s13-mrl型立体组合三相卷铁心变压器
- 格式:doc
- 大小:54.50 KB
- 文档页数:2
一.概述朔黄铁路线路全长约585.8km,西起神朔线神池南站,向东经过山西省、河北省终至黄骅港站。
设计为国家I级干线、双线电气化铁路,重载路基,正线总长592公里,共计34个车站33个区间。
其中,隧道总长约66.367公里,共77个隧道。
二.引用标准GB 1094 《电力变压器》;GB/T 7328《变压器和电抗器的声级测定》;GB/T7449《电力变压器和电抗器的雷击冲击和操作冲击试验导则》;GB/T 10237 《电力变压器绝缘水平和绝缘试验外绝缘的空气间隙》;GB/T 5273 《变压器、高压电器和套管的接线端子》;GB/T 13499 《电力变压器应用导则》;GB/T 15164 《油浸式电力变压器负载导则》;GB311.1-1997 《高压输变电设备的绝缘配合》GB50150 《电气装置安装工程电气设备交接试验标准》GB/T16927.l-1997 《高电压试验技术第一部分:一般试验要求》GB/T16927.2-1997 《高电压试验技术第二部分:测量系统》GB/T6451-2008 《三相油浸式电力变压器技术参数和要求》JB/T 3837-1996 《变压器类产品型号编制方法》三.使用环境条件1. 系统标称电压:10kV。
2. 电源系统接地形式:不接地。
3.安装场所:户外。
4. 海拔高度:≤1000m。
5. 运行环境温度:户外-25℃~+45℃6. 运行环境湿度:日平均相对湿度不大于95%,月平均相对湿度不大于90%。
7. 空气质量:周围空气可以受到尘埃、烟、腐蚀性气体、蒸汽或盐雾的污染。
污秽等级不超过现行GB/T5582中的Ⅲ级。
8. 地震烈度:不超过8度。
四.主要技术参数1.技术规格1.1型式:户外油浸自冷式1.2 额定电压:10±5% /0.4 kV1.3 额定容量:30-500kVA1.4 联结组标号:D,yn111.5 频率:50Hz1.6 阻抗电压:见下表1.7 变压器噪音小于40分贝。
S13立体卷铁芯变压器行业市场现状分析及未来三到五年发展趋势报告Title: Analysis of the Current Market Status of S13 Three-dimensional Wound Core Transformers and Future Development Trends in the Next Three to Five YearsAbstract:This report aims to analyze the current market status of S13 three-dimensional wound core transformers and provide insights into the future development trends in the next three to five years. The S13 transformer industry has witnessed significant growth in recent years due to its advantages in energy efficiency and environmental friendliness. However, challenges such as technological advancements, market competition, and regulatory changes need to be addressed for sustained growth. This report will provide a comprehensive analysis of the market landscape and offer recommendations for industry players to capitalize on future opportunities.1. IntroductionThe S13 three-dimensional wound core transformer is a keycomponent in the power transmission and distribution system. It is known for its high energy efficiency, low losses, and compact design. As the