柔性直流输电
- 格式:wps
- 大小:86.77 KB
- 文档页数:10
柔性直流输电技术的应用探究柔性直流输电技术(Flexible DC Transmission, FDCT)是一种新型的输电技术,它采用直流电压进行能量传输,可以有效地解决传统交流输电技术的诸多问题,具有输电损耗小、占地面积小、环境污染小等优点。
随着科技的不断进步,柔性直流输电技术已经开始在实际工程中得到广泛应用。
本文将就柔性直流输电技术的应用进行探究,分析其在电力系统中的优势和发展前景。
一、柔性直流输电技术的原理与特点1. 原理柔性直流输电技术是一种通过控制直流电压和电流来实现能量输送和分配的技术。
其核心是采用高性能的功率电子设备对直流电压进行控制,以实现灵活的功率调节、电压调节和频率调节。
通过控制系统可以实现功率的快速响应和精确调节,使得柔性直流输电系统能够适应复杂多变的电网工况。
2. 特点(1)输电损耗小:相比于传统的交流输电技术,柔性直流输电技术在能量传输过程中损耗更小,能够有效节约能源。
(2)占地面积小:柔性直流输电技术所需的设备相对较小,可以在有限的空间内实现高效的能量传输。
(3)环境污染小:柔性直流输电技术的设备采用先进的电力电子元件,不会产生有害的电磁辐射和废气排放,对环境友好。
二、柔性直流输电技术在电力系统中的应用1. 长距离电力输送柔性直流输电技术在长距离的电力输送中具有明显的优势。
传统的交流输电技术在长距离输电过程中会出现较大的输电损耗,而柔性直流输电技术可以通过控制系统实现功率的精确调节,大大减小了输电损耗,提高了输电效率。
2. 大容量电力输送由于柔性直流输电技术具有较高的电压和电流调节能力,能够实现大容量的电力输送。
在大规模工业园区、城市用电中心等场景下,柔性直流输电技术可以有效地满足电力需求,支持电网的高容量输电。
3. 电力系统稳定性改善柔性直流输电技术在电力系统中的应用可以提高系统的稳定性。
通过柔性直流输电技术可以实现快速的电压调节和频率调节,对电网负载波动具有较强的适应能力,有助于降低电网的故障率和提高电网的可靠性。
柔性直流输电一、概述(一)柔性直流输电的定义高压直流(HVDC)输电技术始于1920年代,到目前为止,经历了3次技术上的革新,其主要推动力是组成换流器的基本元件发生了革命性的重大突破。
第一代直流输电技术采用的换流元件是汞弧阀,所用的换流器拓扑是6脉动Graetz桥,其主要应用年代是1970年代以前。
第二代直流输电技术采用的换流元件是晶闸管,所用的换流器拓扑仍然是6脉动Graetz桥,因而其换流理论与第一代直流输电技术相同,其应用年代是1970年代初直到今后一段时间。
通常我们将基于Graetz桥式换流器的第一代和第二代直流输电技术称为传统直流输电技术,其运行原理是电网换相换流理论。
因此我们也将传统直流输电所采用的Graetz桥式换流器称为“电网换相换流器”,英文是“Line Commutated Converter”,缩写是“LCC”。
这里必须明确一个概念,有人将电流源换流器(CSC)与电网换相换流器(LCC)混淆起来,这是不对的。
LCC属于CSC,但CSC的范围要比LCC宽广得多,基于IGBT构成的CSC目前也是业界研究的一个热点。
1990年,基于电压源换流器的直流输电概念首先由加拿大McGill大学的Boon-Teck Ooi等提出。
在此基础上,ABB公司于1997年3月在瑞典中部的Hellsjon和Grangesberg之间进行了首次工业性试验(3 MW,±10kV),标志着第三代直流输电技术的诞生。
