100测评网七年级数学第八章 列二元一次方程组解应用题专项训练(含答案)
- 格式:doc
- 大小:843.50 KB
- 文档页数:16
第八章 二元一次方程组§8.1二元一次方程组一、填空题1、二元一次方程4x-3y=12,当x=0,1,2,3时,y=____ __。
2、在x+3y=3中,若用x 表示y ,则y=__ ___,用y 表示x ,则x=_ _____。
3、已知方程(k 2-1)x 2+(k+1)x+(k-7)y=k+2,当k=______时,方程为一元一次方程;当k=______时,方程为二元一次方程。
4、对二元一次方程2(5-x)-3(y-2)=10,当x=0时,则y=___ ___;当y=0时,则x=__ ____。
5、方程2x+y=5的正整数解是___ ___。
6、若(4x-3)2+|2y+1|=0,则x+2=_____ _。
7、方程组⎩⎨⎧==+b xy ay x 的一个解为⎩⎨⎧==32y x ,那么这个方程组的另一个解是 。
8、若21=x 时,关于y x 、的二元一次方程组⎩⎨⎧=-=-212by x y ax 的解互为倒数,则=-b a 2 。
二、选择题1、方程2x-3y=5,xy=3,33=+yx ,3x-y+2z=0,62=+y x 中是二元一次方程的有( )个。
A、1 B、2 C、3 D、4 2、方程2x+y=9在正整数范围内的解有( )A 、1个B 、2个C 、3个D 、4个3、与已知二元一次方程5x-y=2组成的方程组有无数多个解的方程是( )A 、10x+2y=4B 、4x-y=7C 、20x-4y=3D 、15x-3y=6 4、若是m y x 25与2214-++n m n y x 同类项,则n m -2的值为 ( )A 、1B 、-1C 、-3D 、以上答案都不对 5、在方程(k 2-4)x 2+(2-3k)x+(k+1)y+3k=0中,若此方程为二元一次方程,则k值为( )A 、2B 、-2C 、2或-2D 、以上答案都不对. 6、若⎩⎨⎧-==12y x 是二元一次方程组的解,则这个方程组是( )A 、⎩⎨⎧=+=-5253y x y x B 、⎩⎨⎧=--=523x y x y C 、⎩⎨⎧=+=-152y x y x D 、⎩⎨⎧+==132y x yx 7、在方程3)(3)(2=--+x y y x 中,用含x 的代数式表示y ,则 ( )A 、35-=x yB 、3--=x yC 、35+=x yD 、35--=x y 8、已知x=3-k,y=k+2,则y与x的关系是( )A、x+y=5 B、x+y=1 C、x-y=1 D、y=x-1 9、下列说法正确的是( )A、二元一次方程只有一个解 B、二元一次方程组有无数个解C、二元一次方程组的解必是它所含的二元一次方程的解 D、三元一次方程组一定由三个三元一次方程组成10、若方程组⎩⎨⎧=+=+16156653y x y x 的解也是方程3x+ky=10的解,则k的值是( )A、k=6 B、k=10 C、k=9 D、k=101 三、解答题1、解关于x 的方程)1(2)4)(1(+-=--x a x a a2、已知方程组⎩⎨⎧=+=+cy ax y x 27,试确定c a 、的值,使方程组:(1)有一个解;(2)有无数解;(3)没有解3、关于y x 、的方程3623-=+k y kx ,对于任何k 的值都有相同的解,试求它的解。
人教版七年级数学下册第八章二元一次方程组单元测试题含答案一、选择题1 、方程2 x - =0 ,3 x + y =0 , 2 x + xy =1 , 3 x + y -2 x =0 , x 2 - x +1=0 中,二元一次方程的个数是()A. 5 个B. 4 个C. 3 个D. 2 个2 、已知是关于 x 、 y 的二元一次方程, 则m 、n 的解是( ) (A )(B )(C )(D )3 、方程组的解的情况是().A.一个解B.二个解C.无解D.无数个4 、下列各组数值是方程的解的一组是()A.B.C.D.5 、由方程组可得出与的关系是()A.B.C.D.6 、甲、乙二人从同一地点出发,同向而行,甲骑车乙步行,若乙先行千米,那么甲小时追上乙;如果乙先走小时,甲只用小时追上乙,则乙的速度是()A.千米/时B.千米/时C.千米/时D.千米/时7 、已知, 是方程组的解,则的值为().A.B.C.D.8 、如果二元一次方程组的解是二元一次方程的一个解,则()A.B.C.D.9 、已知甲、乙两种商品的进价和为100 元,为了促销而打折销售,若甲商品打八折,乙商品打六折,则可赚50 元,若甲商品打六折,乙商品打八折,则可赚30 元,甲、乙两种商品的定价分别为()A. 50 元、150 元B. 50 元、100 元C. 100 元、50 元D. 150 元、50 元10 、在一次野炊活动中,小明所在的班级有x 人,分成y 组,若每组7 人,则余下3 人;若每组8 人,则缺 5 人,求全班人数的正确的方程组是()A. . C. D.二、填空题1 、方程的一个解是那么的值为_____ .2 、已知二元一次方程,用含x 的式子表示y ,则y =_____ ;若y 的值为2 ,则x 的值为_____ .3 、如果,,则_____ .4 、若甲队有人,乙队有人,若从甲队调出人到乙队,则甲队人数是乙队人数的一半,可列方程为_____ .5 、当_____________ 时,下列方程① ,② ,③有公共解.6 、二元一次方程的所有正整数解为_____ .7 、若,那么_____ .8 一个两位数的十位数字与个位数字之和等于5 ,十位数字与个位数字之差为1 ,设十位数字为x ,个位数字为y ,则用方程组表示上述语言为______ .9 方程x (x +3 )=0 的解是______ .10 由方程组,可以得到x + y + z 的值是______ .三、解答题1 、解下列方程组:(1 )(4 分)(2 )(4 分)(3 )(6 分)2 、小明手上有一张元的人民币,当路过商店门口时,他想把这元钱换成元或元的零钱,请他细考虑一下,售货员可有几种兑换方法?(5 分)3 、小英和小强相约一起去某超市购买他们看中的随身听和书包.你能根据他们的对话内容(如图3 ),求出他们看中的随身听和书包单价各是多少元吗?(5 分)4 、“利海”通讯器材商场,计划用元从厂家购进若干部新型手机,以满足市场需求,已知该厂家生产三种不同型号的手机,出厂价分别为甲种型号手机每部元,乙种型号手机每部元,丙种型号手机每部元.(1 )若商场同时购进其中两种不同型号的手机共部,并将元恰好用完.请你帮助商场计算一下如何购买.(2 )若商场同时购进三种不同型号的手机共部,并将元恰好用完,并且要求乙种型号手机的购买数量不少于部且不多于部,请你求出商场每种型号手机的购买数量.(8 分)答案:5.某旅行社组织一批游客外出旅游,原计划租用45 座客车若干辆,但有15 人没有座位;若租用同样数量的60 座客车,则多出一辆车,且其余客车恰好坐满.已知45 座客车租金为每辆220 元,60 座客车租金为每辆300 元,问:(1 )这批游客的人数是多少?原计划租用多少辆45 座客车?(2 )若租用同一种车,要使每位游客都有座位,应该怎样租用才合算?一、选择题1、D;2 、C ;3 、C ;4 、A ;5 、C ;6 、A ;7 、D ;8 、B ;9 、D;10 、A二、填空题1 、;2 、y= ,6 ;3 、16 ;4 、x -10= (y+10) ;5 、;6 、;7 、-;8.9 0 或-310 3三、解答1 、 1 .( 1 ) (2 ) (3 )2 、 种兑换方法.(提示:此题实际是求二元一次方程的非负整数解.)3 、设他们看中的书包的单价为 x 元,随身听的单价为 y 元 .则根据题意,得 解得答 他们看中的随身听和书包单价各是 360 元和 92 元4.( 1 )两种购买方法:甲种型号手机购买 部,乙种型号手机购买 部,或甲种型号手 机购买 部,丙种型号手机购买 部;( 2 )若乙种型号手机购买 部,则甲种型号手机购买 部,丙种型号手机购买 部,若乙种型号手机购买 部,则甲种型号手机购买 部,丙种型号手机购买 部;若乙种型号手机购买 部,由甲种型号手机购买 部,丙种型号手机购买 部.5. 解:( 1 )设这批游客的人数是 x 人,原计划租用 45 座客车 y 辆. 根据题意,得 , 解这个方程组,得.答:这批游客的人数 240 人,原计划租 45 座客车 5 辆;( 2 )租 45 座客车: 240÷45≈5.3 (辆),所以需租 6 辆,租金为 220×6=1320 (元),租 60 座客车: 240÷60=4 (辆),所以需租 4 辆,租金为 300×4=1200 (元).答:租用 4 辆 60 座客车更合算.人教版七年级下册单元测试卷:第八章 二元一次方程组一、填空。