global demand for electricity continues to rise, the market for S13 transformers has been growing steadily.2. Market Analysis2.1 Current Market Size and Key PlayersThe current market size of the S13 transformer industry is estimated to be USD XX billion. Key players dominating the market include Company A, Company B, and Company C. These companies have established their market presence through product innovation, strong distribution networks, and strategic partnerships.2.2 Market DriversThe increasing focus on energy efficiency and environmental sustainability is a major driver for the growth of the S13 transformer market. Government regulations and initiatives promoting the use of energy-efficient transformers are also contributing to market expansion. Additionally, the growing demand for electricity in emerging economies is creatinglucrative opportunities for industry players.2.3 Market ChallengesDespite the positive growth prospects, the S13 transformer industry faces several challenges. Technological advancements, such as the emergence of smart grid systems and renewable energy integration, require transformers to adapt to changing power flow patterns. Moreover, market competition and pricing pressure pose challenges for manufacturers to maintain profitability.3. Future Development Trends3.1 Technological AdvancementsThe future of S13 transformers lies in technological advancements such as digitalization, IoT integration, and advanced monitoring systems. These innovations will enhance the operational efficiency, reliability, and maintenance of transformers. Additionally, the development of eco-friendly materials and manufacturing processes will contribute to sustainable growth.3.2 Market ExpansionThe S13 transformer market is expected to witness significant expansion in emerging economies, driven by urbanization, industrialization, and infrastructure development. The increasing demand for renewable energy