这种以可关断器件和脉冲宽度调制(PWM)技术为基础的第三代直流输电技术,国际权威学术组织国际大电网会议(CIGRE)和美国电气和电子工程师协会(IEEE),将其正式命名为“VSC-HVDC”,即“电压源换流器型直流输电”。
2006年5月,由中国电力科学研究院组织国内权威专家在北京召开“轻型直流输电系统关键技术研究框架研讨会”,会上,与会专家一致建议国内将基于电压源换流器技术的直流输电(第三代直流输电技术)统一命名为“柔性直流输电”。
柔性直流输电系统的设计与优化直流输电系统作为电力传输领域的一项重要技术,在解决远距离电力传输、提高输电效率和稳定性等方面具有独特优势。
而柔性直流输电系统作为直流输电的一种新型形式,在电力系统领域得到了广泛关注和研究。
本文将从柔性直流输电系统的设计与优化角度展开讨论,探究其在电力系统中的应用与发展。
一、柔性直流输电系统的基本原理与特点柔性直流输电系统主要由直流母线、换流站、逆变站以及相应控制系统等组成。
其基本原理是通过硅控整流和逆变技术,将交流电能转换成直流电流进行传输,并在需要的地方再次将其转换为交流电能。
在这个过程中,可以通过控制直流母线的电压和频率来实现对输电系统的柔性控制。
相比传统的交流输电系统,柔性直流输电系统具有以下几个特点:1. 高效能:柔性直流输电系统在电能转换的过程中,能够大大减少电能的损耗。
传统交流输电系统由于存在变压器等能量转换设备,会存在一定的能量损耗。
而柔性直流输电系统采用直流电能传输,能够减少能量转换环节,提高能量传输的效率。
2. 高稳定性:柔性直流输电系统具有更好的稳定性。
由于直流电路的特点,柔性直流输电系统能够更好地应对电力系统中的故障和波动。
例如,在输电线路出现瞬态故障时,柔性直流输电系统能够通过控制直流母线电压和频率,迅速稳定系统运行,减少对系统的影响。
3. 较小的占地面积:柔性直流输电系统相比传统交流输电系统在占地面积上具有较大优势。
传统交流输电系统需要设置变电站、输电线路等设备,占用大量土地资源。
而柔性直流输电系统不仅仅可以减少变电站设备,还可以通过多级换流站的方式,进一步减小占地面积。
二、柔性直流输电系统的设计要点柔性直流输电系统的设计涉及到许多技术和工程要点。
下面将从输电线路、换流站和逆变站等方面来介绍设计要点。
1. 输电线路设计:柔性直流输电系统中的输电线路是电力传输的核心环节。
在设计时需要考虑线路的传输能力、损耗、抗风荷载能力等因素。
同时,为提高输电线路的可靠性,还需要进行断面选择和材料选择。
柔性直流输电系统是一种新型的电力传输技术,它采用可自动关断的全控型电力电子器件,不需要交流系统支撑换相,具有动态无功支撑能力,可以有效抑制交流电压波动,减少功率波动对受端电网的影响。
同时,柔性直流输电系统还具有输送距离远、传输容量大的优势,可以支持新能源大规模开发。
基于柔性直流输电技术构建的直流电网,可实现多电源供电、多落点受电和新能源孤岛接入,具有更好的经济性与灵活性,能够将风电、光伏、抽水蓄能与负荷中心直接连接,构成多种形态能源灵活互补的能源互联网,可有效平抑新能源波动性。
柔性直流输电系统主要由换流站、直流输电线路和换流变压器等组成。
其中,换流站是柔性直流输电系统的核心部分,它通过电力电子器件实现交流电与直流电的转换。
直流输电线路则是将直流电传输到目的地,而换流变压器则用于改变直流电的电压,以适应不同的电力传输需求。
在柔性直流输电系统的施工过程中,首先要进行的是换流站的施工。
换流站的施工包括站房建设、设备安装和调试等多个环节。