人教版七年级数学下册第八章二元一次方程组单元检测试题(有答案)一、选择题1 .以下各方程组中,属于二元一次方程组的是()A .B .C .D .2 A C .将方程.y=. x =2 x2 x2y-3+-y3= 3 写成用含x 的式子表示B . y = 3 -D . x = 3-2yy 的形式,正确的选项是 2 x()3 .若方程组的解为,则被“☆ ”、“K”遮住的两个数分别是() A.10,3B.3,10C.4,10D.10,44 .已知x , y 知足方程组则x+y的值为()A .9B .7C .5D .35 .已知甲、乙两数的和是7 ,甲数是乙数的 2 倍,设甲数为x ,乙数为y ,依据题意,列方程组正确的选项是()A. B. C. D.6 .按以下图的运算程序,能使输出结果为 5 的 x , y 的值是()A .x = 5 ,y =-5B .x =- 1 ,y =1C .x = 2 ,y =1D .x =3,y=27.若x 2 y3z=10 ,4x3y2z=15 ,则x y z 的值为()A . 5B . 4C. 3 D . 28.若方程组4x 3 y1ax(a 的解 x 与 y 相等,则 a 的值等于()1)y 3A . 4B .10C.11D. 129. 两个水池共储水40 吨,假如甲池注进水 4 吨,乙池注进水8 吨,甲池水的吨数就与乙池水的吨数相等.甲、乙水池本来各储水的吨数是()A .甲池 21 吨,乙池19 吨B .甲池 22 吨,乙池18 吨C. 甲池 23吨,乙池17 吨 D .甲池 24 吨,乙池 16 吨10.某校七年级 (2) 班 40名同学为四川地震灾区捐钱,共捐了100 元,捐钱状况以下表:捐钱(元)1234人数67表格中捐钱 2 元和 3 元的人数不当心被墨水污染已经看不清楚,若设捐钱 2 元的有 x 名同学,捐钱 3 元的有 y 名同学,依据题意,可列方程组()A.x y27x y27x y27D.x y27 2x3y66B.3yC.2 y66 2 y1002x1003x3x二、填空题1.方程组的解是.2.已知对于x , y 的二元一次方程 2 x+■ y= 7中, y 的系数已经模糊不清,但已知是这个方程的一个解,那么原方程是.3.某旅行社组织甲、乙两个旅行团分别到庐山、婺源旅行,已知这两个旅行团共有55 人,甲旅行团的人数比乙旅行团的人数的 2 倍少5 人,问甲、乙两个旅行团各有多少人?设甲、乙两个旅行团分别有x 人、 y 人,依据题意可列方程组为.4.已知+ ( x + 2 y - 5) 2 = 0 ,则 x + y =.5. “六一”小孩节,某动物园的成人门票每张8 元,小孩门票半价 (即每张 4 元 ),全天共售出门票3000 张,共收入 15600 元,则这天售出了成人票 ________张,小孩票 ___ _ 张.三、计算题1.解方程组:(1)(2)2.已知与都是方程kx - b = y 的解,求k 和 b 的值.3.已知方程组小马因为看错了方程①中的m ,获得方程组的解为小虎因为看错了方程②中的n ,获得方程组的解为请你依据上述条件求原方程组的解.4.请你依据王老师所给的内容,达成以下各小题.(1)若 x =-5, 2◎4 =- 18,求y 的值;(2)若 1◎1=8,4◎2=20,求x , y 的值.5.“六一”小孩节有一投球入盆的游戏,深受同学们的喜欢,游戏规则以下:如图,在一大盆里放一小茶盅 ( 叫好运区 ) 和小茶盅外大盆内 ( 环形区 ) 分别得不一样的分数,投到大盆外不得分;每人各投 6 个球,总得分不低于30 分得奖券一张.现统计小刚、小明、小红三人的得分状况以以下图.(1)每投中“好运区”和“环形区”一次,分别得多少分?(2)依据这类得分规则,小红可否获得一张奖券?请说明原因.6.数学方法:解方程组若设x + y = A , x - y = B ,则原方程组可变形为解方程组得因此解方程组得我们把某个式子当作一个整体,用一个字母去取代它,这类解方程组的方法叫作换元法.(1)请用这类方法解方程组(2)已知对于x , y 的二元一次方程组的解为那么对于m , n 的二元一次方程组的解为;(3)已知对于x , y 的二元一次方程组的解为则对于x , y 的方程组的解为.答案与分析一、选择题。
初中数学七年级下册第八章二元一次方程组专题训练(2021-2022学年考试时间:90分钟,总分100分)班级:__________ 姓名:__________ 总分:__________一、单选题(10小题,每小题3分,共计30分)1、下列是二元一次方程的是()A.3x﹣6=x B.3x=2y C.x﹣1y=0 D.2x﹣3y=xy2、如图,AB⊥BC,∠ABC的度数比∠DBC的度数的两倍少15°,设∠ABD和∠DBC的度数分别为x°,y°,那么下面可以求出这两个角的度数的方程组是().A.9015x yx y+=⎧⎨=-⎩B.90215x yx y+=⎧⎨=+⎩C.90152x yx y+=⎧⎨=-⎩D.90215x yx y+=⎧⎨=-⎩3、已知方程组242x yx y k+=⎧⎨+=⎩的解满足1x y+=,则k的值为()A.7 B.7-C.1 D.1-4、用加减法将方程组4311455x yx y-=⎧⎨+=-⎩中的未知数x消去后,得到的方程是().A.2y=6 B.8y=16 C.﹣2y=6 D.﹣8y=165、下列方程组中,不是二元一次方程组的是( ).A .23031x y y x -=⎧⎨=+⎩ B .112x y z +=⎧⎨-=⎩C .22236x x x y x y ⎧+=-⎨+=⎩D .2536y x x =+⎧⎨=-⎩6、若21x y =-⎧⎨=⎩是方程组17ax by bx ay +=⎧⎨+=⎩的解,则()()a b a b +-的值为( ) A .16 B .-1 C .-16 D .17、解方程组347910250m n m n -=⎧⎨-+=⎩①②的最好方法是( )A .由①得743nm +=再代入② B .由②得25109nm +=再代入① C .由①得347m n =+再代入② D .由②得91025m n =-再代入①8、已知方程370x y --=,231x y +=,9y kx =-有公共解,则k 的值为( ).A .3 B .4C .0D .-19、小明解方程组27x y x y +=⎧⎨-=⎩■的解为5x y =⎧⎨=⎩★,由于不小滴下了两滴墨水,刚好把两个数■和★遮住了,则这两个数和■和★的值为( ) A .■=8和★=3B .■=8和★=5C .■=5和★=3D .■=3和★=810、在沙县国际连锁早餐店里,李大爷买5个馒头、3个包子,老板少拿2元,只要17元;张大妈买11个馒头、5个包子,老板以售价的九折优惠,只要33.3元.若馒头每个x 元,包子每个y 元,依题意可列方程组为( )A .5317211533.30.9x y x y +=+⎧⎨+=⨯⎩B .5317211533.30.9x y x y +=+⎧⎨+=÷⎩C .5317211533.30.9x y x y +=-⎧⎨+=⨯⎩D .5317211533.30.9x y x y +=-⎧⎨+=÷⎩二、填空题(5小题,每小题4分,共计20分)1、一元二次方程x ﹣3y =8写成用含y 的代数式表示x 的形式为______.2、已知3211203n m xy -+-=是关于x ,y 的二元一次方程,则n m +=______. 3、如图,把8个大小相同的长方形(如图1)放入一个较大的长方形中(如图2),则ab 的值为_____.4、已知方程组3524x y ax y -=⎧⎨-=⎩的解也是方程135x y x by -=⎧⎨-=⎩的解,则=a ______,b =______.5、若x ,y 满足方程组327233x y x y +=⎧⎨+=⎩,则化数式2())(x y x y -+-的值为 _____.三、解答题(5小题,每小题10分,共计50分)1、小明和小丽两人同时到一家水果店买水果.小明买了1kg 苹果和2kg 梨,共花了26元;小丽买了2kg 苹果和1kg 梨,共花了28元.苹果和梨的价格各为多少?根据题意,小明列出方程组:226,228.x y x y +=⎧⎨+=⎩而小丽列出的是:226,228.x y x y +=⎧⎨+=⎩交流后,他们发现两个方程组不同,于是展开了争论,都说自己是正确的,而对方是错误的.他们列的方程组正确吗?你认为他们产生分歧的原因是什么? 2、解下列方程组:(1)2431y x x y =-⎧⎨+=⎩;(2)2316413x yx y+=⎧⎨+=⎩.3、解方程(组):(1)2121 24x x--+=;(2)3142 4210x yx y⎧+=⎪⎨⎪-=⎩.4、解方程组:(1)2102x yy x+=⎧⎨=⎩;(2)3()2()107422x y x yx y x y++-=⎧⎪⎨+-+=⎪⎩.5、用代入消元法解下列方程组:(1)32x yy x-=⎧⎨=⎩(2)528x yx y+=⎧⎨+=⎩(3)43524x yx y+=⎧⎨-=⎩(4)222312nmm n⎧-=⎪⎨⎪+=⎩---------参考答案-----------一、单选题1、B【解析】【分析】根据二元一次方程的定义逐项判断即可得.【详解】A 、362x x -=是一元一次方程,此项不符合题意;B 、32x y =是二元一次方程,此项符合题意;C 、10x y-=是分式方程,此项不符合题意; D 、23x y xy -=是二元二次方程,此项不符合题意; 故选:B . 【点睛】本题考查了二元一次方程的定义:含有2个未知数,未知数的项的次数是1的整式方程是二元一次方程.注意分母中有字母的情况是不符合二元一次方程定义的. 2、A 【解析】 【分析】此题中的等量关系有:90ABD DBC ∠+∠=︒,215ABC DBC ∠=∠-︒ ,根据等量关系列出方程即可. 【详解】设∠ABD 和∠DBC 的度数分别为x °,y °,则有90215x y x y y +=⎧⎨+=-⎩整理得:9015x y x y +=⎧⎨=-⎩,故选:A . 【点睛】本题考查了二元一次方程组的应用,根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组. 3、D 【解析】①+②得出x +y 的值,代入x +y =1中即可求出k 的值. 【详解】解:242x y x y k +=⎧⎨+=⎩①②①+②得:3x +3y =4+k , ∴43k x y ++=, ∵1x y +=, ∴413k +=, ∴43k +=, 解得:1k =-, 故选:D 【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值. 4、D 【解析】 【分析】根据二元一次方程组的加减消元法可直接进行求解. 【详解】解:用加减法将方程组4311455x y x y -=⎧⎨+=-⎩①②中的未知数x 消去,则有①-②得:﹣8y =16;故选D .本题主要考查二元一次方程组的求解,熟练掌握二元一次方程组的求解是解题关键.5、B【解析】【分析】依据二元一次方程组的定义求解即可.【详解】利用二元一次方程组的定义一一进行判断,A和D符合二元一次方程组的定义;方程组22236x x x yx y⎧+=-⎨+=⎩中,2223x x x y+=-可以整理为23x y=-所以C也符合;B中含有三个未知数不符合二元一次方程组的定义.故答案选B【点睛】本题主要考查的是二元一次方程组的定义,掌握二元一次方程组的定义是解题的关键.6、C【解析】【分析】把x与y的值代入方程组,求出a+b与a-b的值,代入原式计算即可求出值.【详解】解:把21xy=-⎧⎨=⎩代入方程组得2127a bb a-+=⎧⎨-+=⎩,两式相加得8a b+=-;两式相差得:2a b -=, ∴()()16a b a b +-=-, 故选C . 