sources and the integration of renewable energy into the grid will also contribute to market growth.3.3 Regulatory ChangesGovernment regulations and policies aimed at reducing carbon emissions and promoting energy efficiency will continue to shape the S13 transformer industry. Manufacturers will need to comply with these regulations and invest in research and development to meet the evolving standards.4. ConclusionThe S13 three-dimensional wound core transformer market is poised for significant growth in the next three to five years. Technological advancements, market expansion in emerging economies, and regulatory changes will be the key drivers of this growth. Industry players should focus on product innovation, strategic partnerships, and sustainability initiatives to capitalize on the emerging opportunities. Byaddressing the challenges and embracing the trends, the S13 transformer industry can achieve sustained growth and contribute to a more efficient and sustainable power grid.中文回答:标题:S13立体卷铁芯变压器行业市场现状分析及未来三到五年发展趋势报告摘要:本报告旨在分析S13立体卷铁芯变压器行业的市场现状,并提供未来三到五年发展趋势的见解。
S13(11)型立体组合三相卷铁心变压器概述:本产品具有空载损耗低,空载电流低,噪声低的性能,节电效果显着。
提高了电压质量和供电的可靠性,是有利于环保的绿色节能设备,为城乡电网技术改造工程中推广使用的最新产品。
本公司生产的、系列全密封立体三相卷铁心变压器不同于传统的平面叠片式铁心变压器。
其铁心是由单框片立体三角形布置的三相柱轭组成。
每个柱体由优质冷轧硅钢薄带连续卷制,带宽经数控开料机作直线或曲线剪切。
带料在铁心卷绕机上卷绕组成近圆形或折边圆弧框片后经真空充氮退火处理以消除加工应力,晶格重新取向、提高导磁率,改善电磁性能;高低压线圈使用专用绕线机,直接在铁心柱纸筒上绕制,整体结构坚实紧凑,器身采用上下铁轭绝缘和层压木,四周拉螺杆拉紧线圈,使之稳固牢靠,能承受突发短路时的冲击力。
3.产品特点:损耗低按现行国际GB/T6451-1999《三相油浸电力变压器技术参数和要求》容量30-1600kVA,系列空载损耗平均下降50%,负载损耗平均下降30%;系列空载损耗平均下降30%负载损耗平均下降25%。
空载电流低由于卷铁心材质优良以及绕制加工特点,使空载电流显着降低。
按现行国标GB/T6451-1999、系列空载电流平均下降75%;系列空载电流平均下降75%。
运行噪声低按JB/T10088-1999 噪声标准,及系列噪声均降低约7-9dB。
抗短路能力强变压器器身整体成立体三棱柱形状,四周及中央均设置拉螺杆,与上下铁轭绝缘及层压木块构成一体,能有效抵御突发短路时的轴向,辐向机械应力。
4.结构特点:铁心采用材质性能不低于30ZH110 冷轧硅钢片;三相三柱立体对称结构有最平衡的三相磁路;每组(卷)心片由薄钢带在专用铁心卷绕机上绕制,压力均匀紧实;铁心框片经真空退火处理,消除应力,提高电磁性能;铁心表面涂环氧树脂漆,防潮,固化。
绕组采用低氧铜材质的纸包铜扁线或QQ-2 缩醛漆包圆铜线;低压线圈为双层或四层圆铜式或新螺旋式,或箔式。
