适应压力传感器信号的智能IC
- 格式:pdf
- 大小:118.58 KB
- 文档页数:8
ldc1612工作原理LDC1612是一种低功耗差分压力传感器芯片,广泛应用于工业自动化、医疗设备、汽车电子等领域。
本文将介绍LDC1612的工作原理以及其在压力测量中的应用。
LDC1612工作原理基于电感耦合效应,通过测量金属物体的涨落电感来间接获取压力信息。
它由两个线圈组成,一个为驱动线圈,另一个为传感线圈。
驱动线圈通过外部电流源激励,产生一个交变磁场。
当金属物体靠近传感线圈时,由于电感耦合效应,传感线圈中的电感发生变化。
通过测量这个变化,可以间接得到金属物体的压力信息。
LDC1612采用差分输入输出电路,可以抵消传感线圈和驱动线圈的不匹配,提高了系统的稳定性和精度。
同时,它还具备自动调谐功能,可以自动适应不同的金属物体,使得在不同环境下都能获得准确的压力测量结果。
在实际应用中,LDC1612通常与微控制器或信号处理器相连,通过I2C或SPI接口进行数据通信。
它可以测量多种金属物体的涨落电感,如钢、铜、铝等。
通过对涨落电感的测量和分析,可以得到金属物体所受的压力大小。
同时,LDC1612还具备温度补偿和线性化校准等功能,可以提高测量的准确性和稳定性。
LDC1612的工作电源电压范围为2.7V至5.5V,工作电流较低,典型值为1.3mA。
这使得它非常适合于低功耗应用,如便携式设备和电池供电系统。
此外,它还具备低噪声和抗干扰能力,能够在复杂的工业环境中稳定工作。
在工业自动化领域,LDC1612广泛应用于液体和气体压力的测量和控制。
例如,在液体管道中,通过将LDC1612安装在管道上,可以实时监测管道内液体的压力变化,从而及时发现管道泄漏或故障。
在汽车电子领域,LDC1612可以用于汽车制动系统、悬挂系统等的压力测量,以确保汽车的安全性能。
总结起来,LDC1612是一种基于电感耦合效应的差分压力传感器芯片,通过测量金属物体的涨落电感来间接获取压力信息。
它具有低功耗、高精度和抗干扰能力强的特点,广泛应用于工业自动化、医疗设备、汽车电子等领域。
传感器应用芯片-LMP90100介绍相关专题:电子应用来源:icbuy亿芯网截至目前为止,基于传感器的应用设计要求为每一个系统量身定制优化的模拟解决方案。
这类设计工作少则数天,多则几个星期,往往涉及很多环节,包括选择相关组件并建立原型,以便随后创建布局,然后为首批即将投产的印刷电路板(PCB)进行测试。
为了避免一次又一次从头开始每一个新的任务,包含硬件和软件组件的解决方案被开发出来,其不仅简化了设计工程师的工作,而且还可以在设计过程中节省时间。
借助全新系列高精度传感器模拟前端(Sensor AFE),设计工程师可以在短短几小时内为每个新的传感器创建完美的解决方案。
传感器模拟前端单个传感器模拟前端(AFE)不同于集所有功能与一身的“模拟FPGA”。
“模拟FPGA”这种芯片有太多的弊端,因为需要大规模的封装,芯片将会非常之大,这导致了昂贵的价格及大量的电能消耗。
所以,它不符合设计人员的要求。
美国国家半导体公司开辟了新的途径,为特定测量任务开发了量身定制的独特集成电路,如测量/检测温度、气体、压力、pH值、几种医疗计数、重量等。
每一个与众不同的集成电路都包含了针对具体测量任务的确切合适的功能,而没有任何不必要的电子元件(ballast)。
在其测量的类别(如温度)中,可以非常容易地用一个特定的器件匹配不同的传感器(这将在本文的后面详细解释)。
前两款传感器AFE器件就在几个月前,有两款传感器AFE系列的器件推出:分别为用于温度传感器及低速桥型配置测量的LMP91000和用于气体传感器的LMP90100。
LMP90100LMP90100提供了一个高度集成的8通道输入多路复用器的组合,是一个带有可调增益系数和24位Σ-Δ ADC的高精度放大器。
器件包括电流源、电压基准和其他功能。
图1显示了该集成电路的内部结构:用户可以根据传感器和测量任务匹配图中的所有彩色块。
图1 LMP90100内部结构可以开启或关闭的其他功能包括:传感器可监控检查传感器的短路或断开(开路故障),或偏移校准和放大。
信号处理类ic-概述说明以及解释1.引言1.1 概述概述部分的内容可以如下编写:信号处理类IC(Integrated Circuit)是指集成了信号处理功能的集成电路。
信号处理是指对输入信号进行处理、调整和转换,以获得更有用和可理解的信息。
信号处理类IC是在集成电路上实现了这些信号处理功能的芯片。
随着科技的不断发展,信号处理类IC在现代社会中扮演着重要的角色。
它们广泛应用于各个领域,如通信、音频处理、图像处理、雷达和传感器等。
通过对输入信号的处理,信号处理类IC可以提取出有用的信息并进行分析,为后续的决策和应用提供支持。
信号处理类IC具有多种特点,其中最重要的包括高度集成、小型化、低功耗和高性能。
通过将信号处理功能集成到一个小型芯片上,可以大大降低系统的复杂度和成本。
此外,低功耗和高性能的特点使得信号处理类IC在移动设备、智能家居和医疗器械等领域得到了广泛应用。
本文将对信号处理类IC的定义、特点和应用领域进行深入探讨。
首先,我们会介绍信号处理类IC的定义和特点,包括其在集成电路中的实现方式和相关技术。
其次,我们将详细介绍信号处理类IC在通信、音频处理、图像处理、雷达和传感器等领域的应用情况。
最后,我们会总结信号处理类IC的重要性和价值,并展望其未来的发展趋势。
通过本文的阅读,读者将能够深入了解信号处理类IC在现代社会中的作用和应用,为相关领域的技术研究和开发提供参考和指导。
同时,对于信号处理类IC的未来发展也将提出一些展望和建议,以期推动其在科技领域的不断创新和进步。
1.2 文章结构本文将围绕信号处理类IC展开深入探讨。
文章的结构如下:第一部分是引言部分,主要包括概述、文章结构和目的。
在概述中,将介绍信号处理类IC的基本定义和概念,以便读者对该主题有一个初步的了解。
文章结构部分将详细介绍本文的框架和内容安排,以便读者理解整篇文章的脉络。
目的部分会明确本文的目标,即要探讨信号处理类IC 的定义、特点、应用领域以及其重要性和未来发展。
mems压力传感器原理及应用一、MEMS压力传感器的基本原理MEMS压力传感器是一种微机电系统(MEMS)技术应用的传感器,它通过测量介质的压力来实现对物理量的检测。
其基本原理是利用微机电系统技术制造出微小结构,通过这些结构对介质产生的压力进行敏感检测,并将检测到的信号转换为可读取的电信号。
二、MEMS压力传感器的结构1. 敏感元件:敏感元件是MEMS压力传感器最核心的部分,它通常由微型弹性薄膜或微型悬臂梁等制成。
当介质施加在敏感元件上时,它会发生形变,从而改变其阻抗、电容、电阻等物理参数。
2. 支撑结构:支撑结构是用于支撑敏感元件和保持其稳定工作状态的部分。
通常采用硅基板或玻璃基板制成。
3. 封装壳体:封装壳体主要用于保护敏感元件和支撑结构不受外界环境影响,并提供良好的密封性和机械强度。
三、MEMS压力传感器的工作原理1. 压电式压力传感器:压电式压力传感器是利用压电效应来测量介质的压力。