其中,站房建设是基础,需要根据设计图纸进行施工,确保站房的稳定性和安全性。
设备安装则是将各种设备安装到站房内,包括换流变压器、电力电子器件等。
调试则是确保设备正常运行,包括对设备进行检测、调试和验收等。
接下来是直流输电线路的施工。
直流输电线路的施工包括线路杆塔的建设、电缆的铺设和连接等。
其中,线路杆塔的建设是基础,需要根据设计图纸进行施工,确保杆塔的稳定性和安全性。
电缆的铺设和连接则是将直流电传输到目的地,需要确保电缆的质量和连接的可靠性。
最后是换流变压器的施工。
换流变压器的施工包括变压器的安装、接线和调试等。
其中,变压器的安装是关键,需要根据设计图纸进行施工,确保变压器的稳定性和安全性。
接线和调试则是确保变压器正常运行,包括对变压器进行接线、调试和验收等。
柔性直流输电系统的施工是一项复杂的工程,需要专业的技术和设备,同时也需要严格的施工管理和质量控制。
只有这样,才能确保柔性直流输电系统的稳定性和安全性,实现高效、可靠的电力传输。
2024年柔性直流输电市场发展现状引言柔性直流输电(Flexible Direct Current Transmission,简称FDCT)作为一种新型的输电技术,具有多种优势,如高效、低损耗和灵活性等。
随着电力需求的不断增长和可再生能源的迅速发展,柔性直流输电市场正逐渐展现出巨大的潜力。
本文将对柔性直流输电市场的发展现状进行分析和探讨。
主要内容1. 柔性直流输电技术简介柔性直流输电技术是一种将输电线路由传统的交流形式转变为直流形式的技术。
该技术利用高压直流输电(High Voltage Direct Current,简称HVDC)系统,通过转换站将交流电转换为直流电进行输送。
相较于传统的交流输电方式,柔性直流输电可以实现更高效率和更远距离的电能传输。
2. 柔性直流输电市场发展趋势柔性直流输电市场正逐渐蓬勃发展,并且呈现出以下几个主要的发展趋势:•可再生能源促进发展:随着可再生能源的快速发展,如风能和太阳能等,柔性直流输电正成为将这些能源从产地输送到用电地点的理想选择。
柔性直流输电系统可以实现大规模清洁能源的长距离传输。
•输电效率提高:与高压交流输电相比,柔性直流输电系统的输电效率更高。
因为直流电在输送过程中的能量损失较小,可以大幅度降低电力传输过程中的能量损耗,提高输电效率。
•电网稳定性提升:柔性直流输电系统具备快速响应和调节电网负荷等特点,可以提高电网的稳定性。
在能源供需波动较大的情况下,柔性直流输电系统可以有效地平衡能源供给和需求,提高电网的可靠性和稳定性。
3. 柔性直流输电市场的挑战柔性直流输电市场的发展也面临着一些挑战,主要包括以下几个方面:•技术难题:柔性直流输电技术相对较新,还存在一些技术难题,如电能转换效率、电气设备可靠性和环境适应能力等问题,需要进一步解决和改进。
•经济可行性:虽然柔性直流输电具有诸多优势,但是其建设和运营的成本相对较高,需要对投资回报作出准确评估,以确保项目的经济可行性。
柔性输电概念及相关术语柔性沟通输电系统是Flexible AC Transmission Systems)中文翻译,英文简称FACTS,指应用于沟通输电系统的电力电子装置,其中“柔性”是指对电压电流的可控性;如装置与系统并联可以对系统电压和无功功率进行掌握,装置与系统串联可以对电流和潮流进行掌握。
柔性输电又叫敏捷输电,有柔性直流输电和柔性沟通输电两种,本文参考DL/ T 1193 -2023,总结了与柔性输电相关的术语,供大家参考学习。