S13立体卷铁心变压器基本特性浅析投稿邮箱:*******************1前言立体卷铁心在空间上完全对称,比三相三柱叠片铁心(文中简称叠片铁心)更容易保证各项电磁参数。
这种铁心具有节材节能、三相磁路对称、励磁电流小、空载损耗低、谐波小和噪声低等特点。
将立体卷铁心运用在损耗标准高的S13系列中优势更为明显。
本文中笔者从原理上进行对比分析,并以实例验证了分析结果。
2立体卷铁心节材节能原理分析2.1接近零废料立体卷铁心是由若干梯形料带依次连续卷绕而成,不同尺寸梯形料带由专用折线开料机进行套裁加工得到,可做到材料利用率接近100%,立体卷铁心如图1所示。
叠铁心的上、下铁轭及心柱在生产过程中不可避免地会冲掉三角形的废料,据测算这一部分废料占叠铁心总重的5%左右,如图2所示。
2.2立体卷铁心与叠片铁心重量对比在相同直径、截面、窗高及中心距的情况下,立体卷铁心与叠片铁心重量的差异,等于铁轭重量的差异,现将假定初始参数列于表1。
由表1 可知,两种铁心的心柱重量m0是相等的,铁心重量差△m=m2-m1。
下面具体分析m1和m2 的关系。
(1)立体卷铁心的铁轭计算。
如图3 所示,立体卷铁心铁轭重量为本文所述与传统计算的差异在于铁轭重量的计算,将铁轭部分的重量先分解,通过立体图可直观地看到分解部分的关系,最终得出一个与表1 中参数相关联的几何公式计算重量。
图4 为铁心的立体分解图。
取上铁轭分析。
结合图3 和图4,将铁轭的中心线轨迹Lb分为1~5 部分,将这五部分用图5 表示。
结合图4 和图5,②、③都可由①切割而成,通过几个公式推导(几何推导过程比较复杂,此处省略过程)得出:根据以上理论推导,以叠片铁心变压器S13-M-100/10 和S13-M-400/10 的铁心参数值为基准,计算出相同参数下立体卷铁心S13-M·RL-100/10、S13-M·RL-400/10 的重量,其差异见表2。
S11-M.RL系列立体卷铁芯配电变压器产品安装使用说明书产品说明书1.适用范围:本说明书适用额定容量为1600kVA及以下、电压等级为10kV、额定频率为50Hz 的S11油浸配电变压器。
2.产品特点2.1本系列产品铁芯三相芯柱呈“品”字形立体排列,三相磁路对称等长,卷铁心无接缝,充分利用了硅钢片的方向性,减少了因磁路中硅钢片取向不一致所增加的损耗。
降低磁化容量,提高了功率因数,降低了电网线损,改善了电网的供电品质。
2.2绕组采用无氧铜线绕制,结构采用圆筒式。
高低压套绕,先低压后高压,保证绕组紧实度。
使产品内部结构整体性好,有较好的抗短路冲击能力;油道保证通畅,使变压器有更高的过载能力。
2.3引线装配和总装工艺:准备验收好各种零件、部件、组件。
装配时先将箱盖的附件安装好,然后整理烘干后的器身,所有制动螺母要拧紧,不能松动。
接下来装好箱盖,将器身进行下箱装配好后,加入合格的变压器油,进行变压器成品试漏工序。
3.产品型号S11-M.R L-/电压等级kV额定容量kVA立体三维结构圆截面卷铁芯全密封性能水平代号三相油浸式S11型性能参数表4.使用条件:正常使用条件:4.1 环境温度最高气温 +40℃最低气温 -25℃(适用于户外式变压器) 最高日平均气温 +30℃最高年平均气温 +20℃。
4.2 海拔高度不超过1000m。
4.3 电源电压的波形近似于正弦波。
4.4 三相电源电压基本对称。
4.5 户外安装使用环境无明显污染。
5.运输和起吊:5.1 本系列变压器均为装油运输,如有附带的零件、配套件等需另装箱和相关出厂技术文件与变压器主体一起发运。
5.2带有储油柜的变压器在发运前应将储油柜最上边的注油塞拧紧,全密封变压器要把压力释放阀上边的小红盖用螺钉拧紧。
5.3 起吊变压器时,应同时使用箱壁上所有吊拌,它们可以承受变压器总重量。
箱盖上吊板只吊器身用。
全密封变压器起吊时则要求用箱盖上的吊板,箱壁上的吊拌只作吊油箱使用不能载全重。
三维立体卷铁心高过载变压器的设计要点方案。
2 性能参数2.1主要技术参数三维立体卷铁心高过载变压器主要技术数据按照S13型变压器国家标准执行,并在设计和生产时控制在零偏差范围内。
2.2过载能力参数在正常温升稳定的基础上,满足1.5倍额定容量6h(负荷上升和下降阶段各3h)、1.75倍额定容量3h(负荷上升和下降阶段各1.5h)、2.0倍额定容量1h阶段性连续运行,且不影响变压器正常使用寿命。
2.3 温升限值三维立体卷铁心高过载配电变压器在满足过载曲线的基础上由普通变压器的A级耐热等级提高到F级水平。
3 设计思路及要点3.1 三维立体卷铁心设计要点变压器铁心采用三维立体卷铁心结构,先经专用曲线开料机裁剪成所需不等宽料带,在专用卷绕机卷绕时,料带向一边同步位移,进行非对称卷绕。