当介质施加在敏感元件上时,会使得其发生形变,并产生相应的电荷,从而实现对介质压力的检测。
2. 电阻式压力传感器:电阻式压力传感器是利用敏感元件阻值随着形变程度的变化来检测介质的压力。
当介质施加在敏感元件上时,会使得其发生形变,从而改变其阻值大小。
3. 电容式压力传感器:电容式压力传感器是利用敏感元件与基板之间的微小空气间隙产生的电容值随着形变程度的变化来检测介质的压力。
当介质施加在敏感元件上时,会使得其发生形变,从而改变其与基板之间空气间隙大小。
四、MEMS压力传感器的应用1. 工业领域:MEMS压力传感器广泛应用于工业自动化、流量计量、液位控制等领域中。
2. 汽车领域:MEMS压力传感器在汽车领域的应用主要包括轮胎压力检测、制动系统控制、发动机燃油喷射等方面。
3. 医疗领域:MEMS压力传感器在医疗领域的应用主要包括血压计、呼吸机等方面。
4. 生物医学领域:MEMS压力传感器在生物医学领域的应用主要包括心脏起搏器、人工耳蜗等方面。
mems压力传感器原理一、MEMS压力传感器的概述MEMS(Micro-Electro-Mechanical Systems)是微电子机械系统的缩写,是一种微型化的电子机械系统技术。
MEMS压力传感器是利用微电子技术制造出来的一种能够测量气体或液体压力大小的传感器,具有体积小、重量轻、响应速度快等特点,在工业自动化控制、医疗仪器、汽车电子等领域得到广泛应用。
二、MEMS压力传感器的结构1. 压力敏感元件MEMS压力传感器最重要的部分是压力敏感元件,它通常由硅晶片制成。
硅晶片上有许多微小的结构,如薄膜、梁等,这些结构可以随着外部压力变化而产生形变,并将形变转换为电信号输出。
2. 支撑结构支撑结构通常由玻璃或陶瓷等材料制成,它可以保持硅晶片在正常工作时不受外界干扰和损坏。
3. 信号处理电路信号处理电路主要包括放大器和滤波器等组件,用于将从压力敏感元件输出的微弱信号放大并滤波,以便进行后续处理和分析。
三、MEMS压力传感器的工作原理MEMS压力传感器的工作原理基于压阻效应和电容效应。
1. 压阻效应当外界气体或液体压力作用在硅晶片上时,硅晶片会发生形变。
由于硅晶片具有特殊的电阻率,其电阻值会随着形变而发生变化。
因此,通过测量硅晶片的电阻值变化可以得到外界压力大小。
2. 电容效应MEMS压力传感器还可以利用电容效应来测量外界压力大小。
当外界气体或液体压力作用在硅晶片上时,硅晶片与支撑结构之间的距离会发生微小变化。
这种微小变化会导致硅晶片与支撑结构之间的电容值发生变化。
因此,通过测量硅晶片与支撑结构之间的电容值变化可以得到外界压力大小。
四、MEMS压力传感器的优缺点1. 优点(1)体积小、重量轻:MEMS压力传感器体积小、重量轻,可以方便的集成到各种设备中。
(2)响应速度快:MEMS压力传感器响应速度快,可以实现实时监测和控制。
(3)精度高:MEMS压力传感器具有较高的精度和稳定性。
2. 缺点(1)受温度影响大:MEMS压力传感器对温度变化比较敏感,需要进行温度补偿。
常用的传感器和芯片有很多种,以下是一些常见的传感器和芯片:
1. 加速度传感器:用于测量物体的加速度,常用于智能手机、游戏手柄等设备中。
2. 陀螺仪传感器:用于测量物体的角速度和角度变化,常用于飞行器、游戏手柄等设备中。
3. 光敏传感器:用于测量光线的强度,常用于照相机、光控开关等设备中。
4. 温度传感器:用于测量环境的温度,常用于温度计、恒温器等设备中。
5. 湿度传感器:用于测量环境的湿度,常用于湿度计、气象站等设备中。
6. 压力传感器:用于测量物体的压力,常用于汽车轮胎压力监测、气压计等设备中。
7. 距离传感器:用于测量物体与传感器之间的距离,
常用于无人机、机器人等设备中。
8. 磁力传感器:用于测量磁场的强度和方向,常用于指南针、地磁传感器等设备中。
9. 心率传感器:用于测量人体的心率,常用于智能手环、心率监测设备等。
10. GPS芯片:用于接收全球定位系统(GPS)信号,常用于导航设备、车载系统等。
11. Wi-Fi芯片:用于无线网络通信,常用于智能手机、无线路由器等设备中。
12. 蓝牙芯片:用于蓝牙通信,常用于耳机、智能手环等设备中。
13. NFC芯片:用于近场通信,常用于手机支付、门禁系统等设备中。
14. 摄像头芯片:用于图像采集和处理,常用于手机、摄像机等设备中。
15. 麦克风芯片:用于声音的采集和处理,常用于手机、录音设备等。
这只是一小部分常见的传感器和芯片,实际上还有很多其他类型的传感器和芯片,用于不同的应用领域。
数模混合ic-概述说明以及解释1.引言1.1 概述数模混合IC是指在一个芯片内集成了模数混合信号电路的集成电路,它将数字电路与模拟电路有机地结合在一起。
随着电子技术的快速发展和市场需求的不断增加,数模混合IC的应用逐渐得到了广泛关注和应用。
数模混合IC主要用于将模拟信号转换为数字信号或将数字信号转换为模拟信号的过程中。
它可以实现模拟信号的采样、滤波、放大、调制、解调等功能,同时能够进行数字信号的处理、编解码、调制解调等操作。
因此,数模混合IC被广泛应用于通信、音视频处理、传感器接口等领域。
数模混合IC的设计流程主要包括需求分析、系统设计、电路设计、电路仿真、布局布线、验证测试等多个环节。
在设计过程中,需要考虑电路的性能指标、功耗、面积、成本等因素,以确保设计出满足实际应用需求的芯片。
数模混合IC相比于传统的模拟电路和数字电路独立设计的方式,具有一定的优势和挑战。
它可以减少电路间的接口,简化系统设计,提高集成度和性能。
然而,由于数字和模拟电路之间的互相影响和干扰,数模混合IC的设计和验证相对较为复杂,对设计人员的技术水平要求较高。
总之,数模混合IC作为一种集成度高、功能强大的芯片设计技术,具有广泛的应用前景。
随着科技的不断进步和市场需求的不断变化,数模混合IC的应用将得到进一步的推广和发展。
未来,数模混合IC设计将更加注重低功耗、高性能、高集成度和低成本等方面的探索,为各个领域的应用提供更加优越的解决方案。
1.2文章结构文章结构部分的内容可以按照以下方式进行编写:2. 文章结构本文分为引言、正文和结论三个部分。
每个部分包含多个小节,具体的结构如下:2.1 引言2.1.1 概述2.1.2 文章结构2.1.3 目的2.1.4 总结2.2 正文2.2.1 数模混合IC的定义2.2.2 数模混合IC的应用领域2.2.3 数模混合IC的设计流程2.2.4 数模混合IC的优势和挑战2.3 结论2.3.1 数模混合IC的发展前景2.3.2 数模混合IC的应用推广2.3.3 数模混合IC的未来发展方向2.3.4 总结在引言部分,我们将概述整篇文章的主要内容、目的以及总结。
ldc1612工作原理LDC1612是一种用于测量压力的传感器,其工作原理基于微机械系统技术。
本文将详细介绍LDC1612的工作原理,并探讨其在压力测量领域的应用。
LDC1612是一种非接触式压力传感器,其工作原理是通过测量金属盘的电容变化来实现压力的检测。
该传感器由两个金属盘构成,一个固定在传感器的底部,另一个被放置在压力作用下的介质上。
