第五章不对称故障的分析计算
- 格式:ppt
- 大小:675.00 KB
- 文档页数:35
电力系统不对称故障的分析计算1. 引言电力系统是现代社会中不可或缺的根底设施之一。
然而,由于各种原因,电力系统可能会发生不对称故障,导致电力系统的正常运行受到严重影响甚至导致短路事故。
因此,对电力系统不对称故障进行分析和计算是非常重要的。
本文将分析电力系统不对称故障的原因、特点以及进行相应计算的方法,并使用Markdown文本格式进行输出。
2. 不对称故障的原因和特点不对称故障是指电力系统中出现相序不对称的故障。
其主要原因包括:单相接地故障、双相接地故障以及两相短路故障等。
不对称故障的特点如下:1.电流和电压的相位不同:在不对称故障中,电流和电压的相位不同,通常表现为电流和电压波形的不对称。
2.非对称系统功率:由于不对称故障,电力系统中的功率将变得非对称。
正常情况下,三相电流和电压的功率应该平衡,但在不对称故障中,这种平衡被破坏。
3.对称分量的存在:在不对称故障中,由于相序的不同,电流和电压中会存在对称正序分量、对称负序分量和零序分量。
3. 不对称故障的分析计算方法对于不对称故障的分析计算,一般可以采用以下步骤:3.1 系统参数获取首先,需要获取电力系统的各项参数,包括发电机、变压器、线路和负载的参数等。
这些参数将用于后续的计算。
3.2 故障状态建模根据故障的类型和位置,对故障状态进行建模。
常见的故障状态包括单相接地故障、双相接地故障和两相短路故障等。
3.3 网络方程建立基于故障状态的建模,可以建立电力系统的节点方程或潮流方程。
通过求解节点方程或潮流方程,可以得到电流和电压的分布情况。
3.4 不对称故障计算根据网络方程的求解结果,可以计算不对称故障中电流、电压和功率的各项指标,包括正序分量电流、负序分量电流、零序电流等。
3.5 故障保护和控制根据不对称故障的计算结果,可以对故障保护和控制系统进行设计和优化。
通过故障保护和控制系统的响应,可以及时检测和隔离故障,保证电力系统的平安运行。
4. 结论电力系统不对称故障的分析计算是确保电力系统平安运行的重要步骤。
电力系统不对称故障的分析计算电力系统不对称故障是指系统中发生了一相接地、两相短路或者两相间接地短路等故障情况。
这些故障会引起系统中电流、电压的不对称变化,给电力设备和系统带来了严重的影响和损坏。
因此,对于电力系统不对称故障的分析计算具有重要的理论和实际意义。
首先,在进行不对称故障分析计算之前,需要了解电力系统的基本参数和特性。
电力系统由发电机、变电站、输电线路和用户负载等组成,其中电力设备的参数包括电阻、电抗和电导等。
在进行计算时,需要收集和记录各个电力设备的参数。
然后,可以进行电力系统的不对称故障计算。
根据不同类型的故障情况,可以采用不同的计算方法和理论模型。
一般来说,对于发生了一相接地故障的情况,可以采用等值法来计算。
即将一相接地作为一个等效阻抗连接到系统中,然后进行系统的节点分析和电流计算。
对于发生了两相短路或者两相间接地短路的情况,可以采用对称分量法进行计算。
即将系统中的电流、电压分解为正序、负序和零序三个部分,然后分别计算其大小和方向,并根据这些结果来判断系统中的故障情况和对电力设备的影响程度。
不对称故障分析计算的输出结果主要包括故障电流、故障电压和故障功率等。
这些结果可以用来评估系统中电力设备的可靠性和安全性,并为对故障设备的维修和更换提供参考依据。
此外,还可以利用这些结果进行系统的保护和自动化控制设计,以提高电力系统的性能和可操作性。
总之,电力系统不对称故障的分析计算是电力系统研究和运行中的重要内容。
通过对故障情况的分析和计算,可以更好地了解和解决系统中的故障问题,提高系统的可靠性和稳定性,保障电力供应的安全和稳定。
电力系统不对称故障的分析计算6.3 不对称短路时故障处的短路电流和电压字体大小:小中大简单不对称短路包括:利用对称分量法可以求解简单不对称短路,但需要根据不对称短路的边界条件再列出三个方程。
(6-3)➢单相接地短路边界条件:➢两相短路边界条件:复合序网:➢两相接地短路边界条件:复合序网:6.3.1 单相接地短路边界条件:由式6-1直接可以得到(略去了a相的下标a):由式6-2可以得到:所以(略去了a相的下标a):(6-4)将式6-3和式6-4联立求解,则(6-5)根据式6-4可以得到单相接地短路的复合序网。
