并联机床
- 格式:doc
- 大小:46.50 KB
- 文档页数:5
并联机床运动学自标定方法研究机床运动学自标定方法是现代制造技术中重要的研究领域之一、并联机床作为一种特殊的机床结构,其运动学参数标定更加复杂。
本文将对并联机床运动学自标定方法进行研究,并进行详细介绍。
首先,我们需要了解并联机床的基本结构和运动学模型。
并联机床由多个平行连杆组成,每个连杆由旋转副连接,形成一个闭链运动系统。
在运动学模型中,需要确定每个连杆的长度和连接角度,以及工作台的位置和姿态。
这些参数决定了机床的运动学特性。
然而,并联机床的运动学参数往往无法直接测量,因此需要通过自标定方法来求解。
自标定方法的核心思想是通过机床的运动状态和姿态数据,在已知的参考点或者已知位置的情况下,通过数学模型和优化算法,反推机床自身的运动学参数。
目前,关于并联机床运动学自标定方法的研究有很多,下面将介绍几种常见的方法。
第一种方法是基于传感器数据的自标定方法。
该方法通过传感器测量机床的运动状态和姿态数据,如位置、速度、加速度等,然后将这些数据作为参数输入到数学模型中,通过优化算法求解机床的运动学参数。
该方法的优点是适用范围广,可以用于各种类型的并联机床。
缺点是需要准确的传感器测量数据,对传感器的要求较高。
第二种方法是基于机器视觉的自标定方法。
该方法利用摄像头或其他视觉传感器获取机床的运动状态和姿态数据,然后通过图像处理和计算机视觉算法,提取特征点或轮廓线,进而求解机床的运动学参数。
该方法的优点是非接触性,适用于各种环境和工况下的机床标定。
缺点是对图像处理和计算机视觉算法的要求较高。
第三种方法是基于强化学习的自标定方法。
该方法利用强化学习算法,在已知的参考点或已知位置下,通过多次尝试和优化,不断调整机床的参数,使得机床的运动状态和姿态数据与真实值尽可能接近。
该方法的优点是自动化程度高,对机床本身的要求较低。
缺点是求解时间较长,需要大量的试验数据。
总结来说,并联机床运动学自标定方法是一项复杂且具有挑战性的任务。
研究人员可以根据具体情况和需求选择合适的自标定方法,同时结合机床的特点和性能进行优化和改进。
详解并联机床的设计理论与关键技术1 概述为了提高对生产环境的适应性,满足快速多变的市场需求,近年来全球机床制造业都在积极探索和研制新型多功能的制造装备与系统,其中在机床结构技术上的突破性进展当属90年代中期问世的并联机床(Parallel Machine Tool),又称虚(拟)轴机床(Virtual Axis Machine Tool) 或并联运动学机器(Parallel Kinem atics Machine)。
并联机床实质上是机器人技术与机床结构技术结合的产物,其原型是并联机器人操作机。
与实现等同功能的传统五坐标数控机床相比,并联机床具有如下优点:刚度重量比大:因采用并联闭环静定或非静定杆系结构,且在准静态情况下,传动构件理论上为仅受拉压载荷的二力杆,故传动机构的单位重量具有很高的承载能力。
响应速度快:运动部件惯性的大幅度降低有效地改善了伺服控制器的动态品质,允许动平台获得很高的进给速度和加速度,因而特别适于各种高速数控作业。
环境适应性强:便于可重组和模块化设计,且可构成形式多样的布局和自由度组合。
在动平台上安装刀具可进行多坐标铣、钻、磨、抛光,以及异型刀具刃磨等加工。
装备机械手腕、高能束源或CCD摄像机等末端执行器,还可完成精密装配、特种加工与测量等作业。
技术附加值高:并联机床具有“硬件”简单,“软件”复杂的特点,是一种技术附加值很高的机电一体化产品,因此可望获得高额的经济回报。
目前,国际学术界和工程界对研究与开发并联机床非常重视,并于90年代中期相继推出结构形式各异的产品化样机。
1994年在芝加哥国际机床博览会上,美国Ingersoll铣床公司、Giddings & Lewis公司和Hexal公司首次展出了称为“六足虫”(Hexapod)和“变异型”(VARIAX)的数控机床与加工中心,引起轰动。
此后,英国Geodetic公司,俄罗斯Lapik公司,挪威Multicraft公司,日本丰田、日立、三菱等公司, 瑞士ETZH和IFW研究所,瑞典Neos Robotics公司,丹麦Braunschweig公司,德国亚琛工业大学、汉诺威大学和斯图加特大学等单位也研制出不同结构形式的数控铣床、激光加工和水射流机床、坐标测量机和加工中心。