当介质受到压力时,上方金属盘会发生微小的形变,从而导致电容的变化。
LDC1612利用电容传感器测量这种变化,并将其转换为数字信号输出。
LDC1612采用了电感耦合技术,通过测量电感的变化来获取金属盘的位移信息。
当金属盘的形变引起电感的变化时,LDC1612会产生一个与位移相关的电压信号。
然后,通过内部的模数转换器将电压信号转换为数字信号,并通过I2C接口输出。
LDC1612具有高精度和高灵敏度的特点,能够实现对微小压力的准确测量。
其工作范围可达到几千帕斯卡(kPa),适用于各种压力测量场景。
此外,LDC1612还具有温度补偿功能,能够在不同温度下提供稳定的测量结果。
LDC1612在工业自动化、汽车电子和医疗设备等领域具有广泛的应用。
在工业自动化中,LDC1612可以用于测量液体和气体的压力,从而实现对生产过程的监控和控制。
在汽车电子中,LDC1612可以用于测量汽车发动机的油压和制动系统的压力,以确保汽车的正常运行和驾驶安全。
在医疗设备中,LDC1612可以用于测量血液压力和呼吸机的气压,从而对患者的健康状况进行监测。
LDC1612是一种基于微机械系统技术的非接触式压力传感器,通过测量金属盘的电容变化来实现压力的检测。
该传感器具有高精度和高灵敏度的特点,适用于各种压力测量场景。
其在工业自动化、汽车电子和医疗设备等领域有着广泛的应用前景。
通过深入了解LDC1612的工作原理,我们可以更好地理解和应用这一先进的压力传感器技术。
Maxim 适应压力传感器信号的智能ICIntelligent IC Conditions Pressure-Sensor Signals摘要:本应用笔记介绍了呼吸监控器。
此监控器采用一个硅压阻式传感器(PRT)来检测与吸入和呼出相对应的减少和增加的压力。
PRT输出提供给MAX1457信号调理IC以校正PRT 固有的错误,并且传给ADC一个补偿电压信号。
ADC输出(降压力信号数字化)供给PC接口并转换成RS-232电平。
Abstract: This application note presents a respiration monitor to detect anxiety. The monitor uses a silicon piezoresistive transducer (PRT) to detect the decrease and increase of pressure corresponding to inhalation and exhalation. The PRT output is fed to a MAX1457 signal conditioning IC that corrects for errors inherent in the PRT and then passes a compensated voltage signal to the ADC. The ADC output (a digitized version of the pressure signal) is then fed to a PC interface and converted to RS-232 levels. These in turn are passed to a PC, which displays the respiration waveform and allows analysis of the breathing.While writing this article I often stopped to take a breather, and while waiting to see if it would be accepted I was breathless with anticipation. I hope I don't choke while presenting it. When finished, though, I can breathe easy. These metaphors show the close connection between the physical act of breathing and the mental states of anxiety and their opposite-relaxation (Fesmire 1994).Anxiety isn't the only influence on breathing patterns; it may be that every feeling affects our respiration. Psychologists investigate these links between emotion and breathing patterns in a number of research areas (Boiten, et al. 1994). Most such investigations require some form of electronic patient-monitoring equipment, partially because the very act of watching one's breathing changes its pattern.A Respiration Monitor with Smart-Sensor TechnologyThe respiration monitor of Figure 1 displays breathing patterns while giving a rough idea of the respiration amplitude. The monitor displays several important parameters used to detect anxiety: rate of breathing, regularity of breathing pattern, and the duration of pauses after expiration and before inspiration. Because calm, positive emotions usually produce a pattern of longer expiration than inspiration, the ratio of inspiration to expiration time can serve as an additional indicator of anxiety. A relatively higher level of thoracic breathing (vs. abdominal breathing) also indicates anxiety. Thus, an observation of increased thoracic breathing can augment the monitor's visual