固体物理第一章习题
- 格式:doc
- 大小:706.00 KB
- 文档页数:9
第一章 晶体的结构习题一、填空题1.固体一般分为_____ _____ _____2.晶体的三大特征是_____ _____ _____3._____是晶格中最小的重复单元,_____既反映晶格的周期性又反映晶格的对称性。
4._____和_____均是表示晶体原子排列紧密程度。
5.独立的对称操作有______二、证明题1.试证明体心立方格子和面心立方格子互为正倒格子。
2.证明倒格子矢量112233G h b h b h b =++ 垂直于密勒指数为123()h h h 的晶面系。
3.对于简方晶格,证明密勒单立指数为(,,)h k l 的晶面系,面间距d 满足:22222()d a h k l =++,其中a 为立方边长;并说明面指数简单的晶面,其面密度较大,容易解理。
4.证明不存在5度旋转对称轴。
5.证明正格矢和倒格矢之间的关系式为:()为整数m m R G π2=⋅三、计算题1.已知某种晶体固体物理学原胞基矢为(1)求原胞体积。
(2)求倒格子基矢。
(3)求第一布里渊区体积。
2.一晶体原胞基矢大小m a 10104-⨯=,m b 10106-⨯=,m c 10108-⨯=,基矢间夹角90=α, 90=β, 120=γ。
试求:(1)倒格子基矢的大小; (2)正、倒格子原胞的体积; (3) 正格子(210)晶面族的面间距。
j 2a 3i 2a a 1+=j 2a 3i 2a -a 2+=k c a 3=3.如图1.所示,试求: (1) 晶列ED ,FD 和OF 的晶列指数;(2) 晶面AGK ,FGIH 和MNLK 的密勒指数;(3) 画出晶面(120),(131)。
a 2xy zA B D C G F E OIH y x Aa 2K O GLNM z图1.4.矢量a ,b ,c 构成简单正交系。
求:晶面族)(hkl 的面间距。
5.设有一简单格子,它的基矢分别为i a 31=,j a 32=,)(5.13k j i a ++=。
固体物理习题1第⼀章晶体结构和倒格⼦1. 画出下列晶体的惯⽤元胞和布拉菲格⼦,写出它们的初基元胞基⽮表达式,指明各晶体的结构及两种元胞中的原⼦个数和配位数。
(1) 氯化钾(2)氯化钛(3)硅(4)砷化镓(5)碳化硅(6)钽酸锂(7)铍(8)钼(9)铂2. 对于六⾓密积结构,初基元胞基⽮为→1a =→→+j i a 3(2 →→→+-=j i a a 3(22 求其倒格⼦基⽮,并判断倒格⼦也是六⾓的。
3.⽤倒格⽮的性质证明,⽴⽅晶格的[hkl]晶向与晶⾯(hkl )垂直。
4. 若轴⽮→→→c b a 、、构成简单正交系,证明。
晶⾯族(h 、k 、l )的⾯间距为 2222)()()(1c l b k a h hkl d ++= 5.⽤X 光衍射对Al 作结构分析时,测得从(111)⾯反射的波长为1.54?反射⾓为θ=19.20 求⾯间距d 111。
6.试说明:1〕劳厄⽅程与布拉格公式是⼀致的;2〕劳厄⽅程亦是布⾥渊区界⾯⽅程;7.在图1-49(b )中,写出反射球⾯P 、Q 两点的倒格⽮表达式以及所对应的晶⾯指数和衍射⾯指数。
8.求⾦刚⽯的⼏何结构因⼦,并讨论衍射⾯指数与衍射强度的关系。
9.说明⼏何结构因⼦S h 和坐标原点选取有关,但衍射谱线强度和坐标选择⽆关。
10. 能量为150eV 的电⼦束射到镍粉末上,镍是⾯⼼⽴⽅晶格,晶格常数为3.25×10-10m,求最⼩的布拉格衍射⾓。
附:1eV=1.602×10-19J, h=6.262×10-34J ·s, c=2.9979×108m/s第⼆章晶体结合1.已知某晶体两相邻原⼦间的互作⽤能可表⽰成nm r b r a r U +-=)( (1) 求出晶体平衡时两原⼦间的距离;(2) 平衡时的⼆原⼦间的互作⽤能;(3) 若取m=2,n=10,两原⼦间的平衡距离为3?,仅考虑⼆原⼦间互作⽤则离解能为4ev ,计算a 及b 的值;(4)若把互作⽤势中排斥项b/r n 改⽤玻恩-梅叶表达式λexp(-r/p),并认为在平衡时对互作⽤势能具有相同的贡献,求n 和p 间的关系。