铁心框截面呈30度倾斜角的半圆形,从而确保三个完全相同的单框拼合时,拼合面良好,成为三铁心柱横截面近似为圆的三维立体卷铁心。
三相磁路完全对称等长,均为最短磁路,是三相变压器最完美的铁心结构。
卷铁心的导磁方向与硅钢带的轧制方向完全一致,无接缝,不存在高磁阻区,再经专用真空退火炉退火后,可消除因剪切、卷绕产生的机械应力,恢复优质硅钢片高导磁率的性能,噪音降低7-10dB,可满足电网节能环保要求。
3.2 绕组的设计要点变压器绕组为圆筒式结构,导体用无氧铜杆连续挤压而成,保证了导体尺寸同时也保证电阻平衡;层间采用0.2mm厚度F级复合绝缘材料。
低压绕组导线绝缘采用厚度0.45mm的F 级复合绝缘材料,外绕半干无纬玻璃丝粘带和撑条帘;高压绕组直接绕在低压绕组上,采用F级QQ-2/155漆包线,外包无纬玻璃丝粘带,最外层包紧缩带,机械强度好、耐受短路能力强。
3.3 器身的设计要点线圈成三角形对称分布,结构紧凑,空间分布合理,三角中心设中心垫块,紧固采用中心拉杆、相间拉杆和边角拉杆相配合的型式,中心垫块、相间垫块及圆弧形垫块三种压紧垫块均匀分布在线圈周围,与铁轭绝缘配合压紧线圈,压实面积大;三角形夹件强度大,三线圈受力均匀对称,垫块为电工层压木,介电系数高,强度大,确保线圈在承受过负荷及短路冲击时不变形。
S13型立体卷铁心变压器简单介绍在国家节能减排政策的推动下,节能型变压器应用越来越广泛,正以燎原之势得到推广。
变压器全年运行的能耗大小与变压器的铁心和绕组的结构形式及工艺技术密切相关。
人们从没停止过对节能变压器的研发,从S7到S9、S11,到目前S13和SH15非晶合金变压器,性能不断提升。
由于传统变压器的铁心采用平面结构及叠片工艺,存在着三相磁回路不平衡,局部磁通方向和硅钢片导磁方向不一致以及多处空气接缝等缺陷,制约了变压器能效水平的提升,在节能技术提升方面难以突破。
目前,国内外大多数变压器生产厂家是通过选购优质的晶粒取向冷轧硅钢片,增加铁心叠片厚度、增加铜线用量或使用高价进口材料等方式来达到降低变压器损耗。
但资源紧缺是世界性的问题,原材料涨价是电力设备行业近几年面临的难题之一,增加材料等于增加一次能源消耗,这种靠多消耗材料或进口高价材料来达到降低变压器损耗的做法是不可取的。
因此,要降低变压器的损耗应从结构创新和工艺改良来获得。
为了降低变压器运行自身的损耗和噪声,做到产品运行节能、制造过程节省材料、技术性价比最优,以满足经济迅速发展对变压器提出的节能、环保、低噪声等方面的更高要求。
20世纪90年代,在我国部分厂家已在研发生产立体结构的变压器。
卷铁心变压器的发展方向,经历了从单相、三相平面到三相立体的发展过程,是一个技术不断创新的历程。
目前:立体卷铁心产品得益于本身的鲜明技术特点:采用传统硅钢材料生产,由三个铁心单框组成一个立体等边三角形结构,三个磁路长度一致,且都最短;三相平衡,空载损耗低,噪音低;同等条件下制造过程中节省硅钢20%左右,节省铜3%左右;是制造和运行双节能型高可靠性变压器。
S13型立体卷铁心变压器就是这样一种产品。
S13型立体卷铁心变压器与各类型号变压器性能对比:1)与S7同容量变压器相比,空载损耗下降55%以上,负载损耗下降33%,空载电流下降85%以上,噪声下降8~13dB(A)。
变压器行业10kV级S9、S11、S13系列变压器损耗参数对比表之老阳三干创作S13-M型全密封电力变压器主要技术参数负载损耗:即可变损失.与通过的电流的平方成正比.负载损耗是额定电流下与参考温度下的负载损耗.展开些说,所谓额定电流是指一次侧分接位置必需是主分接,不能是其它分接的额定电流.对参考温度而言,要看变压器的绝缘资料的耐热品级.对油浸式变压器而言,不论是自冷、风冷或强油风冷,都有是A级绝缘资料,其参考温度是根据传统概念加以规定的,都是75℃.1 变压器损耗年夜致为两项:铁损和线损.其中铁损主要为变压器铁芯在工作时的磁滞损耗所造成的,其年夜小与电压相关较年夜,变压器空载还是带负载对铁损影响不年夜;2 负载电流流过变压器线圈,由于线圈自己的电阻,将有一部份功率损耗在线圈中,这部份损耗为“线损”,电流越年夜,损耗越年夜,所以负荷越年夜,线损也越年夜;3 空载时,只有励磁电流流过变压器,所以线损很小;4 上述“铁损”和“线损”之和就是变压器的年夜部份损耗,负载时的线损与铁损之和就是变压器的负载损耗,而空载损耗意义也是如此.相关知识:1)推广使用低损耗变压器(1)铁芯损耗的控制变压器损耗中的空载损耗,即铁损,主要发生在变压器铁芯叠片内,主要是因交变的磁力线通过铁芯发生磁滞及涡流而带来的损耗.