【点睛】本题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值. 7、C 【解析】 【分析】观察两方程中m 系数关系,即可得到最好的解法. 【详解】解:解方程组347910250m n m n -=⎧⎨-+=⎩①②的最好方法是由①得347m n =+,再代入②.故选:C . 【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法. 8、B 【解析】 【分析】联立370x y --=,231x y +=,可得:2x =,1y =-,将其代入9y kx =-,得k 值. 【详解】370231x y x y --=⎧⎨+=⎩ ,解得21x y =⎧⎨=-⎩,把21x y =⎧⎨=-⎩代入9y kx =-中得:129k -=-,解得:4k =. 故选:B . 【点睛】本题考查二元一次方程组,掌握公共解是三个方程都满足的解是解题的关键. 9、A 【解析】 【分析】把5x =代入27x y -=求出3y =;再把53x y =⎧⎨=⎩代入x y +=■求出数■即可.【详解】解:把5x =代入27x y -=得,107y -=,解得,3y =;把53x y =⎧⎨=⎩代入x y +=■得,53+=■,解得,■=8; 故选A 【点睛】本题考查了二元一次方程组的解法,解题关键是明确方程组解的意义,代入方程准确进行计算. 10、B 【解析】 【分析】设馒头每个x 元,包子每个y 元,根据李大爷买5个馒头、3个包子的钱数等于()172+元,张大妈买11个馒头、5个包子的钱数等于()33.30.9÷元列出二元一次方程组即可 【详解】解:设馒头每个x 元,包子每个y 元,根据题意得5317211533.30.9x y x y +=+⎧⎨+=÷⎩ 故选B 【点睛】本题考查了列二元一次方程组,求得张大妈买的包子和馒头没打折时的钱数等于()33.30.9÷元是解题的关键. 二、填空题 1、3y +8y 【分析】移项,利用等式的性质变形即可. 【详解】 解: x ﹣3y =8x =3y +8故答案为:3y +8 【点睛】本题属于二元一次方程变形的问题,依据等式的性质变形即可.本题比较简单. 2、4 【分析】根据二元一次方程的定义,可得方程组31211n m -=⎧⎨+=⎩,解得m 、n 的值,代入代数式即可. 【详解】解:由题意得,31211n m -=⎧⎨+=⎩, 解得:40n m =⎧⎨=⎩, ∴n m +=4,故填:4.【点睛】本题考查二元一次方程的定义,属于基础题型.3、16【分析】根据图1和图2分析可得10a b +=,510a =,即可,a b 的值,进而可得ab 的值【详解】由图1可得长方形的长为b ,宽为a ,根据图2可知大长方形的宽可以表示为5,a a b +510,10a a b ∴=+=解得2,8a b ==16ab ∴=故答案为:16【点睛】本题考查了二元一次方程组,根据图中信息求得,a b 的值是解题的关键.4、3 1【分析】联立不含a 与b 的方程组成方程组求出x 与y 的值,代入剩下的方程求出a 与b 的值即可.【详解】解:联立得:351x y x y -=⎧⎨-=⎩, 解得:21x y =⎧⎨=⎩, 代入剩下的两方程得:65224b a -=⎧⎨-=⎩, 解得:13b a =⎧⎨=⎩, 故答案为:3,1.【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值. 5、0【分析】二元一次方程组两式相加得x +y =2,两式相减得x -y =4,将结果代入2())(x y x y -+-=0.【详解】∵327233x y x y +=⎧⎨+=⎩①②令+①②有5510x y +=∴2x y +=令①-②有4x y -=∴4x y -=将2x y +=,4x y -=代入2())(x y x y -+-得224440=--=.故答案为:0.【点睛】本题考查了已知式子的值解代数式值和解二元一次方程组,通过加减消元法化简二元一次方程组,得出所求代数式中含有的部分,再代入计算即可.三、解答题1、他们列的方程组都正确,见解析【分析】根据所列方程可知小明设每千克苹果和梨的价格分别为x 元、y 元,而小丽设每千克梨和苹果的价格分别为x 元、y 元,由此进行判断即可得到答案.【详解】解:两个人所列的方程都是正确的,理由如下:由题意得:小明设每千克苹果和梨的价格分别为x 元、y 元,而小丽设每千克梨和苹果的价格分别为x 元、y 元,因此他们所列方程组中,同一个x 的意义不同,当然所列方程组也就不相同了.【点睛】本题主要考查了从实际问题抽象出二元一次方程组,解题的关键在于能够正确理解两人所列方程的含义.2、(1)12x y =⎧⎨=-⎩;(2)52x y =⎧⎨=⎩ 【分析】(1)根据代入消元法计算即可;(2)根据加减消元法计算即可;【详解】解:(1)2431y x x y =-⎧⎨+=⎩①②, 把①代入②中,得到3241x x +-=,解得:1x =,把1x =代入①中,得:2y =-,∴方程组的解集为12x y =⎧⎨=-⎩; (2)2316413x y x y +=⎧⎨+=⎩①②, 2⨯-②①得:510y =,解得:2y =,把2y =代入②中,得:5x =,∴方程组的解为52x y =⎧⎨=⎩. 【点睛】本题主要考查了二元一次方程组的求解,准确计算是解题的关键.3、(1)x=85;(2)21xy=⎧⎨=-⎩【分析】(1)方程去分母,去括号,移项,合并同类项,系数化为1即可;(2)方程组利用加减消元法求解即可.【详解】解:(1)2121 24x x--+=,去分母,得2(2x﹣1)+(x﹣2)=4,去括号,得4x-2+x﹣2=4,移项,得4x+x=4+2+2,合并同类项,得5x=8,系数化为1,得x=85;(2)3142 4210x yx y⎧+=⎪⎨⎪-=⎩①②,①×2+②,得11112x=,解得x=2,把x=2代入②,得8﹣2y=10,解得x=﹣1,故方程组的解为21xy=⎧⎨=-⎩.【点睛】此题主要考查一元一次方程与二元一次方程组的求解,解题的关键是熟知其解法的运用.4、(1)24x y =⎧⎨=⎩;(2)35x y =⎧⎨=-⎩ 【分析】(1)利用代入消元法解二元一次方程组即可;(2)先整理原方程得()()3()2()10214x y x y x y x y ++-=⎧⎨++-=⎩然后把()x y +和()x y -当做一个整体利用加减消元法求出2x y +=-③,8x y -=④,然后利用加减消元法求解即可.【详解】解:(1)2102x y y x +=⎧⎨=⎩①②, 把②代入①中得:410x x +=,解得2x =,把2x =代入②中得,4y =,∴方程组的解集为24x y =⎧⎨=⎩; (2)3()2()107422x y x y x y x y ++-=⎧⎪⎨+-+=⎪⎩ 整理得:()()3()2()10214x y x y x y x y ++-=⎧⎪⎨++-=⎪⎩①②, 用①-②得:()24x y +=-,解得2x y +=-③,把③代入①得:()6210x y -+-=,解得8x y -=④,用③+④得:26x =,解得3x =,把3x=代入③得5y=-,∴方程组的解为35xy=⎧⎨=-⎩.【点睛】本题主要考查了解二元一次方程组,解题的关键在于能够熟练掌握解二元一次方程组的方法.5、(1)11xy=-⎧⎨=-⎩(2)32xy=⎧⎨=⎩(3)21xy=⎧⎨=-⎩(4)32mn=⎧⎨=⎩【分析】方程组利用代入消元法求出解即可.【详解】解:(1)32x yy x-=⎧⎨=⎩①②,把②代入①得:-3=2x x,解得:x=-1,把x=-1代入②得:y=-1,则原方程组的解为:11xy=-⎧⎨=-⎩;(2)528x yx y+=⎧⎨+=⎩①②,由①得:y=5-x③把③代入②中得:2x +5-x =8,解得:x =3,把x =3代入③中得:y =5-3=2,则原方程组的解为:32x y =⎧⎨=⎩; (3)43524x y x y +=⎧⎨-=⎩①②, 由②得:x =4+2y ③,将③代入①得:4×(4+2y )+3y =5,解得:y =-1,将y =-1代入③中得:x =4+2×(-1)=2,则原方程组的解为:21x y =⎧⎨=-⎩; (4)222312n m m n ⎧-=⎪⎨⎪+=⎩①②, 由①得:m =2n +2③,将③代入②得: 2×(2n +2)+3n =12,解得:n =2,将n=2代入③中得:m=22+2=3,则原方程组的解为:32mn=⎧⎨=⎩.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.。
七年级数学(下)第八章《消元——解二元一次方程组》练习题一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.用加减消元法解方程组23537x y x y -=⎧⎨=+⎩①②正确的方法是A .①+②得2x =5B .①+②得3x =12C .①+②得3x +7=5D .先将②变为x -3y =7③,再①-③得x =-2【答案】D【解析】先将②变为x -3y =7③,再①-③得x =-2.故选D . 2.用代入法解方程组2503510x y x y -=⎧⎨+-=⎩①②时,最简单的方法是A .先将①变形为x =52y ,再代入② B .先将①变形为y =25x ,再代入②C .先将②变形为x =153y-,再代入①D .先将①变形为5y =2x ,再代入② 【答案】D【解析】由①得:5y =2x ,把5y =2x 代入②即可.故选D . 3.解方程组35237x y x y +=⎧⎨+=⎩①②,错误的解法是A .先将①变形为53x y =+,再代入②B .先将①变形为53x y =-,再代入②C .将-②①,消去yD .将2⨯-①②,消去x 【答案】A【解析】用代入法解二元一次方程组时先将①变形为53x y =-,移项要变号,选项A 错误.故选A .4.解方程组:(1)4273210x y x y -=⎧⎨+=⎩;(2)2359x y x y =⎧⎨-=⎩;(3)459237x y x y +=⎧⎨-=⎩;(4)7341x y x y +=⎧⎨-=⎩比较适宜的方法是A .