第5章 遥感图像的辐射校正
- 格式:ppt
- 大小:2.33 MB
- 文档页数:66
遥感影像辐射校正方法与技巧引言:遥感技术在现代社会的应用日益广泛,无论是环境监测、农业发展还是城市规划,遥感影像都起到了不可或缺的作用。
然而,遥感影像需要进行辐射校正,以准确反映地物的光谱信息。
本文将介绍遥感影像辐射校正的方法与技巧。
一、什么是辐射校正辐射校正是遥感影像处理中的一项重要任务,通过消除大气、地表反射和传感器响应等误差,实现影像灰度与反射率、辐射率之间的转换。
辐射校正的目的是减小影像的空间和光谱差异,以便更好地进行后续分析和应用。
二、辐射校正的方法1. 经验模型方法经验模型方法适用于辐射校正的初步处理。
通过建立传感器响应与地物反射之间的经验模型,根据遥感影像中的亮度值进行校正。
这种方法适用于像素值的非线性校正,但不适用于不同光谱区域之间的校正。
2. 大气校正方法大气校正是辐射校正的关键步骤之一。
大气校正通过模拟大气的辐射传输过程,估算并消除大气对遥感影像的影响。
目前,主要的大气校正方法包括常规大气校正、基于模型的大气校正和基于辐射传输模型的大气校正等。
3. 地表反射校正方法地表反射校正是辐射校正中的另一重要步骤,主要解决地物反射率的转换问题。
地表反射校正方法可以分为基于定标面的校正和基于统计的校正两种。
其中,基于定标面的校正方法需要采集大量的地面参考数据,而基于统计的校正方法则通过统计地物的光谱反射特征进行校正。
三、辐射校正的技巧1. 模型选择与参数估计在进行辐射校正时,需要选择合适的模型和正确估计模型参数。
为了提高辐射校正的准确性,可通过大量的实地观测数据进行参数估计。
同时,对不同地区和不同影像进行适当调整和优化,以提高校正的精度。
2. 数据预处理在进行辐射校正之前,需要对遥感影像进行一定的数据预处理。
主要包括大气润湿校正、坐标转换、几何校正等。
这些预处理步骤有助于减小数据误差,提高辐射校正的精度。
3. 校正结果评价进行辐射校正后,需要对校正结果进行评价。
评价指标包括辐射定标误差、地物反射率的准确度等。
遥感图像的辐射校正实验报告1. 实验目的和内容实验目的:(1)复习巩固课堂上所学的对遥感图像的辐射校正,掌握这些校正方法的基本原理和方法,理解遥感图像辐射校正的意义;(2)实际学习对遥感图像进行绝对大气校正、相对大气校正的FLAASH和黑暗像元法;实验内容:(1)绝对大气校正将遥感图像的DN值转换为地表反射率、地表辐射率、地表温度等的方法。
本次实验通过FLAASH法进行绝对大气纠正。
(2)相对大气校正校正后得到的图像,相同的DN值表示相同的地物反射率,其结果不考虑地物的实际反射率。
本次实验通过黑暗像元法进行相对大气纠正。
2. 图像处理方法和流程A.绝对大气校正1、加载影像,打开ENVI,file>>open image file,打开L71120038_03820030128_MTL.txt2、辐射定标FLAASH模块需要输入的是经过辐射定标后的BIL/BIP文件,ENVI >> basic tools >>preprocessing > >calibration utilities >> Landsat calibration3、格式转换上述计算得到的存储方式为BSQ,FLAASH大气校正对于波段存储的要求为BIL/BIP格式,ENVI >> basic tools>> convert data (BSQ ,BIL ,BIP)4、FLAASH大气校正(1)ENVI>>basic tools>>preprocessing>>calibration utilities>> FLAASH,选择需要校正的数据。
选用第二种,设置Single scale factor:10。
(2)设置输入与输出文件①进入地理空间数据云,查询影像参数。
点击数据资源—LANDSAT系列数据—输入数据标识进行二次筛选—选择信息②查询图像的基本信息③设置Sensor类型为Landsat TM7,传感器参数被自动填写,影像和传感器参数查询数据相关信息后输入。
卫星遥感图像辐射衰减校正方法卫星遥感技术作为获取地球表面信息的重要手段,在自然资源调查、环境监测、灾害评估等领域发挥着至关重要的作用。
然而,卫星遥感图像在传输过程中会受到大气散射、吸收等因素的影响,导致图像辐射能量衰减,影响数据的准确性和实用性。
因此,对卫星遥感图像进行辐射衰减校正是一个不可或缺的预处理步骤,以确保后续分析的可靠性和精确度。
以下是六种常用的卫星遥感图像辐射衰减校正方法,以及对这些方法的综合评述。
1. 大气顶层辐射传输模型(ATM)法大气顶层辐射传输模型是基于辐射传输理论,通过模拟太阳光在大气中的传播路径,计算出到达卫星传感器前大气对辐射的影响。
该方法需要详细的气象数据(如温度、湿度、气压和气溶胶光学厚度等),以求解辐射传输方程。
常用的模型有MODTRAN、6S(Second Simulation of the Satellite Signal in the Solar Spectrum)等。
