考点12 导数的应用-高考全攻略之备战2019年高考数学(文)考点一遍过
- 格式:doc
- 大小:5.47 MB
- 文档页数:28
2019年高中数学单元测试卷导数及其应用学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.设曲线11x y x +=-在点(32),处的切线与直线10ax y ++=垂直,则a =( ) A .2B .12C .12-D .2-(2008全国1理) D. 由()3212211,','|,2,21121x x y y y a a x x x =+==+=-=--==---- 二、填空题2.2ln ()x x ax x f x e+-=, 若函数()f x 在区间]1,0(上是单调函数,则a 的取值范围 2≤a3.设函数21()ln .2f x x ax bx =--若x =1是()f x 的极大值点,则实数a 的取值范围是 .4.已知函数x x mx x f 2ln )(2-+=在定义域内是增函数,则实数m 的取值范围是 ▲ .5.设曲线(1)x y ax e =-在点A 01(,)x y 的切线为1l ,曲线1x x y e-=在点B 02(,)x y 的切线为2l ,若存在013[,]22x ∈-,使得12l l ⊥,则实数a 的取值范围是_______6.函数f (x )=12x -sin x 在区间[0,π]上的最小值为 .7.函数()f x ln x x =-2单调递减区间是 。
8.已知f (x )是定义在(0,+∞)上的单调函数,且对任意的x ∈(0,+∞),都有f [f (x )-x 3]=2,则过点(1,2)且与曲线y =f (x )相切的直线方程是________.9.省环保研究所对市中心每天环境放射性污染情况进行调查研究后,发现一天中环境综合放射性污染指数f (x )与时刻x (时)的关系为f (x )=|x x 2+1-a |+2a +23,x ∈[0,24],其中a 是与气象有关的参数,且a ∈[0,12],若用每天f (x )的最大值为当天的综合放射性污染指数,并记作M (a ).(1)令t =x x 2+1,x ∈[0,24],求t 的取值范围; (2)省政府规定,每天的综合放射性污染指数不得超过2,试问目前市中心的综合放射性污染指数是否超标?10.若函数f (x )=x - p x +p 2在(1,+∞)上是增函数,则实数p 的取值范围是___________________.11. 直线12y x b =+能作为下列函数()y f x =的切线有 ▲ .(写出所有正确....的函数的序号) ①1()f x x= ②()ln f x x = ③()sin f x x = ④()x f x e =-12. 若函数f(x)= x3+ax-2在区间(-∞,+∞)上是增函数,则实数a的取值范围为__________13.曲线12++=x xe y x 在点(0,1)处的切线方程为 .14.已知直线y=x+1与曲线y ln()x a =+相切,则α的值为( )(A)1 (B)2 (C) -1(D)-2(2009全国1理)15.已知函数()log a f x x =和()2log (22),(0,1,)a g x x t a a t R =+->≠∈的图象在2x =处的切线互相平行,则t =__________.三、解答题16. (本小题满分16分)已知函数(),()ln x xf x e axg x e x =+=(1)设曲线()y f x =在1x =处的切线与直线(1)1x e y +-=垂直,求a 的值(2)若对任意实数0,()0x f x ≥>恒成立,确定实数a 的取值范围M B A(3)当1a =-时,是否存在实数0[1,]x e ∈,使曲线C :()()y g x f x =-在点0x x =处的切线与y 轴垂直?若存在,求出0x 的值,若不存在,说明理由17.已知函数()()323,f x ax bx x a b R =+-∈在点()()1,1f 处的切线方程为20y +=. ⑴求函数()f x 的解析式;⑵若对于区间[]2,2-上任意两个自变量的值12,x x 都有()()12f x f x c -≤,求实数c 的最小值;⑶若过点()()2,2M m m ≠可作曲线()y f x =的三条切线,求实数m 的取值范围.(本题满分15分)18.已知函数2()f x x x λλ=+,()ln g x x x λ=+,()()()h x f x g x =+,其中R λ∈, 且0λ≠.⑴当1λ=-时,求函数()g x 的最大值;⑵求函数()h x 的单调区间; ⑶设函数(),0,()(),0.f x x x g x x ϕ≤⎧=⎨>⎩若对任意给定的非零实数x ,存在非零实 数t (t x ≠),使得'()'()x t ϕϕ=成立,求实数λ的取值范围.19.已知函数()32=33 1.f x x ax x +++(I)求()f ;a x =的单调性;(II)若[)()2,0,.x f x a ∈+∞≥时,求的取值范围(2013年高考大纲卷(文))20.已知函数()ln f x x x a x =--.(1)若a =1,求函数()f x 在区间[1,]e 的最大值;(2)求函数()f x 的单调区间;(3)若()0f x >恒成立,求a 的取值范围.(本小题满分16分)21.设函数322()f x x ax a x m =+-+ (0)a >(I )若1a =时函数()f x 有三个互不相同的零点,求m 的范围;(II )若函数()f x 在[]1,1-内没有极值点,求a 的范围;(III )若对任意的[]3,6a ∈,不等式()1f x ≤在[]2,2x ∈-上恒成立,求实数m 的取值范围. (2010陕西省高考第四次模拟)关键字:含参;有零点;求导;求参数的取值范围;无极值点;恒成立问题;22.已知函数()ln f x x =,2()(0)g x ax x a =->,(1)试证明:“方程()()f x g x =有惟一解”的充要条件是“1a =”;(2)若函数()y f x =与()y g x =的图象有两个不同的交点M N 、,求a 的取值范围;(3)在(2)的条件下,过线段MN 的中点作x 轴的垂线分别与()f x 的图象和()g x 的图象交于S T 、点,以S 为切点作()f x 的切线1l ,以T 为切点作()g x 的切线2l ,是否存在实数a 使得12//l l ,如果存在,求出a 的值;如果不存在,请说明理由.23.已知函数)0()(>+=x xt x x f ,过点P(1,0)作曲线)(x f y =的两条切线PM ,PN ,切点分别为M ,N .(1)当2=t 时,求函数)(x f 的单调递增区间;(2)设|MN |=)(t g ,试求函数)(t g 的表达式;(3)在(2)的条件下,若对任意的正整数n ,在区间]64,2[nn +内,总存在m +1个数,,,,,121+m m a a a a 使得不等式)()()()(121+<+++m m a g a g a g a g 成立,求m 的最大值.24.已知函数1()ln(1)(2).1a f x x ax a x -=+-+≥+ (1)当曲线()y f x =在(1,(1))f 处的切线与直线:21l y x =-+平行时,求a 的值;(2)求函数()y f x =的单调区间.25.已知函数()y f x =是定义域为R 的偶函数,其图像均在x 轴的上方,对任意的[0,)m n ∈+∞、,都有nm f n m f )]([)(=⋅,且(2)4f =,又当0x ≥时,其导函数0)(>'x f 恒成立。
x yO (2,0)P ()y f x =()y f x '= 1 (第7题图)2019年高中数学单元测试卷导数及其应用学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.函数x x y ln =在)5,0(上是( ).A .单调增函数B .单调减函数C .在)1,0(e 上单调递增,在)5,1(e上单调递减;D .在)1,0(e 上单调递减,在)5,1(e上单调递增. 答案 D二、填空题 2.已知2()2f x x a =+与3()g x x bx =+的图象在1x =处有相同的切线,则a b += ▲ .3.函数f (x )=12x -sin x 在区间[0,π]上的最小值是 .4.已知函数()x x mx x f 2ln 2-+=在定义域内是增函数,则实数m 的取值范围为_________.5.(文)设()f x 是定义在(,0)(0,)ππ-⋃上的奇函数,其导函数为'()f x .当0x π<<时,0)(sin cos )(>⋅-⋅'x f x x x f , 则不等式0cos )(>⋅x x f 的解集为 6.()331f x ax x =-+对于[]1,1x ∈-总有()f x ≥0 成立,则实数a = .7.已知函数()y f x =及其导函数()y f x '=的图象如图所示,则曲线()y f x =在点P 处的切线方程是 ▲8.已知函数()f x 是定义在R 上的奇函数,(2)0f =,当0x >时,有2'()()0xf x f x x-<成立,则不等式()0f x >的解集是 ▲ .9.已知函数⎩⎨⎧<≥-=0,0,)(2x x x x x f ,则=-))3((f f _____________________. 10.已知函数32()23125f x x x x =--+在区间[0,3]上的最大值与最小值分别为,M m ,则M m -= .11.已知定义在R 上的函数()f x 满足()12f =,()1f x '<,则不等式()221f x x <+的解集为_▲__.12.若函数2()1x a f x x +=+在1x =处取极值,则a = 【解析】f ’(x)=222(1)()(1)x x x a x +-++ f ’(1)=34a -=0 ⇒ a =313.曲线x x y ln 2-=在点)2,1(处的切线方程为 .三、解答题14.已知2()f x x bx c =++为偶函数,曲线()y f x =过点(2,5),()()()g x x a f x =+. (Ⅰ)求曲线()y g x =有斜率为0的切线,求实数a 的取值范围;(Ⅱ)若当1x =-时函数()y g x =取得极值,确定()y g x =的单调区间.15.已知函数22()ln (1)1x f x x x =+-+,2()2(1)ln(1)2g x x x x x =++--. (1)证明:当(0)x ∈+∞,时,()0g x <;(2)求函数()f x 的的极值.16.已知函数32()(1)(2)f x x a x a a x b =+--++ (,)a b ∈R .(I )若函数()f x 的图象过原点,且在原点处的切线斜率是3-,求,a b 的值;(II )若函数()f x 在区间(1,1)-上不单调...,求a 的取值范围. 解析 (Ⅰ)由题意得)2()1(23)(2+--+='a a x a x x f又⎩⎨⎧-=+-='==3)2()0(0)0(a a f b f ,解得0=b ,3-=a 或1=a(Ⅱ)函数)(x f 在区间)1,1(-不单调,等价于 导函数)(x f '在)1,1(-既能取到大于0的实数,又能取到小于0的实数即函数)(x f '在)1,1(-上存在零点,根据零点存在定理,有51a -<<且12a ≠-17.设函数321()(1)4243f x x a x ax a =--++,其中常数a>1 (Ⅰ)讨论f(x)的单调性;(Ⅱ)若当x≥0时,f(x)>0恒成立,求a 的取值范围。
(高考冲刺押题)2019高考数学三轮基础技能闯关夺分必备导数的概念及运算(含解析)【考点导读】1.了解导数概念的某些实际背景(如瞬时速度、加速度、光滑曲线切线的斜率等);2.掌握函数在一点处的导数的定义和导数的几何意义;理解导函数的概念;3.熟记基本导数公式;4.掌握两个函数和、差、积、商的求导法那么;5.了解复合函数的求导法那么.会求某些简单函数的导数.〔理科〕【基础练习】1、设函数f 〔x 〕在x =x 0处可导,那么0lim →h hx f h x f )()(00-+与x 0,h 的关系是仅与x 0有关而与h 无关。
2、一点沿直线运动,如果由始点起经过t 秒后的距离为t t t t s 873741234-+-=,那么速度为零的时刻是1,2,4秒末。
3、)1()('23f x x x f +=,那么=)2('f 0。
4、),(,cos 1sin ππ-∈+=x x x y ,那么当2'=y 时,=x 32π±。
5、〔1〕a x x a x f =)(,那么=)1('f 2ln a a a +。
〔2〕〔理科〕设函数5()ln(23)f x x =-,那么f ′1()3=15-。
6、两曲线ax x y +=3和c bx x y ++=2都经过点P 〔1,2〕,且在点P 处有公切线,试求a,b,c 值。
解:因为点P 〔1,2〕在曲线ax x y +=3上,1=∴a 函数ax x y +=3和c bx x y ++=2的导数分别为a x y +='23和b x y +='2,且在点P 处有公切数b a +⨯=+⨯∴12132,得b=2又由c +⨯+=12122,得1-=c【范例导析】例1、电流强度是单位时间内通过导体的电量的大小。
从时刻0t=开始的t 秒内,通过导体的电量〔单位:库仑〕可由公式223q t t =+表示。
(1) 求第5秒内时的电流强度;(2) 什么时刻电流强度达到63安培〔即库仑/秒〕?分析:为了求得各时刻的电流强度,类似求瞬时速度一样,先求平均电流强度,然后再用平均电流强度逼近瞬时电流强度。