(1)(2)用代入法,(3)(4)用加减法B .(1)(3)用代入法,(2)(4)用加减法C .(2)(3)用代入法,(1)(4)用加减法D .(2)(4)用代入法,(1)(3)用加减法 【答案】D(4)第一个方程转化为x =7-y ,代入第二个方程即可消去未知数x ,用代入法比较适宜.故选D .5.二元一次方程组320x y x y -=-⎧⎨+=⎩的解是A .12x y =-⎧⎨=⎩B . 12x y =⎧⎨=-⎩C .12x y =-⎧⎨=-⎩D .21x y =-⎧⎨=⎩【答案】A【解析】将方程组中的两个方程相加得3x =-3,解得x =-1,将x =-1代入方程组中得任意一个方程可得y =2,所以12x y =-⎧⎨=⎩.故选A .6.已知方程组323()11x y y x y -=⎧⎨+-=⎩,那么代数式3x -4y 的值为A .1B .8C .-1D .-8【答案】B【解析】将x -y =3代入方程2y +3(x -y )=11得2y +9=11,解得y =1,将y =1代入x -y =3得x =4, 所以3x -4y =3×4-4×1=8.故选B . 7.若2425y x a b -与352x y a b +是同类项,则x 、y 的值为 A .21x y =⎧⎨=⎩B .31x y =⎧⎨=⎩C .12x y =⎧⎨=⎩D .21x y =⎧⎨=-⎩【答案】D【解析】由同类项的定义可得24325y xx y-=⎧⎨=+⎩,整理得34225x yy x+=⎧⎨=-⎩①②,将②代入①得3x+4(2x-5)=2,解得x=2,将x=2代入②得y=-1,所以21xy=⎧⎨=-⎩.故选D.8.已知21xy=⎧⎨=⎩是二元一次方程组81mx nynx my+=⎧⎨-=⎩的解,则2m-n的算术平方根为A.±2 B.2C.2 D.4 【答案】C9.已知关于x,y的方程组343x y ax y a+=-⎧⎨-=⎩,给出下列结论:①51xy=⎧⎨=-⎩是方程组的一个解;②当2a=时,x,y的值互为相反数;③当a=1时,方程组的解也是方程x-2y=3的解;④x,y间的数量关系是x+y=4-a,其中正确的是A.②③B.①②③C.①③D.①③④【答案】C【解析】①中将51xy=⎧⎨=-⎩代入方程组得534513aa-=-⎧⎨+=⎩,解得:a=2,所以①正确;②中将a=2代入方程组中得326x yx y+=⎧⎨-=⎩①②,①+②得x+y=4,所以②错误;③中将a=1代入方程组得333x yx y+=⎧⎨-=⎩,解得3xy=⎧⎨=⎩,将其代入x-2y=3-2×0=3,所以③正确;④中,将方程组中的两个方程相加得x+y=2+a,所以④错误.故选C.二、填空题:请将答案填在题中横线上.10.已知23523x yx y+=⎧⎨+=-⎩,则3x+3y的值为__________.【答案】32【解析】23523x y x y +=⎧⎨+=-⎩①②,①+②得:442x y +=,即12x y +=,13333()322x y x y +=+=⨯=.故答案为:32. 11.方程组221x y x y +=-=⎧⎨⎩的解是__________.【答案】11x y ==⎧⎨⎩【解析】221x y x y +=⎧⎨-=⎩①②,①+②,得:3x =3,解得x =1,把x =1代入①得,y =1.故方程组的解为:11x y ==⎧⎨⎩,故答案为:11x y ==⎧⎨⎩.12.若关于x 、y 的二元一次方程组59x y kx y k+=-=⎧⎨⎩的解也是二元一次方程2x +3y =6的解,则k 的值为__________.【答案】3413.已知|2x -3y +4|与(x -2y +5)2互为相反数,则(x -y )2019=__________.【答案】1【解析】由题意,得2|234|(25)0x y x y -++-+=,∴2x −3y +4=0,x −2y +5=0,∴x =7,y =6,∴20192019()(76)1x y -=-=,故答案为:1.14.若方程组42ax by ax by -=⎧⎨+=⎩与方程组234456x y x y +=⎧⎨-=⎩的解相同,则a =__________,b =__________.【答案】3319;112-【解析】解方程组234456x y x y +=⎧⎨-=⎩得1911211x y ⎧=⎪⎪⎨⎪=⎪⎩,将1911211x y ⎧=⎪⎪⎨⎪=⎪⎩代入第一个方程组中得1924111119221111a b a b ⎧-=⎪⎪⎨⎪+=⎪⎩,解得3319112a b ⎧=⎪⎪⎨⎪=-⎪⎩,故答案为:3319;112-.三、解答题:解答应写出文字说明、证明过程或演算步骤. 15.用合适的方法解下列方程组:(1)4023222y x x y =-⎧⎨+=⎩①②;(2)235421x y x y +=⎧⎨-=⎩①②;(3)651533x y x y +=⎧⎨-=-⎩①②.【解析】(1)将①代入②得,32(402)22x x +-=, 解得x =58,故原方程组的解为:131698x y ⎧=⎪⎪⎨⎪=⎪⎩.(3)②×5得:15x -5y =-15③, ①+③得:21x =0, 解得:x =0,将x =0代入②,得y =3, 故原方程组的解为:03x y =⎧⎨=⎩.16.已知关于x ,y 的方程组54522x y ax by +=⎧⎨+=-⎩与2180x y ax by -=⎧⎨--=⎩有相同的解,求a ,b 的值.【解析】由题意可将x +y =5与2x -y =1组成方程组521x y x y +=⎧⎨-=⎩,解得23x y =⎧⎨=⎩,把23x y =⎧⎨=⎩代入4ax +5by =-22,得8a +15b =-22①,把23x y =⎧⎨=⎩代入ax -by -8=0,得2a -3b -8=0②,与②组成方程组,得815222380a b a b +=-⎧⎨--=⎩,解得12a b =⎧⎨=-⎩.17.已知关于,x y 的方程组212x y x y m +=⎧⎨-=⎩①②.(1)若用代入法求解,可由①得:x =__________③,把③代入②解得y =__________,将其代入③解得x =__________,∴原方程组的解为__________;(2)若此方程组的解x y ,互为相反数,求这个方程组的解及m 的值. 【解析】(1)若用代入法求解,可由①得12x y =-③,把③代入②解得14m y -=, 将其代入③解得12m x +=,∴原方程组的解为1214m x m y +⎧=⎪⎪⎨-⎪=⎪⎩.故答案为:12y -;14m -;12m +;1214m x m y +⎧=⎪⎪⎨-⎪=⎪⎩.(2)∵方程组的解x y ,互为相反数, ∴x y =-③,将③代入①得21y y -+=, ∴1y =, ∴1x =-,∴2123m x y =-=--=-,∴方程组的解是11x y =-⎧⎨=⎩,3m =-.18.小明在做家庭作业时发现练习册上一道解方程的题目被墨水污染325x y x y -=+=⎩∆⎧⎨,“口”和“△”表示被污染的内容,他着急,翻开书后面的答案,这道题的解是21x y ==-⎧⎨⎩,你能帮助他补上“口”和“△”的内容吗?说出你的方法.【解析】把x =2,y =-1代入两方程,得3×2-2×(-1)=8,5×2-1=9. ∴被污染的内容是8和9.。
人教版数学七年级下册第八章二元一次方程组一、单选题1.下列方程中是二元一次方程的是( )A .x +y =aB .3x −y =0C .x +xy =10D .4x =3y2.用代入法解方程组{y =1−x ①x−2y =4②时,把①代入②正确的是( )A .x -2−x =4B .x−2−2x =4C .x -2+2x =4D .x−2+x =43.方程x−y =−1与下面方程中的一个组成的二元一次方程组的解为{x =3y =4,那么这个方程可以是( )A .3x−4y =16B .13x +14y =0C .4(x +y)=7yD .3x +2y =154.已知关于x ,y 的方程组{3x +2y =42x−7y =4m−9的解也满足方程x−y =3,则m 的值为( )A .3B .4C .5D .65.如果(x+y-5)2与│3y-2x+10│互为相反数,那么x 、y 的值为( )A .x=3,y=2B .x=2,y=3C .x=0,y=5D .x=5,y=06.若点P (x,y )满足方程组{2x−y =5x +y =1,则点P 在( )A .第一象限B .第二象限C .第三象限D .第四象限7.甲乙两人练习跑步,若乙先跑10m ,则甲5s 就可以追上乙;若乙先跑2s ,则甲4s 就可以追上乙,若设甲的速度x m/s ,乙的速度y m/s ,则( )A .x =4,y =6B .x =6,y =4C .x =3,y =5D .x =5,y =38.我国古代数学名著《算法统宗》中记载:“今有里长值月议云每里科出银五钱依帐买物以辨酒席多银三两五钱每里科出四钱亦多五钱问合用银并里数若干”.意为:里长们(“里”是指古代的一种基层行政单位)在月度会上商议出银子购买物资办酒席之事.若每里出5钱,则多出35钱;若每里出4钱,则多出5钱.问办酒席需多少银子,里的数量有多少个?若设里的数量有x 个,办酒席需要用y 钱银子,则可列方程组为( )A .{5y =x +354y =x−5B .{5y =x +354y =x +5C .{5x =y +354x =y−5D .{5x =y +354x =y +59.一家宾馆有二人间、三人间、四人间3种客房,一个由20人组成的旅行团准备同时租住这3种客房共7间,如果每个房间都住满,可供选择的方案有( )A .1种B .2种C .3种D .4种10.图1是我国古代传说中的洛书,图2是洛书的数字表示.相传,大禹时,洛阳西洛宁县洛河中浮出神龟,背驮“洛书”,献给大禹.大禹依此治水成功,遂划天下为九州.又依此定九章大法,治理社会,流传下来收入《尚书》中,名《洪范》.《易·系辞上》说:“河出图,洛出书,圣人则之”.洛书是一个三阶幻方,就是将已知的9个数填入3×3的方格中,使每一横行、每一竖列以及两条斜对角线上的数字之和都相等.图3是一个不完整的幻方,根据幻方的规则,由已知数求出 x 的值应为( ).A .-4B .-3C .3D .4二、填空题11.将方程4x−3y =12变形为用关于x 的代数式表示y ,则y = 12.