固体物理学第一章习题一、简要回答下列问题(answer the following questions):1、晶体的解理面是面指数低的晶面还是面指数高的晶面?为什么?2、什么是布喇菲格子(布格子)?画出氯化钠晶体的结点所构成的布格子。
为什么说金刚石结构是复式格子?3、在14种布格子中,为什么没有底心四方、面心四方和底心立方?(请画图说明)4、二维布喇菲点阵只有五种。
试列举并画图表示之。
5、体心立方元素晶体,[111]方向上的结晶学周期为多大?实际周期为多大?6、非晶态材料的基本特点是什么?7、什么是密勒指数?当描述同一晶面时、密勒指数与晶面指数一定相同吗?8、简述晶面角守恒定律,并说明晶体的晶面角守恒的原因。
二、填空题(fill in the blanks)1、构成阵点的具体原子、离子、分子或其集团,都是构成晶体的基本结构单元,当晶体中含有数种原子时,这数种原子构成的基本结构单元,称为。
2、布喇菲格子的格点可以看成分列在一系列相互平行的直线上而无遗漏,这样的直线叫 , 晶列的取向称为 , 一组能表示晶列方向的数称为。
3、布喇菲格子的格点,也可以看成分列在相互平行、间距相等的平面上而无遗漏,这些包含格点的平面称为;而那些相互平行、间距相等、格点分布情况相同的总体,称为;同一格子可能有个取向的晶面族。
能够标志晶面取向的一组数,称为。
4、使晶体恢复原状的操作,称为;对称操作的集合,称为;保持空间某一点不动的操作称为。
三、解释下列物理概念(explain the following physics concepts):1、空间点阵2、固体物理学原胞和结晶学原胞3、密堆积和配位数四、基矢为 1a ai = ,2a aj = ,3()2a a i j k =++ 的晶体为何种结构? 若33()22a a a j k i =++ , 又为何种结构? 为什么?五、如果将等体积球分别排成下列结构,设x 表示刚球所占体积与总体积之比,证明结 构 x简单立方 π/6≈0.52体心立方面心立方六角密排金 刚 石六、试求面心立方结构(110)和(111)晶面族的原子数面密度,设晶格常数为a .七、试证明金刚石结构原子的键间角与立方体的体对角线间的夹角相同,都是109028’.八、证明:任何点群中两个二重旋转轴之间的夹角只能是300、450、600、和900.九、在六角晶系中,晶面常用四个指数(hkil )表示,如图所示,前三个指数表示晶面族中最靠近原点的晶面族在互成1200的共面轴123,,a a a 上的截距为123/,/,/a h a k a i ,第四个指数表示该晶面在六重轴c 上的截距为/c l 。
第一章晶体的结构简单回答下面的问题:1 a原胞与单胞有什么不同?何谓布拉菲格子?何谓倒格子?以一结点为顶点,以三个不同方向的周期为边长的平行六面体可作为晶格的一个重复单元.体积最小的重复单元,称为原胞或固体物理学原胞.它能反映晶格的周期性.原胞的选取不是惟一的,但它们的体积都相等.为了同时反映晶体对称的特征,结晶学上所取的重复单元,体积不一定最小,结点不仅在顶角上,还可以是体心或面心.这种重复单元称作晶胞、惯用晶胞或布喇菲原胞.晶体内部结构可以看成是由一些相同的点子在空间作规则的周期性无限分布,这些点子的总体称为布喇菲点阵。
布拉菲格子:由基元代表点(格点)在空间中的周期性排列所形成的晶格。
倒格子*(Reciprocal Lattice,Reciprocal有相互转换的含意)已知有正格子基矢,定义倒格矢基矢为:;; .其中为正格子原胞体积。
由平移操作所产生的格点叫倒格点:为倒格矢;倒格点的总体叫倒格子,叫一组倒格基矢。