2019年高考数学(文)考点一遍过考点04 函数及其表示(1)了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念.(2)在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.(3)了解简单的分段函数,并能简单应用.一、函数的概念1.函数与映射的相关概念(1)函数与映射的概念注意:判断一个对应关系是否是函数关系,就看这个对应关系是否满足函数定义中“定义域内的任意一个自变量的值都有唯一确定的函数值”这个核心点.(2)函数的定义域、值域在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域,与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.(3)构成函数的三要素函数的三要素为定义域、值域、对应关系.(4)函数的表示方法函数的表示方法有三种:解析法、列表法、图象法.解析法:一般情况下,必须注明函数的定义域;列表法:选取的自变量要有代表性,应能反映定义域的特征;图象法:注意定义域对图象的影响.2.必记结论(1)相等函数如果两个函数的定义域相同,并且对应关系完全一致,则这两个函数相等.①两个函数是否是相等函数,取决于它们的定义域和对应关系是否相同,只有当两个函数的定义域和对应关系完全相同时,才表示相等函数.②函数的自变量习惯上用x表示,但也可用其他字母表示,如:f(x)=2x−1,g(t)=2t−1,h(m)=2m−1均表示相等函数.(2)映射的个数若集合A中有m个元素,集合B中有n个元素,则从集合A到集合B的映射共有mn个.二、函数的三要素1.函数的定义域函数的定义域是使函数解析式有意义的自变量的取值范围,常见基本初等函数定义域的要求为:(1)分式函数中分母不等于零.(2)偶次根式函数的被开方式大于或等于0.(3)一次函数、二次函数的定义域均为R.(4)y=x0的定义域是{x|x≠0}.(5)y=a x(a>0且a≠1),y=sin x,y=cos x的定义域均为R.(6)y=log a x(a>0且a≠1)的定义域为(0,+∞).(7)y=tan x的定义域为π{|π,}2x x k k≠+∈Z.2.函数的解析式(1)函数的解析式是表示函数的一种方式,对于不是y=f(x)的形式,可根据题目的条件转化为该形式.(2)求函数的解析式时,一定要注意函数定义域的变化,特别是利用换元法(或配凑法)求出的解析式,不注明定义域往往导致错误.3.函数的值域函数的值域就是函数值构成的集合,熟练掌握以下四种常见初等函数的值域:(1)一次函数y=kx+b(k为常数且k≠0)的值域为R.(2)反比例函数kyx=(k为常数且k≠0)的值域为(−∞,0)∪(0,+∞).(3)二次函数y=ax2+bx+c(a,b,c为常数且a≠0),当a>0时,二次函数的值域为24[,)4ac ba-+∞;当a<0时,二次函数的值域为24(,]4ac ba--∞.求二次函数的值域时,应掌握配方法:2 224()24b ac by ax bx c a xa a-=++=++.(4)y=sin x的值域为[−1,1].三、分段函数1.分段函数的概念若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,则这种函数称为分段函数.分段函数虽由几个部分组成,但它表示的是一个函数.2.必记结论分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集.考向一求函数的定义域在高考中考查函数的定义域时多以客观题形式呈现,难度不大.1.求函数定义域的三种常考类型及求解策略(1)已知函数的解析式:构建使解析式有意义的不等式(组)求解.(2)抽象函数:①若已知函数f(x)的定义域为[a,b],则复合函数f(g(x))的定义域由a≤g(x)≤b求出.②若已知函数f(g(x))的定义域为[a,b],则f(x)的定义域为g(x)在x∈[a,b]时的值域.(3)实际问题:既要使构建的函数解析式有意义,又要考虑实际问题的要求.2.求函数定义域的注意点(1)不要对解析式进行化简变形,以免定义域变化.(2)当一个函数由有限个基本初等函数的和、差、积、商的形式构成时,定义域一般是各个基本初等函数定义域的交集.(3)定义域是一个集合,要用集合或区间表示,若用区间表示,不能用“或”连接,而应该用并集符号“∪”连接.典例1 函数()()2lg 311f x x x=++-的定义域是 A .(),1-∞B .1,13⎛⎫- ⎪⎝⎭C .1,13⎡⎫-⎪⎢⎣⎭D .1,3⎡⎫-+∞⎪⎢⎣⎭【答案】B【解析】要使函数()()2lg 311f x x x =+-有意义,则需10310x x ->⎧⎨+>⎩,解得113x x <⎧⎪⎨>-⎪⎩,据此可得:函数()()2lg 31f x x =++的定义域为1,13⎛⎫- ⎪⎝⎭.故本题选择B 选项.【名师点睛】求函数的定义域,其实质就是以函数解析式有意义为准则,列出不等式或不等式组,然后求出它们的解集即可.本题求解时要注意根号在分母上,所以需要10x ->,而不是10x -≥.1.函数y =__________.典例2 若函数()1f x +的定义域是[]1,1-,则函数12log f x ⎛⎫⎪⎝⎭的定义域为________. 【答案】1,14⎡⎤⎢⎥⎣⎦【名师点睛】根据“若已知函数f (x )的定义域为[a ,b ],则复合函数f (g (x ))的定义域由a ≤g (x )≤b 求出.若已知函数f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]时的值域”来解相应的不等式或不等式组即可顺利解决.2.已知函数()f x 的定义域为()0,+∞,则函数2134f x y x x +=--+的定义域是__________.考向二 求函数的值域求函数值域的基本方法 1.观察法:通过对函数解析式的简单变形,利用熟知的基本函数的值域,或利用函数图象的“最高点”和“最低点”,观察求得函数的值域. 2.利用常见函数的值域:一次函数的值域为R ;反比例函数的值域为{|0}y y ≠;指数函数的值域为(0,)+∞;对数函数的值域为R ;正、余弦函数的值域为[1,1]-;正切函数的值域为R . 3.分离常数法: 将形如cx dy ax b +=+(a ≠0)的函数分离常数,变形过程为: ()c bc bc ax b d d cx d c a a a ax b ax b a ax b ++--+==++++,再结合x 的取值范围确定bc d a ax b-+的取值范围,从而确定函数的值域. 4.换元法:对某些无理函数或其他函数,通过适当的换元,把它们化为我们熟悉的函数,再用有关方法求值域.如:函数()0)f x ax b cx d ac =+++≠,可以令(0)t cx d t =+≥,得到2t d x c-=,函数()f xax =0)b ac +≠可以化为2()a t d y tb c-=++(t ≥0),接下来求解关于t 的二次函数的值域问题,求解过程中要注意t 的取值范围的限制. 5.配方法:对二次函数型的解析式可以先进行配方,在充分注意到自变量取值范围的情况下,利用求二次函数的值域的方法求函数的值域. 6.数形结合法:作出函数图象,找出自变量对应的范围或分析条件的几何意义,在图上找出值域. 7.单调性法:函数单调性的变化是求最值和值域的依据,根据函数的单调区间判断其单调性,进而求函数的最值和值域. 8.基本不等式法:利用基本不等式2a b ab +≥a >0,b >0)求最值.若“和定”,则“积最大”,即已知a +b =s ,则ab ≤22()24a b s +=,ab 有最大值24s ,当a =b 时取等号;若“积定”,则“和最小”,即已知ab =t ,则a b +≥22ab t =a +b 有最小值2t ,当a =b 时取等号.应用基本不等式的条件是“一正二定三相等”. 9.判别式法:将函数转化为二次方程:若函数y =f (x )可以化成一个系数含有y 的关于x 的二次方程a (y )x 2+b (y )x +c (y )=0,则在a (y )≠0时,由于x ,y 为实数,故必须有Δ=b 2(y )-4a (y )·c (y )≥0,由此确定函数的值域.利用判别式求函数值的范围,常用于一些“分式”函数、“无理”函数等,使用此法要特别注意自变量的取值范围. 10.有界性法:充分利用三角函数或一些代数表达式的有界性,求出值域. 11.导数法:利用导数求函数值域时,一种是利用导数判断函数单调性,进而根据单调性求值域;另一种是利用导数与极值、最值的关系求函数的值域.典例3 求下列函数的值域: (1)243,[1,1]y x x x =-+∈-; (2)12y x x =-(3)2(1)1x y x x =>-.【答案】(1)[0,8];(2)1(,]2-∞;(3)[4,)+∞.【解析】(1)2243(2)1y x x x =-+=--, ∵1-≤x ≤1,∴3-≤x −2≤1-, ∴1≤(x −2)2≤9,则0≤(x −2)21-≤8.故函数243,[1,1]y x x x =-+∈-的值域为[0,8]. (2)f (x )的定义域为1(,]2-∞,令21(0)2t t x t -==≥,得21122y t t =--+,故1(,]2y ∈-∞.(3)22(1)2(1)11124111x x x y x x x x -+-+===-++≥---.当且仅当x =2时“=”成立.故2(1)1x y x x =>-的值域为[4,)+∞.3.已知函数f (x )=12(x -1)2+1的定义域与值域都是[1,b ](b >1),则实数b 的值为 .考向三 求函数的解析式求函数解析式常用的方法 1.换元法:已知复合函数f (g (x ))的解析式,可用换元法,此时要注意新元的取值范围; 2.配凑法:由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的表达式; 3.待定系数法:若已知函数的类型(如一次函数、二次函数)可用待定系数法; 4.方程组法:已知关于f (x )与1()f x或f (-x )的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程求出f (x ).典例4 已知1)f x =+,则()f x = A .21(1)x x -≥ B .21x - C .21(1)x x +≥D .21x +【答案】A【名师点睛】在方法二中,用t 替换后,要注意t 的取值范围为1t ≥,如果忽略了这一点,在求()f x 时就会出错.4.已知2(1)f x x -=,则()f x 的表达式为 A .2()21f x x x =++ B .2()21f x x x =-+ C .2()21f x x x =+-D .2()21f x x x =-- 考向四 分段函数分段函数是一类重要的函数,常作为考查函数知识的最佳载体,以其考查函数知识容量大而成为高考的命题热点,多以选择题或填空题的形式呈现,重点考查求值、解方程、零点、解不等式、函数图象及性质等问题,难度一般不大,多为容易题或中档题. 分段函数问题的常见类型及解题策略: 1.求函数值:弄清自变量所在区间,然后代入对应的解析式,求“层层套”的函数值,要从最内层逐层往外计算. 2.求函数最值:分别求出每个区间上的最值,然后比较大小. 3.求参数:“分段处理”,采用代入法列出各区间上的方程或不等式. 4.解不等式:根据分段函数中自变量取值范围的界定,代入相应的解析式求解,但要注意取值范围的大前提. 5.求奇偶性、周期性:利用奇函数(偶函数)的定义判断,而周期性则由周期性的定义求解.典例5 已知2,0()(1),0x x f x f x x >⎧=⎨+≤⎩,则4()3f +4()3f -等于A .-2B .4C .2D .-4【答案】B【解析】∵4()3f =83,4()3f -=1()3f -=f ⎝ ⎛⎭⎪⎫23=43,∴4()3f +4()3f -=4.故选B .【名师点睛】分段函数的应用: 设分段函数1122(),()(),f x x I f x f x x I ∈⎧=⎨∈⎩.(1)已知x 0,求f (x 0):①判断x 0的范围,即看x 0∈I 1,还是x 0∈I 2; ②代入相应解析式求解. (2)已知f (x 0)=a ,求x 0:①当x 0∈I 1时,由f 1(x 0)=a ,求x 0;②验证x 0是否属于I 1,若是则留下,反之则舍去;③当x 0∈I 2时,由f 2(x 0)=a ,求x 0,判断是否属于I 2,方法同上; ④写出结论.(3)解不等式f (x )>a :11()()x I f x a f x a ∈⎧>⇔⎨>⎩或22()x I f x a ∈⎧⎨>⎩.5.已知函数f (x )=10xx x a x -≤⎧⎨>⎩,,,若f (1)=f (-1),则实数a 的值等于 A .1 B .2 C .3D .4典例6 已知函数()2e ,021,0x x f x x x x -⎧≤⎪=⎨--+>⎪⎩,若()()1f a f a -≥-,则实数a 的取值范围是A .1,2⎛⎤-∞ ⎥⎝⎦B .1,2⎡⎫+∞⎪⎢⎣⎭C .10,2⎡⎤⎢⎥⎣⎦D .1,12⎡⎤⎢⎥⎣⎦【答案】A【解析】函数()1e =()ex x f x -=在(],0-∞上为减函数,函数221y x x =--+的图象开口向下,对称轴为1x =-,所以函数()221f x x x =--+在区间()0,+∞上为减函数,且02e 0201-=--⨯+.所以函数()f x 在(),-∞+∞上为减函数.由()()1f a f a -≥-得1a a -≤-,解得12a ≤.故选A . 【思路点拨】判断分段函数()2e ,021,0x x f x x x x -⎧≤⎪=⎨--+>⎪⎩两段的单调性,当0x ≤时,()1e =()e x x f x -=为指数函数,可判断函数()1e =()ex x f x -=在(],0-∞上为减函数;第二段函数221y x x =--+的图象开口向下,对称轴为1x =-,可得函数()221f x x x =--+在区间()0,+∞上为减函数.0x =时,两段函数值相等.进而得函数()f x 在(),-∞+∞上为减函数.根据单调性将不等式()()1f a f a -≥-变为1a a -≤,从而解得12a ≤即可 【名师点睛】(1)分段函数的单调性,应考虑各段的单调性,且要注意分解点出的函数值的大小; (2)抽象函数不等式,应根据函数的单调性去掉“f ”,转化成解不等式,要注意函数定义域的运用.6.已知函数21,0()cos ,0x x f x x x ⎧+>=⎨≤⎩,则下列结论正确的是A .f (x )是偶函数B .f (x )是增函数C .f (x )是周期函数D .f (x )的值域为[-1,+∞)1.函数()()ln 21f x x =++的定义域为A .1,22⎡⎤-⎢⎥⎣⎦B .1,22⎡⎫-⎪⎢⎣⎭C .1,22⎛⎤-⎥⎝⎦D .1,22⎛⎫-⎪⎝⎭2.设函数()()422,4log 1,4x x f x x x -⎧≤⎪=⎨-+>⎪⎩,若()18f a =,则a =A .1B 812- C .3 D .1812- 3.如图为函数()y f x =的图象,则该函数可能为A .sin xy x=B .cos xy x= C .sin xy x=D .sin x y x=4.若函数y =f (x )的定义域是[0,2],则函数g (x )=()2ln f x x的定义域是A .[0,1]B .[0,1)C .[0,1)∪(1,4]D .(0,1)5.已知函数()[]24,,5f x x x x m =-+∈的值域是[]5,4-,则实数m 的取值范围是 A .(),1-∞-B .(]1,2-C .[]1,2-D .[]2,56.已知函数()f x 满足()()1120f f x x x x x⎛⎫+-=≠⎪⎝⎭,则()2f -=A .72- B .92C .72D .92-7.已知()sin π1xf x x x =+-,记[]x 表示不超过x 的最大整数,如[][]π3,e 3=-=-,则()()2y f x f x ⎡⎤⎡⎤=+-⎣⎦⎣⎦的值域为A .{}1B .{}12,C .{}01,D .{}01,2,8.函数()44x f x =-__________.9.已知函数()(0)f x ax b a =->,()()43ff x x =-,则()2f =__________.10.设函数()2,0,,0,x x f x x x ⎧<⎪=≥则使得()()f x f x >-成立的x 的取值范围是__________.1.(2018年高考新课标I 卷文科)设函数()2010x x f x x -⎧≤=⎨>⎩,,,则满足()()12f x f x +<的x 的取值范围是A .(]1-∞-, B .()0+∞, C .()10-,D .()0-∞,2.(2017年高考山东卷文科)设()(),0121,1x x f x x x <<=-≥⎪⎩,若()()1f a f a =+,则1f a ⎛⎫= ⎪⎝⎭A .2B .4C .6D .83.(2017年高考天津卷文科)已知函数||2,1,()2, 1.x x f x x x x +<⎧⎪=⎨+≥⎪⎩设a ∈R ,若关于x 的不等式()||2x f x a ≥+在R 上恒成立,则a 的取值范围是 A .[2,2]-B .[23,2]- C.[2,-D.[-4.(2016年高考新课标Ⅱ卷文科)下列函数中,其定义域和值域分别与函数y =10lg x 的定义域和值域相同的是A .y =xB .y =lg xC .y =2xD .y x=5.(2018年高考江苏卷)函数()2log 1f x x =-________.6.(2018年高考新课标I 卷文科)已知函数()()22log f x x a =+,若()31f =,则a =________. 7.