水利工程概论 三种坝型的荷载应力分析方法失稳形式
- 格式:pptx
- 大小:6.42 MB
- 文档页数:45
水工建筑物重力坝的稳定分析一、重力坝滑动失稳模式(一)表面滑动(二)浅层滑动(三)深层滑动二、抗滑稳定计算截面选取及计算方法★破坏机理:重力坝岩基的破坏开始于坝踵附近的拉裂缝和扩张松弛,而后坝趾出现剪切屈服区且逐渐向上游发展,最后在坝下浅层岩基中上下游贯通,形成滑动通道,导致大坝的整体失稳破坏。
★(一)计算截面:坝基面或者坝体薄弱面选择受力大,抗剪强度较低,最容易产生滑动的截面作为计算截面。
重力坝抗滑稳定计算主要是核算坝基面及碾压混凝土层面上的滑动稳定性。
另外坝基内有软弱夹层、缓倾角结构面时,也应核算其深层滑动性。
★(二)抗滑稳定分析方法1.单一的安全系数法:计算公式有抗剪强度公式和抗剪断公式2. 分项系数法极限状态设计方法:《混凝土重力坝设计规范》DL 5108—1999规定,重力坝的抗滑稳定承载能力极限状态进行计算,认为滑动面为胶结面,滑动体为刚体。
三、单一的安全系数计算法(一)抗剪公式1.滑动面水平时:Ks = f(∑W-U)/ ∑P2.滑动面倾向上游:Ks = [f(∑WCosβ-U+∑PSinβ)]/( ∑PSinβ+∑WCosβ)公式评价:本公式不考虑凝聚力,偏于安全,凝聚力作为安全储备,所以规定的安全系数较低。
(二)抗剪断公式1.假定:认为砼与基岩接触良好,直接采用接触面上的抗剪断参数f′和c′。
2.公式:Ks′=[f′(∑W-U)+C′A]/∑P3.安全系数Ks′,设计规范规定:不分等级。
基本荷载组合:采用3.0;特殊荷载组合:(1)采用2.5;(2)采用不小于2.3。
四、分项系数法(一)特点:与原设计规范相比,用概率极限状态设计法代替了定值设计法,用分项系数极限状态表达式代替单一安全系数表达式。
即以结构重要性系数γ0、设计状况系数φ、作用分项系数γf 、材料性能分项系数γm和结构系数γd来代替设计的安全系数K。
(二)分项系数法基本公式(课本37页3-1、3-2)核算坝基面抗滑稳定极限状态时,应按材料的标准值和荷载的标准值或代表值分别计算基本组合和偶然组合两种情况。
水库边坡不稳定体稳定分析及处理随着工程规模和建设数量的不断增加,特别是在水资源管理和灌溉等方面,随着水库的不断建设和投运,水库边坡的工程问题变得越来越复杂。
水库边坡的不稳定体是一种非常危险的问题,如果不及时进行稳定处理就会带来严重的后果。
因此,需要进行水库边坡不稳定体稳定分析及处理,从而保证水库边坡的安全稳定。
1.水库边坡的不稳定体类型水库边坡的不稳定体主要有三种类型,分别是滑坡、崩塌和震动。
其中,滑坡是指沿着一定的滑动面而产生的不稳定体,崩塌则是指边坡出现倾倒或崩落的不稳定体,震动则是指边坡在地震或其他振动作用下产生的不稳定体。
2.水库边坡不稳定体稳定分析水库边坡不稳定体稳定分析要首先进行现场勘查,深入了解边坡的情况和特点,包括坡形、土质、缘石、附属构造等。
同时,要进行水库周边地质环境的综合分析,包括地质结构、地形地貌、地下水、工程地质等。
在此基础上,通过对边坡进行数值分析和模拟计算,确定边坡不稳定体的范围和发生机理,为后续的处理提供科学依据。
3.水库边坡不稳定体稳定处理针对不同类型的水库边坡不稳定体,其稳定处理方法各不相同。
滑坡通常需要进行边坡加固、排水降水和抽沉等措施,通过加强边坡稳定性来保证水库安全。
崩塌则需要采用钻爆或爆破等方法对岩石进行破碎和清理,同时对边坡进行加固;震动则需要对边坡进行减震和加固处理,避免地震等因素对边坡的不良影响。
4.水库边坡不稳定体稳定处理的技术水库边坡不稳定体的稳定处理是一项技术性比较强的工程,需要采用多种技术手段和方法。
其中,较为常用的方法包括土工格栅加固、钢筋混凝土加固、排水降水、抽沉加固等。
此外,还可以采用视觉技术、GPS监测、遥感调查等现代化手段对水库边坡进行实时监测和预警,及时发现和处理不稳定体,保证水库安全稳定。
总之,水库边坡的不稳定体是一种非常危险的问题,对水库边坡的稳定性和安全性带来巨大威胁。