一、与柔性输电相关的基本术语1.柔性输电柔性沟通输电和柔性直流输电统称为柔性输电。
2.柔性沟通输电敏捷沟通输电基于电力电子设备或其他静止掌握设备来增加系统的可控性和功率传输力量的沟通输电方式。
3.柔性沟通输电系统敏捷沟通输电系统FACTS 基于电力电子设备或其他静止掌握设备来增加系统的可控性和功率传输力量的沟通输电系统。
4.柔性沟通输电装置基于电力电子设备或其他静止掌握设备来增加沟通输电系统的可控性和功率传输力量的装置。
5.电压源换流器型高压直流输电采纳电压源换流器的高压直流输电方式,又称为柔性直流输电。
二、与柔性输电掌握与爱护相关的基本术语1.掌握方式掌握柔性输电装置以便保持一个或多个电参量处于整定值的方法。
这个整定值可随时间变化,或作为一个测量参量和预先定义的函数。
2.掌握范围在柔性输电装置与沟通系统的连接点处由装置供应的可控输出电气量的最大变化范围。
3.滞后运行并联型柔性输电装置汲取无功的运行方式。
4.超前运行并联型柔性输电装置发出无功的运行方式。
5.开环掌握方式使柔性输电装置的输出参量维持在人为设定值的掌握方式。
6.输电系统暂态掌握加强系统故障恢复后的第→摆特性,提高输电系统暂态稳定极限的掌握。
三、柔性输电装置术语1.静止无功补偿器由静止元件构成的并联型可控无功功率补偿装置,通过转变其容性或(和)感性等效电抗来快速准确地调整无功功率,维持系统电压稳定。
2.静止同步补偿器一种由并联接入系统的电压源换流器构成,其输出的容性或感性无功电流连续可调且在可运行系统电压范围内与系统电压无关的无功功率补偿装置。
柔性直流输电一、柔性直流输电技术1. 柔性直流输电系统换流站的主要设备。
柔性直流输电系统换流站的主要设备一般包括:电压源换流器、相电抗器、联结变压器、交流滤波器和控制保护以及辅助系统(水冷系统、站用系统)等。
2. 柔性直流输电技术的优点。
柔性直流输电是在常规直流输电的基础上发展起来的,因此传统的直流输电技术具有的优点,柔性输电大都具有。
此外,柔性输电还具有一些自身的优点。
1)潮流反转方便快捷,现有交流系统的输电能力强,交流电网的功角稳定性高。
保持电压恒定,可调节有功潮流;保持有功不变,可调节无功功率。
2)事故后可快速恢复供电和黑启动,可以向无源电网供电,受端系统可以是无源网络,不需要滤波器开关。
功率变化时,滤波器不需要提供无功功率。
3)设计具有紧凑化、模块化的特点,易于移动、安装、调试和维护,易于扩展和实现多端直流输电等优点。
4)采用双极运行,不需要接地极,没有注入地下的电流。
3. 柔性直流输电技术的缺点。
系统损耗大(开关损耗较大),不能控制直流侧故障时的故障电流。
在直流侧发生故障的情况下,由于柔性直流输电系统中的换流器中存在不可控的二极管通路,因此柔性直流输电系统不能闭锁直流侧短路故障时的故障电流,在故障发生后只能通过断开交流侧断路器来切除故障。
可以使用的最佳解决方式是通过使用直流电缆来提高系统的可靠性和可用率。
二、常规直流输电技术和柔性直流输电技术的对比1. 换流器阀所用器件的对比。
1)常规直流输电采用大功率晶闸管,由于晶闸管是非可控关断器件,这使得在常规直流输电系统中只能控制晶闸管换流阀的开通而不能控制其关断,其关断必须借助于交流母线电压的过零,使阀电流减小至阀的维持电流以下才行。
2)柔性直流输电一般采用IGBT阀,由于IGBT是一种可自关断的全控器件,即可以根据门极的控制脉冲将器件开通或关断,不需要换相电流的参与。
2. 换流阀的对比。
1)常规直流输电系统中换流阀所用的器件是大功率晶闸管和饱和电抗器,可以输送大功率。