(2018年高考浙江卷)已知λ∈R ,函数f (x )=24,43,x x x x x λλ-≥⎧⎨-+<⎩,当λ=2时,不等式f (x )<0的解集是___________.若函数f (x )恰有2个零点,则λ的取值范围是___________.8.(2018年高考天津卷文科)已知a ∈R ,函数()22220220x x a x f x x x a x ⎧++-≤⎪=⎨-+->⎪⎩,,,.若对任意x ∈[–3,+∞),f (x )≤x 恒成立,则a 的取值范围是__________.9.(2018年高考江苏卷)函数()f x 满足()()()4f x f x x +=∈R ,且在区间(]2,2-上,()πcos ,02,21,20,2x x f x x x ⎧<≤⎪⎪=⎨⎪+-<≤⎪⎩则()()15ff 的值为________.10.(2017年高考江苏卷)记函数2()6f x x x +-D .在区间[4,5]-上随机取一个数x ,则x D ∈的概率是 .11.(2017年高考江苏卷)函数y 232x x --__________.12.(2017年高考新课标Ⅲ卷文科)设函数10()20x x x f x x +≤⎧=⎨>⎩,,,则满足1()()12f x f x +->的x 的取值范围是_________.1.【答案】π|2π,2x x k k ⎧⎫=+∈⎨⎬⎩⎭Z 【解析】易知函数y =sin 10x -≥,即sin 1x ≥,变式拓展根据三角函数的图象与性质,可得sin 1x =,解得π2π,2x k k =+∈Z , 所以函数sin 1y x =-π|2π,2x x k k ⎧⎫=+∈⎨⎬⎩⎭Z . 【名师点睛】本题主要考查了函数的定义域的求解,根据函数的解析式列出满足的条件是解答的关键,着重考查了推理与运算能力.4.【答案】A【解析】∵2(1)f x x -=,∴22()[(1)1](1)21f x f x x x x =+-=+=++.故选A . 5.【答案】B【解析】根据题意,由f (1)=f (-1)可得a =1-(-1)=2,故选B . 6.【答案】D【解析】方法一:因为f (π)=π2+1,f (-π)=-1,所以f (-π)≠f (π),所以函数f (x )不是偶函数,排除A ;因为函数f (x )在(-2π,-π)上单调递减,排除B ;函数f (x )在(0,+∞)上单调递增,所以函数f (x )不是周期函数,排除C ;因为x >0时,f (x )>1,x ≤0时,-1≤f (x )≤1,所以函数f (x )的值域为[-1,+∞).方法二:也可画出函数f (x )的图象,由函数图象可排除A 、B 、C ,同时能求出函数f (x )的值域.1.【答案】D【解析】要使函数()()2ln 214f x x x =++-有意义,需满足240210x x ⎧->⎨+>⎩,解得122x -<<,即函数()()ln 21f x x =++的定义域为1,22⎛⎫- ⎪⎝⎭,故选D .2.【答案】A考点冲关【解析】当4a ≤时,431228a --==,43a -=-,得1a =, 当4a >时,()21log 18a -+=,得1821a -=-,这与4a >矛盾,故此种情况下无解,由上知1a =,故选A .【名师点睛】该题考查的是分段函数中已知函数值求自变量的问题,在解题的过程中,需要时刻关注自变量的取值范围,在明显感觉解是不符合要求时可以不解确切值,只说无解即可. 3.【答案】B【解析】由图可知,πx =时,0y <,而A ,C ,D 此时对应的函数值0y =,故选B. 【名师点睛】识图常用的方法:(1)定性分析法:通过对问题进行定性的分析,从而得出图象的上升(或下降)的趋势,利用这一特征分析解决问题; (2)定量计算法:通过定量的计算来分析解决问题;(3)函数模型法:由所提供的图象特征,联想相关函数模型,利用这一函数模型来分析解决问题. 4.【答案】D【解析】∵f (x )的定义域为[0,2],∴要使f (2x )有意义,必有0≤2x ≤2,∴0≤x ≤1,∴要使g (x )有意义,应有01ln 0x x ≤≤⎧⎨≠⎩,∴0<x <1,故选D . 5.【答案】C 【解析】22424f x x x x =-+=--+()(),∴当2x =时,24f =(), 由245f x x x =-+=-(),解得51x x ==-或,∴要使函数()24f x x x =-+在[]5m ,上的值域是[]54-,,则12m -≤≤,故选C .6.【答案】C 【解析】由()()1121f f x x x x ⎛⎫+-=⎪⎝⎭,可得()12f x xf x x ⎛⎫--=- ⎪⎝⎭(2), 将(1)x ⨯+(2)得:()()()2221722,22f x x f x x f x x -=-⇒-=-∴-=,故选C . 7.【答案】B 【解析】由()sin π1x f x x x =+-,可知()()22sin 2ππ1xf x x x--=+--. 可得:()()()()()()222+2f x f x f x f x f x f x ⎡⎤⎡⎤⎡⎤⎡⎤+-=⇒+-=-⎣⎦⎣⎦⎣⎦⎣⎦. 若()f x 为整数,则()()22f x f x ⎡⎤⎡⎤+-=⎣⎦⎣⎦,若()f x 不为整数,设(),f x t α=+其中,01t α∈<<Z ,则()()222f x f x t α-=-=--, 则()()][][22f x f x t t αα⎡⎤⎡⎤+-=++--⎣⎦⎣⎦()1111t t t t α⎡⎤=+-+-=+-=⎣⎦, 所以()()2y f x f x ⎡⎤⎡⎤=+-⎣⎦⎣⎦的值域为{}12,.故选B . 【名师点睛】本题考查了函数的中心对称性,得到()()22f x f x +-=,从而可将函数的两个量转换为一个量的讨论,()f x 为整数时易得解,()f x 不为整数时,设为整数加小数部分的结构代入即可.10.【答案】()(),10,1-∞-.【解析】由()()f x f x >-,得20x x x <⎧⎪⎨>-⎪⎩或()20x x x ≥⎧⎪>-,得1x <-或01x <<,即x 的取值范围是()(),10,1-∞-,故答案为()(),10,1-∞-.【名师点睛】本题主要考查分段函数的解析式、由分段函数解不等式,属于中档题.对于分段函数解析式的考查是命题的动向之一,这类问题的特点是综合性强,对抽象思维能力要求高,因此解决这类题一定要层次清楚,思路清晰.1.【答案】D【解析】将函数()f x 的图象画出来,直通高考观察图象可知会有2021x x x <⎧⎨<+⎩,解得0x <,所以满足()()12f x f x +<的x 的取值范围是()0-∞,,故选D .【思路分析】首先根据题中所给的函数解析式,将函数图象画出来,从图中可以发现:若有()()12f x f x +<成立,一定会有2021x x x <⎧⎨<+⎩,从而求得结果.【名师点睛】该题考查的是通过函数值的大小来推断自变量的大小关系,从而求得相关的参数的值的问题,在求解的过程中,需要利用函数解析式画出函数图象,从而得到要出现函数值的大小,绝对不是常函数,从而确定出自变量所处的位置,结合函数值的大小,确定出自变量的大小,从而得到其等价的不等式组,最后求得结果. 2.【答案】C【解析】由1x ≥时()()21f x x =-是增函数可知,若1a ≥,则()()1f a f a ≠+,所以01a <<,由()(+1)f a f a =2(11)a =+-,解得14a =,则1(4)2(41)6f f a ⎛⎫==-= ⎪⎝⎭,故选C. 【名师点睛】求分段函数的函数值,首先要确定自变量的范围,然后选定相应关系式,代入求解;当给出函数值或函数值的取值范围求自变量的值或自变量的取值范围时,应根据每一段解析式分别求解,但要注意检验所求自变量的值或取值范围是否符合相应段的自变量的值或取值范围. 3.【答案】A【解析】当23a =±0x =时,()||2xf x a ≥+即2|3≥±,即223≥,显然上式不成立,由此可排除选项B 、C 、D ,故选A .【名师点睛】涉及分段函数问题要遵循分段处理的原则,分别对x 的两种不同情况进行讨论,针对每种情况根据x 的范围,利用极端原理,求出对应的a 的取值范围.本题具有较好的区分度,所给解析采用了排除法,解题步骤比较简捷,口算即可得出答案,解题时能够节省不少时间.当然,本题也可画出函数图象,采用数形结合的方法进行求解.4.【答案】D 【解析】lg 10xy x ==,定义域与值域均为()0,+∞,只有D 满足,故选D .【名师点睛】对于基本初等函数的定义域、值域问题,应熟记图象,运用数形结合思想求解. 5.【答案】[2,+∞)【解析】要使函数()f x 有意义,则需2log 10x -≥,解得2x ≥,即函数()f x 的定义域为[)2,+∞.【名师点睛】求给定函数的定义域往往需转化为解不等式(组)的问题.求解本题时,根据偶次根式下被开方数非负列不等式,解对数不等式得函数定义域. 6.【答案】7-【解析】根据题意有()()23log 91f a =+=,可得92a +=,所以7a =-,故答案是7-.【名师点睛】该题考查的是有关已知某个自变量对应函数值的大小,来确定有关参数值的问题,在求解的过程中,需要将自变量代入函数解析式,求解即可得结果,属于基础题目. 7.【答案】(1,4) (]()1,34,+∞【解析】由题意得240x x ≥⎧⎨-<⎩或22430x x x <⎧⎨-+<⎩,所以24x ≤<或12x <<,即14x <<,故不等式f (x )<0的解集是()1,4,当4λ>时,()40f x x =->,此时()2430,1,3f x x x x =-+==,即在(),λ-∞上有两个零点;当4λ≤时,()40,4f x x x =-==,由()243f x x x =-+在(),λ-∞上只能有一个零点得13λ<≤.综上,λ的取值范围为(]()1,34,+∞.【名师点睛】根据分段函数,转化为两个不等式组,分别求解,最后求并集.先讨论一次函数零点的取法,再对应确定二次函数零点的取法,即得参数λ的取值范围.已知函数有零点求参数取值范围常用的方法和思路: (1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解. 8.【答案】[18,2]②当30x -≤≤时,()f x x ≤即:222x x a x ++-≤-,整理可得:232a x x ≤--+, 由恒成立的条件可知:()2min32a x x ≤--+,其中30x -≤≤,结合二次函数的性质可知:当3x =-或0x =时,()2min322x x --+=,则2a ≤.综合①②可得a 的取值范围是1,28⎡⎤⎢⎥⎣⎦.【名师点睛】由题意分类讨论0x >和0x ≤两种情况,结合恒成立的条件整理计算即可求得最终结果.对于恒成立问题,常用到以下两个结论: (1)a ≥f (x )恒成立⇔a ≥f (x )max ; (2)a ≤f (x )恒成立⇔a ≤f (x )min .有关二次函数的问题,数形结合,密切联系图象是探求解题思路的有效方法.一般从:①开口方向;②对称轴位置;③判别式;④端点函数值符号四个方面进行分析.9.【答案】2【解析】由()()4f x f x +=得函数()f x 的周期为4,所以()()()111516111,22f f f =-=-=-+=因此()()1π215cos .24f f f ⎛⎫=== ⎪⎝⎭【名师点睛】(1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现()()ff a 的形式时,应从内到外依次求值.(2)求某条件下自变量的值,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.12.【答案】1,4⎛⎫-+∞ ⎪⎝⎭【解析】令()()12g x f x f x ⎛⎫=+-⎪⎝⎭, 当0x ≤时,()()13222g x f x f x x ⎛⎫=+-=+ ⎪⎝⎭; 当102x <≤时,()()11222x g x f x f x x ⎛⎫=+-=++ ⎪⎝⎭;当12x >时,()())112222x g x f x f x -⎛⎫=+-=⎪⎝⎭,写成分段函数的形式:()())132,021112,02221222,2x x x x g x f x f x x x x -⎧+≤⎪⎪⎪⎛⎫=+-=++<≤⎨ ⎪⎝⎭⎪⎪>⎪⎩,函数()g x 在区间(]11,0,0,,,22⎛⎤⎛⎫-∞+∞ ⎪⎥⎝⎦⎝⎭三段区间内均单调递增,且)01111,201,222142g -⎛⎫-=++>⨯> ⎪⎝⎭,可知x 的取值范围是1,4⎛⎫-+∞ ⎪⎝⎭.【名师点睛】(1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f (f (a ))的形式时,应从内到外依次求值.(2)当给出函数值求自变量的值时,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.。
第五讲导数的应用(一)导数的运算及几何意义授课提示:对应学生用书第12页[悟通——方法结论]1.导数的几何意义函数f(x)在x0处的导数是曲线f(x)在点P(x0,f(x0))处的切线的斜率,曲线f(x)在点P处的切线的斜率k=f′(x0),相应的切线方程为y-f(x0)=f′(x0)·(x-x0).2.四个易误导数公式(1)(sin x)′=cos x;(2)(cos x)′=-sin x;(3)(a x)′=a x ln a(a>0);(4)(log a x)′=1x ln a(a>0,且a≠1).[全练——快速解答]1.若直线y =ax 是曲线y =2ln x +1的一条切线,则实数a 的值为( ) A .B .C .D .解析:依题意,设直线y =ax 与曲线y =2ln x +1的切点的横坐标为x 0,则有y ′|x =x 0=2x 0,于是有⎩⎪⎨⎪⎧a =2x 0ax 0=2ln x 0+1,解得⎩⎪⎨⎪⎧x 0=e ,a =2e -12.答案:B2.(2018·高考全国卷Ⅰ)设函数ƒ(x )=x 3+(a -1)x 2+ax ,若ƒ(x )为奇函数,则曲线y =ƒ(x )在点(0,0)处的切线方程为( )A .y =-2xB .y =-xC .y =2xD .y =x解析:法一:∵ƒ(x )=x 3+(a -1)x 2+ax , ∴ƒ′(x )=3x 2+2(a -1)x +a .又ƒ(x )为奇函数,∴ƒ(-x )=-ƒ(x )恒成立, 即-x 3+(a -1)x 2-ax =-x 3-(a -1)x 2-ax 恒成立, ∴a =1,∴ƒ′(x )=3x 2+1,∴ƒ′(0)=1, ∴曲线y =ƒ(x )在点(0,0)处的切线方程为y =x . 故选D.法二:∵ƒ(x )=x 3+(a -1)x 2+ax 为奇函数, ∴ƒ′(x )=3x 2+2(a -1)x +a 为偶函数, ∴a =1,即ƒ′(x )=3x 2+1,∴ƒ′(0)=1, ∴曲线y =ƒ(x )在点(0,0)处的切线方程为y =x . 故选D. 答案:D3.(2018·山东四市联考) 已知函数f (x )=x 3 3-b 2x 2+ax +1的部分图象如图所示,则函数g (x )=a ln x +f ′(x )a 在点(b ,g (b ))处的切线的斜率的最小值是________.解析:由题意,f ′(x )=x 2-bx +a ,根据f (x )的图象的极大值点、极小值点均大于零,可得b >0,a >0,又g ′(x )=a x +2x -b a ,则g ′(b )=a b +2b -b a =a b +b a≥2,当且仅当a=b时取等号,所以切线斜率的最小值为2.答案:2【类题通法】求曲线y=f(x)的切线方程的3种类型及方法(1)已知切点P(x0,y0),求切线方程求出切线的斜率f′(x0),由点斜式写出方程;(2)已知切线的斜率k,求切线方程设切点P(x0,y0),通过方程k=f′(x0)解得x0,再由点斜式写出方程;(3)已知切线上一点(非切点),求切线方程设切点P(x0,y0),利用导数求得切线斜率f′(x0),再由斜率公式求得切线斜率,列方程(组)解得x0,再由点斜式或两点式写出方程.