ATM法能够较为精确地校正大气影响,但对输入参数的精度要求高,计算复杂度大。
2. 辐射定标法辐射定标是校正卫星图像的第一步,确保图像的数字值与实际辐射量之间建立准确的关系。
它分为内部定标和外部定标。
内部定标依赖于卫星上的定标设备,校正仪器本身产生的误差;外部定标则利用地面控制点或同步的辐射测量数据,调整图像的整体辐射水平。
虽然辐射定标不直接校正大气衰减,但它是后续大气校正的基础,确保图像的辐射量具有物理意义。
3. 暗像元法暗像元法适用于有水体存在的场景,尤其是大面积水域,因为水体可以被视为近似无反射的理想暗像元。
通过选取图像中未受大气散射影响的暗像元,即水面的反射率接近于零的部分,来估算大气上行透过率和大气下垫面反射率,进而校正大气影响。
这种方法简单易行,但受限于应用场景,对水体条件和图像质量有一定要求。
4. 多时相相对辐射校正法(DOS)多时相相对辐射校正法利用不同时间(如早晚)同一地区影像的差异,通过比较阴影区或植被覆盖度变化较小的区域来估算大气影响。
遥感影像的辐射校正与处理技术在当今科技飞速发展的时代,遥感技术作为一种获取地球表面信息的重要手段,发挥着越来越关键的作用。
而遥感影像的辐射校正与处理技术,则是确保遥感数据质量和可用性的重要环节。
遥感影像本质上是通过传感器接收到的地物反射或发射的电磁波能量所形成的图像。
然而,在获取影像的过程中,由于多种因素的影响,影像的辐射值可能会出现偏差或失真,这就需要进行辐射校正。
辐射校正的目的是消除或减少这些影响,使得影像能够准确反映地物的真实辐射特性。
造成遥感影像辐射误差的原因众多。
首先,传感器自身的性能差异会导致响应不一致。
不同的传感器对相同的地物可能会产生不同的测量值。
其次,大气对电磁波的散射和吸收也会改变影像的辐射特性。
比如,大气中的水汽、尘埃等会使得光线散射,导致影像模糊和亮度变化。
再者,太阳高度角、观测角度等几何因素也会影响地物的辐射接收。
此外,地形的起伏会导致光照不均匀,从而影响影像的辐射值。
辐射校正主要包括两种类型:辐射定标和辐射校正。
辐射定标是将传感器测量的数字量化值(DN 值)转换为具有物理意义的辐射亮度或反射率值。
这通常需要借助传感器的定标参数,如增益、偏移等。
通过定标,可以建立起影像数据与实际辐射量之间的定量关系。
而辐射校正则是消除或减少由大气、地形等因素引起的辐射误差。
常见的辐射校正方法有基于物理模型的校正和基于经验模型的校正。
基于物理模型的校正方法需要详细了解大气的成分、物理特性以及太阳辐射等信息,通过建立复杂的数学模型来计算大气对辐射的影响,并进行校正。
这种方法理论上较为精确,但需要大量的先验知识和参数输入,计算量较大。
基于经验模型的校正方法则是通过对大量已知辐射特性的地面控制点或均匀地物区域的观测,建立影像辐射值与实际辐射值之间的经验关系,然后应用这种关系对整个影像进行校正。
这种方法相对简单,但精度可能受到控制点选取和分布的影响。
在进行辐射校正之后,还需要对遥感影像进行进一步的处理,以提高影像的质量和可用性。
遥感图像的几何校正与辐射校正技术遥感技术在现代科学和应用中扮演着重要的角色。
而在遥感技术中,图像的几何校正与辐射校正是必不可少的两个步骤。
几何校正负责消除由传感器成像系统引起的几何失真,而辐射校正则用来消除由大气和场景反射率变化引起的辐射度量误差。
几何校正是将遥感图像的像素坐标与地面实际坐标对应起来的过程。
在地球的表面上,由于地形的变化,相邻像元之间的距离和角度可能发生变化。
而传感器成像系统也会存在一定的误差,例如镜头畸变等。
这些因素都会导致图像中的几何失真,使得像素坐标与地面实际坐标无法一一对应。
因此,几何校正是将图像上的像素坐标进行修正,使其与真实地面坐标匹配。
实现几何校正的方法有很多,其中最常用的是基于控制点的法线变换方法。
该方法通过选取地面上已知坐标的控制点,将其在图像中的像素坐标与地面实际坐标进行匹配,并通过变换公式对整个图像进行校正。
这样可以有效地消除图像中的几何失真,提高遥感图像的精度和可用性。
辐射校正是消除由大气和场景反射率变化引起的辐射度量误差的过程。
在图像获取过程中,光线会经过大气层,与地面物体发生反射和散射,然后再经过传感器被记录下来。
然而,大气层对不同波长的光线有不同的吸收和散射特性,这会导致图像中的辐射度量与实际物体的辐射度量不一致。
因此,辐射校正就是通过一系列修正方法来消除大气的影响,得到反映地物辐射特性的真实图像。
常用的辐射校正方法有基于大气模型的模型反演法、基于辐射度量的绝对辐射度归一化法等。
这些方法通过对辐射度量进行修正,消除大气因素的影响,提高遥感图像的定量分析能力和应用效果。
遥感图像的几何校正与辐射校正技术在农业、城市规划、环境监测、资源调查等领域具有广泛的应用前景。
例如,在农业领域,通过对农田遥感图像进行几何校正,可以提高遥感数据在农作物监测和精细管理中的应用效果。
再如,在城市规划中,通过对高分辨率遥感图像进行辐射校正,可以准确获取不同区域的地表反射率,从而帮助城市规划师进行土地利用评估和城市建设规划。