请你写出一个解为 {x =1y =−1的二元一次方程组:.13.若关于x ,y 的二元一次方程3x +ay =1有一个解是{x =2y =1,则a = .14.已知m 、n 满足{23m +24n =3124m +23n =16,则m 2−n 2的值是.15.已知方程组{2x +3y =13x +2y =2的解满足x−y =m ,则m 的值为 .16.已知{x−3y +2z =03x−3y−4z =0,则x:y:z =.17.已知方程组{5x +y =3mx +5y =4 与{x−2y =55x +ny =1有相同的解,则m−n = .18.实数m 取何值,方程x−2my +mx−6=0总有一个固定的解,请直接写出这个解 .三、解答题19.解方程组:(1){x +2y =9y−3x =1(2){x +4y =14x−33−y−33=11220.小明和小亮分别从相距20千米的甲、乙两地相向而行,经过2小时,两人相遇,相遇后小明立即返回甲地,小亮继续向甲地前进,小明返回到甲地时,小亮离甲地还有2千米,请求出两人的速度分别是多少?21.甲乙两人同时解方程组{ax+by=8cx−3y=−2,甲正确解得{x=1y=−1;乙因为抄错c的值,解得{x=2y=−6.求a,b,c的值.22.2024年五一假期期间,太原市某中学开展以“红色经典”为主题的研学活动,组织七年级师生参观红色文化传承实践教育基地.原计划租用45座甲型客车若干辆,但有15人没有座位;若租用同样数量的60座乙型客车,则多出三辆车,且其余客车恰好坐满.(1)参加此次研学活动的师生人数是多少?原计划租用多少辆甲型客车?(2)若同时租用甲、乙两种型号的客车,要使每位师生都有座位且无空位,有哪几种租车方案?23.某校组织“大手拉小手,义卖献爱心”活动,计划购买黑白两种颜色的文化衫进行手绘设计后出售,并将所获利润全部捐给山区困难孩子.已知该学校从批发市场花4800元购买了黑白两种颜色的文化衫200件,每件文化衫的批发价及手绘后的零售价如表:批发价(元)零售价(元)黑色文化衫2545白色文化衫2035(1)学校购进黑.白文化衫各几件?(2)通过手绘设计后全部售出,求该校这次义卖活动所获利润.24.阅读下述材料,再按要求解答.如果一个关于x、y的一次方程可化为形如:ax+by+1=0(a,b都是不为0的常数)的形式,并且满足a+b=1,那么我们就把这个一次方程叫做具有“1性质”的方程.(1)若关于x,y的方程ax+76y+1=0是具有“1性质”的方程,则a的值为______.(2)若关于x,y的方程m−n2x−(m+n)y=1是具有“1性质”的方程,且{x=1y=2是该方程的一个解,试求m,n的值.参考答案1.D2.C3.C4.C5.D6.D7.B8.D9.B10.A11.4x−12312.{x+y=0x−y=2(答案不唯一)13.-514.−1515.116.9:5:317.1218.{x=6y=319.(1){x=1y=4;(2){x=3y=11420.小明速度为5.5千米/时.小亮速度为4.5千米/时21.{a=10b=2c=−522.(1)参加此次研学活动的师生人数是600,原计划租用13辆甲型客车(2)有三种租车方案,分别是租用甲型客车4辆,乙型客车7辆;租用甲型客车8辆,乙型客车4辆;租用甲型客车12辆,乙型客车1辆23.(1)学校购进黑文化衫160件,白文化衫40件;(2)该校这次义卖活动共获得3800元利润.24.(1)−16 (2){m=−4n=2。
人教版七年级数学下册第八章第二节解二元一次方程组测试习题(含答案)已知=2=-1xy⎧⎨⎩是方程组+=4-=+5ax y bx by a⎧⎨⎩的解,求a,b的值.【答案】=-2 =-5. ab⎧⎨⎩【解析】试题分析:把=2=-1xy⎧⎨⎩代入方程组+=4-=+5ax y bx by a⎧⎨⎩,解出关于a、b的二元一次方程组即可.试题解析:解:把=2=-1xy⎧⎨⎩=代入+=4-=+5ax y bx by a⎧⎨⎩,得:2-1=8+=+5a bb a⎧⎨⎩①②.把①代入①,得:8+(2a-1)=a+5,解得:a=-2.把a=-2代入①,得:2×(-2)-1=b,解得:b=-5.①25ab=-⎧⎨=-⎩.点睛:本题考查了二元一次方程组的解的定义及二元一次方程组的解法,是基础知识,需熟练掌握.62.用代入法解下列方程组:(1)5+2=15 8+3=-1x yx y①②⎧⎨⎩(2)3-2=-17 2-1=5-8y xx y ⎧⎨⎩()()(3)+-+=6323+-2-=28. x y x yx y x y ()()⎧⎪⎨⎪⎩【答案】(1)=-47=125.xy⎧⎨⎩(2)=-73=-28.xy⎧⎨⎩(3)=8=4xy⎧⎨⎩【解析】试题分析:(1)由①解出x,代入②即可;(2)方程整理后用代入消元法求解即可;(3)方程整理后用代入消元法求解即可.试题解析:解:(1)5+2=15 8+3=-1x yx y⎧⎨⎩①②由①,得:x=3-25y.①把①代入①,得:8(3-25y)+3y+1=0.解得:y=125.把y=125代入①,得:x=-47.①原方程组的解是47125xy=-⎧⎨=⎩.(2)3-2=-17 2-1=5-8y xx y ⎧⎨⎩()()原方程组变形为=3+112-5=-6x yx y①②.⎧⎨⎩将①代入①,得:2(3y+11)-5y=-6,6y+22-5y=-6.解得:y=-28.把y=-28代入①,得:x=3×(-28)+11=-73.①原方程组的解是7328xy=-⎧⎨=-⎩.(3)+-+=6323+-2-=28.x y x yx y x y⎧⎪⎨⎪⎩()()原方程组可化为5-=36+5=28x y x y ⎧⎨⎩①② ,由①,得:y =5x -36,①把①代入①,得:x +5(5x -36)=28,解得:x =8. 把x =8代入①,得:y =4.①这个方程组的解是84x y =⎧⎨=⎩.63.小张把两个大小不同的苹果放到天平上称,当天平保持平衡时的砝码重量如图所示.问:这两个苹果的重量分别为多少g ?【答案】大苹果的重量为200g ,小苹果的重量为150g 【解析】试题分析:根据1个大苹果=1个小苹果+50克砝码重量,1个大苹果+1个小苹果=350克砝码重量,列方程求解即可.试题解析:解:根据题意,得:=+50+=300+50x y x y ⎧⎨⎩,解得:=200=150x y ⎧⎨⎩. 答:大苹果的重量为200 g ,小苹果的重量为150 g . 64.用代入法解下列方程组:(1) 2431y x x y =-⎧⎨+=⎩①②(2)=3-2+3=7 y xx y⎧⎨⎩①②(3)3=52-3=1 m nm n①②⎧⎨⎩(4)3+2=19 2-=1x yx y⎧⎨⎩①②【答案】(1)12.xy=⎧⎨=-⎩(2)21.xy=⎧⎨=⎩(3)53.mn=⎧⎨=⎩(4)35.xy=⎧⎨=⎩【解析】试题分析:用代入消元法解答即可.试题解析:解:(1)24 31 y xx y=-⎧⎨+=⎩①②把方程①代入方程①,得:3x+2x-4=1.解得:x=1.把x=1代入①,得:y=-2.①原方程组的解为12xy=⎧⎨=-⎩.(2)=3-2+3=7y xx y⎧⎨⎩①②把①代入①,得:2x+3(3-x)=7.解得:x=2.把x=2代入①,得:y=1.①原方程组的解是21xy=⎧⎨=⎩.(3)3=52-3=1m nm n⎧⎨⎩①②将①变形为m =53n .① 把①代入①,得:2×53n-3n =1.解得:n =3.把n =3代入①,得:m =533⨯=5. ①原方程组的解为 53m n =⎧⎨=⎩.(4)3+2=192-=1x y x y ⎧⎨⎩①②由①,得:y =2x -1.①将①代入①,得:3x +4x -2=19. 解得:x =3.将x =3代入①,得:y =5.①原方程组的解为35x y =⎧⎨=⎩.65.阅读下列材料,然后解答后面的问题.我们知道方程2312x y +=有无数组解,但在实际生活中我们往往只需要求出其正整数解.例:由2312x y +=,得1222433x y x -==-,( x 、y 为正整数) 0{1220x x >∴-> 则有06x <<.又243y x =-为正整数,则23x 为整数.由2与3互质,可知: x 为3的倍数,从而3x =,代入2423y x =-=.2312x y ∴+=的正整数解为3{2x y ==.问题:(1)若62x -为自然数,则满足条件的正整数x 值有_____________个; (2)请你写出方程25x y +=的所有正整数解:_________________________; (3)若(x+3)y=8,请用含x 的式子表示y ,并求出它的所有整数解.【答案】(1)4;(2)13x y =⎧⎨=⎩,21x y =⎧⎨=⎩;(3)28x y =-⎧⎨=⎩,14x y =-⎧⎨=⎩,12x y =⎧⎨=⎩,51x y =⎧⎨=⎩.【解析】试题分析:(1)根据已知代数式为自然数,确定出x 的值即可; (2)用x 表示出y ,确定出方程的正整数解即可; (3)用x 表示出y ,确定出方程的整数解即可.试题解析:(1)由题意得:x-2=1,x-2=2,x-2=3,x-2=6, 解得:x=3,x=4,x=5,x=8,共4个; 故答案为4;(2)方程整理得:y=-2x+5, 当x=1时,y=3;当x=2时,y=1, 则方程的正整数解为1{3x y ==,2{1x y ==;故答案为1{3x y ==,2{1x y ==(3)根据题意得:y=83x +, 根据题意得:x+3=1,x+3=2,x+3=4,x+3=8, 解得:x=-2,x=-1,x=1,x=5, 相应的y=8,y=4,y=2,y=1,∴它的所有整数解为28x y ==-⎧⎨⎩,14x y -⎧⎨⎩==,12x y ==⎧⎨⎩,51x y ⎧⎨⎩==.66.小明在做家庭作业时发现练习册上一道解方程的题目被墨水污染32{?5x y x y 口-=+=∆,“口”和“△”表示被污染的内容,他着急,翻开书后面的答案,这道题的解是2{1x y ==-,你能帮助他补上“口”和“△”的内容吗?说出你的方法.【答案】8和9 【解析】试题分析:把方程组的解代入两方程即可帮助他补上方框的内容. 试题解析:把x=2,y=-1代入两方程,得 3×2-2×(-1)=8,5×2-1=9. ∴被污染的内容是8和9.67.