information.Figure 1. This block diagram depicts a respiration monitor.Figure 1's monitor uses a silicon piezoresistive transducer (PRT) to detect the decrease and increase of pressure corresponding to inhalation and exhalation. The PRT output is fed to a signal-conditioning IC that corrects for errors inherent in the PRT and then passes a compensated voltage signal to the ADC. The ADC output (a digitized version of the pressure signal) is then fed to a PC interface and converted to RS-232 levels. These in turn are passed to a PC, which displays the respiration waveform and allows analysis of the parameters mentioned above.The SensorPRTs are commonly configured as a closed Wheatstone bridge. When pressure is applied to anactive-bridge PRT (Figure 2a), resistances of the diagonally opposed legs change equally and in the same direction. As the resistances in one set of diagonally opposed legs increase with pressure, the resistances in the other set decrease, and vice versa. A half-active-bridge PRT (Figure 2b) exhibits resistance changes in only half of the bridge. Whether full- or half-active, the advantages of a PRT sensor include high sensitivity (>10mV/V), good linearity at constant temperature, and the ability to track pressure changes without signal hysteresis, up to the destructive limit (Konrad and Ashauer 1999).Figure 2. All four legs of an active-bridge PRT (a) respond to pressure. For a half-active-bridge PRT (b), only two legs respond to pressure.Today's engineers employ PRTs in low- and medium-accuracy applications, but high-end applications have traditionally forced designers to use strain gauges instead-despite their higher cost. New IC technologies that allow accurate PRT sensor correction, however, enable the use of these devices in high-end applications as well.Sensor ErrorsThe chief obstacle in correcting PRT sensors is the wide range of error magnitude they exhibit. The variety of methods by which PRT sensors are manufactured produces various types of error and a range of error magnitudes. Even for a given model from one manufacturer, these error magnitudes vary appreciably from one transducer to the next.PRT errors can include ". . . strong nonlinear dependence of the full-scale signal on temperature (up to 1%/°K), large initial offset (up to 100% of full scale or more), [and] strong drift of offset with temperature. Within limits, these disadvantages can be compensated with electronic circuitry" (Konrad and Ashauer 1999).At a given temperature, both PRT types in Figure 2 maintain their bridge resistance (between V CC and ground) at a level that is fairly constant over a wide range of pressures. As temperature increases, however, the bridge resistance increases significantly. If the bridge is powered with a constant-current source, the result is an increasing bridge voltage.PRT sensitivity increases as the bridge voltage gets larger with temperature. With bridge voltage held constant, however, a PRT's sensitivity to pressure decreases with