利用导数研究函数的单调性授课提示:对应学生用书第12页[悟通——方法结论]导数与函数单调性的关系(1)f′(x)>0是f(x)为增函数的充分不必要条件,如函数f(x)=x3在(-∞,+∞)上单调递增,但f′(x)≥0.(2)f′(x)≥0是f(x)为增函数的必要不充分条件,当函数在某个区间内恒有f′(x)=0时,则f(x)为常数,函数不具有单调性..(2017·高考全国卷Ⅰ)(12分)已知函数f(x)=e x(e x-a)-a2x❶(1)讨论f(x)的单调性;(2)若f(x)≥0,求a的取值范围.❷[学审题][规范解答] (1)函数f (x )的定义域为(-∞,+∞),(1分)f ′(x )=2e 2x -a e x -a 2=(2e x +a )(e x -a ).①若a =0,则f (x )=e 2x 在(-∞,+∞)上单调递增. ②若a >0,则由f ′(x )=0,得x =ln a . 当x ∈(-∞,ln a )时,f ′(x )<0; 当x ∈(ln a ,+∞)时,f ′(x )>0.故f (x )在(-∞,ln a )上单调递减,在(ln a ,+∞)上单调递增.(3分)③若a <0,则由f ′(x )=0,得x =ln ⎝⎛⎭⎫-a 2. 当x ∈⎝⎛⎭⎫-∞,ln ⎝⎛⎭⎫-a 2时,f ′(x )<0; 当x ∈⎝⎛⎭⎫ln ⎝⎛⎭⎫-a 2,+∞时,f ′(x )>0; 故f (x )在⎝⎛⎭⎫-∞,ln ⎝⎛⎭⎫-a 2上单调递减, 在⎝⎛⎭⎫ln ⎝⎛⎭⎫-a 2,+∞上单调递增. (6分)(2)①若a =0,则f (x )=e 2x , 所以f (x )>0.(7分) ②若a >0,则由(1)得,当x =ln a 时,f (x )取得最小值,最小值为f (ln a )=-a 2ln a . 从而当且仅当-a 2ln a ≥0,即0<a ≤1时,f (x )≥0.(9分)③若a <0,则由(1)得,当x =ln ⎝⎛⎭⎫-a2时, f (x )取得最小值,最小值为f ⎝⎛⎭⎫ln ⎝⎛⎭⎫-a 2=a 2⎣⎡⎦⎤34-ln ⎝⎛⎭⎫-a 2. 从而当且仅当a 2⎣⎡⎦⎤34-ln ⎝⎛⎭⎫-a 2≥0, 即≤a <0时,f (x )≥0.(11分) 综上,a 的取值范围是[,1](12分)【类题通法】1.求解或讨论函数单调性有关问题的解题策略讨论函数的单调性其实就是讨论不等式的解集的情况.大多数情况下,这类问题可以归结为一个含有参数的一元二次不等式的解集的讨论:(1)在能够通过因式分解求出不等式对应方程的根时,依据根的大小进行分类讨论. (2)在不能通过因式分解求出根的情况时,根据不等式对应方程的判别式进行分类讨论. 2.讨论函数的单调性重点考查学科核心素养中的逻辑推理与数学运算,体现了分类讨论思想及分析问题解决问题的能力.[练通——即学即用]1.已知f (x )=x 2+ax +3ln x 在(1,+∞)上是增函数,则实数a 的取值范围为( ) A .(-∞,-26] B .⎝⎛⎦⎤-∞,62 C .[-26,+∞)D .[-5,+∞)解析:由题意得f ′(x )=2x +a +3x =2x 2+ax +3x≥0在(1,+∞)上恒成立,∴g (x )=2x 2+ax +3≥0在(1,+∞)上恒成立, ∴Δ=a 2-24≤0或⎩⎪⎨⎪⎧-a 4≤1,g (1)≥0,∴-26≤a ≤26或⎩⎪⎨⎪⎧a ≥-4,a ≥-5,即a ≥-2 6. 答案:C2.(2018·荆州联考)已知函数f (x )=x (ln x -a ).(1)当x ≥1时,对任意实数b ,直线y =-x +b 与函数f (x )的图象都不相切,求实数a 的取值范围;(2)当a =-1时,讨论f (x )在区间[t ,t +e](t >0)上的单调性. 解析:(1)由f (x )=x (ln x -a )(x ≥1),得f ′(x )=ln x -a +1,因为对任意实数b ,直线y =-x +b 与函数f (x )的图象都不相切,所以f ′(x )=ln x -a +1≠-1,即a ≠ln x +2.而函数y =ln x +2在[1,+∞)上单调递增,所以ln x +2≥ln 1+2=2, 故a <2.(2)当a =-1时,f (x )=x (ln x +1),f ′(x )=ln x +2, 由f ′(x )=0得x =1e2.当0<t <1e 2时,在[t ,1e 2)上,f ′(x )<0,在(1e 2,t +e]上,f ′(x )>0,因此f (x )在[t ,1e 2)上单调递减,在(1e 2,t +e]上单调递增.当t ≥1e2时,在[t ,t +e]上,f ′(x )≥0恒成立,所以f (x )在[t ,t +e]上单调递增.综上所述,当0<t <1e 2时,f (x )在[t ,1e 2)上单调递减,在(1e 2,t +e]上单调递增;当t ≥1e 2时,f (x )在[t ,t +e]上单调递增.利用导数研究函数的极值、最值授课提示:对应学生用书第13页[悟通——方法结论]1.若在x 0附近左侧f ′(x )>0,右侧f ′(x )<0,则f (x 0)为函数f (x )的极大值;若在x 0附近左侧f ′(x )<0,右侧f ′(x )>0,则f (x 0)为函数f (x )的极小值.2.设函数y =f (x )在[a ,b ]上连续,在(a ,b )内可导,则f (x )在[a ,b ]上必有最大值和最小值且在极值点或端点处取得.(2018·高考全国卷Ⅰ)(12分)已知函数ƒ(x )=(1) 求a ,并求ƒ(x )的单调区间;(2)证明:[学审题][规范解答] (1)ƒ(x )的定义域为(0,+∞),ƒ′(x )=a e x -1x .由题设知,ƒ′(2)=0,所以a =12e 2. (2分)从而ƒ(x )=12e 2e x -ln x -1,ƒ′(x )=12e 2e x -1x.(4分)当0<x <2时,ƒ′(x )<0;当x >2时,ƒ′(x )>0. 所以ƒ(x )在(0,2)上单调递减,在(2,+∞)上单调递增.(6分)(2)证明:当a ≥1e 时,ƒ(x )≥e xe -ln x -1.设g (x )=e xe -ln x -1,则g ′(x )=e x e -1x.(8分)当0<x <1时,g ′(x )<0;当x >1时,g ′(x )>0. 所以x =1是g (x )的最小值点. (10分)故当x >0时,g (x )≥g (1)=0. 因此,当a ≥1e 时,ƒ(x )≥0.(12分)【类题通法】利用导数研究函数极值、最值的方法(1)若求极值,则先求方程f ′(x )=0的根,再检查f ′(x )在方程根的左右两侧函数值的符号.(2)若已知极值大小或存在情况,则转化为已知方程f ′(x )=0根的大小或存在情况来求解.(3)求函数f (x )在闭区间[a ,b ]的最值时,在得到极值的基础上,结合区间端点的函数值f (a ),f (b )与f (x )的各极值进行比较得到函数的最值.[练通——即学即用]1.(2017·高考全国卷Ⅱ)若x =-2是函数f (x )=(x 2+ax -1)e x-1的极值点,则f (x )的极小值为( )A .-1B .-2e -3C .5e -3D .1解析:因为f (x )=(x 2+ax -1)e x -1, 所以f ′(x )=(2x +a )e x -1+(x 2+ax -1)e x -1=[x 2+(a +2)x +a -1]e x -1.因为x =-2是函数f (x )=(x 2+ax -1)e x-1的极值点,所以-2是x 2+(a +2)x +a -1=0的根,所以a =-1,f ′(x )=(x 2+x -2)e x -1=(x +2)(x -1)e x -1.令f ′(x )>0,解得x <-2或x >1, 令f ′(x )<0,解得-2<x <1,所以f (x )在(-∞,-2)上单调递增,在(-2,1)上单调递减,在(1,+∞)上单调递增, 所以当x =1时,f (x )取得极小值,且f (x )极小值=f (1)=-1. 答案:A2.(2018·江西八校联考)已知函数f (x )=x (ln x -ax )有两个极值点,则实数a 的取值范围是( )A .(-∞,0)B .⎝⎛⎭⎫0,12 C .(0,1)D .(0,+∞)解析:f ′(x )=ln x -2ax +1(x >0), 故f ′(x )在(0,+∞)上有两个不同的零点, 令f ′(x )=0,则2a =ln x +1x ,设g (x )=ln x +1x ,则g ′(x )=-ln xx2,∴g (x )在(0,1)上单调递增,在(1,+∞)上单调递减, 又∵当x →0时,g (x )→-∞,当x →+∞时,g (x )→0, 而g (x )max =g (1)=1, ∴只需0<2a <1,即0<a <12.答案:B3.(2018·南昌模拟)设函数f (x )=ln x -2mx 2-n (m ,n ∈R ). (1)讨论f (x )的单调性;(2)若f (x )有最大值-ln 2,求m +n 的最小值. 解析:(1)函数f (x )的定义域为(0,+∞), f ′(x )=1x -4mx =1-4mx 2x,当m ≤0时,f ′(x )>0,∴f (x )在(0,+∞)上单调递增; 当m >0时,令f ′(x )>0得0<x <m 2m ,令f ′(x )<0得x >m2m, ∴f (x )在(0,m 2m )上单调递增,在(m2m,+∞)上单调递减. (2)由(1)知,当m >0时,f (x )在(0,m 2m )上单调递增,在(m2m,+∞)上单调递减. ∴f (x )max =f (m 2m )=ln m 2m -2m ·14m -n =-ln 2-12ln m -12-n =-ln 2,∴n =-12ln m -12,∴m +n =m -12ln m -12,令h (x )=x -12ln x -12(x >0),则h ′(x )=1-12x =2x -12x ,∴h (x )在(0,12)上单调递减,在(12,+∞)上单调递增,∴h (x )min =h (12)=12ln 2,∴m +n 的最小值为12ln 2.授课提示:对应学生用书第111页一、选择题1.曲线y =e x 在点(2,e 2)处的切线与坐标轴所围成的三角形的面积为( ) A .94e 2B .2e 2C .e 2D .e 22解析:由题意可得y ′=e x ,则所求切线的斜率k =e 2, 则所求切线方程为y -e 2=e 2(x -2). 即y =e 2x -e 2,∴S =12×1×e 2=e 22.答案:D2.(2018·西宁一检)设曲线y =x +1x -1在点(3,2)处的切线与直线ax +y +1=0垂直,则a =( )A .-2B .2C .-12D .12解析:由y ′=-2(x -1)2得曲线在点(3,2)处的切线斜率为-12,又切线与直线ax +y +1=0垂直,则a =-2.答案:A3.(2018·北京模拟)曲线f (x )=x ln x 在点(1,f (1))处的切线的倾斜角为( ) A .π6B .π4C .π3D .π2解析:因为f (x )=x ln x ,所以f ′(x )=ln x +x ·1x =ln x +1,所以f ′(1)=1,所以曲线f (x )=x ln x 在点(1,f (1))处的切线的倾斜角为π4.答案:B4.已知函数f (x )=x 2-5x +2ln x ,则函数f (x )的单调递增区间是( ) A .⎝⎛⎭⎫0,12和(1,+∞) B .(0,1)和(2,+∞) C .⎝⎛⎭⎫0,12和(2,+∞) D .(1,2)解析:函数f (x )=x 2-5x +2ln x 的定义域是(0,+∞),令f ′(x )=2x -5+2x =2x 2-5x +2x=(x -2)(2x -1)x >0,解得0<x <12或x >2,故函数f (x )的单调递增区间是⎝⎛⎭⎫0,12和(2,+∞). 答案:C5.函数f (x )在定义域R 内可导,若f (x )=f (2-x ),且当x ∈(-∞,1)时,(x -1)f ′(x )<0,设a =f (0),b =f ⎝⎛⎭⎫12,c =f (3),则a ,b ,c 的大小关系为( )A .a <b <cB .c <b <aC .c <a <bD .b <c <a解析:因为当x ∈(-∞,1)时,(x -1)f ′(x )<0, 所以f ′(x )>0,所以函数f (x )在(-∞,1)上是单调递增函数, 所以a =f (0)<f ⎝⎛⎭⎫12=b , 又f (x )=f (2-x ), 所以c =f (3)=f (-1), 所以c =f (-1)<f (0)=a , 所以c <a <b ,故选C. 答案:C6.已知函数f (x )=x 3+3x 2-9x +1,若f (x )在区间[k,2]上的最大值为28,则实数k 的取值范围为( )A .[-3,+∞)B .(-3,+∞)C .(-∞,-3)D .(-∞,-3]解析:由题意知f ′(x )=3x 2+6x -9, 令f ′(x )=0,解得x =1或x =-3,所以f ′(x ),f (x )随x 的变化情况如下表:答案:D7.已知函数f (x )=e x x 2-k ⎝⎛⎭⎫2x +ln x ,若x =2是函数f (x )的唯一一个极值点,则实数k 的取值范围为( )A .(-∞,e]B .[0,e]C .(-∞,e)D .[0,e)解析:f ′(x )=x 2e x -2x e xx 4-k ⎝⎛⎭⎫-2x 2+1x =(x -2)⎝⎛⎭⎫e xx -k x 2(x >0).设g (x )=e x x,则g ′(x )=(x -1)e xx 2,则g (x )在(0,1)上单调递减,在(1,+∞)上单调递增. ∴g (x )在(0,+∞)上有最小值,为g (1)=e ,结合g (x )=e xx 与y =k 的图象可知,要满足题意,只需k ≤e.答案:A8.已知函数f (x )=ln x -nx (n >0)的最大值为g (n ),则使g (n )-n +2>0成立的n 的取值范围为( )A .(0,1)B .(0,+∞)C .⎝⎛⎭⎫0,14 D .⎣⎡⎭⎫12,+∞解析:易知f (x )的定义域为(0,+∞), f ′(x )=1x -n (x >0,n >0),当x ∈⎝⎛⎭⎫0,1n 时,f ′(x )>0; 当x ∈⎝⎛⎭⎫1n ,+∞时,f ′(x )<0, 所以f (x )在⎝⎛⎭⎫0,1n 上单调递增,在⎝⎛⎭⎫1n ,+∞上单调递减, 所以f (x )的最大值g (n )=f ⎝⎛⎭⎫1n =-ln n -1. 设h (n )=g (n )-n +2=-ln n -n +1.因为h ′(n )=-1n-1<0,所以h (n )在(0,+∞)上单调递减.又h (1)=0,所以当0<n <1时,h (n )>h (1)=0,故使g (n )-n +2>0成立的n 的取值范围为(0,1),故选A.答案:A 二、填空题9.(2018·高考全国卷Ⅱ)曲线y =2ln x 在点(1,0)处的切线方程为________. 解析:因为y ′=2x,y ′|x =1=2,所以切线方程为y -0=2(x -1),即y =2x -2. 答案:y =2x -210.(2016·高考全国卷Ⅲ)已知f (x )为偶函数,当x ≤0时,f (x )=e -x -1-x ,则曲线y =f (x )在点(1,2)处的切线方程是________.解析:设x >0,则-x <0,f (-x )=e x -1+x .∵f (x )为偶函数,∴f (-x )=f (x ), ∴f (x )=e x -1+x .