由与所决定的点阵为互为倒格子b晶体的宏观对称性可以概括为多少点群?晶体中有几种基本对称素?多少个晶系?这些晶系分别包括哪些布拉菲格子?晶体学中共有32种点群八种基本对称素C1 (1)、C2 (2)、C3 (3)、C4 (4)、C6 (6)、Ci (i)、CS (m)和 S4七大晶系十四种布拉菲格子c什么是晶体、准晶体和非晶体?晶体:组成固体的原子(或离子)在微观上的排列具有长程周期性非晶体:组成固体的粒子只有短程序(在近邻或次近邻原子间的键合:如配位数、键长和键角等具有一定的规律性),无长程周期性准晶:有长程的取向序,沿取向序的对称轴方向有准周期性,但无长程周期性2试推导面心和体心立方点阵的x射线衍射的系统消光规律3多晶体与单晶体的x射线衍射图有什么区别?多晶(衍射环对应一个晶面);单晶(衍射点对应一个晶面)4a)何谓晶体、准晶体及非晶体?它们的x光或电子衍射有何区别?黄昆第45页晶体:衍射图样是一组组清晰的斑点非晶体:由于原子排列是长程无序的,衍射图样呈现为弥散的环,没有表征晶态的斑点准晶体:衍射图样具有五重对称的斑点分布,斑点的明锐程度不亚于晶体的情况(b)何谓布拉菲格子、晶体学点群、晶系和晶体学空间群?C1 (1)、C2 (2)、C3 (3)、C4 (4)、C6 (6)及S1,S2,S3,S4,S5这十种对称素组成32个不同的点群结晶学中把a, b, c满足同一类要求的一种或数种布喇菲格子称为一个晶系。
第一章 金属自由电子气体模型习题及答案1. 你是如何理解绝对零度时和常温下电子的平均动能十分相近这一点的?[解答] 自由电子论只考虑电子的动能。
在绝对零度时,金属中的自由(价)电子,分布在费米能级及其以下的能级上,即分布在一个费米球内。
在常温下,费米球内部离费米面远的状态全被电子占据,这些电子从格波获取的能量不足以使其跃迁到费米面附近或以外的空状态上,能够发生能态跃迁的仅是费米面附近的少数电子,而绝大多数电子的能态不会改变。
也就是说,常温下电子的平均动能与绝对零度时的平均动能十分相近。
2. 晶体膨胀时,费米能级如何变化?[解答] 费米能级3/222)3(2πn mE o F= , 其中n 单位体积内的价电子数目。
晶体膨胀时,体积变大,电子数目不变,n 变小,费密能级降低。
3. 为什么温度升高,费米能反而降低?[解答] 当K T 0≠时,有一半量子态被电子所占据的能级即是费米能级。
除了晶体膨胀引起费米能级降低外,温度升高,费米面附近的电子从格波获取的能量就越大,跃迁到费米面以外的电子就越多,原来有一半量子态被电子所占据的能级上的电子就少于一半,有一半量子态被电子所占据的能级必定降低,也就是说,温度生高,费米能反而降低。
4. 为什么价电子的浓度越大,价电子的平均动能就越大?[解答] 由于绝对零度时和常温下电子的平均动能十分相近,我们讨论绝对零度时电子的平均动能与电子的浓度的关系。
价电子的浓度越大,价电子的平均动能就越大,这是金属中的价电子遵从费米—狄拉克统计分布的必然结果。
在绝对零度时,电子不可能都处于最低能级上,而是在费米球中均匀分布。
由式3/120)3(πn k F =可知,价电子的浓度越大费米球的半径就越大,高能量的电子就越多,价电子的平均动能就越大。
这一点从3/2220)3(2πn m E F=和3/222)3(10353πn mE E oF ==式看得更清楚。
电子的平均动能E 正比于费米能o F E ,而费米能又正比于电子浓度32l n。
第一章 晶体的结构习题一、填空题1.固体一般分为晶体 非晶体 准晶体2.晶体的三大特征是 原子排列有序 有固定的熔点 各向异性3.___原胞__是晶格中最小的重复单元, 晶胞 既反映晶格的周期性又反映晶格的对称性。
4.__配位数___和_致密度____均是表示晶体原子排列紧密程度。
5.独立的对称操作有 平移、旋转、镜反射、中心反演 二、证明题1.试证明体心立方格子和面心立方格子互为正倒格子。