temperature. Thus, sensitivity is a function of two opposing factors: temperature and the temperature-dependent bridge voltage. This change in bridge resistance or bridge voltage can be exploited by modern signal-conditioning ICs to correct the sensitivity error over temperature in a PRT. These ICs use the change of bridge resistance to correct for variations in sensitivity vs. temperature.A Traditional Correction SchemeThe Figure 3 circuit compensates PRTs to a reasonable accuracy level. It allows adjustment of offset, offset drift with temperature, and sensitivity drift with temperature. Related to sensitivity drift is the full-span output drift over temperature; these two parameters change proportionally in response to temperature. Figure 4 shows the relationship between offset and full-span output.Figure 3. A traditional correction scheme for PRTs features temperature-sensitive resistors.Figure 4. A PRT's offset and full-span output constitute the full-scale output.The circuit's zero-trim resistors compensate the sensor's offset voltage at room temperature, and resistors R TS and R TZ (or R´;TZ) correct for temperature errors. As described earlier, bridge resistance rises with increasing temperature, which increases the voltage across the sensor. That additional voltage increases the sensor's sensitivity; i.e., its output voltage is higher for a given pressure.When the voltage across the sensor is held constant, however, the sensor's sensitivity decreases with increasing temperature. Because the positive-going sensitivity coefficient caused by increasing bridge resistance with temperature is greater than the negative-going sensitivity coefficient, the full-span output tends to increase with temperature. Resistor R TS negates this effect by shunting increasing amounts of bridge current as temperature rises. Similarly, R TZ or R´TZ correct the offset drift. Depending on the direction of the offset drift with temperature, either R TZ or R´TZ is added to the circuit.The chief problem with this compensation scheme is circuit interaction among the compensation components, which makes calibration cumbersome and limits the achievable accuracy. Also, electronic trimming is not feasible when using this technique.A Modern Correction SchemeIn Figure 5, a signal-conditioning IC (MAX1457) drives the respiration monitor's sensor and corrects the sensor errors. It contains a controlled current source that drives the sensor and an ADC that digitizes the sensor's bridge voltage. This voltage is a product of current from the current source and the temperature-dependent bridge resistance.Figure 5. A specialized IC (MAX1457) that provides current-source excitation and compensation for the pressure sensor yields 0.1% accuracy.The MAX1457 also includes a programmable-gain amplifier (PGA) for amplifying the sensor's differential output and five digital-to-analog converters (DACs) for correcting various sensor errors. Because the sensor output is a low-level signal, the PGA output voltage is not