∵当x >0时,f ′(x )=e x -1+1,∴f ′(1)=e 1-1+1=1+1=2.∴曲线y =f (x )在点(1,2)处的切线方程为y -2=2(x -1),即2x -y =0. 答案:2x -y =011.(2018·太原二模)若函数f (x )=sin x +ax 为R 上的减函数,则实数a 的取值范围是________.解析:∵f ′(x )=cos x +a ,由题意可知,f ′(x )≤0对任意的x ∈R 都成立,∴a ≤-1,故实数a 的取值范围是(-∞,-1].答案:(-∞,-1]12.(2018·新乡一模)设x 1,x 2是函数f (x )=x 3-2ax 2+a 2x 的两个极值点,若x 1<2<x 2,则实数a 的取值范围是________.解析:由题意得f ′(x )=3x 2-4ax +a 2的两个零点x 1,x 2满足x 1<2<x 2,所以f ′(2)=12-8a +a 2<0,解得2<a <6.答案:(2,6) 三、解答题13.已知函数f (x )=x -1+ae x (a ∈R ,e 为自然对数的底数).(1)若曲线y =f (x )在点(1,f (1))处的切线平行于x 轴,求a 的值; (2)求函数f (x )的极值.解析:(1)由f (x )=x -1+a e x ,得f ′(x )=1-aex .又曲线y =f (x )在点(1,f (1))处的切线平行于x 轴, 得f ′(1)=0,即1-ae =0,解得a =e.(2)f ′(x )=1-aex ,①当a ≤0时,f ′(x )>0,f (x )为(-∞,+∞)上的增函数,所以函数f (x )无极值. ②当a >0时,令f ′(x )=0,得e x =a ,即x =ln a .x ∈(-∞,ln a )时,f ′(x )<0;x ∈(ln a ,+∞)时,f ′(x )>0,所以f (x )在(-∞,ln a )上单调递减,在(ln a ,+∞)上单调递增,故f (x )在x =ln a 处取得极小值,且极小值为f (ln a )=ln a ,无极大值.综上,当a ≤0时,函数f (x )无极值;当a >0时,f (x )在x =ln a 处取得极小值ln a ,无极大值. 14.(2018·福州质检)已知函数f (x )=a ln x +x 2-ax (a ∈R ). (1)若x =3是f (x )的极值点,求f (x )的单调区间; (2)求g (x )=f (x )-2x 在区间[1,e]上的最小值h (a ). 解析:(1)f (x )的定义域为(0,+∞), f ′(x )=ax +2x -a =2x 2-ax +a x ,因为x =3是f (x )的极值点,所以f ′(3)=18-3a +a3=0,解得a =9,所以f ′(x )=2x 2-9x +9x =(2x -3)(x -3)x ,所以当0<x <32或x >3时,f ′(x )>0;当32<x <3时,f ′(x )<0. 所以f (x )的单调递增区间为⎝⎛⎭⎫0,32,(3,+∞),单调递减区间为⎝⎛⎭⎫32,3. (2)g (x )=a ln x +x 2-ax -2x ,则g ′(x )=2x 2-ax +a x -2=(2x -a )(x -1)x .令g ′(x )=0,得x =a2或x =1.①当a2≤1,即a ≤2时,g (x )在[1,e]上为增函数,h (a )min =g (1)=-a -1;②当1<a2<e ,即2<a <2e 时,g (x )在⎣⎡⎭⎫1,a 2上为减函数,在⎝⎛⎦⎤a 2,e 上为增函数,h (a )min =g ⎝⎛⎭⎫a 2=a ln a 2-14a 2-a ; ③当a2≥e ,即a ≥2e 时,g (x )在[1,e]上为减函数,h (a )min =g (e)=(1-e)a +e 2-2e.综上,h (a )min=⎩⎪⎨⎪⎧-a -1,a ≤2,a ln a 2-14a 2-a ,2<a <2e ,(1-e )a +e 2-2e ,a ≥2e.。
2019年高考数学(文)热点题型和提分秘籍1.利用导数求函数的单调区间及极值(最值)、结合单调性与不等式的成立情况求参数范围是高考命题的热点。
2.常与基本初等函数的图象与性质、解析几何、不等式、方程等交汇命题,主要考查转化与化归思想、分类讨论思想的应用。
3.题型主要以解答题为主,属中高档题。
热点题型一 判断或证明函数的单调性 例1、【2017课标II ,】若2x =-是函数的极值点,则()f x 的极小值为( )A.1-B.32e --C.35e -D.1 【答案】A【变式探究】设a ∈[-2,0],已知函数f (x )=⎩⎪⎨⎪⎧x 3-a +5x ,x ≤0x 3-a +32x 2+ax ,x >0。
证明f (x )在区间(-1,1)内单调递减,在区间(1,+∞)内单调递增。
【解析】设函数f 1(x )=x 3-(a +5)x (x ≤0),f 2(x )=x 3-a +32x 2+ax (x ≥0)。
①f ′1(x )=3x 2-(a +5),由于a ∈[-2,0], 从而当-1<x ≤0时,f ′1(x )=3x 2-(a +5)<3-a -5≤0, 所以函数f 1(x )在区间(-1,0]内单调递减。
②f ′2(x )=3x 2-(a +3)x +a =(3x -a )(x -1)。
由于a∈[-2,0],所以当0<x<1时,f′2(x)<0;当x>1时,f′2(x)>0,即函数f2(x)在区间[0,1)内单调递减,在区间(1,+∞)内单调递增。
综合①②及f1(0)=f2(0),可知函数f(x)在区间(-1,1)内单调递减,在区间(1,+∞)内单调递增。
(Ⅱ)证明:由,得,.【变式探究】已知函数f(x)=13x3+x2+ax+1(a∈R),求函数f(x)的单调区间。
【提分秘籍】求函数的单调区间的“两个方法”方法一(1)确定函数y=f(x)的定义域;(2)求导数y′=f′(x);(3)解不等式f′(x)>0,解集在定义域内的部分为单调递增区间;(4)解不等式f′(x)<0,解集在定义域内的部分为单调递减区间。
2019年高考数学(文)考点一遍过考点11 导数的概念及计算1.导数概念及其几何意义 (1)了解导数概念的实际背景. (2)理解导数的几何意义. 2.导数的运算(1)能根据导数定义求函数y =C (C 为常数),21,,y x y x y x===的导数. (2)能利用下面给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数. • 常见基本初等函数的导数公式:1()0();(),n n C C x nx n -+''==∈N 为常数;(sin )cos ;(cos )sin x x x x ''==-;(e )e ;()ln (0,1)x x x x a a a a a ''==>≠且;11(ln );(log )log e(0,1)a a x x a a x x''==>≠且.• 常用的导数运算法则:法则1:()()()()u x v x u x v x ±'⎡⎦'⎤±⎣'=. 法则2:()()()()()()·u x v x u x v x u x v x ⎡⎤⎣⎦'''=+.法则3:2()()()()()[](()0)()()u x u x v x u x v x v x v x v x ''-'=≠.一、导数的概念 1.平均变化率函数()y f x =从1x 到2x 的平均变化率为2121()()f x f x x x --,若21x x x ∆=-,2()y f x ∆=-1()f x ,则平均变化率可表示为y x∆∆. 2.瞬时速度一般地,如果物体的运动规律可以用函数()s s t =来描述,那么,物体在时刻t 的瞬时速度v 就是物体在t 到t t +∆这段时间内,当t ∆无限趋近于0时,st∆∆无限趋近的常数. 3.瞬时变化率4.导数的概念一般地,函数()y f x =在0x x =处的瞬时变化率是0000()()limlimx x f x +x f x yx x∆→∆→∆-∆=∆∆,我们称它为函数()y f x =在0x x =处的导数,记作0()f x '或0|x x y =',即00()limx yf x x ∆→∆'==∆000()()limx f x +x f x x∆→∆-∆. 【注】函数()y f x =在0x x =处的导数是()y f x =在0x x =处的瞬时变化率. 5.导函数的概念如果函数()y f x =在开区间(a ,b )内的每一点都是可导的,则称()f x 在区间(a ,b )内可导.这样,对开区间(a ,b )内的每一个值x ,都对应一个确定的导数()f x ',于是在区间(a ,b )内()f x '构成一个新的函数,我们把这个函数称为函数()y f x =的导函数(简称导数),记为()f x '或y ',即()f x y ''==0()()l i mx f x +xf xx∆→∆-∆.二、导数的几何意义函数()y f x =在0x x =处的导数0()f x '就是曲线()y f x =在点00(,())x f x 处的切线的斜率k ,即0000()()()limx f x +x f x k f x x∆→∆-'==∆.【注】曲线的切线的求法:若已知曲线过点P (x 0,y 0),求曲线过点P 的切线,则需分点P (x 0,y 0)是切点和不是切点两种情况求解.(1)当点P (x 0,y 0)是切点时,切线方程为y −y 0=f ′(x 0)(x −x 0); (2)当点P (x 0,y 0)不是切点时,可分以下几步完成: 第一步:设出切点坐标P ′(x 1,f (x 1));第二步:写出过P ′(x 1,f (x 1))的切线方程为y −f (x 1)=f ′ (x 1)(x −x 1); 第三步:将点P 的坐标(x 0,y 0)代入切线方程求出x 1;第四步:将x 1的值代入方程y −f (x 1)=f ′(x 1)(x −x 1),可得过点P (x 0,y 0)的切线方程. 三、导数的计算1.基本初等函数的导数公式2.导数的运算法则(1)()()()()u x v x u x v x ±'⎡⎦'⎤±⎣'=. (2)()()()()()()·u x v x u x v x u x v x ⎡⎤⎣⎦'''=+. (3)2()()()()()[](()0)()()u x u x v x u x v x v x v x v x ''-'=≠. 3.复合函数的导数复合函数y=f (g (x ))的导数和函数y=f (u ),u=g (x )的导数间的关系为y x ′=y u ′·u x ′,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.考向一 导数的计算1.导数计算的原则和方法(1)原则:先化简解析式,使之变成能用八个求导公式求导的函数的和、差、积、商,再求导. (2)方法:①连乘积形式:先展开化为多项式的形式,再求导;②分式形式:观察函数的结构特征,先化为整式函数或较为简单的分式函数,再求导; ③对数形式:先化为和、差的形式,再求导; ④根式形式:先化为分数指数幂的形式,再求导;⑤三角形式:先利用三角函数公式转化为和或差的形式,再求导. 2.求复合函数的导数的关键环节和方法步骤 (1)关键环节:①中间变量的选择应是基本函数结构; ②正确分析出复合过程;③一般是从最外层开始,由外及里,一层层地求导; ④善于把一部分表达式作为一个整体; ⑤最后结果要把中间变量换成自变量的函数. (2)方法步骤:①分解复合函数为基本初等函数,适当选择中间变量; ②求每一层基本初等函数的导数;③每层函数求导后,需把中间变量转化为自变量的函数.典例1 求下列函数的导函数:(1)42356y x x x --=+; (2)21y x x=+; (3)2cos y x x =; (4)tan y x =.【名师点睛】熟记基本初等函数的求导公式,导数的四则运算法则是正确求导数的基础.(1)运用基本初等函数求导公式和运算法则求函数()y f x =在开区间(a ,b )内的导数的基本步骤: ①分析函数()y f x =的结构和特征;②选择恰当的求导公式和运算法则求导;③整理得结果.(2)对较复杂的函数求导数时,先化简再求导.如对数函数的真数是根式或分式时,可用对数的性质将真数转化为有理式或整式求解更为方便;对于三角函数,往往需要利用三角恒等变换公式,将函数式进行化简,使函数的种类减少,次数降低,结构尽量简单,从而便于求导.1.已知函数2()22(1(1))f x x x f f ++'=,则()2f '的值为A .2-B .0C .4-D .6-考向二 导数的几何意义求曲线y =f (x )的切线方程的类型及方法(1)已知切点P (x 0, y 0),求y =f (x )过点P 的切线方程:求出切线的斜率f ′(x 0),由点斜式写出方程; (2)已知切线的斜率为k ,求y =f (x )的切线方程:设切点P (x 0, y 0),通过方程k =f ′(x 0)解得x 0,再由点斜式写出方程;(3)已知切线上一点(非切点),求y =f (x )的切线方程:设切点P (x 0, y 0),利用导数求得切线斜率f ′(x 0),再由斜率公式求得切线斜率,列方程(组)解得x 0,最后由点斜式或两点式写出方程.(4)若曲线的切线与已知直线平行或垂直,求曲线的切线方程时,先由平行或垂直关系确定切线的斜率,再由k =f ′(x 0)求出切点坐标(x 0, y 0),最后写出切线方程.(5)①在点P 处的切线即是以P 为切点的切线,P 一定在曲线上.②过点P 的切线即切线过点P ,P 不一定是切点.因此在求过点P 的切线方程时,应首先检验点P 是否在已知曲线上.典例2 已知函数2ln y x x =.(1)求这个函数的图象在1x =处的切线方程;(2)若过点()0,0的直线l 与这个函数图象相切,求直线l 的方程. 【解析】(1)2ln y x x x '=+, 当1x =时,0,1y y '==,∴这个函数的图象在1x =处的切线方程为1y x =-.【规律总结】求切线方程的步骤: (1)利用导数公式求导数. (2)求斜率. (3)写出切线方程.注意导数为0和导数不存在的情形.2.已知函数,则函数的图象在处的切线方程为A .B .C .D .1.函数在处的导数是A .0B .1C .D .2.已知函数的导函数是,且,则实数的值为A .B .C .D .13.设函数的导函数记为,若,则A .-1B .C .1D .34.已知函数的图象如图,是的导函数,则下列数值排序正确的是A .B .C .D .5.已知过曲线e xy =上一点()00,P x y 作曲线的切线,若切线在y 轴上的截距小于0,则0x 的取值范围是A .()0,+∞BC .()1,+∞D .()2,+∞6.已知是函数的导函数,且对任意的实数都有(是自然对数的底数),,则 A . B . C .D .7.放射性元素由于不断有原子放射出微粒子而变成其他元素,其含量不断减少,这种现象称为衰变.假设在放射性同位素铯137的衰变过程中,其含量M (单位:太贝克)与时间t (单位:年)满足函数关系:300()2tM t M -=,其中0M 为0t =时铯137的含量,已知30t =时,铯137含量的变化率为10ln 2-(太贝克/年),则(60)M =A .5太贝克B .75ln 2太贝克C .150ln 2太贝克D .150太贝克8.设过曲线(为自然对数的底数)上任意一点处的切线为,总存在过曲线上一点处的切线,使得,则实数的取值范围为 A . B . C .D .9,则(1)f '=__________. 10.已知函数的导函数为,且满足,则_________.11.曲线的切线方程为,则实数的值为_________.12.曲线250xy x y -+-=在点()1,2A 处的切线与两坐标轴所围成的三角形的面积为_________. 13.