SHELL壳牌石油公司DEP标准汇编
- 格式:pdf
- 大小:175.59 KB
- 文档页数:35
壳牌HSSE(健康、安全、保安、环境)为壳牌运输燃料和其他产品的工作人员,他们每年的运输距离将近15亿公里。
他们在极端条件下建造工厂,在遥远的海上平台工作,还经营炼油厂和化工厂。
保证人的安全是我们优先考虑的。
我们的目标是零死亡率和没有人员伤害事故。
我们的目标是确保我们的行动减少对环境和我们的周边的影响。
管理HSSEHSSE & SP 控制框架HSSE风险和保证我们识别HSSE风险与我们的经济活动相联系,并且通过减轻控制来减少这些风险。
我们减少HSSE风险与我们的经济活动相联系。
壳牌的业务经理有责任识别HSSE危险,评估和记录危险的潜在影响,并用控制和恢复措施减少或消除风险。
我们审计我们的业务和寻求担保,并要求HSSE & SP被有效的执行。
我们业务的带头人被要求在每年年底向公司总裁汇报,他们是如何实施我们的商业原则和标准,以及控制方面的有效性。
壳牌内部审计欺诈、合规管理和其他控制事件,我们向荷兰皇家壳牌公共有限公司执行委员会和董事会报告我们的HSSE政策和执行情况。
我们的进程安全专家管理专门的安全审计。
我们所有主要的工厂都符合国际环境标准ISO14001,外部事务委员会和观察员帮助我们监控环境和社会效益。
“领结”模式遵守HSSE 规定:我们强制性的救生的规定:伤害-全部可记录事故发生率HSSE 能力我们提供持续的培训以确保我们HSSE 管理精益求精的承诺,这是整个壳牌反映。
健康,安全,保安和环境绩效是评价和选择承包商的关键因素。
有力的HSSE 业绩取决于有能力的劳动者。
我们希望个人通过执行任务以达到培训,健康的身体,充分休息和警觉。
壳牌的HSSE 能力要求是根据立法和行业标准,并在壳牌的HSSE 与SP 的控制框架规定。
我们检查每个负责有重大HSSE 风险任务的人有必要的培训和技能。
这些人员包括负责一线关键HSSE 活动的操作者,规划和监督HSSE 关键活动的人员,HSSE 专业人士及起领导责任的人员。
南海LOP项目换热器的制造和检验技术The Fabrication and Inspection Technology of Nanhai LOP Project大连东北核工业设备无损检测有限公司陈华范业军内容摘要本文以SHELL公司工程标准(DEP)为基准,结合容规和国标,对南海LOP项目换热器的制造和检验技术做对比介绍。
Based on DEPs, the project standards of Shell, this paper introduces the heat exchangers’ fabrication and inspection technology of Nanhai LOP project in detail, comparing to Supervision Regulation on Safety Technology for Pressure V essels and Chinese Standards.关键词LOP DEP 制造检验1 前言2003年7月至2004年6月,本文作者作为第三方检验工程师,参加了日本JGC公司和中国寰球工程公司(以下简称HQ)联合招标的一批换热器的检验工作。
业主是中海壳牌石油化工有限公司(CNOOC and Shell Petrochemicals Company L.td,以下简称业主),换热器大部分在抚顺机械制造有限公司(以下简称抚机)制造。
设计、制造和检验标准包括GB150、GB151、HG20580~HG20585和R-2153-203及相关DEP标准,接受容规控制。
壳牌公司工程技术条件(指系列DEP标准)与国标出入很大,本文将DEP 与国标进行对比介绍,供参考。
2 设备简介在抚机制造的换热器共65台,包括了固定管板式、U型管式和浮头式,按照介质类别分为H2工况、液化气(低温)工况等,按介质毒性分为高、中、低、无毒性等,按照容规分为一、二、三类,按照R-2153-203又分为1,2,3级(实际产品中只有1级和2级)。
管道外防腐层的国内外现状与发展趋势摘要:简要介绍油气管道外防腐层的发展简史,国外3PE防腐技术的开发、应用以及我国3PE防腐设备的引进、吸收、国产化的发展过程和在石油天然气管道建设中的使用情况。