最早用于变压器铁芯的资料是易于磁化和退磁的软熟铁,为了克服磁回路中由周期性磁化所发生的磁阻损失和铁芯由于受交变磁通切割而发生的涡流,变压器铁芯是由铁线束制成,而不是由整块铁构成.1900年左右,经研究发现在铁中加入少量的硅或铝可年夜年夜降低磁路损耗,增年夜导磁率,且使电阻率增年夜,涡流损耗降低.经屡次改进,用0.35mm厚的硅钢片来取代铁线制作变压器铁芯.1903来世界各国都在积极研究生产节能资料,变压器的铁芯资料已发展到现在最新的节能资料——非晶态磁性资料如2605S2,非晶合金铁芯变压器便应运而生.使用2605S2制作的变压器,其铁损仅为硅钢变压器的1/5,铁损年夜幅度降低.(2)变压器系列的节能效果上述非晶合金铁芯变压器,具有低噪音、低损耗等特点,其空载损耗仅为惯例产物的1/5,且全密封免维护,运行费用极低.我国S7系列变压器是1980年后推出的变压器,其效率较SJ、SJL、SL、SL1系列的变压器高,其负载损耗也较高.80年代中期又设计生产出S9系列变压器,其价格较S7系列平均高出20%,空载损耗较S7系列平均降低8%,负载损耗平均降低24%,而且国家已明令在1998年底前淘汰S7、SL7系列,推广应用S9系列.S11是推广应用的低损耗变压器.S11型变压器卷铁心改变了传统的叠片式铁心结构.硅钢片连续卷制,铁心无接缝,年夜年夜减少了磁阻,空载电流减少了60~80,提高了功率因数,降低了电网线损,改善了电网的供电品质.连续卷绕充沛利用了硅钢片的取向性,空载损耗降低20~35.运行时的噪音水平降低到30~45dB,呵护了环境.非晶合金铁心的S11系列配电变压器系列的空载损耗较S9系列降低75%左右,但其价格仅比S9系列平均高出30%,其负载损耗与S9系列变压器相等.变压器的负载损耗和空载损耗是什么意思?2 负载电流流过变压器线圈,由于线圈自己的电阻,将有一部份功率损耗在线圈中,这部份损耗为“线损”,电流越年夜,损耗越年夜,所以负荷越年夜,线损也越年夜;3 空载时,只有励磁电流流过变压器,所以线损很小;4 上述“铁损”和“线损”之和就是变压器的年夜部份损耗,负载时的线损与铁损之和就是变压器的负载损耗,而空载损耗意义也是如此.变压器的负载损耗:变压器在工作时自己也消耗电能.负载损耗就是在带有负荷时的自己消耗的电能.空载损耗就是不带负荷时的自己消耗的电能.变压器的功耗,分有功和无功无功只是占有功率,其实不用耗,功率因数概念考核的就是它了.有功包括铁损、铜损、输出功率1)空载损耗:指不带负载时,变压器的损耗,主要是铁损和极少量的原边铜损2)负载损耗:指带负载工作时,变压器的损耗,主要是铁损和原副边的铜损什么是线电压和相电压对三相四线制的电网,三根相线中任意两根间的电压称线电压,任意一根的相线与零线间的电压称相电压,三相电压的相位相差120度,线电压是两个相的相电压的矢量和,线电压与相电压的年夜小关系是:线电压=根号3倍的相电压.对市电,相电压220伏,线电压是220伏的根号3倍,即380伏三相线与线之间的电压为线电压,三相线任一根与零线(220V)的电压为相电压.回答者:陈坚道 - 十二级2009-7-1 16:03相电压----三相输电线(火线)与中性线间的电压叫相电压.如:日经常使用电系统中的三相四线制中电压为380/220V,即线电压为380V,相电压为220V.线电压----三相输电线各线(火线)间的电压叫线电压,线电压的年夜小为相电压的1.73倍.空载损耗即不变损失.与通过的电流无关,但与元件所接受的电压有关.空载损耗:当变压器二次绕组开路,一次绕组施加额定频率正弦波形的额定电压时,所消耗的有功功率称空载损耗.负载损耗负载损耗即可变损失.与通过的电流的平方成正比.详细介绍负载损耗是额定电流下与介入温度下的负载损耗.展开些说,所谓额定电流是指一次侧分接位置必需是主分接,不能是其它分接的额定电流.对参考温度而言,要看变压器的绝缘资料的耐热品级.对油浸式变压器而言,不论是自冷、风冷或强油风冷,都有是A级绝缘资料,其参考温度是根据传统概念加以规定的,都是75℃.而干式变压器的参考温度都按公式算出,参考温度即是允许温升加20℃,其物理概念是绝缘资料的年平均温度.A级绝缘资料的参考温度为60℃加20℃即是80℃,它与油浸式(同为A级绝缘资料)的参考温度75℃差5℃.干式变压器的E级绝缘资料参考温度为95℃,B级为100℃,F级为120℃,H级145℃,C级为170℃.负载损耗只是衡量产物损耗水平的一个参数,或者说是考核产物合格与否的一参数,而不是运行中的实际损耗值.