柔性直流输电技术目录简介 (1)原理 (2)战略意义 (3)应用前景展望 (4)常规直流输电与柔性直流输电的对比 (5)一、常规直流输电技术 (5)二、柔性直流输电技术 (6)三、常规直流输电技术和柔性直流输电技术的对比 (7)四.运行方式 (8)简介柔性直流输电作为新一代直流输电技术,其在结构上与高压直流输电类似,仍是由换流站和直流输电线路(通常为直流电缆)构成。
基于电压源换流器的高压直流输电(VSC-HVDC)技术由加拿大McGill大学的Boon-Teck Ooi 等人于1990年提出,是一种以电压源换流器、自关断器件和脉宽调制(PWM)技术为基础的新型输电技术,该输电技术具有可向无源网络供电、不会出现换相失败、换流站间无需通信以及易于构成多端直流系统等优点。
李岩,罗雨,许树楷,周月宾等.柔性直流输电技术:应用、进步与期望.《南方电网技术》,2015讲述了柔性直流输电技术是构建灵活、坚强、高效电网和充分利用可再生能源的有效途径,代表着直流输电的未来发展方向,已成为新一代智能电网的关键技术之一。
概述了国内外柔性直流输电工程的现状以及柔性直流输电技术在交流电网的异步互联、风电场并网、海上平台供电和城市负荷中心供电等领域的应用情况;重点介绍了世界第一个多端柔性直流输电工程——南澳多端柔性直流输电示范工程的研发情况,尤其是其技术难点;指出了直流输电混合化,高电压大容量化,直流输电网络化和直流配电网等未来柔性直流输电技术发展的主要方向;提出了柔性直流输电系统亟待解决的关键问题,诸如具有直流短路故障电流清除能力的电压源换流器拓扑结构,高压直流断路器技术和直流电网运行的基础理论及控制保护技术。
柔性直流输电系统中两端的换流站都是利用柔性直流输电,由换流器和换流变压设备,换流电抗设备等进行组成。
其中最为关键的核心部位是 VSC ,而它则是由流桥和直流电容器共同组成的。
系统中,综合考虑它的主电路的拓扑结构及开关器件的类型,能够采用正弦脉宽调制技术,将此类技术在调制参考波与三角载波进行数据的对比,在后者数据相对较小的情况下,就会发生触发下桥臂开关导通并关断下桥臂。
这主要是由于浮动数值和相位都可以利用脉宽调制技术来进行智能化调解。
因此,VSC 的交流输出电压基频分量的幅值及相位也可通过脉宽进行调节原理与基于相控换相技术的电流源换流器型高压直流输电不同,柔性直流输电中的换流器为电压源换流器(VSC),其最大的特点在于采用了可关断器件(通常为IGBT)和高频调制技术。
通过调节换流器出口电压的幅值和与系统电压之间的功角差,可以独立地控制输出的有功功率和无功功率。
这样,通过对两端换流站的控制,就可以实现两个交流网络之间有功功率的相互传送,同时两端换流站还可以独立调节各自所吸收或发出的无功功率,从而对所联的交流系统给予无功支撑。
战略意义柔性直流输电是构建智能电网的重要装备,与传统方式相比,柔性直流输电在孤岛供电、城市配电网的增容改造、交流系统互联、大规模风电场并网等方面具有较强的技术优势,是改变大电网发展格局的战略选择。
柔性直流输电还将面临如何实现高电压、大功率、架空线使用、混合结构直流输电等方面的挑战。
将通过进一步的研究和试点,使该技术在大规模风电场接入系统、实现区域联网提高供电可靠性、缓解负荷密集地区电网运行压力等更多领域得到应用。
应用前景展望综合考虑柔性直流输电技术所具备的一系列优点以及存在的局限性,该技术电厂并网,海上平台等领域取得了较为广泛的运用,而在未来的发展中该技术应用的方向主要在以下三个方面。