阐述了干线管道涂层、站场管道涂层、管道涂层补口、管道涂层修复、管道内涂层的国内外现状,以及新型防腐涂层的发展趋势。
关键词:油气长输管线防腐涂层 3PE FBE 3LPE一发展简史20世纪80年代初,德国曼内斯曼公司推出了该公司研究所与巴斯夫化学工业公司共同研制的3层结构聚烯烃防腐涂层(MAPEC结构),该防腐层集中了熔结环氧粉末(FBE)和挤压聚烯烃涂层的性能优势,克服了两种涂层单独使用时性能上的不足。
它首先在欧洲广泛应用,深受用户好评,是使用最多的管线涂层体系。
在北美,有关学者指出,熔结环氧涂层在近期内将继续占有主导地位,但是会举荐与改进的挤压聚烯烃涂层体系和多涂层体系(环氧粉末-挤压聚烯烃体系)分享管线防腐市场。
中国石油天然气集团公司于1994年夏决定引进3PE涂敷作业和涂敷技术,用于即将开工的陕京输气管道和库鄯输油管道的外防腐涂层。
同年12月,由中石油基建局、管道局、四川石油设计院、西北管到指挥部专家联合组团赴美国、意大利、土耳其等国考察3PE涂敷作业线。
1995年5月,由辽河油建一公司负责招标从加拿大根劳公司引进了我国第一条3PE涂敷作业线。
1996年初投入正常生产。
1996年意大利索克萨姆公司与哈尔滨塑料六厂合资建设的朔州防腐厂经改造于5月投入正常生产。
西北管道指挥部与港商合资从荷兰引进的3PE涂敷作业线,于1996年在宝鸡亚东防腐公司建成投产,至此,3PE防腐在中国得到关注和应用。
从涩宁兰管道建设开始,通过招标,加之3PE防腐材料全部国产化,3PE防腐的预制价格大幅下降,从此开始了国内3PE防腐广泛应用的时代,迄今已有20000KM 埋地钢管外防腐采用3PE防腐涂层。
目前国内已有数十条3PE涂敷作业线,具有加工Φ25-2800mm钢管3PE涂层的能力,加工方式既有缠绕式,也有圆模包覆式。
(CI-4/228.3)复级重负荷柴油机油版本1.5修订日期2016.10.28打印日期2016.10.29第1部分 化学品及企业标识化学品中文名: 壳牌劲霸(Rimula)R5 E 10W-40 (CI-4/228.3)复级重负荷柴油机油产品代码: 001C4591制造商或供应商信息供应商: 100004壳牌(中国)有限公司中国北京北京市建国门外大街1号国贸大厦2座32层电话号码: (+86) 4000103288传真: (+86) 4000108097应急咨询电话:发送邮件索要安全技术说明书: 如果您有关于该MSDS内容的任何质询,请发电邮联系推荐用途和限制用途推荐用途: 发动机油。
第2部分 危险性概述紧急情况概述外观与性状室温下液体。
颜色琥珀色气味弱烃健康危害对供应或输送而言未被评为危险物质。
安全危害未被评为可燃物,但会燃烧。
环境危害未归类为环境有害物。
GHS危险性类别根据全球协调系统(GHS)的规定,不是危险物质或混合物。
GHS标签要素象形图: 无需象形图信号词: 无警示词危险性说明: 物理性危害:(CI-4/228.3)复级重负荷柴油机油版本1.5修订日期2016.10.28打印日期2016.10.29按照GHS标准,未被归类为有害物质。
健康危害:根据GHS标准,未被列为健康危害物质。
环境危害:根据GHS标准,未被列为环境危害物质。
GHS防范说明:预防措施:无预防用语。
事故响应:无预防用语。
储存注意事项:无预防用语。
废弃处置:无预防用语。
敏感成份: 含有钙长链烷芳基磺酸盐。
可能产生过敏反应。
GHS未包括的其他危害长期或持续接触皮肤,而不适当清洗,可能会阻塞皮肤毛孔,导致油脂性粉刺/ 毛囊炎等疾病。
用过的油可能包含有害杂质。
未被评为可燃物,但会燃烧。
物理和化学危险未被评为可燃物,但会燃烧。
健康危害吸入: 在正常状况下使用时,不得将此作为主要的接触途径。
皮肤: 长期或持续接触皮肤,而不适当清洗,可能会阻塞皮肤毛孔,导致油脂性粉刺/ 毛囊炎等疾病。
应用TNO多能法估算石油化工企业建筑物抗爆需求刘 奎,申满对(中石化广州工程有限公司,广东省广州市510620)摘要:对适用于石油化工企业爆炸计算的TNO多能法进行了介绍,推导了便于使用的爆炸影响与距离的关系式。