2004年,Tricept并联机床发明创始人纽曼先生组建了Exechon公司,发明了新一代Exechon并联机床技术。
新一代并联机床技术突破了阻碍并联机床发展与广泛应用的诸多瓶颈和障碍,性能指标与易用性均大幅优于Tricept技术。
该项技术通过了PCT(国际专利合作协议组织)的审定,并在所有PCT协议参与国家和地区(包括中国)申请并获得了发明专利。
哈量LINKS-EXE7100是在结合哈量原有并联机床经验积累,加上引进使用Exechon并联机床最新专利技术的基础上设计制造的新一代并联机床,在机床动态性能、刚性、精度以及用户编程操作简易性方面都达到了很高水平。
1LINKS-EXE700并联机床特点1.1运动关节及机构自由度数量对机床性能的影响并联运动结构从外观来看,像是很多“手臂”一端彼此相连,另一端与基座相连。
这种设计要求各关节是多自由度的。
并联运动机床(PKM)手臂的数目取决于动平台运动轴的设计数量,但是不论哪种设计,遵循的目标都应将灵活性与刚性结合在一起。
因关节点结构复杂,既要刚性好、无间隙,又要成本低,是设计并联机床的突出问题。
这个技术问题限制了市场上的并联机床数量,这也是为什么关节点少、自由度少的并联机床成为目前最成功的并联机床的原因。
Tricept并联机床使用了相对少的关节和自由度数,正是Tricep当年在世界并联机床市场能占70%份额的原因。
1.2Tricept并联机床的缺陷Tricept并联机床的每一个关节点都有一个以上的自由度,像一个万向铰链。
各伸缩杆只承担轴向载荷,故必需设置中心管来实现约束更多的自由度。
中心管承受的荷载对中心管造成的挠曲和扭转,会严重影响机床的整体刚性。
为解决这一问题,在设计上应使挠曲和扭转对中心管精度和动态性能的影响降低到最小。
这种优化设计是把中心管的直径加粗,管壁减薄,可是这样一来机床的工作范围大大地缩小了。
唯一的解决办法是找出钢管壁厚与直径之间的均衡点。
并联机床的基本原理
并联机床是一种多轴联动的机床系统,它由多个独立运动的机床组成,并通过控制系统实现协同工作。
其基本原理包括以下几点:
1. 独立运动:并联机床中的每个单独的机床可以独立运动,并根据加工任务的不同进行相应的动作。
2. 协同工作:通过控制系统对各个机床进行协同控制,使其在同一时刻进行协同动作,完成复杂的加工任务。
3. 分工协作:并联机床中的每个机床可以承担不同的加工任务,通过合理的分工协作,提高加工效率。
4. 并联机构:并联机床中的每个机床通过并联机构与其他机床连接,实现相对的运动关系。
常见的并联机构有平行机构、串联机构等。
5. 控制系统:通过控制系统对各个机床的运动进行协调和控制,实现多轴联动,保证加工精度和工件质量。
总的来说,通过独立运动、协同工作和分工协作,利用并联机构和控制系统的协同控制,实现多个机床的协同加工,提高加工效率和精度。
基于d-h变换矩阵的stewart型并联机床位姿方程及运动学反解Stewart型并联机床由6个活动臂和一个固定平台组成,运动学分析需要先求解机床的位姿方程和运动学反解。
1. 位姿方程:机床的位姿可由平台的xyz三轴位移和绕xyz三轴的旋转角度表示,即:位移:T=[X Y Z]T旋转:R=[α β γ]T其中,T是平移向量,R为旋转矢量。
对于一般约束的Stewart型并联机床,可以使用d-h变换矩阵来求解位姿方程。
具体步骤如下:1) 定义d-h参数d-h参数指的是机械臂各个关节的长度和相邻关节的旋转角度。
对于机床而言,d-h参数可以通过手工建模或CAD软件获取。
2) 生成转换矩阵根据d-h参数,可以生成一系列的转换矩阵,代表机械臂的运动。
每个转换矩阵包含了关节之间的相对位移和相对旋转。
3) 生成齐次矩阵将各个转换矩阵相乘,即可生成机械臂的齐次矩阵,代表机械臂整体的位移和旋转。
4) 推导位姿方程根据机床的约束条件,可以推导出平台的位置和姿态。
最终,机床的位姿方程为:T = P(D,R)*[x y z 1]T其中,P(D,R)是平台的齐次矩阵,可以通过d-h变换得到;[x y z 1]T是机床固定基坐标系下的末端位置向量。