(1)在城市电网塔容及直流供电中的应用。
我国经济的高速发展以及城市化建设的不断推进,促进了城市电网的进一步发展,与此同时大部分的城市电网负荷也一直呈现出不断增长的趋势,人们对于电能的供应及质量要求不断提高。
(2)替代交直流联网。
结合我国的总体趋势西部地区的资源相对较多,同时负荷较少,我国90% 的水电几乎都集中在西部,而东部地区的能源与负荷量特点则恰好相反。
导致了我国地区能源和负荷的失调,因此,特高压直流输电工程在不断增多,实现电能的大容量和远距离运输。
关于柔性直流输电技术方面仍然存在着一定的障碍,在进行长距离和大容量的发展过程中,要克服以下几个难点:第一就是用碳化归来替代二氧化硅,从而改变 VSC 的材料,同时还要增强封装材料的绝缘性和耐热性,达到大容量的电流运输。
第二就是要加强电流直流断路器的优化与改良,突破上述所提到的故障。
如果能在技术上实现故障的突破,那么柔性直流输电技术在未来可能会完全取代传统输电技术,承担起长距离大容量的输电任务。
(3)在孤立负荷供电方面的应用。
由于柔性直流输电技术能够实现对无源网络的直接供电,同时对于输电的功率大小没有相应的限制,因此在远方孤立电荷的供电过程中,该技术能够得到充分的发挥。
例如在南方电网,对于一些较为偏僻的海岛或者是村庄来说,一般都是运用孤立负荷主网,这对于交流供电来说,难度相对较大,因此在当地都是采用柴油机组就地发电。
这种方式虽然能解决当地居民的用电问题,但同样也会带来环境污染大、能源消耗大等弊端,这与我国资源节约型与环境友好型社会的构建目标是不相符合的。
而通过运用柔性直流输电技术,则能较好地解决以上问题,这也是该技术在未来发展中的一大应用方向。
常规直流输电与柔性直流输电的对比一、常规直流输电技术1. 常规直流输电系统换流站的主要设备。
常规直流输电系统换流站的主要设备一般包括:三相桥式电路、整流变压器、交流滤波器、直流平波电抗器和控制保护以及辅助系统(水冷系统、站用电系统)等。
2. 常规直流输电技术的优点。
1)直流输送容量大,输送的电压高,最高已达到800kV,输送的电流大,最大电流已达到4 500A;所用单个晶闸管的耐受电压高,电流大。
2)光触发晶闸管直流输电,抗干扰性好。
大电网之间通过直流输电互联(背靠背方式),换流阀损耗较小,输电运行的稳定性和可靠性高。
3)常规直流输电技术可将环流器进行闭锁,以消除直流侧电流故障。
3. 常规直流电路技术的缺点。
常规直流输电由于采用大功率晶闸管,主要有如下缺点。
1)只能工作在有源逆变状态,不能接入无源系统。
2)对交流系统的强度较为敏感,一旦交流系统发生干扰,容易换相失败。
3)无功消耗大。
输出电压、输出电流谐波含量高,需要安装滤波装置来消除谐波。
二、柔性直流输电技术1. 柔性直流输电系统换流站的主要设备。
柔性直流输电系统换流站的主要设备一般包括:电压源换流器、相电抗器、联结变压器、交流滤波器和控制保护以及辅助系统(水冷系统、站用系统)等。
2. 柔性直流输电技术的优点。
柔性直流输电是在常规直流输电的基础上发展起来的,因此传统的直流输电技术具有的优点,柔性输电大都具有。
此外,柔性输电还具有一些自身的优点。
1)潮流反转方便快捷,现有交流系统的输电能力强,交流电网的功角稳定性高。
保持电压恒定,可调节有功潮流;保持有功不变,可调节无功功率。
2)事故后可快速恢复供电和黑启动,可以向无源电网供电,受端系统可以是无源网络,不需要滤波器开关。
功率变化时,滤波器不需要提供无功功率。
3)设计具有紧凑化、模块化的特点,易于移动、安装、调试和维护,易于扩展和实现多端直流输电等优点。