复合序网—根据边界条件所确定的短路点各序量之间的关系,将各序网络连接起来所形成的网络。
显然,由复合序网也可以直接得到式6-5。
此外:再利用式6-1,可以得到短路点的故障相电流:短路点的非故障相电压:一般X1∑≈X2∑,因此,如果X0∑<X1∑,则单相短路电流大于同一地点的三相短路电流;反之,则单相短路电流小于三相短路电流。
[例6-2] 在图示电力系统中,变压器T2高压侧发生a相接地短路,不计负荷作用,试计算短路瞬间故障点的短路电流。
解:取功率基准值SB=120MVA ,各级电压基准值U B =U av =115、37、10.5kV 。
计算各元件的电抗标幺值,并做出正序、负序和零序等值电路。
X G1=X G2=0.14X L1=105×0.4×120/1152=0.381=X L2 X L0=3×0.381=1.143X T1_1=10.5/100×120/120=0.105=X T1_2=X T1_0 X T2_1=10.5/100×120/60=0.21=X T2_2=X T2_0化简正序、负序和零序等值电路,并做出单相接地短路的复合序网。
X 1∑=X G1+X T1_1+X L1=0.626=X 2∑短路点的故障相电流:短路电流有效值:6.3.2 两相短路边界条件:复合序网:由复合序网可以得到:再利用式6-1可以得到短路点的故障相电流:如果,则:短路点的各相对地电压:6.3.3 两相接地短路边界条件:复合序网:由复合序网可以得到:再利用式6-1可以得到短路点的故障相电流:短路点的非故障相电压:6.3.4 正序等效定则及其应用三种不对称短路时,正序电流分别为:单相接地短路两相短路两相接地短路因此,三种不对称短路时,正序电流可以归纳为:正序等效定则—简单不对称短路故障的短路点正序电流分量,与在短路点每一相中加入附加电抗后发生的三相短路时的电流相等。
电气工程及其自动化专业课程设计不对称故障分析与计算的算法设计学生学号:学生姓名:班级:指导教师:起止日期:不对称故障分析与计算的算法设计一.设计要求1.电力系统网络结构图如图1-1所示:要求:1:计算三种不对称短路故障下,故障点的短路电流,冲击电流;短路容量。
2:针对每种短路故障,给出详细的计算步骤及等值电路图。
图1-12.各元件参数如下:(1)发电机G1:110MW N P =,U 10.5kV N =,"0.21d X =, (2)0.16X =,(0)0.06X =,cos 0.8N ϕ=发电机G2:25MW N P =,U 10.5kV N =,"0.15d X =,(2)0.1X =,(0)0.02X =,cos 0.85N ϕ=(2)变压器T1:10MV A N S =⋅,额定电压6/110kV ,短路损耗59kW k P ∆=,空载损耗016.5kW P ∆=,阻抗电压百分值%10.5k U =,空载电流百分值0% 1.0I = 变压器T2:31.5MV A N S =⋅,额定电压10/110kV ,148kW k P ∆=,038.5kW P ∆=,%10.5k U =,0%0.8I = 变压器T3:16MV A N S =⋅,额定电压10/110kV ,86kW k P ∆=,023.5kW P ∆=,%10.5k U =,0%0.9I =(3)线路L1:长度L=100km ,单位长度正序电抗(1)0.408/km X =Ω,零序电抗(0)(1)3X X =,单位长度对地电容6(1) 2.7910S/km b -=⨯。
线路L2:长度L=100km ,单位长度电抗(1)0.4/km X =Ω,零序电抗(0)(1)3X X =,单位长度对地电容60(1) 2.510S/km b -=⨯线路L3:长度L=100km ,单位长度电抗(1)0.38/km X =Ω,零序电抗(0)(1)3X X =,单位长度对地电容60(1)310S/km b -=⨯(4)电动机:2MW N P =,cos 0.85N ϕ=,(1)0.2X =,(2)(1)X X =负载:86MV A N S j =+⋅,负序电抗标幺值(2)0.35X =。