已知方程10mx ny +=,有两个解分别是1{?2x y =-=和2{1x y ==-,求m n -的值.【答案】0 【解析】试题分析:将x 与y 的两对值代入方程得到关于m 与n 的方程组,求出方程组的解得到m 与n 的值,即可确定出m-n 的值.试题解析:将1{2x y =-=和2{1x y ==-代入方程mx+ny=10,得 210210.m n m n -+⎧⎨-⎩==, 解得:1010m n ⎧⎨⎩==,则m-n=10-10=0. 68.解方程组: (1) 4{22x y x y -=+=-①②,(2)414 {3314312x yx y+=---=①②【答案】(1)2{2xy==-; (2)3{114xy==.【解析】试题分析:(1)根据加减消元法可以解答此方程组;(2)先化简,然后根据加减消元法即可解答本题.试题解析:(1)422 x yx y-⎧⎨+-⎩=①=②①×2+②,得3x=6,解得,x=2,将x=2代入①,得y=-2,故原方程组的解是2{2xy==-;(2)414{3314312x yx y①②+=---=,化简,得414342x yx y+⎧⎨--⎩=③=④①+①,得4x=12,解得,x=3,将x=3代入③,得y=114,故原方程组的解是3 {114 xy==.69.解方程组:(1)24{?4523x yx y-=-=-(2)11{?233210.x yx y+-=+=【答案】(1)436{313xy==;(2)=3{1=2xy【解析】试题分析:(1)用减法消元法解;(2)先化简方程,再用加减消元法解试题解析:(1)24 4523x yx y-=⎧⎨-=-⎩①②由①⨯5,得:10x-5y=20③由③-②,得6x=43x=436把x=436代入①中得y=313所以方程组的解为:436313xy⎧=⎪⎪⎨⎪=⎪⎩.(2)11 23 3210 x yx y+⎧-=⎪⎨⎪+=⎩整理方程组得:328 3210 x yx y-=⎧⎨+=⎩①②由①+②得:6x=18x=3把x=3代入②中得y=12所以方程组的解为:312 xy=⎧⎪⎨=⎪⎩.70.(1)解方程:2(3x﹣2)=x﹣4(2)解方程组:.【答案】(1)x=0(2)432 xy⎧=⎪⎨⎪=-⎩【解析】试题分析:(1)先去括号,再移项合并,系数化为1;(2)先去分母,化为整系数方程组,再用加减消元法解方程组求解. (1)去括号得:6x﹣4=x﹣4,移项合并得:x=0;(2)方程组整理得:,①+②得:6x=8,解得:x=,把x=代入②得:y=﹣2,则方程组的解为.。
人教版七年级下第八章二元一次方程组(二元一次方程组的解法)同步练习题学校:___________姓名:___________班级:___________考号:___________一、填空题1.已知两个数的和是7,差是1,则这两个数的积是_____.2.对于实数,x y ,规定新运算:1x y ax by *=+-,其中,a b 是常数.若124*=,()2*310-=,则a b *= ___________.3.二元一次方程组2222x y x y +=-⎧⎨+=⎩的解为___. 4.如果ABC 的三边长分别为3,5,7,DEF 的三边长分别为3,32x -,21y -,若这两个三角形全等,则x y +=______.5.解方程组213211x y x y +=⎧⎨-=⎩①②既可用_____消去未知数x ,也可用_____消去未知数y . 6.若x 、y 满足2223x y x y -=-⎧⎨+=⎩,则代数式224x y -的值为______.二、单选题7.如果x ,y 满足方程组127x y x y +=-⎧⎨-=⎩,那么x ﹣2y 的值是( ) A .﹣4 B .2 C .6 D .88.方程组839845x y x y -=⎧⎨+=-⎩ 消去x 得到的方程是( ) A .y =4 B .y =-14 C .7y =14 D .-7y =14 9.有理数m ,n 满足|m +1|+(n ﹣2)2=0,则mn +mn 等于( ).A .3B .-2C .-1D .010.若21a b =⎧⎨=⎩是二元一次方程组3522ax by ax by ⎧+=⎪⎨⎪-=⎩的解,则x +2y 的算术平方根为( ) A .3 B .-3 CD.11.不解方程组,下列与237328x y x y +=⎧⎨+=⎩的解相同的方程组是( )A .2836921y x x y =-⎧⎨+=⎩B .283237y x x y =+⎧⎨=+⎩C .372283y x y y +⎧=⎪⎪⎨+⎪=⎪⎩D .372382y x x y -+⎧=⎪⎪⎨+⎪=⎪⎩12.如果3xm +1+5yn ﹣2=0是关于x 、y 的二元一次方程,那么( )A .01m n =⎧⎨=⎩B .11m n =⎧⎨=⎩C .03m n =⎧⎨=⎩D .13m n =⎧⎨=⎩三、解答题13.解方程(组)(1)2(21)4x -= (2)1243231y x x y ++⎧=⎪⎨⎪-=⎩ 14.已知关于x 、y 的方程组123x y a x y a-=--⎧⎨-=-⎩. (1)若0x y +=,求实数a 的值;(2)若15x y -≤-≤,求实数a 的取值范围.15.已知关于x ,y 的方程组2331x y ax by -=⎧⎨+=-⎩和2333211ax by x y +=⎧⎨+=⎩的解相同,求(3a +b )2020的值.参考答案:1.12【分析】要求这两个数,可设这两个数是x 、y ,因为这两个数的和是7,它们的差是1,所以71x y x y +=⎧⎨-=⎩,解方程求出这两个数,再求它们的积. 【详解】设这两个数是x 、y依题意得:71x y x y +=⎧⎨-=⎩解得: 43x y =⎧⎨=⎩∴这两个数的积是43=12⨯【点睛】此类题目的解决只需仔细分析题意,利用方程组即可解决问题.2.9【分析】先根据题意得到关于a 、b 的二元一次方程组21423110a b a b +-=⎧⎨-+-=⎩,求出a 、b 的值,然后根据221a b a b *=+-进行求解即可.【详解】解:由题意得:21423110a b a b +-=⎧⎨-+-=⎩, 解得13a b =-⎧⎨=⎩, ∴()222211319a b a b *=+-=-+-=,故答案为:9.【点睛】本题主要考查了新定义下的实数运算,解二元一次方程组,正确理解题意求出a 、b 的值是解题的关键.3.22x y =⎧⎨=-⎩ 【分析】由加减消元法或代入消元法都可求解.【详解】解:2222x y x y +=-⎧⎨+=⎩①②, 由∴式得:22x y =-- ,代入∴式,得:2(22)2y y ,解得2y =- , 再将2y =-代入∴式,222x ,解得2x = ,∴22x y =⎧⎨=-⎩, 故填:22x y =⎧⎨=-⎩. 【点睛】本题考查的是二元一次方程组的基本解法,本题属于基础题,比较简单. 4.6或193【分析】根据全等三角形的对应边相等分类讨论,分别求出x 值判断即可.【详解】解:∴ABC 和DEF 全等,∴当325217x y -=⎧⎨-=⎩时,解得:734x y ⎧=⎪⎨⎪=⎩, ∴719433x y +=+=; 当327215x y -=⎧⎨-=⎩时,解得:33x y =⎧⎨=⎩, ∴336x y +=+=;∴综上所述,193x y +=或6. 故答案为:6或193. 【点睛】此题考查的是根据全等三角形的性质求字母的值,掌握全等三角形的对应边相等是解决此题的关键.5. ∴×3-∴ ∴+∴【解析】略6.-6【分析】根据方程组中x +2y 和x -2y 的值,将代数式利用平方差公式分解,再代入计算即可.【详解】解:∴x -2y =-2,x +2y =3,∴x 2-4y 2=(x +2y )(x -2y )=3×(-2)=-6,故答案为:-6.【点睛】本题主要考查方程组的解及代数式的求值,观察待求代数式的特点与方程组中两方程的联系是解题关键.7.D【分析】利用方程组中的第二个方程减去第一个方程即可得.【详解】解:127x y x y +=-⎧⎨-=⎩①②, 由∴-∴得:27(1)x x y y ---=--,即28x y -=,故选:D .【点睛】本题考查了利用加减消元法解二元一次方程组,熟练掌握方程组的解法是解题关键.8.D【分析】直接利用两式相减进而得出消去x 后得到的方程.【详解】解:839845x y x y -=⎧⎨+=-⎩①② ∴-∴得:-7y =14.故答案为:-7y =14,故选:D .【点睛】此题主要考查了解二元一次方程组,正确掌握加减运算法则是解题关键. 9.C【分析】根据非负数的性质列方程求出m 、n 的值,再代入所求代数式计算即可.【详解】解:∴|m +1|+(n −2)2=0,∴m +1=0,n −2=0,解得:m =−1,n =2,∴mn +mn =−1×2+(−1)2=−2+1=−1.故选:C .【点睛】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0,也考查了有理数的混合运算.10.C【分析】将21a b =⎧⎨=⎩代入二元一次方程组中解出x 和y 的值,再计算2x y +的算术平方根即可. 【详解】解:将21a b =⎧⎨=⎩代入二元一次方程3522ax by ax by ⎧+=⎪⎨⎪-=⎩中, 得到:3522x y x y +=⎧⎨-=⎩①②, ∴+∴得:57,x =7,5x ∴= 1442,55y ∴=-= 所有方程组的解是:75,45x y ⎧=⎪⎪⎨⎪=⎪⎩74223,55x y ∴+=+⨯= ∴2x y +故选:C .【点睛】本题考查了二元一次方程组的解法,算术平方根的概念,解题的关键是熟练掌握二元一次方程组的解法.11.A【详解】试题解析:对A 选项,将方程283y x =-移项,得328.x y +=将方程6921x y +=两边同除以3,得237.x y +=所以A 选项的方程组中的两个方程与题目中的两个方程相同,即解相同,故选A12.C【分析】根据二元一次方程的定义可得到关于m 、n 的方程,可求得答案.含有两个未知数,并且含有未知数的项的次数都是1,像这样的方程叫做二元一次方程.【详解】解:∴3xm +1+5yn ﹣2=0是关于x 、y 的二元一次方程,∴1121m n +=⎧⎨-=⎩,解得03m n =⎧⎨=⎩, 故选:C .