4)采用双极运行,不需要接地极,没有注入地下的电流。
3. 柔性直流输电技术的缺点。
系统损耗大(开关损耗较大),不能控制直流侧故障时的故障电流。
在直流侧发生故障的情况下,由于柔性直流输电系统中的换流器中存在不可控的二极管通路,因此柔性直流输电系统不能闭锁直流侧短路故障时的故障电流,在故障发生后只能通过断开交流侧断路器来切除故障。
可以使用的最佳解决方式是通过使用直流电缆来提高系统的可靠性和可用率。
三、常规直流输电技术和柔性直流输电技术的对比1. 换流器阀所用器件的对比。
1)常规直流输电采用大功率晶闸管,由于晶闸管是非可控关断器件,这使得在常规直流输电系统中只能控制晶闸管换流阀的开通而不能控制其关断,其关断必须借助于交流母线电压的过零,使阀电流减小至阀的维持电流以下才行。
2)柔性直流输电一般采用IGBT阀,由于IGBT是一种可自关断的全控器件,即可以根据门极的控制脉冲将器件开通或关断,不需要换相电流的参与。
2. 换流阀的对比。
1)常规直流输电系统中换流阀所用的器件是大功率晶闸管和饱和电抗器,可以输送大功率。
2)柔性直流输电系统中的换流阀采用了IGBT器件,可实现很高的开关速度,在触发控制上采用PWM技术,开关频率相对较高,换流站的输出电压谐波量较小,主要包含高次谐波。
故相对于常规直流输电,柔性直流输电换流站安装的滤波装置的容量大大减小。
3)常规直流输电通过换流变压器连接交流电网,而柔性直流输电是串联电抗器加变压器,常规直流输电以平波电抗器和直流滤波器来平稳电流,而柔性直流输电则采用直流电容器。
3. 换流站控制方式的对比。
1)常规直流输电系统的换流站之间必须进行通信,以传递系统参数并进行适当的控制,而柔性直流输电系统中各换流站之间的通信不是必需的。
2)功率反向输送能力的对比。
柔性直流输电系统在潮流反转时,只需改变电流方向,而直流电压极性不变,功率反向时系统不停运,这使得柔性直流输电系统改变功率方向时,两端换流站的控制策略不变,更不需要投切交流滤波器或闭锁换流器。
而常规直流输电改变功率方向时需要改变电压极性,而直流电流极性不变,功率反向时,换流站需退出运行,改变控制策略,并且需要对滤波器和无功补偿设备的投切情况进行实时判断。
3)对交流网络的依耐性方面的对比。
柔性直流输电不需要依靠交流系统的能力来维持电压和频率稳定,无需无功补偿,换流器自身可提供无功功率。
而常规直流输电要求受端交流系统具有足够的短路容量,需要外加的换相容量,不能向无源或弱网络送电。
4)有功和无功功率控制方面的对比。
柔性直流输电的有功、无功可以独立控制。
常规直流输电的有功、无功不能独立控制,调节无功需要特殊装置和额外费用,需交流系统或增加无功补偿设备提供换流站消耗的无功功率。
5)电压控制方面的对比。
柔性直流输电本身可以起到STATCOM的作用,稳定交流母线电压,而常规直流输电需要借助无功补偿设备稳定交流母线电压。
6)黑启动能力方面的对比。
柔性直流输电有黑启动能力。
即当一端交流系统发生电压崩溃或停电时,瞬间启动自身的参考电压,向切除电源的交流系统供电,相当于备用发电机,随时向瘫痪的电网供电。
而常规直流输电无黑启动能力。
经过常规直流输电与柔性直流输电的比对发现,随着直流输电技术的飞速发展,以及节能和绿色能源的要求,尤其在可再生能源发电并网和孤岛供电方面,未来以IGBT为代表的柔性直流输电必将成为市场的主流,柔性直流输电尤其是基于电压源型换流器的直流输电将会快速发展,与常规直流输电并存,甚至超过后者。