2. 运动学反解:机床的运动学反解指的是,已知机床末端的位姿和关节长度等d-h参数,求出机床各个关节的旋转角度。
运动学反解可以使用雅克比矩阵或牛顿-拉夫逊法,本文介绍雅克比矩阵法。
对于一个6自由度的机床,其雅克比矩阵为6*6的矩阵。
雅克比矩阵的推导过程比较复杂,本文只介绍结果。
机床的雅克比矩阵为:J = [j11 j12 j13 j14 j15 j16;j21 j22 j23 j24 j25 j26;j31 j32 j33 j34 j35 j36;j41 j42 j43 j44 j45 j46;j51 j52 j53 j54 j55 j56;j61 j62 j63 j64 j65 j66]其中,ji表示机床的第i个自由度关节的位置向量与机床末端位置的偏导数。
并联机床一定义:并联机床(Parallel Machine Tools),又称并联结构机床(Parallel Structured Machine Tools)、虚拟轴机床(Virtual Axis Machine Tools),也曾被称为六条腿机床、六足虫(Hexapods)。
并联机床是基于空间并联机构Stewart平台原理开发的,是近年才出现的一种新概念机床,它是并联机器人机构与机床结合的产物,是空间机构学、机械制造、数控技术、计算机软硬技术和CAD/CAM技术高度结合的高科技产品。
它克服了传统机床串联机构刀具只能沿固定导轨进给、刀具作业自由度偏低、设备加工灵活性和机动性不够等固有缺陷,可实现多坐标联动数控加工、装配和测量多种功能,更能满足复杂特种零件的加工。
自其1994年在美国芝加哥机床展上首次面世即被誉为是“21世纪的机床”,成为机床家族中最有生命力的新成员。
2.并联机床的特点整体而言,传统的串联机构机床,是属于数学简单而机构复杂的机床,而相对的,并联机构机床则机构简单而数学复杂,整个平台的运动牵涉到相当庞大的数学运算,因此虚拟轴并联机床是一种知识密集型机构。
这种新型机床完全打破了传统机床结构的概念,抛弃了固定导轨的刀具导向方式,采用了多杆并联机构驱动,大大提高了机床的刚度,使加工精度和加工质量都有较大的改进。
另外,由于其进给速度的提高,从而使高速、超高速加工更容易实现。
由于这种机床具有高刚度、高承载能力、高速度、高精度以及重量轻、机械结构简单、制造成本低、标准化程度高等优点,在许多领域都得到了成功的应用,因此受到学术界的广泛关注。
由并联、串联同时组成的混联式数控机床,不但具有并联机床的优点,而且在使用上更具实用价值。
随着高速切削的不断发展,传统串联式机构构造平台的结构刚性与移动台高速化逐渐成为技术发展的瓶颈,而并联式平台便成为最佳的候选对象,而相对于串联式机床来说,并联式工作平台具有如下特点和优点:结构简单、价格低。
机床机械零部件数目较串联构造平台大幅减少,主要由滚珠丝杠、虎克铰、球铰、伺服电机等通用组件组成,这些通用组件可由专门厂家生产,因而本机床的制造和库存成本比相同功能的传统机床低得多,容易组装和搬运。
结构刚度高。
由于采用了封闭性的结构(closed-loop structure)使其具有高刚性和高速化的优点,其结构负荷流线短,而负荷分解的拉、压力由六只连杆同时承受,以材料力学的观点来说,在外力一定时,悬臂量的应力与变形都最大,两端插入(build-in)次之,再来是两端简支撑(simply-supported),其次是受压的二力结构,应力与变形都最小的是受张力的二力结构,故其拥有高刚性。
其刚度重量比高于传统的数控机床。
加工速度高,惯性低。
如果结构所承受的力会改变方向,(介于张力与压力之间),两力构件将会是最节省材料的结构,而它的移动件重量减至最低且同时由六个致动器驱动,因此机器很容易高速化,且拥有低惯性。
加工精度高。
由于其为多轴并联机构组成,六个可伸缩杆杆长都单独对刀具的位置和姿态起作用,因而不存在传统机床(即串联机床)的几何误差累积和放大的现象,甚至还有平均化效果(averaging effect);其拥有热对称性结构设计,因此热变形较小;故它具有高精度的优点。
多功能灵活性强。
由于该机床机构简单控制方便,较容易根据加工对象而将其设计成专用机床,同时也可以将之开发成通用机床,用以实现铣削、镗削、磨削等加工,还可以配备必要的测量工具把它组成测量机,以实现机床的多功能。