求下列函数的导数:(1)21cos xy x+=; (2)()3ln xy x x =⋅-.14.已知函数()32f x x bx cx d =+++的图象过点()0,2P ,且在点()()1,1M f --处的切线方程为670x y -+=.(1)求()1f -和()1f '-的值; (2)求函数()f x 的解析式.1.(2018新课标全国Ⅰ文科)设函数()()321f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点()00,处的切线方程为 A .2y x =- B .y x =- C .2y x =D .y x =2.(2016山东文科)若函数y =f (x )的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y =f (x )具有T 性质.下列函数中具有T 性质的是 A .y =sin x B .y =ln x C .y =exD .y =x33.(2016四川文科)设直线l 1,l 2分别是函数f (x )=ln 01,ln ,1x x x x -<<⎧⎨>⎩,图象上点P 1,P 2处的切线,l 1与l 2垂直相交于点P ,且l 1,l 2分别与y 轴相交于点A ,B ,则△PAB 的面积的取值范围是 A .(0,1) B .(0,2) C .(0,+∞)D .(1,+ ∞)4.(2018天津文科)已知函数f (x )=e x ln x ,f ′(x )为f (x )的导函数,则f ′(1)的值为__________. 5.(2018新课标全国Ⅱ文科)曲线2ln y x =在点(1,0)处的切线方程为__________.6.(2017天津文科)已知a ∈R ,设函数()ln f x ax x =-的图象在点(1,(1)f )处的切线为l ,则l 在y 轴上的截距为___________.7.(2017北京文科节选)已知函数()e cos xf x x x =-. (Ⅰ)求曲线()y f x =在点(0,(0))f 处的切线方程;8.(2017山东文科节选)已知函数()3211,32f x x ax a =-∈R . (Ⅰ)当a =2时,求曲线()y f x =在点()()3,3f 处的切线方程;9.(2017天津文科节选)设,a b ∈R ,||1a ≤.已知函数32()63(4)f x x x a a x b =---+,()e ()x g x f x =. (Ⅱ)已知函数()y g x =和e x y =的图象在公共点(x 0,y 0)处有相同的切线, (i )求证:()f x 在0x x =处的导数等于0;10.(2017浙江节选)已知函数f (x )=(x e x -(12x ≥). (Ⅰ)求f (x )的导函数;2.【答案】C【解析】∵,∴,∴,又,∴所求切线方程为,即.故选C.1.【答案】C【解析】因为,故选C.2.【答案】B【解析】,选B.3.【答案】D【解析】根据题意,得,由,得,化简可得,即,故选D.4.【答案】C【解析】结合函数的图象可知过点的切线的倾斜角较大,过点的切线的倾斜角较小,又因为过点的切线的斜率,过点的切线的斜率,直线的斜率,故,应选C.5.【答案】C【解析】因为()0e xk f x'==,所以切线方程为()00e xy y x x-=-,即()00e ex xy x x-=-,令0x=得()01e xy x=-,截距小于0时,()01e0xy x=-<,解得1x>,故选C.6.【答案】D【解析】令G (x )=()exf x ,则G ′(x )==2x -2,可设G (x )=x 2+c ,∵G (0)=f (0)=1,∴c =1.∴f (x )=(x 2+1)ex故选D.8.【答案】C【解析】因为切线,的切点分别为而,所以.因为,所以(.因为,所以,因此,选C .9.【答案】12.【解析】 1x =,得()()111f f ='-',解得 10.【答案】【解析】求导得,把代入得,解得.11.【答案】212.【答案】496【解析】由250xy x y -+-=,得()52x y f x x +==+,∴()()232f x x -='+,∴()113f '=-, ∴曲线在点()1,2A 处的切线方程为()1213y x -=--. 令0x =,得73y =;令0y =,得7x =. ∴切线与两坐标轴所围成的三角形的面积为17497236S =⨯⨯=. 13.【解析】(1()()()24sin 1cos 2x x x x x--+⋅=3sin 2cos 2x x x x ++=-.(2)()()()3ln 3ln xxy x x x x '⋅⋅''=-+-()13ln3ln 31x x x x x ⎛⎫=⋅⋅-+⋅- ⎪⎝⎭13ln3ln ln31x x x x ⎛⎫=-+- ⎪⎝⎭.14.【解析】(1)∵()f x 在点()()1,1M f --处的切线方程为670x y -+=,故点()()1,1f --在切线670x y -+=上,且切线斜率为6,得()11f -=且()16f '-=.(2)∵()f x 过点()0,2P ,∴2d =,∵()32f x x bx cx d =+++,∴2()32f x x bx c '=++,由()16f '-=得326b c -+=,又由()11f -=,得11b c d -+-+=,联立方程得232611d b c b c d =-+==-+-+⎧⎪⎨⎪⎩,解得332b c d ⎧=-=-=⎪⎨⎪⎩,故()32332f x x x x =--+.1.【答案】D 【解析】因为函数是奇函数,所以,解得,所以,,所以,所以曲线在点处的切线方程为,化简可得,故选D.【名师点睛】该题考查的是有关曲线在某个点处的切线方程的问题,在求解的过程中,首先需要确定函数解析式,此时利用到结论多项式函数中,奇函数不存在偶次项,偶函数不存在奇次项,从而求得相应的参数值,之后利用求导公式求得,借助于导数的几何意义,结合直线方程的点斜式求得结果.2.【答案】A【解析】当sin y x =时,cos y x '=,cos0cos 1⋅π=-,所以在函数sin y x =的图象上存在两点,使条件成立,故A 正确;函数3ln ,e ,xy x y y x ===的导数值分别为10,e 0,x y y y x'''=>=>=230x ≥,不符合题意,故选A . 3.【答案】A【解析】设111222(,ln ),(,ln )P x x P x x -(不妨设121,01x x ><<),则由导数的几何意义易得切线12,l l 的斜率分别为121211,.k k x x ==-由已知得12122111,1,.k k x x x x =-∴=∴=∴切线1l 的方程为1111ln ()y x x x x -=-,切线2l 的方程为2221ln ()y x x x x +=--,即1111ln ()y x x x x -=--.分别令0x =得11(0,1ln ),(0,1ln ).A x B x -++又1l 与2l 的交点为2111221121(,ln ).11x x P x x x -+++211122112111,||||1,01211PABA B P PAB x x x S y y x S x x +>∴=-⋅=<=∴<<++△△,故选A.4.【答案】e【解析】由函数的解析式可得,则.即的值为e.【名师点睛】本题主要考查导数的运算法则,基本初等函数的导数公式等知识,意在考查学生的转化能力和计算求解能力. 5.【答案】y =2x –2 【解析】由,得.则曲线在点处的切线的斜率为,则所求切线方程为,即.【名师点睛】求曲线在某点处的切线方程的步骤:①求出函数在该点处的导数值即为切线斜率;②写出切线的点斜式方程;③化简整理. 6.【答案】1【解析】由题可得(1)f a =,则切点为(1,)a ,因为1()f x a x'=-,所以切线l 的斜率为(1)1f a '=-,切线l 的方程为(1)(1)y a a x -=--,令0x =可得1y =,故l 在y 轴上的截距为1.【名师点睛】本题考查导数的几何意义,属于基础题型,函数()f x 在点0x 处的导数0()f x '的几何意义是曲线()y f x =在点00(,)P x y 处的切线的斜率,切线方程为000()()y y f x x x '-=-.解题时应注意:求曲线切线时,要分清在点P 处的切线与过点P 的切线的不同,没切点应设出切点坐标,建立方程组进行求解.7.【解析】(Ⅰ)因为()e cos x f x x x =-,所以()e (cos sin )1,(0)0xf x x x f ''=--=.又因为(0)1f =,所以曲线()y f x =在点(0,(0))f 处的切线方程为1y =.9.【解析】(II )(i )因为()e (()())xx x g'f f 'x =+,由题意知000()e ()e x x x x g g'⎧=⎪⎨=⎪⎩,所以0000000()e e e (()())ex x xx f f f x 'x x ⎧=⎪⎨+=⎪⎩,解得00()1()0f 'x x f =⎧⎨=⎩.所以,()f x 在0x x =处的导数等于0. 10.【解析】(Ⅰ)因为(1x '=,(e )e x x'--=-,所以()(1(x xf x x --'=--1)2x =>.。
导数的综合应用主标题:导数的综合应用副标题:为学生详细的分析导数的综合应用的高考考点、命题方向以及规律总结。
关键词:导数与方程,导数与不等式,导数应用难度:4重要程度:5考点剖析:1.利用导数研究函数的单调性、极(最)值,并会解决与之有关的方程(不等式)问题;2.会利用导数解决某些简单的实际问题.命题方向:常考查:①直接求极值或最值;②利用极(最)值求参数的值或范围,利用导数研究函数的单调性问题;常与函数的单调性、方程、不等式及实际应用问题综合,形成知识的交汇问题。
规律总结:1.理解极值与最值的区别,极值是局部概念,最值是整体概念.2.利用导数解决含有参数的单调性问题是将问题转化为不等式恒成立问题,要注意分类讨论和数形结合思想的应用.3.在实际问题中,如果函数在区间内只有一个极值点,那么只要根据实际意义判定是最大值还是最小值即可,不必再与端点的函数值比较.知识梳理1.生活中的优化问题通常求利润最大、用料最省、效率最高等问题称为优化问题,一般地,对于实际问题,若函数在给定的定义域内只有一个极值点,那么该点也是最值点.2.利用导数解决生活中的优化问题的一般步骤3.导数在研究方程(不等式)中的应用研究函数的单调性和极(最)值等离不开方程与不等式;反过来方程的根的个数、不等式的证明、不等式恒成立求参数等,又可转化为函数的单调性、极值与最值的问题,利用导数进行研究.导数在研究函数中的应用主标题:导数在研究函数中的应用备考策略副标题:通过考点分析高考命题方向,把握高考规律,为学生备考复习打通快速通道。
关键词:导数,极值,最值,备考策略 难度:4 重要程度:5 内容考点一 利用导数研究函数的单调性【例1】设函数f (x )=(x -1)e x -kx 2. (1)当k =1时,求函数f (x )的单调区间;(2)若f (x )在x ∈[0,+∞)上是增函数,求实数k 的取值范围. 解 (1)当k =1时,f (x )=(x -1)e x -x 2, ∴f ′(x )=e x +(x -1)e x -2x =x (e x -2). 令f ′(x )>0,即x (e x -2)>0, ∴x >ln 2或x <0.令f ′(x )<0,即x (e x -2)<0,∴0<x <ln 2. 因此函数f (x )的递减区间是(0,ln 2); 递增区间是(-∞,0)和(ln 2,+∞). (2)易知f ′(x )=e x +(x -1)e x -2kx =x (e x -2k ). ∵f (x )在x ∈[0,+∞)上是增函数,∴当x ≥0时,f ′(x )=x (e x -2k )≥0恒成立. ∴e x -2k ≥0,即2k ≤e x 恒成立. 由于e x ≥1,∴2k ≤1,则k ≤12.又当k =12时,f ′(x )=x (e x -1)≥0当且仅当x =0时取等号. 因此,实数k 的取值范围是⎝ ⎛⎦⎥⎤-∞,12.【备考策略】 (1)利用导数研究函数的单调性的关键在于准确判定导数的符号.而解答本题(2)问时,关键是分离参数k ,把所求问题转化为求函数的最小值问题.(2)若可导函数f(x)在指定的区间D上单调递增(减),求参数范围问题,可转化为f′(x)≥0(或f′(x)≤0)恒成立问题,从而构建不等式,要注意“=”是否可以取到.考点二利用导数研究函数的极值【例2】设f(x)=a ln x+12x+32x+1,其中a∈R,曲线y=f(x)在点(1,f(1))处的切线垂直于y轴.(1)求a的值;(2)求函数f(x)的极值.审题路线(1)由f′(1)=0⇒求a的值.(2)确定函数定义域⇒对f(x)求导,并求f′(x)=0⇒判断根左,右f′(x)的符号⇒确定极值.解(1)由f(x)=a ln x+12x+32x+1,∴f′(x)=ax-12x2+32.由于曲线y=f(x)在点(1,f(1))处的切线垂直于y轴,∴该切线斜率为0,即f′(1)=0.从而a-12+32=0,∴a=-1.(2)由(1)知,f(x)=-ln x+12x+32x+1(x>0),∴f′(x)=-1x-12x2+32=(3x+1)(x-1)2x2.令f′(x)=0,解得x=1或-13(舍去).当x∈(0,1)时,f′(x)<0;当x∈(1,+∞)时,f′(x)>0.∴f(x)在(0,1)上是减函数,在(1,+∞)上是增函数.故f(x)在x=1处取得极小值f(1)=3,f(x)无极大值.【备考策略】(1)可导函数y=f(x)在点x0处取得极值的充要条件是f′(x0)=0,且在x0左侧与右侧f′(x)的符号不同.(2)若f(x)在(a,b)内有极值,那么f(x)在(a,b)内绝不是单调函数,即在某区间上单调增或减的函数没有极值.考点三 利用导数求函数的最值【例3】已知函数f (x )=ax 3+bx +c 在x =2处取得极值为c -16. (1)求a ,b 的值;(2)若f (x )有极大值28,求f (x )在[-3,3]上的最小值. 审题路线 (1)⎩⎨⎧f ′(2)=0,f (2)=c -16⇒a ,b 的值;(2)求导确定函数的极大值⇒求得c 值⇒求得极大值、极小值、端点值⇒求得最值.解 (1)因f (x )=ax 3+bx +c ,故f ′(x )=3ax 2+b , 由于f (x )在点x =2处取得极值c -16, 故有⎩⎨⎧ f ′(2)=0,f (2)=c -16,即⎩⎨⎧12a +b =0,8a +2b +c =c -16.化简得⎩⎨⎧ 12a +b =0,4a +b =-8,解得⎩⎨⎧a =1,b =-12.(2)由(1)知f (x )=x 3-12x +c ,f ′(x )=3x 2-12. 令f ′(x )=0,得x =-2或2.当x 变化时,f (x ),f ′(x )的变化情况如下表:x -3 (-3,-2) -2 (-2,2) 2 (2,3) 3 f ′(x ) + 0 - 0 + f (x )9+c极大值极小值-9+c由表知f (x )在x =-2处取得极大值f (-2)=16+c ,f (x )在x =2处取得极小值f (2)=c -16.由题设条件知,16+c =28,解得c =12,此时f (-3)=9+c =21,f (3)=-9+c =3,f (2)=c -16=-4,因此f (x )在[-3,3]上的最小值为f (2)=-4.【备考策略】在解决类似的问题时,首先要注意区分函数最值与极值的区别.求解函数的最值时,要先求函数y =f (x )在[a ,b ]内所有使f ′(x )=0的点,再计算函数y =f (x )在区间内所有使f ′(x )=0的点和区间端点处的函数值,最后比较即得.。