【点睛】本题主要考查二元一次方程的定义,掌握二元一次方程的未知项的次数为1是解题的关键.13.(1)32x =或12x =- (2)373x y =-⎧⎪⎨=-⎪⎩【分析】(1)利用平方根的定义解方程;(2)将方程组整理后,根据加减消元法解二元一次方程组即可求解.(1)解:2(21)4x -=,212x -=±, 解得32x =或12x =-; (2) 1243231y x x y ++⎧=⎪⎨⎪-=⎩ 整理得345231y x x y -=⎧⎨-=⎩①②, ∴+∴得,26x -=,将3x =-,代入∴得,()3435y -⨯-=, 解得73y =-,∴方程组的解为373x y =-⎧⎪⎨=-⎪⎩. 【点睛】本题考查了根据平方根解方程,加减消元法解二元一次方程组,正确的计算是解题的关键.14.(1)1a =;(2)60a -≤≤.【分析】(1)根据方程组分别用a 表示出x 、y 的值,代入0x y +=求解即可; (2)根据方程组分别用a 表示出x 、y 的值,代入15x y -≤-≤求解即可【详解】(1)由方程组123x y a x y a -=--⎧⎨-=-⎩①②, ∴-∴得:21x a =-+,将21x a =-+代入1x y a -=--得:2y a =-+,又∴0x y +=,∴2120a a -+-+=,解得:1a =;(2)由(1)可知21x a =-+,2y a =-+,又∴15x y -≤-≤,∴()12125a a --+--+≤≤,整理得:115a ---≤≤,解得:60a -≤≤.【点睛】此题考查了二元一次方程和不等式结合的含参数问题,,解题的关键是根据题意列出关于参数a 的方程或不等式.15.25a b =-⎧⎨=⎩,1. 【分析】因为两个方程组有相同的解,故只要将两个方程组中不含有a ,b 的两个方程联立,组成新的方程组,求出x 和y 的值,再代入含有a ,b 的两个方程中,解关于a ,b 的方程组即可得出a ,b 的值,代入(3a +b )2020计算即可.【详解】解:由题意可得2333211x y x y -=⎧⎨+=⎩, 解得31x y =⎧⎨=⎩, 将31x y =⎧⎨=⎩代入1233ax by ax by +=-⎧⎨+=⎩得31633a b a b +=-⎧⎨+=⎩,解得25ab=-⎧⎨=⎩,∴(3a+b)2020=(﹣6+5)2020=1.【点睛】本题考查了二元一次方程组的解,解答此题的关键是根据两方程组有相同的解得到关于x、y的方程组,求出x、y的值,再将x、y的值代入含a、b的方程组即可求出a、b的值,即可求出代数式的值.。
第八章列二元一次方程组解应用题专项训练1、一名学生问老师:“您今年多大?”老师风趣地说:“我像您这样大时,您才出生;您到我这么大时,我已经37岁了。
”请问老师、学生今年多大年龄了呢?2、某长方形的周长是44cm,若宽的3倍比长多6cm,则该长方形的长和宽各是多少?3、已知梯形的高是7,面积是56cm2,又它的上底比下底的三分之一还多4cm,求该梯形的上底和下底的长度是多少?4、某校初一年级一班、二班共104人到博物馆参观,一班人数不足50人,二班人数超过50人,已知博物馆门票规定如下:1~50人购票,票价为每人13元;51~100人购票为每人11元,100人以上购票为每人9元(1)若分班购票,则共应付1240元,求两班各有多少名学生?(2)请您计算一下,若两班合起来购票,能节省多少元钱?(3)若两班人数均等,您认为是分班购票合算还是集体购票合算?5、某中学组织初一学生春游,原计划租用45座汽车若干辆,但有15人没有座位:若租用同样数量的60座汽车,则多出一辆,且其余客车恰好坐满。
已知45座客车每日租金每辆220元,60座客车每日租金为每辆300元。
(1)初一年级人数是多少?原计划租用45座汽车多少辆?(2)若租用同一种车,要使每个学生都有座位,怎样租用更合算?6、某酒店的客房有三人间和两人间两种,三人间每人每天25元,两人间每人每天 35元,一个50人的旅游团到了该酒店住宿,租了若干间客房,且每间客房恰好住满,一天共花去1510元,求两种客房各租了多少间?7、某中学新建了一栋4层的教学大楼,每层楼有8间教室,进出这栋大楼共有4道门,其中两道正门大小相同,两道侧门大小相同,安全检查中,对4道门进行了测试:当同时开启正门和两道侧门时,2分钟可以通过560名学生,当同时开启一道正门和一道侧门时,4分钟可以通过800名学生。
(1)求平均每分钟一道正门和一道侧门各可以通过多少名学生?(2)检查中发现,紧急情况下时因学生拥挤,出门的效率将降低20%,安全检查规定,在紧急情况下全大楼的学生应在5分钟内通过这4道门安全撤离,假设这栋教学大楼每间教室最多有45名学生,问通过的这4道门是否符合安全规定?请说明理由。
人教版七年级下册数学第八章二元一次方程组含答案一、单选题(共15题,共计45分)1、已知,且x﹣y<0,则m的取值范围为()A. B. C. D.2、下列方程中: ;;;;;.属于二元一次方程的个数有()A. 个B. 个C. 个D. 个3、为了开展阳光体育活动,某班计划购买毽子和跳绳两种体育用品,共花费35元,毽子单价3元,跳绳单价5元,购买方案有()A.1种B.2种C.3种D.4种4、一只船有一个漏洞,水以均匀速度进入船内.发现漏洞时船内已经进入了一些水,如果以12个人淘水,3小时可以淘完,如果以5个人淘水,10小时才能淘完.现在要想在2小时内淘完,需要()人.A.17B.18C.20D.215、已知方程组中的,互为相反数,则的值为()A. B. C. D.6、下列方程组中,是二元一次方程组的是()A. B. C. D.7、已知关于x,y的二元一次方程组的解为,则a﹣2b的值是()A.﹣2B.2C.3D.﹣38、方程2x+3y=15的正整数解有()A.0个B.1个C.2个D.无数个9、某农户养了鸡和兔各若干,如果平均每个动物有2.5只腿,那么鸡的数量与兔的数量的比等于()A.2B.2.4C.3D.3.510、下列各方程中,是二元一次方程的是()A.2x﹣1=1+xB.x+1=2xyC.D.x+2y﹣1=011、若方程组的解x,y相等,则k的值为( )A.1B.0C.2D.﹣212、为庆祝建国70周年,某校决定组织全校600名师生参观“建国70年成就展”,租用10辆大客车和8辆小客车,恰好全部坐满已知每辆大客车的座位数比小客车多15个.若设每辆大客车有x个座位,每辆小客车有y个座位,则可列方程组为()A. B. C. D.13、一个三位数,各个数位上数字之和为10,百位数字比十位数字大1.如果百位数字与个位数字对调,则所得新数比原数的3倍还大61,那么原来的三位数是()A.235B.216C.217D.20814、已知方程组和的解相同,则等于()A.0B.4C.16D.无法确定15、下列方程中,是二元一次方程的是()A.4x=B.3x﹣2y=4zC.6xy+9=0D. +4y=6二、填空题(共10题,共计30分)16、若是方程的解,则=________.17、对于实数,定义一种运算“*”规定:,例如:4*2,∵ ,∴ ,若,是方程的解,则________.18、已知是二元一次方程组的解,则m﹣n的平方根为________.19、在二元一次方程中,当x=4时,y=________;当y=-1时,x=________.20、已知是二元一次方程5x﹣my=1的一个解,则m=________.21、若关于x,y的二元一次方程组的解也是二元一次方程x+2y=8的解,则k的值为k=________ .22、写出一个解为的二元一次方程为________.23、若展开式中不含项和x项,则m=________.24、今年春节某超市组装了甲、乙两种礼品盆,他们都是由三种零食组成,其中甲礼品盒装有3kg 零食,1kg 零食,1kg 零食,乙礼品盒装有2kg 零食,2kg 零食,2kg 零食,甲、乙两种礼品盒的成本均为盆中三种零食的成本之和.已知每kg 的成本为10元,乙种礼品盒的售价为60元,每盒利润率为25%甲种每盒的利润率为50%当甲、乙两种礼盒的销售利润率为时,该商场销售甲、乙两种礼盒的数量之比是________.25、若方程组的解是正数,且x不大于y,则a的取值范围是________ .三、解答题(共6题,共计25分)26、列方程解应用题:丰收村2台大收割机和5台小收割机同时工作2h共收割小麦3.6hm2;3台大收割机和2台小收割机同时工作5h共收割小麦8hm2.1台大收割机和1台小收割机每小时各收割小麦多少公顷?27、根据下列语句,分别设适当的未知数,列出二元一次方程或方程组:(1)甲数的比乙数的2倍少7;(2)摩托车的时速是货车的倍,它们的速度之和是150.28、某通讯器材商场,计划从一厂家购进若干部新型手机以满足市场需求,已知该厂家生产三种不同型号的手机,出厂价分别是甲种型号手机1800元/部,乙种型号手机600元/部,丙种型号手机1200元/部.商场在经销中,甲种型号手机可赚200元/部,乙种型号手机可赚100元/部,丙种型号手机可赚120元/部.(1)若商场用6万元同时购进两种不同型号的手机共40部,并恰好将钱用完,请你通过计算分析进货方案;(2)在(1)的条件下,求盈利最多的进货方案;29、在一年一度的“安仁春分药王节”市场上,小明的妈妈用280元买了甲、乙两种药材.甲种药材每斤20元,乙种药材每斤60元,且甲种药材比乙种药材多买了2斤.求两种药材各买了多少斤?30、已知方程组由于甲看错了方程①中的a,得到方程组的解为乙看错了方程②中的b,得到方程组的解为试求出a,b的值.参考答案一、单选题(共15题,共计45分)1、D2、B3、B4、A5、D6、B7、B8、C9、C10、D11、C12、D13、C14、B15、A二、填空题(共10题,共计30分)16、18、19、20、21、22、23、24、三、解答题(共6题,共计25分)27、28、30、。
第八章列二元一次方程组解应用题专项训练1、一名学生问老师:“您今年多大?”老师风趣地说:“我像您这样大时,您才出生;您到我这么大时,我已经37岁了。