这将会带来很大的应用和市场前景,在国防和民用方面都有着十分广阔的应用前景。
使用寿命长。
由于受力结构合理,运动部件磨损小,且没有导轨,不存在铁屑或冷却液进入导轨内部而导致其划伤、磨损或锈蚀现象。
二国内外发展状况1 并联机床发展并联机床(Parallel Machine Tools)又称为并联结构机床(Parallel Structured Machine Tools)、虚拟轴机床(Virtua1.Axis Machine Too1),也曾被称为六条腿机床、六足虫(Hexapods),在国际上一般称为Parallel Kinematic Machine(PKM),PKM似乎已经成为目前国际上对并联机床约定俗成的称呼,它们都是以Stewart平台为基础的.它的出现不仅引起了世界各国的广泛关注,而且被誉为“机床结构的重大革命”,制造业给予高度的重视.并联机床以空间并联机构为基础,充分利用计算机数字控制的潜力,以软件取代部分硬件,以电气装置和电子器件取代部分机械传动’,使将近两个世纪以来以笛卡尔坐标直线位移为基础韵机床结构和运动学原理发生了根本变化H].并联机床与传统机床的区别主要表现在:传统机床布局的特点是以床身、立柱、横梁作为支承部件,主轴部件和工作台的滑板沿支承部件上的直线导轨移动,按照x、Y、Z坐标运动叠加的串联运动学原理形成刀头点的加工表面轨迹;并联机床布局的特点是,以机床框架为固定平台的若干杆件组成空间并联机构,主轴部件安装在并联机构的动平台上,改变杆件的长度或移动杆件的支点,按照并联运动学原理形成刀头点的加工表面轨迹.与传统串联机床相比并联机床具有如下优点[2.1]:①并联机构的执行构件的误差不再是简单的线性累加,工作头更容易获得高的精度;②并联机构的执行机构运动灵活,很容易实现多自由度联动,从而更易于实现空间曲面的加工;③并联机床反解容易,轨迹规划简单,易于控制;④并联机图1 Stewart平台机构床结构简单,零件总数较少,成本容易控制;⑤并联机床中的主妻变形构件以承受拉压力为主,而且由于闭环力流封闭,使机床具有较高的刚度重量比;⑥并联机床移动部件质量小,响应速度快,动态性能好,更适于高速加工;⑦并联机床的模块化程度高,易于重构;⑧并联机床硬件简单,软件复杂,具有更高的技术附加值.因此,并联机床是新一代机床结构的重要发展方向.1965年,Stewart_5 提出一种新型6自由度的空间并联机构,它由上下两个平台和6个并联的伸缩杆组成,每个伸缩杆和上下平台之间通过两个球铰链连接,称为Stewart平台.如图1所示.经过30多年的不断改进和发展,Stewart平台演变出不同运动学原理和结构的空间并联机构,并在许多科学研究和工业领域获得了广泛应用.其主要的应用领域有L6]:运动模拟器、工业机器人、医用机器人、微定位机器人、天文望远镜、绳索机器人、并联机床等.2 国外并联机床研究现状国外对并联机床的研究是从20世纪80年代开始的,并于20世纪90年代相继推出了形式各异的产品化样机.1994年在芝加哥国际机床博览会上,美国的Giddings& Lewis公司和Geodetics公司分别推出了各自的并联机床,在机床行业引起了轰动 J.Giddings&Lewis公司的Variax型并联机床如图2所示,机床的6根驱动杆2根一组交叉成“X”型,杆件长度的伸缩,使带有主轴部件的上平台完成加工零件所需的运动.该机床占地面积为7800 mmX 8180 mm,而工作空间只有700 mmX 700 mmX 750 mm,工作台面积630 mmX 630 mm,从空间利用的角度看,其结构不尽合理.加之由于主轴部件配置为内铣型,安装工件也不太方便,因此没有在生产中获得应用.后来该机床提供给英国诺丁汉大学工学院作为进行“航空工业敏捷制造”项目研究的设备.随后,美国Ingersoll公司(1994年)相继推出了采用并联机构的V0H一1000型立式加工中心(见图3)和H0H一600型卧式加工中心(EMO97),这两台机床在结构上都作了较大改进,从内铣型改为外铣型,并明显缩小了主轴部件的体积,减轻了运动部件的质量,安装工件也比较方便,对并联机床的发展产生很大影响.图4为HOH一600型的外观,该机床的底座采用基本构件组成的八面体绗架结构,据称这种结构刚性很好,力流封闭,机床安装时不用打基础.