考点12 导数的应用1.导数在研究函数中的应用(1)了解函数单调性和导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次).(2)了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数一般不超过三次). 2.生活中的优化问题 会利用导数解决某些实际问题.一、导数与函数的单调性一般地,在某个区间(a ,b )内:(1)如果()0f x '>,函数f (x )在这个区间内单调递增; (2)如果()0f x '<,函数f (x )在这个区间内单调递减; (3)如果()=0f x ',函数f (x )在这个区间内是常数函数.注意:(1)利用导数研究函数的单调性,要在函数的定义域内讨论导数的符号;(2)在某个区间内,()0f x '>(()0f x '<)是函数f (x )在此区间内单调递增(减)的充分条件,而不是必要条件.例如,函数3()f x x =在定义域(,)-∞+∞上是增函数,但2()30f x x '=≥.(3)函数f (x )在(a ,b )内单调递增(减)的充要条件是()0f x '≥(()0f x '≤)在(a ,b )内恒成立,且()f x '在(a ,b )的任意子区间内都不恒等于0.这就是说,在区间内的个别点处有()0f x '=,不影响函数f (x )在区间内的单调性.二、利用导数研究函数的极值和最值 1.函数的极值一般地,对于函数y =f (x ),(1)若在点x =a 处有f ′(a )=0,且在点x =a 附近的左侧()0f 'x <,右侧()0f 'x >,则称x=a 为f (x )的极小值点,()f a 叫做函数f (x )的极小值.(2)若在点x =b 处有()f 'b =0,且在点x=b 附近的左侧()0f 'x >,右侧()0f 'x <,则称x=b 为f (x )的极大值点,()f b 叫做函数f (x )的极大值.(3)极小值点与极大值点通称极值点,极小值与极大值通称极值. 2.函数的最值函数的最值,即函数图象上最高点的纵坐标是最大值,图象上最低点的纵坐标是最小值,对于最值,我们有如下结论:一般地,如果在区间[,]a b 上函数()y f x =的图象是一条连续不断的曲线,那么它必有最大值与最小值.设函数()f x 在[,]a b 上连续,在(,)a b 内可导,求()f x 在[,]a b 上的最大值与最小值的步骤为: (1)求()f x 在(,)a b 内的极值;学-科网(2)将函数()f x 的各极值与端点处的函数值()f a ,()f b 比较,其中最大的一个是最大值,最小的一个是最小值.3.函数的最值与极值的关系(1)极值是对某一点附近(即局部)而言,最值是对函数的定义区间[,]a b 的整体而言;(2)在函数的定义区间[,]a b 内,极大(小)值可能有多个(或者没有),但最大(小)值只有一个(或者没有);(3)函数f (x )的极值点不能是区间的端点,而最值点可以是区间的端点; (4)对于可导函数,函数的最大(小)值必在极大(小)值点或区间端点处取得. 三、生活中的优化问题生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题通常称为优化问题.导数是求函数最值问题的有力工具. 解决优化问题的基本思路是:考向一 利用导数研究函数的单调性1.利用导数判断或证明一个函数在给定区间上的单调性,实质上就是判断或证明不等式()0f x '>(()0f x '<)在给定区间上恒成立.一般步骤为: (1)求f ′(x );(2)确认f ′(x )在(a ,b )内的符号;(3)作出结论,()0f x '>时为增函数,()0f x '<时为减函数.注意:研究含参数函数的单调性时,需注意依据参数取值对不等式解集的影响进行分类讨论. 2.在利用导数求函数的单调区间时,首先要确定函数的定义域,解题过程中,只能在定义域内讨论,定义域为实数集R 可以省略不写.在对函数划分单调区间时,除必须确定使导数等于零的点外,还要注意在定义域内的不连续点和不可导点.3.由函数()f x 的单调性求参数的取值范围的方法(1)可导函数在某一区间上单调,实际上就是在该区间上()0f x '≥(或()0f x '≤)(()f x '在该区间的任意子区间内都不恒等于0)恒成立,然后分离参数,转化为求函数的最值问题,从而获得参数的取值范围;(2)可导函数在某一区间上存在单调区间,实际上就是()0f x '>(或()0f x '<)在该区间上存在解集,这样就把函数的单调性问题转化成了不等式问题;(3)若已知()f x 在区间I 上的单调性,区间I 中含有参数时,可先求出()f x 的单调区间,令I 是其单调区间的子集,从而可求出参数的取值范围.4.利用导数解决函数的零点问题时,一般先由零点的存在性定理说明在所求区间内至少有一个零点,再利用导数判断在所给区间内的单调性,由此求解.典例1 已知函数,其中.(1)函数的图象能否与轴相切?若能,求出实数,若不能,请说明理由;(2)讨论函数的单调性.(2)由于,当时,,当时,,单调递增,当时,,单调递减;当时,由得或,①当时,,当时,,单调递增,当时,,单调递减,当,,单调递增; ②当时,,单调递增;③当时,,当时,,单调递增,当时,,单调递减,当时,,单调递增.综上,当时,在上是减函数,在上是增函数;当时,在上是增函数,在上是减函数;当时,在上是增函数;当时,在上是增函数,在上是减函数. 典例2 设函数2()e ln xf x a x =-.(1)讨论()f x 的导函数()f x '的零点的个数; (2)证明:当0a >时,2()2lnf x a a a≥+. 【解析】(1)()f x 的定义域为(0+),¥,2()=2e (0)x af x x x¢->.当0a £时,()0f x ¢>,()f x ¢没有零点; 当0a >时,因为2=e xy 单调递增,ay x=-单调递增,所以()f x ¢在(0+),¥上单调递增. 又()0f a ¢>,当b 满足04a b <<且14b <时,()0f b ¢<,故当0a >时,()f x ¢存在唯一零点.(2)由(1),可设()f x ¢在(0+),¥上的唯一零点为0x . 当0(0)x x ,Î时,()0f x ¢<;当0(+)x x ,违时,()0f x ¢>.故()f x 在0(0)x ,上单调递减,在0(+)x ,¥上单调递增,所以当0x x =时,()f x 取得最小值,最小值为0()f x . 由于0202e=0x a x -,所以02000022()=e ln 2ln 2ln 2x a f x a x ax a a a x a a-=++?(当且仅当0022aax x =,即012x =时,等号成立).故当0a >时,2()2lnf x a a a?.1(1)当1a =时,求()y f x =在0x =处的切线方程; (2)若函数()f x 在[]1,1-上单调递减,求实数a 的取值范围.考向二 利用导数研究函数的极值和最值1.函数极值问题的常见类型及解题策略(1)函数极值的判断:先确定导数为0的点,再判断导数为0的点的左、右两侧的导数符号.(2)求函数()f x 极值的方法: ①确定函数()f x 的定义域. ②求导函数()f x '. ③求方程()0f x '=的根.④检查()f x '在方程的根的左、右两侧的符号,确定极值点.如果左正右负,那么()f x 在这个根处取得极大值;如果左负右正,那么()f x 在这个根处取得极小值;如果()f x '在这个根的左、右两侧符号不变,则()f x 在这个根处没有极值.学科!网(3)利用极值求参数的取值范围:确定函数的定义域,求导数()f x ',求方程()0f x '=的根的情况,得关于参数的方程(或不等式),进而确定参数的取值或范围. 2.求函数f (x )在[a ,b ]上最值的方法(1)若函数f (x )在[a ,b ]上单调递增或递减,f (a )与f (b )一个为最大值,一个为最小值.(2)若函数f (x )在区间(a ,b )内有极值,先求出函数f (x )在区间(a ,b )上的极值,与f (a )、f (b )比较,其中最大的一个是最大值,最小的一个是最小值.(3)函数f (x )在区间(a ,b )上有唯一一个极值点时,这个极值点就是最大(或最小)值点. 注意:(1)若函数中含有参数时,要注意分类讨论思想的应用.(2)极值是函数的“局部概念”,最值是函数的“整体概念”,函数的极值不一定是最值,函数的最值也不一定是极值.要注意利用函数的单调性及函数图象直观研究确定. 3.利用导数解决不等式恒成立问题的“两种”常用方法:(1)分离参数法:将原不等式分离参数,转化为不含参数的函数的最值问题,利用导数求该函数的最值,根据要求得所求范围.一般地,()f x a ≥恒成立,只需min ()f x a ≥即可;()f x a ≤恒成立,只需max ()f x a ≤即可.(2)函数思想法:将不等式转化为某含待求参数的函数的最值问题,利用导数求该函数的极值(最值),然后构建不等式求解.典例3 已知函数21()e 2xf x ax x =-+. (1)当1a >-时,试判断函数()f x 的单调性;(2)若1e a <-,求证:函数()f x 在[1,)+∞上的最小值小于12.(2)由(1)知()f 'x 在[1,)+∞上单调递增, 因为1e a <-,所以()e 110f 'a =-+<,所以存在(1,)t ∈+∞,使得()0f 't =,即e 0t t a -+=,即e t a t =-, 所以函数()f x 在[1,)t 上单调递减,在(,)t +∞上单调递增,所以当[1,)x ∈+∞时222min 111()()e e (e )e (1)222t t t t f f t at t t t t t x t ==-+=-+-=-+,令21()e (1)2x h x x x =-+,1x >,则()(1e )0x h'x x =-<恒成立,所以函数()h x 在(1,)+∞上单调递减,所以211()e(11)122h x <-+⨯=, 所以211e (1)22tt t -+<,即当[1,)x ∈+∞时min 1()2x f <, 故函数()f x 在[1,)+∞上的最小值小于12. 典例4 已知函数,.(1)若曲线与曲线在它们的交点处的公共切线为,求,,的值;(2)当时,若,,求的取值范围.【解析】(1)设它们的公共交点的横坐标为,则.,则,①;,则,②.由②得,由①得.将,代入得,∴,.(2)由,得,即在上恒成立,令,则,其中在上恒成立,∴在上单调递增,在上单调递减,则,∴.故的取值范围是.2.已知函数()1 lnf x a x xx=+-,其中a为实常数.(1)若12x=是()f x的极大值点,求()f x的极小值;(2)若不等式1lna xb xx-≤-对任意52a-≤≤,122x≤≤恒成立,求的最小值.考向三(导)函数图象与单调性、极值、最值的关系1.导数与函数变化快慢的关系:如果一个函数在某一范围内导数的绝对值较大,那么函数在这个范围内变化得快,这时函数的图象就比较“陡峭”(向上或向下);反之,函数的图象就“平缓”一些.2.导函数为正的区间是函数的增区间,导函数为负的区间是函数的减区间,导函数图象与x轴的交点的横坐标为函数的极值点.学科!网典例 5 设函数2()f x ax bx c =++(a ,b ,c ∈R ),若函数()e xy f x =在1x =-处取得极值,则下列图象不可能为()y f x =的图象是【答案】D【解析】2()e ()e e [(2)]xxxy f x f x ax a b x b c ''=+=++++,因为函数()e xy f x =在1x =-处取得极值,所以1x =-是2(2)0ax a b x b c ++++=的一个根,整理可得c a =,所以2()f x ax bx a =++,对称轴为对于A,由图可得0,(0)0,(1)0a f f >>-=,适合题意; 对于B,由图可得0,(0)0,(1)0a f f <<-=,适合题意;对于C, 对于D, D.3.已知函数的导函数的图象如图所示,则函数A .有极大值,没有最大值B .没有极大值,没有最大值C .有极大值,有最大值D .没有极大值,有最大值考向四生活中的优化问题1.实际生活中利润最大,容积、面积最大,流量、速度最大等问题都需要利用导数来求解相应函数的最大值.若在定义域内只有一个极值点,且在极值点附近左增右减,则此时唯一的极大值就是最大值. 2.实际生活中用料最省、费用最低、损耗最小、最节省时间等问题都需要利用导数求解相应函数的最小值.用料最省、费用最低问题出现的形式多与几何体有关,解题时根据题意明确哪一项指标最省(往往要从几何体的面积、体积入手),将这一指标表示为自变量x的函数,利用导数或其他方法求出最值,但一定要注意自变量的取值范围.典例6 如图,点为某沿海城市的高速公路出入口,直线为海岸线,,,是以为圆心,半径为的圆弧型小路.该市拟修建一条从通往海岸的观光专线CP PQ-,其中为上异于的一点,与平行,设.(1)证明:观光专线CP PQ-的总长度随的增大而减小;(2)已知新建道路的单位成本是翻新道路CP的单位成本的2倍.当取何值时,观光专线CP PQ-的修建总成本最低?请说明理由.【解析】(1)由题意,,所以π3CPθ=-,又,所以观光专线的总长度为,,因为当时,,所以在上单调递减,即观光专线CP PQ -的总长度随的增大而减小. (2)设翻新道路的单位成本为,则总成本,,,令,得,因为,所以,当时,;当时,.所以,当时,最小.答:当时,观光专线CP PQ -的修建总成本最低.4.某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度).设该蓄水池的底面半径为r 米,高为h 米,体积为V 立方米.假设建造成本仅与表面积有关,侧面的建造成本为100元/平方米,底面的建造成本为160元/平方米,该蓄水池的总建造成本为12000π元(π为圆周率). (1)将V 表示成r 的函数V (r ),并求该函数的定义域;(2)讨论函数V (r )的单调性,并确定r 和h 为何值时该蓄水池的体积最大.1.已知函数()()2e e ln exf x f x '=-(e 是自然对数的底数),则()f x 的极大值为 A .2e-1 B .C .1D .2ln22.已知函数,则的单调递减区间为A .B .C .和D .和3.函数在闭区间上的最大值,最小值分别是A .B .C .D .4.设定义在上的函数的导函数满足,则 A . B .C .D .5.若函数在上有最小值,则的取值范围为A .B .C .D .6.已知函数()22,2e 2,2x x xx f x x x ⎧+>⎪=⎨⎪+≤⎩,函数有两个零点,则实数的取值范围为A .B .C .D .7.已知函数f (x )=ax 3+bx 2+cx ,其导函数y =f ′(x )的图象经过点(1,0),(2,0),如图所示,则下列说法中不正确的序号是________.①当x =时函数取得极小值;②f (x )有两个极值点;③当x =2时函数取得极小值;④当x =1时函数取得极大值.8.已知函数.若函数在定义域内不是单调函数,则实数的取值范围是__________.学科!网 9.定义在上的函数满足,则当时,与的大小关系为__________.(其中为自然对数的底数)10.用一张16cm 10cm ⨯的长方形纸片,经过折叠以后,糊成了一个无盖的长方体形纸盒,则这个纸盒的最大容积是_________3cm .11.已知函数3()f x ax bx c =++在2x =处取得极值16c -. (1)求a 、b 的值;(2)若()f x 有极大值28,求()f x 在[3,3]-上的最小值.12.如图,有一块半圆形空地,开发商计划建一个矩形游泳池ABCD 及其矩形附属设施EFGH ,并将剩余空地进行绿化,园林局要求绿化面积应最大化.