基等进行严格的灭菌处理。
灭菌可以采用物理或化学方法,如高温蒸汽、紫外线照射、乙醛气体等,目的是消除微生物的污染。
总的来说,酿酒酵母高密度发酵培养技术是一项研究难度大、技术门槛高、操作复杂的技术,其成功与否与酵母菌株的选取、培养基的配制、罐内发酵的操作水平、发酵过程参数的调控等因素密不可分。
只有全面考虑各个环节的影响,才能实现高密度的酿酒酵母发酵过程,提高酿酒工艺的效率与品质。
微生物的高密度培养高密度培养的定义:高密度培养:是应用一定的培养技术和设备来提高菌体生物量和目标产物时空产率的发酵技术。
一般认为,细胞密度接近理论值的培养为高密度培养。
但由于菌种、菌株及目标产物差异性较大,高密度培养的最终菌体生物量无法用一个确切的值或范围界定。
Riesenbere经计算认为,理论上大肠杆菌发酵所能达到的最高菌体密度为400g/L,考虑到实际情况的种种条件限制,Markel等认为最高菌体密度为200 g/L,此时,发酵液25%充满长3μm,宽1μm的菌体,发酵液粘度很高,几乎散失流动性。
而某些极端微生物细胞密度达到数克每升也可认为是高密度培养。
高密度培养技术最早用于酵母细胞的培养提高生物量或生产单细胞蛋白及乙醇的生产。
随着基因工程技术的发展和应用,构建基因工程菌已经成为提高目标蛋白表达水平的一项基本手段。
基因工程菌过量表达目标产物还有助于简化后续的分离纯化操作,同时也便于基因工程改造。
其中大肠杆菌、酵母是最常用的重组表达宿主菌高密度培养的优势:提高最终菌体生物量和目标产物的时空产率,缩小生物反应器体积,降低设备投资缩短发酵周期,减少水电使用,降低生产成本便于下游分离纯化工艺等高密度培养主要限制因素:固态或挥发性底物在液态培养基中,溶解限制底物对细胞生长可能存在限制或抑制作用。
底物和产物的稳定性差或易挥发产物降解产物或代谢副产物的积累,对细胞生长产生限制。
呼吸作用导致C02和热量的急剧积聚氧气需求量大,培养基黏度增加副产物的积累与毒害作用。
高密度培养的培养基:高密度培养要求培养基含有细胞生长所需的所有营养成分,配比均衡,且浓度不会对细胞生长产生抑制作用。
一般采用营养成分清晰的全合成培养基,便于发酵过程的调节控制和进一步的扩大培养。
培养基必须包含细胞生长必需的碳源、氮源、无机盐及生长因子。
高密度培养的初始发酵培养基营养成分必须低于抑制浓度,并结合恰当的流加补料策略提供营养物质,使细胞生长维持在最佳状态。