该机床连杆的最大进给速度为30 m/min,加速度为0.5 g,主轴转速为0~20000 r/min,最大功率为37.5 kW,最大扭矩为49.1 Nm,自带刀库,能自动换刀 ].由于Giddings& Lewis和Geodetics这两家公司的创新探索,对促进各国大学和研究机构开展并联机床研究起到了积极地推动作用.各有关单位纷纷研制各种并联机构的原型样机,召开并联机床的国际研讨会,开设专门的信息交流网站.2000年前后,并联机床在运动学原理、机床设计方法、制造工艺、控制技术、动态性能研究和工业应用方面都先后取得重大突破.世界著名的机床公司都相继推出新产品,发展了许多经过改进的机构原理和结构,并使并联机床进入了实用阶段.德国Mikromat机床公司的6X—Hexa立式加工中心是欧洲第一台商品化的并联机床口],其外观如图5所示.该机床的开发由欧共体Esprit高科技研究计划资助口,有4个德国的研究所与公司参加:弗琅霍夫机床及锻压技术研究所、Mikromat机床公司、Andron公司和GMD-First公司.该机床的工作台在底座上可前后移动,以便于装卸工件.底座上有三根按120。
分布的立柱,用于支承并联机构.并联机构的特点是采用双层Stewart平台,即上下平台都是两层.这种变形结构增大了工作空间,使机床主轴姿态变化时受力更均匀.该机床主要用于磨具加工,可以实现5坐标高速铣削,加工精度可达0.o1~o.02 mm.德国斯图加特大学机床研究所研制的Hexact卧式机床 n.该机床的特点是,在一个六角形的框架的两侧,与框架成30。
配置有6根伸缩杆,伸缩杆的外套筒通过万向铰链支架固定在框架弯角处.伸缩杆的另一端通过万向铰链支承主轴部件.并联机构的上下平台(六角形框架平面和主轴部件截面)可以处于同一平面之内,所有构件的配置都是镜像对称,并处于预加拉应力状态,因而具有很好的静态和动态性能.图53 国内并联机床研究现状国内对于并联机床的研究是从2O世纪9O年代中期开始的,主要研究单位有燕山大学、东北大学、清华大学、天津大学、中科院沈阳自动化研究所、哈尔滨工业大学、北京航空航天大学、茵安交通大学、华中理工大学和浙江大学等.1998年,清华大学在第五届中国国际机床展览会上展出了名为VAMT1Y的并联机床(见图24),该机床由清华大学和天津大学联合开发,是我国展出的第一台并联机床样机[。
.后来,清华大学。
又先后和云南机床厂、大连机床厂、江东机床厂合作开发了多台并联机床.北京航空航天大学从1996年开始从事并联机床的研究,于1999年开发出一台虚轴刀具磨床实验样机.1999年天津大学在第六届中国国际机床展览会上展出了名为Linapod的3自由度并联机床,见图25.该机床是由天津大学开发,天津第一机床厂制造的.该机床的定位精度不大于20 ptm.沈阳自动化所于1995年底研制出一台6杆并联机器人机床样机,后来又开发出一台龙门式4杆5轴并联机床.哈尔滨工业大学于1998年研制出6坐标BJ系列并联机床,并在1999年的机床展览会上展出[ 吨63.2001年在北京举行的国际机床展览会(CIMT2001)上,哈工大又与哈尔滨量具刃具厂合作推出了一台商品化的并联机床.该机床可以对水轮机叶片等复杂曲面进行加工,加工精度可达0.02 mm.东北大学先进制造与自动化技术研究所,从1995年开始对少于6杆的并联机构作了大量研究,并于1997年推出了一台三杆3-DOF并联机床,开创了我国开发研制低于六个自由度的并联机床的先河.该三自由度并联机床采用TPT型支链结构,具有三个移动自由度,基本克服了六自由度Stewart 并联机构工作空间小、耦合性强的缺点,应用范围广.1999年东北大学研制出我国首台三杆5一DOF度并联机床l2,用于复杂曲面的加工.该三杆五自由度并联机床是在三自由度机床的基础上增加了两个转动自由度构成,从而扩展了机床的加工能力.该成果已通过国家863验收,省级技术鉴定,达到国际先进水平,机床本体设计获得国家专利(专利号:97229311.6),这为具有完全自主产权的并联机床国产化创造了条件.2000年东北大学又创新开发研制了另一种新型3-PTT型水平滑块式并联机床,并与大连钢铁集团有限公司合作应用于钢坯修磨生产中.。