解:我们知体心立方格子的基矢为:2.⎪⎪⎪⎩⎪⎪⎪⎨⎧-+=+-=++-=)(2)(2)(2321k j i a k j i a k j i a a a a根据倒格子基矢的定义,我们很容易可求出体心立方格子的倒格子基矢为:3.⎪⎪⎪⎩⎪⎪⎪⎨⎧+=Ω⨯=+=Ω⨯=+=Ω⨯=)(2][2)(2][2)(2][2213132321j i a a b k i a a b k j a a b a a aππππππ 由此可知,体心立方格子的倒格子为一面心立方格子。
同理可得出面心立方格子的倒格子为一体心立方格子,所以体心立方格子和面心立方格子互为正倒格子4.证明倒格子矢量112233G hb h b h b =++垂直于密勒指数为123()h h h 的晶面系。
解答:因为ij j i b a πδ2=⋅,332211b h b h b h G ++=3311h a h a CA -=,3322h ah a CB -= 很容易证明:0=⋅CA G ,0=⋅CB G 即321h h h G 与晶面族(321h h h )正交5.对于简方晶格,证明密勒单立指数为(,,)h k l 的晶面系,面间距d 满足:22222()d a h k l =++,其中a 为立方边长;并说明面指数简单的晶面,其面密度较大,容易解理。
证明如下:晶面方程可以写为:n x b h b h b h π2)(332211=⋅++,n 取不同整数代表晶面系中不同的晶面,各晶面到原点的垂直距离||||2332211b h b h b h n d n ++=π,面间距为:|||2332211b h b h b h d n ++=π=||2321h h h G π,剩下的东西就是代公式了6.证明不存在5度旋转对称轴。
7.证明正格矢和倒格矢之间的关系式为: ()为整数m m R G π2=⋅三、计算题1.已知某种晶体固体物理学原胞基矢为(1)求原胞体积。
(2)求倒格子基矢。
(3)求第一布里渊区体积。
j 2a 3i 2a a 1+=j2a3i 2a -a 2+=kc a 3=2.一晶体原胞基矢大小m a 10104-⨯=,m b 10106-⨯=,m c 10108-⨯=,基矢间夹角90=α, 90=β, 120=γ。
试求:(1) 倒格子基矢的大小; (2) 正、倒格子原胞的体积; (3)正格子(210)晶面族的面间距。
解:(1) 由题意可知,该晶体的原胞基矢为:ai =1a)2321(2j i a +-=bk a c =3由此可知:][2321321a a a a a b ⨯⋅⨯=π=abc bc 23)2123(2j i +π=)31(2j i +a π][2321132a a a a a b ⨯⋅⨯=π=abc ac 232j π=j 322⋅b π ][2321213a a a a a b ⨯⋅⨯=π=abc ab23232kπ=k ⋅c π2 所以1b =22)31(12+⋅a π=110108138.134-⨯=m a π 2b =2)32(2⋅b π=110102092.134-⨯=m b π 3b =212⋅c π=110107854.02-⨯=m cπ (2) 正格子原胞的体积为:][321a a a ⨯⋅=Ω=)]()2321([)(k j i i c b a ⨯+-⋅=328106628.123m abc -⨯=倒格子原胞的体积为:][321b b b ⨯⋅=Ω*=)](2)32(2[)31(2k j j i c b a πππ⨯⋅+=3303104918.1316-⨯=m abc π (3)根据倒格子矢量与正格子晶面族的关系可知,正格子(210)晶面族的面间距为:h h d K π2==3210122b b b ++π=j i )3434(42ba a ππππ++ =m ba a 1022104412.1)3131()1(142-⨯=++⋅ππ3.如图1.所示,试求:(1) 晶列ED ,FD 和OF 的晶列指数; (2) 晶面AGK ,FGIH 和MNLK 的密勒指数; (3) 画出晶面(120),(131)。