sufficient to drive the ADC. For that reason, the MAX1457's internal op amp is used to boost the PGA output to a suitable level.Bridge voltage increases with temperature, and this temperature dependence can be used to compensate full-span temperature errors. With constant-voltage bridge excitation, the full-span output (FSO) decreases with temperature, resulting in a full-span output temperature coefficient (FSOTC) error. However, if the bridge voltage can be made to increase with temperature at a rate that compensates for the decrease in full-span sensitivity with temperature, the FSO will remain constant.Figure 6 shows how the MAX1457 implements this scheme for correcting FSO errors due to temperature. Using the digitized bridge voltage from the ADC output, the chip determines which previously calculated correction coefficient (stored in EEPROM) should be applied to the FSOTC DAC. The resulting DAC output voltage then changes the current level feeding the bridge. This new current level compensates the FSO by adjusting the bridge voltage to compensate the change in sensor sensitivity at a particular temperature. To smooth this correction, the chip applies analog bridge voltage to the FSOTC DAC's reference input, thereby providing an additional correction between each successive pair of digital numbers (supplied by the ADC to the EEPROM).Figure 6. This circuitry within the MAX1457 compensates for offset and full-span temperature errors.The same technique compensates offset over temperature, except the OFFSETTC DAC voltage is fed to a summing junction at the PGA output (instead of the MAX1457 current source).Calculate temperature coefficients and store them in EEPROM in the following sequence: in most instances, take sensor data at various pressures with the sensor and MAX1457 at the lowest temperature, then take the same data with the sensor and MAX1457 at the highest temperature. Using this data from the temperature extremes, software written for the MAX1457 then calculates the four correction coefficients (FSO, FSOTC, Offset, and OffsetTC). These four coefficients correct the PRT's first-order errors. (For the accuracy level this respiration monitor requires, a fifth coefficient to correct pressure nonlinearity is considered unnecessary.)To achieve 0.1% accuracy, the MAX1457 allows compensation at specific temperatures, with recalculation of FSOTC and OffsetTC at each temperature. The user determines the number of such calibration points (up to 120). If sensor output error were perfectly repeatable, the accuracy of a sensor-MAX1457 combination would be better than 0.1%.The MAX1457 compensation technique has a significant advantage over the traditional approach shown in Figure 3. The MAX1457 eliminates interaction between compensation components by separating the offset and span adjustments: it compensates offset at the PGA and separately adjusts the FSO through the current source. Another advantage is the extra accuracy made available by specific adjustments at