运行中温度是变量,负载电流也是变量,所以运行中负载损耗不是变压器名牌上标定的负载损耗值,主要是运行温度不比及于参考温度.另外,比较产物损耗水平时,尤其干式变压器,一定要在规定参考温度下比较.反过来,如B级与H级干式变压器有相同负载损耗,因为参考温度是在温升限值的基础上加以规定的,在实际运行中如都是额定负载,实际负载也接近相同.在温度换算时应注意,电阻损耗与温度成正比,负载损耗中附加损耗与温度成反比.所以应将负载损耗分解成二部份后再换算.在温度换算时,对铜导线而言,参考温度应按规定35加规定参考温度值计算,丈量负载损耗时温度也应加35后再换算.低损耗变压器的负载损耗的功率因数较低,所以丈量系统与丈量设备与仪表的选取用与以前提到的丈量空载损耗的要求相同.负载损耗的计算值、标准值、保证值与实测的概念也与空载损耗相同.可是在实际丈量中,所加电流不能低于50%额定电流.这是新标准的要求,否则实测值不能换算,即使换算也无效.负载损耗的评价值比空载损耗要低些,但负载损耗的绝对值年夜,如超越同样的百分数,或同样的丈量误差,其z绝对值还是年夜的.空载损耗与温度基本无关,而负载损耗是温度的函数.这里还要强调一下,如果产物要进行型式试验,空载损耗是指冲击试验后的实测值,如果硅钢片的漆膜质量欠好,冲击试验后空载损耗会增加.测负载损耗时,绕组温度应接近外围温度,在干燥出炉后不久,或注油的油温比室温高时不宜立即丈量负载损耗,因为负载损耗是温度的函数.另外,测负载损耗的时间要短,时间一长,绕组温度会变.用作短接绕组的短路工具要有足够的导电截面,短接年夜电流绕组时必需用螺栓拧紧.否则短路工具联接欠好时会在联接处发生局部过热,这部份热量倒涌入绕组时会影响丈量精度.对有载调压变压器而言,在新标准里还有新的要求,除保证额定电流下,即主分接位置下的负载损耗外,还要保证最年夜与最小分接位置的负载损耗.对最年夜或最小分接位置的负载损耗,应通相应的分接电流.如最小分接位置不能保证满容量而要降容量时,应取得用户同意,或向用户说明是按哪个标准或技术条件执行.附机的损耗,不包括在空载损耗与负载损耗中.这种损耗如风扇机电、潜油泵、有载分接开关操念头构中的机电等.这种损耗虽不加考核,但应尽量的低.如强油风冷却器的风机与泵的损耗一般应在散热功率的5%以下.即100kW以下.对多绕组变压器而言,负载损耗的保证值是指具有最年夜负载损耗的一对绕组在运行或绕组复合运行时的最年夜负载损耗.复合运行的绕组必需在技术条件上规定,即哪些绕组对哪些绕组供电.年夜容量变压器应计及横向漏磁引起的涡流损耗,故导线不宜过宽,螺旋式绕组的也不宜在均匀间隔内换位,绕组两真个换位间应略年夜些.空载损耗:当变压器二次绕组开路,一次绕组施加额定频率正弦波形的额定电压时,所消耗的有功功率称空载损耗.算法如下:空载损耗=空载损耗工艺系数×单元损耗×铁心重量计算方法当变压器二次绕组短路(稳态),一次绕组流通额定电流时所消耗的有功功率称为负载损耗.算法如下:负载损耗=最年夜的一对绕组的电阻损耗+附加损耗附加损耗=绕组涡流损耗+并绕导线的环流损耗+杂散损耗+引线损耗阻抗电压:当变压器二次绕组短路(稳态),一次绕组流通额定电流而施加的电压称阻抗电压Uz.通常Uz以额定电压的百分数暗示,即uz=(Uz/U1n)*100%匝电势:u=4.44*f*B*At,V其中:B—铁心中的磁密,TAt—铁心有效截面积,平方米可以转化为变压器设计计算经常使用的公式:当f=50Hz时:u=B*At/450*10^5,V当f=60Hz时:u=B*At/375*10^5,V如果已知道相电压和匝数,匝电势即是相电压除以匝数.。
S13(11)-M.RL型立体组合三相卷铁心变压器
1.概述:
本产品具有空载损耗低,空载电流低,噪声低的性能,节电效果显著。
提高了电压质量和供电的可靠性,是有利于环保的绿色节能设备,为城乡电网技术改造工程中推广使用的最新产品。
本公司生产的S13-M.RL、S11-M.RL系列全密封立体三相卷铁心变压器不同于传统的平面叠片式铁心变压器。
其铁心是由单框片立体三角形布置的三相柱轭组成。
每个柱体由优质冷轧硅钢薄带连续卷制,带宽经数控开料机作直线或曲线剪切。
带料在铁心卷绕机上卷绕组成近圆形或折边圆弧框片后经真空充氮退火处理以消除加工应力,晶格重新取向、提高导磁率,改善电磁性能;高低压线圈使用专用绕线机,直接在铁心柱纸筒上绕制,整体结构坚实紧凑,器身采用上下铁轭绝缘和层压木,四周拉螺杆拉紧线圈,使之稳固牢靠,能承受突发短路时的冲击力。
2.型号含义:
S 13(11)-M.RL - □ / □
三相电力变压器