因此,需要进行水库边坡不稳定体稳定分析及处理,从而保证水库的安全稳定。
水利工程中的大坝稳定性分析一、大坝的构成及基本原理大坝是一种水利工程设施,具有拦截洪水、调节水流、蓄存水源、发电等多种功能。
大坝作为一项大型工程,其稳定性对于工程的安全运行至关重要。
大坝一般由坝体、坝基和坝址三部分组成,其中坝体为大坝的主体部分,坝基是大坝的承重部分,坝址则是大坝所占用的地面。
大坝的基本原理是借助于坝体的重力,将坝基压实,使坝体和坝基形成一个整体,以达到把水坝住的目的。
二、大坝的稳定性及分析方法对于大坝而言,其稳定性是工程安全运行的前提,是大坝设计和施工的关键之一。
大坝稳定性的分析,主要包括静力稳定性分析、动力稳定性分析和渗流稳定性分析。
1. 静力稳定性分析静力稳定性分析是大坝稳定性分析的基础。
它是通过分析大坝所受水力和重力作用下,达到稳定平衡的状态来进行判断。
静力稳定性分析一般包括重力稳定分析和抗滑稳定分析两种方法。
重力稳定分析是通过确定大坝重心是否在坝基内或坝址上实现稳定。
即通过计算大坝中心线的重心落在坝址内是否实现坝基的承重能力。
抗滑稳定分析主要是分析大坝是否发生滑动,当坝体的整体重量超过岩体或土体的摩擦抗力时,大坝便会发生移位,从而导致工程灾害。
2. 动力稳定性分析动力稳定性分析是在外部力的作用下,分析大坝的相对位移、振动激励及其稳定性。
通常采用频域特性分析和时域响应分析的方法来进行。
频域特性分析是通过对大坝受到的荷载的频率响应,分析其与自身固有频率的关系。
将荷载频率与大坝的自然频率相比较,确定是否满足动力稳定性要求。
时域响应分析也是动力稳定性分析的一个方法。
他从荷载或输入信号的角度,对大坝的周期性变化进行分析,以了解大坝结构的响应情况。
3. 渗流稳定性分析渗流稳定性分析是分析大坝渗流对大坝稳定性的影响。
它关注的是大坝内水与外界环境之间的交互作用,以及大坝内部水流的特性。
渗流稳定性研究一般以渗流原理和渗流变得巯行为分析基础。
其中最重要的是渗流原理,包括计算大坝中压力场与渗流场等内容。
水利工程稳定性分析与优化方法研究水利工程是指为了解决灌溉、水电发电、治理洪水、养护水道等方面的需要,进行的一系列人工活动。
在水利工程的设计过程中,稳定性分析和优化方法显得尤为重要,这是为了确保水利工程的牢固性,避免意外情况的发生。
一、水利工程稳定性分析方法水利工程设计的稳定性分析可分为静力和动力两种,其中静力稳定性分析是指水利工程的体系保持平衡,不失稳的能力。
这种稳定性分析方法一般用于重力坝、拱坝、钢筋混凝土坝等水利工程的设计中。
对于数值模拟的计算方法,可以用有限元法和边界元法进行模拟,获取结构内部应力的分布,进而计算出整个工程的稳定性。
而动力稳定性分析则是指水利工程的体系各部分的固有频率和外加激振作用的刚度,以及防震问题等方面的研究。
通常情况下,采用有限元法或者其他数值模拟方法的进行。
动力分析方法一般用于反射坝、堰坝、波浪消能坝等水利工程,以探究其在外部载荷下的稳定性。
二、水利工程稳定性优化方法水利工程稳定性的优化方法主要分为有限元优化与拓扑优化。
有限元优化是一种基于近似方法的优化技术,可以通过最小化目标函数来实现水利工程的设计稳定性的目的。
优化过程中,有限元优化需要预先构建水利工程三维模型,并对其进行有限元计算,通过对水利工程模型的应力、位移等参数进行优化,以得出最优的设计方案。
拓扑优化又称形状优化,是指在保证水利工程等物体的特定参数不变的前提下,通过进一步的拓扑优化,使该工程具有更好的稳定性和优越的性能。
这种优化方法通常是利用某些优秀的优化算法来完成的。
三、水利工程稳定性分析及优化方法的应用推广从近年来的水利工程建设中来看,水利工程稳定性分析及优化方法已经开始得到广泛应用。
目前,随着数据和工具的不断更新,同一个工程稳定性的研究和优化可以采用多种方法进行分析。
其中,药渚湖泵站工程就是一个使用有限元分析方法进行安全评估的成功案例。
随着建设的不断提高,水利工程的稳定性分析与优化方法的研究必须前所未有的注重发展。