其中半圆的圆心为O ,半径为R ,矩形的一边AB 在直径上,点C 、D 、G 、H 在圆周上,E 、F 在边CD BOC θ∠=.(1)记游泳池及其附属设施的占地面积为()fθ,求()f θ的表达式;(2)当cos θ为何值时,能符合园林局的要求?13.设函数.(1)讨论函数的单调性; (2)若,且在区间上恒成立,求的取值范围.14.设.(1)在上单调,求的取值范围; (2)已知在处取得极小值,求的取值范围.15.已知函数.(1)若曲线的切线经过点,求的方程;(2)若方程有两个不相等的实数根,求的取值范围.1.(2016四川文科)已知a 为函数()3–12f x x x =的极小值点,则a =A .–4B .–2C .4D .22.(2017浙江)函数y=f (x )的导函数()y f x '=的图象如图所示,则函数y=f (x )的图象可能是3.(2016新课标全国Ⅰ文科)若函数1()sin 2sin 3f x x x a x =-+在(,)-∞+∞上单调递增,则a 的取值范围是 A .[1,1]-B .1[1,]3-C .11[,]33-D .1[1,]3--4.(2017浙江)已知函数f (x )=(x )e x -(12x ≥). (1)求f (x )的导函数;(2)求f (x )在区间1[+)2∞,上的取值范围.5.(2018新课标全国Ⅲ文科)已知函数21()e xax x f x +-=.(1)求曲线()y f x =在点(0,1)-处的切线方程; (2)证明:当1a ≥时,()e 0f x +≥.6.(2018新课标全国Ⅰ文科)已知函数()e ln 1x f x a x =--.(1)设2x =是()f x 的极值点,求a ,并求()f x 的单调区间; (2)证明:当1ea ≥时,()0f x ≥.7.(2018新课标全国Ⅱ文科)已知函数()()32113f x x a x x =-++.(1)若3a =,求()f x 的单调区间; (2)证明:()f x 只有一个零点.8.(2018江苏)某农场有一块农田,如图所示,它的边界由圆O 的一段圆弧MPN (P 为此圆弧的中点)和线段MN 构成.已知圆O 的半径为40米,点P 到MN 的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD ,大棚Ⅱ内的地块形状为CDP △,要求,A B 均在线段MN 上,,C D 均在圆弧上.设OC 与MN 所成的角为θ.(1)用θ分别表示矩形ABCD 和CDP △的面积,并确定sin θ的取值范围;(2)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为43∶.求当θ为何值时,能使甲、乙两种蔬菜的年总产值最大.1.【解析】(1)1a =,()2e 22x f x x x ∴=---',()01k f ∴'==-.()01f =,∴()y f x =在0x =处的切线方程为()10y x -=--,即10x y +-=.(2)()2e 22xf x a x x =---',()f x 在[]1,1-上单调递减,∴()2e 220xf x a x x -'=--≤在[]1,1-在[]1,1-()g x 不是常数函数,∴()g x 在[]1,1-上单调递减,(2)不等式即为,所以.①若,则,.当,时取等号; ②若,则,.由(1)可知在上为减函数. 所以当时,. 因为,所以.于是.3.【答案】A【解析】由题意,函数的图象可知,当时,函数先增后减;当时,函数先减后增,所以函数有极大值,没有最大值,故选A .(2)因为V (r )=π5(300r -4r 3),故V ′(r )=π5(300-12r 2). 令()0V r '=,解得r 1=5,r 2=-5(因为r 2=-5不在定义域内,舍去). 当r ∈(0,5)时,()0V r '>,故V (r )在(0,5)上为增函数;当r ∈(5,)时,V ′(r )<0,故V (r )在(5,)上为减函数. 由此可知,()V r 在r =5处取得最大值,此时h =8. 即当r =5,h =8时,该蓄水池的体积最大.1.【答案】D【解析】()()()()()2e e 2e e 111,e ,e e e e ef f f x f f x ''''=-'=-∴=Q ,()21ef x x ∴-'=,令()0,f x '=得2e x =, 故的极大值为()2e 2ln2e 22ln2f =-=,选D .2.【答案】C【解析】由题得,解不等式得x <e. ∵x >0,x ≠1,∴0<x <1和1<x <e.∴函数的单调递减区间为和.4.【答案】A 【解析】由定义在上的函数的导函数满足,则,即,设,则,所以函数在上为单调递增函数,则,即,所以,故选A .5.【答案】A 【解析】∵函数,∴()()()()()22e 2e e 122x xx x x f x x x +-+==++',当时,,即函数在上为减函数; 当时,,即函数在上为增函数.∴.∵函数在上有最小值,∴.故选A .6.【答案】C【解析】当时,设,则,易知当时,,即是减函数,∴时,, 又时,且,而时,是增函数,.有两个零点,即的图象与直线有两个交点,所以,故选C .7.【答案】①【解析】由图可知1为极大值点,2是极小值点,故②③④正确,①错. 8.【答案】【解析】由于函数不单调,则函数在定义域内有极值点,,,令函数,,所以函数g (x )在区间上单调递增,在区间上单调递减,时,,,所以.9.【答案】【解析】由题得,即,所以函数在R 上单调递减,因为m >0,所以,故填.10.【答案】144【解析】设剪下的四个正方形的边长为x ,则经过折叠以后,糊成的长方体形纸盒是一个底面是长为162x -,宽为102x -的长方形,其面积为()()162102x x --,长方体的高为x ,体积为()()()3216210245216005V x x x x x x x =--⨯=-+<<,()201223V x x ⎛⎫=-- ⎝'⎪⎭,由'0,V > 得函数()3245216005V x x x x =-+<<在()0,2上单调递增,由'0,V <得函数()3245216005V x x x x =-+<<在()2,5上单调递减,所以这个纸盒的最大容积是()()3max 2144cm V x V ==.11.【解析】(1)因为3()f x ax bx c =++,所以2()3f x ax b '=+.由于()f x 在点2x =处取得极值16c -,故有(2)0(2)16f f c '=⎧⎨=-⎩,即1208216a b a b c c +=⎧⎨++=-⎩,化简得12048a b a b +=⎧⎨+=-⎩,解得112a b =⎧⎨=-⎩. (2)由(1)知3()12f x x x c =-+,2()3123(2)(2)f x x x x '=-=-+. 令()0f x '=,得122,2x x =-=.当(,2)x ∈-∞-时,()0f x '>,故()f x 在(,2)-∞-上为增函数; 当(2,2)x ∈-时,()0f x '<,故()f x 在(2,2)-上为减函数; 当(2,)x ∈+∞时,()0f x '>,故()f x 在(2,)+∞上为增函数.由此可知()f x 在12x =-处取得极大值(2)16f c -=+,()f x 在22x =处取得极小值(2)16f c =-. 由题设条件知1628c +=,得12c =,此时(3)921,(3)93,(2)164f c f c f c -=+==-+==-=-, 因此()f x 在[3,3]-上的最小值为(2)4f =-.12.【解析】(1)由题意,2cos AB R θ=,sin BC R θ=,且HOG △为等边三角形,所以,HG R =,sin EH R θ=-,()=2cos sin sin ABCD EFGH f S S R R R R θθθθ⎫+=⋅+-⎪⎪⎭2(2sin cos sin R θθθ=- (2)要符合园林局的要求,只要()fθ最小,由(1)知,()()22222(2cos 2sin cos =4cos cos 2f R R θθθθθθ'=----),令()0f θ'=,即24cos cos 2=0θθ--,解得cos θ或cos θ(舍去),当00,θθ∈()时,()()'0,f f θθ<是单调减函数,时,()()0,f f θθ'>是单调增函数,所以当0=θθ时,()f θ取得最小值.故当θ满足cos θ时,符合园林局要求. 13.【解析】(1)函数的定义域为,,当时,,函数在区间上单调递增,在区间上单调递减;当时,,函数在区间上单调递增,在区间上单调递减; 当时,, 函数在区间上单调递增,在区间上单调递减,在区间上单调递增;当时,,函数在上单调递增; 当时,,函数在区间上单调递增,在区间上单调递减,在区间上单调递增. (2)若,且在区间上恒成立,等价于在区间上.由(1)中的讨论,知 当时,,函数在区间上单调递减,,即,从而得;当时,,函数在区间上单调递减,在区间上单调递增,, 即只需,即,由于,从而得.综上,的取值范围为.(2)由(1)知,①,在上单调递增,∴时,,单调递减,时,,单调递增,∴在处取得极小值,符合题意;②时,,又在上单调递增,∴时,,∴时,,∴在上单调递减,在上单调递增,则在处取得极小值,符合题意;③时,,在上单调递增,∴在上单调递减,又,∴时,,单调递减,不合题意;④时,,当时,,单调递增,当时,,单调递减,∴在处取得极大值,不符合题意.综上所述,可得.15.【解析】(1)设切点为,因为,所以.由斜率知:,即,可得,即,所以或.当时,,切线的方程为,即;当时,,切线的方程为,即.综上所述,所求切线的方程为或.(2)由得,代入整理得,设,则,由题意得函数有两个零点.①当时,,此时只有一个零点.②当时,由得,由得,即在上为减函数,在上为增函数,而,所以在上有唯一的零点,且该零点在上.若,则,取,则,所以在上有唯一零点,且该零点在上;若,则,所以在上有唯一零点,所以时,有两个零点.③当时,由,得或,若,则,所以至多有一个零点.若,则,易知在上单调递减,在上单调递增,在上单调递减, 又,所以至多有一个零点. 若,则,易知在上单调递增,在和上单调递减,又,所以至多有一个零点. 综上所述,的取值范围为.1.【答案】D【解析】()()()2312322f x x x x '=-=+-,令()0f x '=得2x =-或2x =,易得()f x 在()2,2-上单调递减,在()2,+∞上单调递增,故()f x 的极小值点为2,即2a =,故选D.2.【答案】D【解析】原函数先减再增,再减再增,且0x =位于增区间内,因此选D .【名师点睛】本题主要考查导数图象与原函数图象的关系:若导函数图象与x 轴的交点为0x ,且图象在0x 两侧附近连续分布于x 轴上下方,则0x 为原函数单调性的拐点,运用导数知识来讨论函数单调性时,由导函数()f'x 的正负,得出原函数()f x 的单调区间. 3.【答案】C 【解析】2()1cos 2cos 03f x x a x '=-+…对x ∈R 恒成立, 故221(2cos 1)cos 03x a x --+…,即245cos cos 033a x x -+…恒成立, 即245033t at -++…对[1,1]t ∈-恒成立,构造245()33f t t at =-++, 易知开口向下的二次函数()f t 的最小值的可能值为端点值,故只需保证1(1)031(1)03f a f a ⎧-=-⎪⎪⎨⎪=+⎪⎩……,解得1133a -剟.故选C . 【名师点睛】本题把导数与三角函数结合在一起进行考查,有所创新,求解的关键是把函数单调性转化为不等式恒成立,再进一步转化为二次函数在闭区间上的最值问题,注意与三角函数值域或最值有关的问题,即注意正、余弦函数的有界性. 4.【解析】(1)因为(1x '=(e )e x x '--=-,所以()(1(xxf'x x --=--1)2x =>.(2)由()0f'x ==,解得1x =或52x =. 因为又21()1)e 02x f x -=-≥,所以f (x )在区间1[,)2+∞上的取值范围是121[0,e ]2-.【名师点睛】本题主要考查导数两大方面的应用:(一)函数单调性的讨论:运用导数知识来讨论函数单调性时,首先考虑函数的定义域,再求出()f'x ,由()f'x 的正负,得出函数()f x 的单调区间;(二)函数的最值(极值)的求法:由单调区间,结合极值点的定义及自变量的取值范围,得出函数()f x 的极值或最值.6.【解析】(1)f (x )的定义域为(0)+∞,,f ′(x )=a e x –1x. 由题设知,f ′(2)=0,所以a =212e . 从而f (x )=21e ln 12exx --,f ′(x )=211e 2e x x -. 当0<x <2时,f ′(x )<0;当x >2时,f ′(x )>0.所以f (x )在(0,2)单调递减,在(2,+∞)单调递增. (2)当a ≥1e 时,f (x )≥e ln 1exx --.设g (x )=e ln 1ex x --,则e 1()e x g x x '=-. 当0<x <1时,g ′(x )<0;当x >1时,g ′(x )>0.所以x =1是g (x )的最小值点. 故当x >0时,g (x )≥g (1)=0. 因此,当1ea ≥时,()0f x ≥. 7.【解析】(1)当a =3时,f (x )=3213333x x x ---,f ′(x )=263x x --.令f ′(x )=0解得x =3-或x =3+当x ∈(–∞,3-3++∞)时,f ′(x )>0;当x ∈(3-3+ f ′(x )<0.故f (x )在(–∞,3-3+,+∞)单调递增,在(3-3+ (2)由于210x x ++>,所以()0f x =等价于32301x a x x -=++. 设()g x =3231x a x x -++,则g ′(x )=2222(23)(1)x x x x x ++++≥0,仅当x =0时g ′(x )=0, 所以g (x )在(–∞,+∞)单调递增.故g (x )至多有一个零点,从而f (x )至多有一个零点.又f (3a –1)=22111626()0366a a a -+-=---<,f (3a +1)=103>,故f (x )有一个零点. 综上,f (x )只有一个零点.学!科网8.【解析】(1)连结PO 并延长交MN 于H ,则PH ⊥MN ,所以OH =10.过O 作OE ⊥BC 于E ,则OE ∥MN ,所以∠COE =θ, 故OE =40cos θ,EC =40sin θ,则矩形ABCD 的面积为2×40cos θ(40sin θ+10)=800(4sin θcos θ+cos θ), △CDP 的面积为12×2×40cos θ(40–40sin θ)=1600(cos θ–sin θcos θ). 过N 作GN ⊥MN ,分别交圆弧和OE 的延长线于G 和K ,则GK =KN =10. 令∠GOK =θ0,则sin θ0=14,θ0∈(0,π6). 当θ∈[θ0,π2)时,才能作出满足条件的矩形ABCD , 所以sin θ的取值范围是[14,1).答:矩形ABCD 的面积为800(4sin θcos θ+cos θ)平方米,△CDP 的面积为1600(cos θ–sin θcos θ),sin θ的取值范围是[14,1).(2)因为甲、乙两种蔬菜的单位面积年产值之比为4∶3,设甲的单位面积的年产值为4k,乙的单位面积的年产值为3k(k>0),则年总产值为4k×800(4sinθcosθ+cosθ)+3k×1600(cosθ–sinθcosθ)=8000k(sinθcosθ+cosθ),θ∈[θ0,π2).设f(θ)=sinθcosθ+cosθ,θ∈[θ0,π2),则222()cos sin sin(2sin sin1)(2sin1)(sin1) fθθθθθθθθ=--=-+-=--+′.。