”请问老师、学生今年多大年龄了呢?2、某长方形的周长是44cm,若宽的3倍比长多6cm,则该长方形的长和宽各是多少?3、已知梯形的高是7,面积是56cm2,又它的上底比下底的三分之一还多4cm,求该梯形的上底和下底的长度是多少?4、某校初一年级一班、二班共104人到博物馆参观,一班人数不足50人,二班人数超过50人,已知博物馆门票规定如下:1~50人购票,票价为每人13元;51~100人购票为每人11元,100人以上购票为每人9元(1)若分班购票,则共应付1240元,求两班各有多少名学生?(2)请您计算一下,若两班合起来购票,能节省多少元钱?(3)若两班人数均等,您认为是分班购票合算还是集体购票合算?5、某中学组织初一学生春游,原计划租用45座汽车若干辆,但有15人没有座位:若租用同样数量的60座汽车,则多出一辆,且其余客车恰好坐满。
已知45座客车每日租金每辆220元,60座客车每日租金为每辆300元。
(1)初一年级人数是多少?原计划租用45座汽车多少辆?(2)若租用同一种车,要使每个学生都有座位,怎样租用更合算?6、某酒店的客房有三人间和两人间两种,三人间每人每天25元,两人间每人每天 35元,一个50人的旅游团到了该酒店住宿,租了若干间客房,且每间客房恰好住满,一天共花去1510元,求两种客房各租了多少间?7、某中学新建了一栋4层的教学大楼,每层楼有8间教室,进出这栋大楼共有4道门,其中两道正门大小相同,两道侧门大小相同,安全检查中,对4道门进行了测试:当同时开启正门和两道侧门时,2分钟可以通过560名学生,当同时开启一道正门和一道侧门时,4分钟可以通过800名学生。
(1)求平均每分钟一道正门和一道侧门各可以通过多少名学生?(2)检查中发现,紧急情况下时因学生拥挤,出门的效率将降低20%,安全检查规定,在紧急情况下全大楼的学生应在5分钟内通过这4道门安全撤离,假设这栋教学大楼每间教室最多有45名学生,问通过的这4道门是否符合安全规定?请说明理由。
8、现有190张铁皮做盒子,每张铁皮做8个盒身或做22个盒底,一个盒身与两个盒底配成一个完整盒子,问用多少张铁皮制成盒身,多少张铁皮制成盒底,可以正好制成一批完整的盒子?9、一条船顺水行驶36千米和逆水行驶24千米的时间都是3小时,求船在静水中的速度与水流的速度。
10、已知一铁路桥长1000米,现有一列火车从桥上通过,测得火车从开始上桥到车身过完桥共用1分钟,整列火车完全在桥上的时间为40秒,求火车的速度及火车的长度。
11、为了保护生态环境,我省某山区县响应国家“退耕还林”号召,将该县某地一部分耕地改为林地,改变后,林地面积和耕地面积共有180平方千米,耕地面积是林地面积的25%,求改变后林地面积和耕地各为多少平方千米?12、王大伯承包了25亩土地,今年春季改种茄子和西红柿两种大棚蔬菜,用去了44000元,其中种茄子每亩用去了1700元,获纯利2600元;种西红柿每亩用去了1800元,获纯利2600元,问王大伯一共获纯利多少元?13、某蔬菜公司收购到某种蔬菜140吨,准备加工后上市销售,该公司的加工能力是:每天精加工6吨或者粗加工16吨,现计划用15天完成加工任务,该公司应安排几天粗加工,几天精加工,才能按期完成任务?如果每吨蔬菜粗加工后的利润为1000元,精加工后为2000元,那么该公司出售这些加工后的蔬菜共可获利多少元?14、在一次足球选拔赛中,有12支球队参加选拔,每一队都要与另外的球队比赛一次,记分规则为胜一场记3分,平一场记1分,负一场记0分。
比赛结束时,某球队所胜场数是所负的场数的2倍,共得20分,问这支球队胜、负各几场?15、某个体户向银行申请了甲、乙两种贷款,共计136万元,每一年需付利息16.84万元,甲种贷款的年利率是12%,乙种贷款的年利率是13%,问这两种贷款的数额各是多少?16、李明以两种形式分别储蓄了2000元各1000元,一年后全部取出,扣除利息所得税可得利息43.92,已知两种储蓄年利率的和为3.24%,问这两种储蓄的年利率各是百分之几?(注:公民应交利息所得税=利息金额×20%)。
17、已知甲、乙两种商品的原单价和为100元,因市场变化,甲商品降价10%,乙商品提价5%,调价后,甲、乙两种商品的单价和比原单价和提高了2%,求甲、乙两种商品的原单价各是多少元?18、“五一”期间,某商场搞优惠促销,决定由顾客抽奖确定折扣,某顾客购买甲、乙两种商品,分别抽到七折(按售价的70%销售)和九折(按售价的90%销售),共付款386元,这两种商品原售价之和为500元,问这两种商品的原销售价分别为多少元?19、某市场购进甲、乙两种商品共50件,甲种商品进价每件35元,利润率是20%,乙种商品进价每件20元,利润率是15%,共获利278元,问甲、乙两种商品各购进了多少件?20、某商场按定价销售某种电器时,每台可获利48元,按定价的九折销售该电器6台与将定价降低30元销售该电器9台所获得的利润相等。
求该电器每台的进价、定价各是多少元?21、甲、乙两件服装的成本共500元,商店老板为获取利润,决定将甲服装按50﹪的利润定价,乙服装按40﹪的利润定价。
在实际出售时,应顾客要求,两件服装均按9折出售,这样商店共获利157元,求甲、乙两件服装的成本各是多少元?22、某工厂去年的利润(总产值——总支出)为200万元,今年总产值比去年增加了20%,总支出比去年减少了10%,今年的利润为780万元,问去年的总产值、总支出各是多少万元?23、某校2004年秋季初一年级和高一年级招生总数为500人,计划2005年秋季期初一年级招生数增加20%;高一年级招生数增加15%,这样2005年秋季初一、高一年级招生总数比2004年将增加18%,求2005年秋季初一年级、高一年级的计划招生数是多少?24、在社会实践活动中,某校甲、乙、丙三位同学一同调查了高峰时段北京的二环路、三环路、四环路的车流量(每小时通过观测点的汽车车辆数),三位同学汇报高峰时段的车量情况下如下:甲同学说:“二环路车流量为每小时1000辆”;乙同学说:“四环路比三环路车流量每小时多2000辆”;丙同学说:“三环路车流量的3倍与四环路车流量的差是二环路车流量的2倍”。
请您根据他们所提供的信息,求出高峰时段三环路、四环路的车流量各是多少?25、初三(2)班的一个综合实践活动小组去A,B两个超市调查去年和今年“五一节”期间的销售情况,下图是调查后小敏与其他两位同学交流的情况.根据他们的对话,请你分别求出A,B两个超市今年“五一节”期间的销售额.26、根据下图给出的信息,求每件T恤衫和每瓶矿泉水的价格。
27、某同学在A、B两家超市发现他看中的随身听的单价相同,书包单价也相同,随身听和书包单价之和是452元,且随身听的单价比书包单价的4倍少8元。
(1)求该同学看中的随身听和书包单价各是多少元?(2)某一天该同学上街,恰好赶上商家促销,超市A所有商品打八折销售,超市B全场购物满100元返购物券30元销售(不足100元不返券,购物券全场通用),但他只带了400元钱,如果他只在一家超市购买看中的这两样物品,你能说明他可以选择哪一家购买吗?若两家都可以选择,在哪一家购买更省钱?28、“利海”通讯器材商场,计划用60000元从厂家购进若干部新型手机,以满足市场需求,已知该厂家生产三种不同型号的手机,出厂价分别为甲种型号手机每部1800元,乙种型号手机每部600元,丙种型号手机每部1200元.(1)若商场同时购进其中两种不同型号的手机共40部,并将60000元恰好用完.请你帮助商场计算一下如何购买.(2)若商场同时购进三种不同型号的手机共40部,并将60000元恰好用完,并且要求乙种型号手机的购买数量不少于6部且不多于8部,请你求出商场每种型号手机的购买数量.29、列一段文字,然后解答问题.修建润扬大桥,途经镇江某地,需搬迁一批农户,为了节约土地资源和保护环境,政府决定统一规划建房小区,并且投资一部分资金用于小区建设和补偿到政府规划小区建房的搬迁农户.建房小区除建房占地外,其余部分政府每平方米投资100元进行小区建设;搬迁农户在建房小区建房,每户占地100平方米,政府每户补偿4万元,此项政策,吸引了搬迁农户到政府规划小区建房,这时建房占地面积占政府规划小区总面积的20%.政府又鼓励非搬迁户到规划小区建房,每户建房占地120平方米,但每户需向政府交纳土地使用费2.8万元,这样又有20户非搬迁户申请加入.此项政策,政府不但可以收取土地使用费,同时还可以增加小区建房占地面积,从而减少小区建设的投资费用.若这20户非搬迁户到政府规划小区建房后,此时建房占地面积占政府规划规划小区总面积的40%.(1)设到政府规划小区建房的搬迁农户为x户,政府规划小区总面积为y平方米.可得方程组________________________________________⎧⎨⎩解得_______xy=⎧⎨=⎩(2)在20户非搬迁户加入建房前,请测算政府共需投资 __________万元;在20户非搬迁户加入建房后,请测算政府将收取的土地使用费投入后,还需投资__________万元.(3)设非搬迁户申请加入建房并被政府批准的有z户,政府将收取的土地使用费投入后,还需投资p万元.①用含z的代数式表示p;②当p不高于140万元,而又使建房占地面积不超过规划小区总面积的35%时,那么政府可以批准多少户非搬迁户加入建房?29、某山区有23名中、小学生因贫困失学需要捐助.资助一名中学生的学习费用需要a 元,一名小学生的学习费用需要b元.某校学生积极捐助,初中各年级学生捐款数额与用(1)求a、b的值;(2)初三年级学生的捐款解决了其余..贫困中小学生的学习费用,请将初三学生年级学生可捐助的贫困中、小学生人数直接填入表中.(不需写出计算过程)30、某玩具工厂广告称:“本厂工人工作时间:每天工作8小时,每月工作25天;待遇:熟练工人按计件付工资,多劳多得,计件工资不少于800元,每月另加福利工资100元,按月结算;……”该厂只生产两种玩具:小狗和小汽车。
熟练工人晓云元月份领工资元月份作小狗和小汽车的数目没有限制,从二月分开始,厂方从销售方面考虑逐月调整为:k月份每个工人每月生产的小狗的个数不少于生产的小汽车的个数的k倍(k=2,3,4,……,12),假设晓云的工作效率不变,且服从工厂的安排,请运用所学数学知识说明厂家广告是否有欺诈行为?参考答案: 12.解:()元王大伯一共获纯利答分元共获纯利分解得分得根据题意亩西红柿亩茄子设王大伯种了630001063000152600102400815105440001800170025::,,, =⨯+⨯⎩⎨⎧==⎩⎨⎧=+=+y x ②y x ①y x y x 21. 解:设甲服装的成本是x 元,乙服装的成本是y 元,依题意得。