various temperatures. This method is inherently more accurate than one based on external resistors, whose values cannot compensate the sensor precisely at specific temperatures.Simpler Compensation ICsThe MAX1457 provides more precision than necessary for a respiration monitor; i.e., the 16-bit resolution of its correction DACs is more than required. The part was chosen, however, because it includes the extra op amp needed to boost the respiration monitor’s low-level sensor signals.Although the MAX1457 offers greater precision than needed for this application, its ability to compensate for temperature error is needed even for modest variations of temperature: a change of 10°C commonly produces a 3% change in the FSO of a PRT. Because the MAX1457 enables the respiration monitor to operate over a wide temperature range, the monitor's potential applications could include space exploration and scuba diving.The functions performed by a MAX1450 signal conditioner (Figure 7) are essentially those of a MAX1457, but resistors rather than DACs are used to set the error correction. Because the MAX1450 uses far fewer calibration points than the MAX1457, its accuracy is 1% instead of 0.1%. MAX1450 chips are commonly included in hybrids, where the combination of a MAX1450 and laser-trimmed resistors provides alow-cost solution.Figure 7. A MAX1450 signal conditioner operating with external laser-trimmed resistors provides 1% accuracy.A third IC (the MAX1458/MAX1478 of Figure 8) provides the same basic compensation techniques as the other two, but includes 12-bit (vs. 16-bit) compensation DACs. MAX1458/MAX1478 devices also include an EEPROM for on-board storage of the compensation coefficients. Like the MAX1450, they provide 1% accuracy.Figure 8. A MAX1458/MAX1478 signal conditioner operating with internal 12-bit DACs provides 1% accuracy.MAX1450/MAX1458/MAX1478 devices compensate a sensor by calculating four correction coefficients (mentioned above), using pressure data measured at two temperatures-usually the extremes of the operating-temperature range. Unlike these devices, the MAX1457 allows additional temperature-error correction at user-selected temperature levels (as many as 120). For a more detailed discussion of these compensation schemes, refer to Konrad and Ashauer 1999, and Dancaster, et al. 1997.A similar article was presented at the Sensors Expo in Cleveland, Ohio, September 14-16, 1999. References1.Boiten, Frans A., Nico H. Frijda, and Cornelius J. E. Wientjes. 1994. Emotions and respiratorypatterns: review and critical analysis. International Journal of Psychophysiology 17: 103-128.2.Dancaster, John, Mark Bowen, and Ali Rastegar. 1997. Enhanced performance silicon pressuresensors for automotive applications. Society of Automotive Engineers (reprinted from Sensors and Actuators, 1997): 59-65.3.Fesmire, Steven A. 1994. Aerating the mind: the metaphor of mental functioning as bodilyfunctioning. Metaphor and Symbolic Activity 9 (1): 31-44.From:/appnotes.cfm/an_pk/683。