a2xyzAB DCGFEO I HyxAa2KOGLNMz图1.解:(1)根据晶列指数的定义易求得晶列ED 的晶列指数为[111],晶列FD 的晶列指数为[110],晶列OF 的晶列指数为[011]。
(2)根据晶面密勒指数的定义晶面AGK 在x ,y 和z 三个坐标轴上的截距依次为1,-1和1,则其倒数之比为1:1:111:11:11=-,故该晶面的密勒指数为(111)。
晶面FGIH 在x ,y 和z 三个坐标轴上的截距依次为1/2,∞和1,则其倒数之比为1:0:211:1:2/11=∞,故该晶面的密勒指数为(201)。
晶面MNLK 在x ,y 和z 三个坐标轴上的截距依次为1/2,-1和∞,则其倒数之比为0:1:21:11:2/11=∞-,故该晶面的密勒指数为(210)。
(3)晶面(120),(131)分别如下图中晶面AMLk 和晶面ABC 所示:b3xyzA BCOyxAb2KOLMz4.矢量a ,b ,c 构成简单正交系。
求:晶面族)(hkl 的面间距。
由题意可知该简单正交系的物理学原胞的基矢为:⎪⎩⎪⎨⎧===k a j a i a c b a 321由此可求得其倒格子基矢为:⎪⎪⎪⎩⎪⎪⎪⎨⎧==⨯⋅⨯===⨯⋅⨯===⨯⋅⨯=k k a a a a a b j j a a a a a b i i a a a a a b c ab abc b ac abc a bc abc πππππππππ2)(2][][22)(2][][22)(2][][2321213321132321321根据倒格子矢量的性质有:32122b b b K l k h d hkl hkl ++==ππ 222)()()(12222clb k a h l ck b h a ++=++=k j i ππππ5.设有一简单格子,它的基矢分别为i a 31=,j a 32=,)(5.13k j i a ++=。
试求: (1) 此晶体属于什么晶系,属于哪种类型的布喇菲格子? (2) 该晶体的倒格子基矢;(3) 密勒指数为(121)晶面族的面间距; (4) 原子最密集的晶面族的密勒指数是多少?[111]与[111]晶列之间的夹角余弦为多少?解:(1)由题意易知该晶体属于立方晶系,并属于体心立方布喇菲格子。
(2)由倒格子基矢的定义可知:⎪⎪⎪⎩⎪⎪⎪⎨⎧=⋅=⨯⋅⨯=-=-⋅=⨯⋅⨯=-=-⋅=⨯⋅⨯=kk a a a a a b k j k j a a a a a b k i k i a a a a a b 5.125.1392][][2)(325.13)(5.42][][2)(325.13)(5.42][][2321213321132321321πππππππππ (3)根据倒格矢的性质,可求得密勒指数为(121)晶面族的面间距为3211121122122b b b K -+⋅==ππd103030352(322==-+=k j i ππ(4)由于面密度d ρβ=,其中d 是面间距,ρ是体密度。
对布喇菲格子,ρ等于常数。
因此,我们可设原子最密集的晶面族的密勒指数为)(321h h h ,则该晶面族的面间距321h h h d 应为最大值,所以有33221122321321b b b K h h h d h h h h h h ++==ππmax )2(3])2([3222132121321=--++=--++=kj i k j i h h h h h h h h h h ππ由此可知,对面指数为(100)、(010)、(101)、(011)和(111)有最大面间距2/3,因而这些面即为原子排列最紧密的晶面族。
(5)[111]与[111]晶列之间的夹角余弦为321321321321111111111111)()(arccosa a a a a a a a a a a a R R R R -+⋅++-+⋅++=⋅⋅=α53.485.15.15.15.15.45.4)5.15.15.1()5.15.45.4(arccos =-+⋅++-+⋅++=kj i k j i k j i k j i。