产品性能水平,代号高压额定电压(kV)
全密封波纹油箱变压器额定容量(kVA)
立体卷铁心
3.产品特点:
3.1 损耗低
按现行国际GB/T6451-1999《三相油浸电力变压器技术参数和要求》容量30-1600kVA,S13-M.RL 系列空载损耗平均下降50%,负载损耗平均下降30%;S11-M.RL系列空载损耗平均下降30%负载损耗平均下降25%。
3.2 空载电流低
由于卷铁心材质优良以及绕制加工特点,使空载电流显著降低。
按现行国标GB/T6451-1999、S13-M.RL系列空载电流平均下降75%;S11-M.RL系列空载电流平均下降75%。
3.3 运行噪声低
按JB/T10088-1999噪声标准,S13-M.RL及S11-M.RL系列噪声均降低约7-9dB。
3.4 抗短路能力强
变压器器身整体成立体三棱柱形状,四周及中央均设置拉螺杆,与上下铁轭绝缘及层压木块构成一体,能有效抵御突发短路时的轴向,辐向机械应力。
4.结构特点:
4.1 铁心
采用材质性能不低于30ZH110冷轧硅钢片;三相三柱立体对称结构有最平衡的三相磁路;每组(卷)心片由薄钢带在专用铁心卷绕机上绕制,压力均匀紧实;铁心框片经真空退火处理,消除应力,提高电磁性能;铁心表面涂环氧树脂漆,防潮,固化。
4.2 绕组
采用低氧铜材质的纸包铜扁线或QQ-2缩醛漆包圆铜线;低压线圈为双层或四层圆铜式或新螺旋式,或箔式。
高压线圈为多层圆筒式;线圈油道为瓦楞结构,层间绝缘为双面点胶纸;低压及高压表面均加绕环氧树脂半粘性玻璃纤维带,增加机械强度。
4.3 器身、引线
采用绝缘纸板制作上下铁轭绝缘;采用层压木制作平衡垫块绝缘;采用层压纸板作引线支架;
所有紧固件均为有效锁紧的防松螺母。
4.4 油箱
采用三角形结构的全密封波纹油箱,三相均设置波纹片以保证散热及补偿随油温变化而致油体积变化的膨缩体积;箱盖面上装有带压力释放阀的油位计便于加油及观察油面高度,及对变压器内部突发故障过压时释放压力安全保护。
5. 主要技术参数:
产品型号
容量
(kVA)
电压组合
(kV)
联结组别空载损耗(W) 负载损耗(W)
短路阻抗%
空载电流%
S13-M.RL-50/10 50 6±5%
6.3±5%
10±5%
11±5%
0.4 Y,yno 95 810
4.0
0.6
S13-M.RL-63/10 63 Y,yno 110 990 0.6 S13-M.RL-80/10 80 Y,yno 130 1160 0.5 S13-M.RL-100/10 100 Y,yno 150 1400 0.5 S13-M.RL-125/10 125 Y,yno 170 1710 0.5 S13-M.RL-160/10 160 Y,yno 200 2100 0.4 S13-M.RL-200/10 200 Y,yno 245 2460 0.4 S13-M.RL-250/10 250 Y,yno 300 2800 0.4 S13-M.RL-315/10 315 Y,yno 340 3400 0.3 S13-M.RL-400/10 400 Y,yno 420 4100 0.3 S13-M.RL-500/10 500 Y,yno 490 4850 0.3 5.2 S11-M.RL系列产品
产品型号
容量
(kVA)
电压组合
(kV)
联结组别空载损耗(W) 负载损耗(W) 短路阻抗% 空载电流%
S11-M.RL-50/10 50 6±5%
6.3±5%
10±5%
11±5%
0.4 Y,yno 130 870
4.0
0.6
S11-M.RL-63/10 63 Y,yno 150 1040 0.6 S11-M.RL-80/10 80 Y,yno 180 1250 0.5 S11-M.RL-100/10 100 Y,yno 200 1500 0.5 S11-M.RL-125/10 125 Y,yno 240 1800 0.5 S11-M.RL-160/10 160 Y,yno 290 2200 0.4 S11-M.RL-200/10 200 Y,yno 340 2600 0.4 S11-M.RL-250/10 250 Y,yno 400 3050 0.4 S11-M.RL-315/10 315 Y,yno 480 3650 0.3 S11-M.RL-400/10 400 Y,yno 570 4300 0.3 S11-M.RL-500/10 500 Y,yno 680 5150 0.3 注:根据客户要求可提供联结组别Dynll及调压范围±2×22.5%产品,特殊要求协商。