结合对相关标准规范中爆炸的建筑安全距离的分析,利用TNO多能法计算相应的典型的爆炸蒸气云体积范围。
给出了适用于工程前期阶段的估算爆炸蒸气云体积爆炸影响及建筑物抗爆需求的方法和实例。
关键词:TNO多能法 石油化工企业 建筑物 抗爆 蒸气云 爆炸强度 石油化工建筑物的抗爆要求需要通过开展爆炸风险分析(QRA)来确定。
因缺乏合适的定量风险评价方法,且国内做不到由业主提供爆炸荷载数据[1],因此石油化工企业建筑物布局及抗爆要求经常困扰着设计人员。
通过选择爆炸计算模型及分析相关标准规范,对石油化工企业可接受风险水平情况下的爆炸蒸气云体积范围进行推算,提出便于在工程设计中估算项目建筑物抗爆要求的简便方法。
1 石油化工企业爆炸对建筑物的影响石油化工行业中可能存在的爆炸形式主要有蒸气云爆炸(VCE)、压力容器爆炸以及粉尘爆炸等,其中VCE占有很大的比重。
有统计表明,石油化工厂事故中75%的人员死伤与VCE对建筑物的毁坏有关[2]。
VCE产生的高温高压气体急速膨胀,将爆炸反应释放的能量向周边的空气快速传递,使空气出现密度、压力突变,形成冲击波,造成建筑物破坏。
爆炸超压越大,对建筑物的破坏影响越大。
根据APIRP752—2009《Managementofhazardsassociatedwithlocationofprocessplantpermanentbuildings》附录C给出的爆炸超压对建筑物内人员伤亡率估算数据,未加强的普通砖墙民用建筑,在超压达6.9kPa时,可能发生墙体倒塌,人员死亡概率约10%;在超压达10.3kPa时,建筑物可能坍塌,人员死亡概率约60%。
除爆炸超压外,爆炸对建筑影响的因素还有冲击波正压作用时间、受冲击波影响的建筑各表面的面积等,这些因素综合决定了爆炸对建筑造成的影响。
《国家标准》石油用国家标准汇总石油天然气SY00/09石油综合00标准化、质量管理01技术管理02经济管理04基础标准与通用方法07计算机应用08标志、包装、运输、贮存09卫生、安全、劳动保护10/19石油勘探、开发与集输10石油勘探、开发与集输工程综合11石油地质勘探12石油开发13石油钻井14石油开采15海洋石油作业16油、气集输[HT]20/29石油、天然气20石油、天然气综合21原油22人造石油24天然气30/49石油产品30石油产品综合31燃料油33溶剂油34润滑油36润滑脂38绝缘油39液压油液40合成油脂41真空油脂、防锈油脂42石油蜡43石油沥青44石油焦45工艺用油46炼厂气体49其他石油产品60/69石油产品添加剂60石油产品添加剂综合61添加剂90/99石油勘探、开发、集输设备90石油勘探、开发、集输设备综合91石油物探测井设备与仪器92石油钻采设备与仪器94海洋石油作业用设备97油、气处理设备98油、气集输设备SY0031—1995石油工业用加热炉安全规程SY0043—1996油气田地面管线和设备涂色标准SY0322—2000石油建设工程质量检验评定标准油田集输管道工程SY0401—1998输油输气管道线路工程施工及验收规范SY0402—2000石油天然气站内工艺管道工程施工及验收规范SY/T4067—1993SY0453—1998石油建设工程质量检验评定标准油田集输管道工程SY0466—1997天然气集输管道施工及验收规范SY0470—2000石油天然气管道跨越工程施工及验收规范SY4008—1993抽油机安装施工及验收规范SY4024—1993石油建设工程质量检验评定标准通则SY4025—1993石油建设工程质量检验评定标准建设工程SY4026—1993石油建设工程质量检验评定标准储罐工程SY4027—1993石油建设工程质量检验评定标准站内钢质工艺管道安装工程SY4028—1993石油建设工程质量检验评定标准设备安装工程SY4029—1993石油建设工程质量检验评定标准长输管道线路工程SY4030.1—1993石油建设工程质量检验评定标准电气工程(架空电力线路工程)SY4030.2—1993石油建设工程质量检验评定标准电气工程(电气装置安装工程)SY4031—1993石油建设工程质量检验评定标准自动化仪表安装工程SY4032.1—1993石油建设工程质量检验评定标准通信工程(长途通信明线线路工程)SY4032.2—1993石油建设工程质量检验评定标准通信工程(市内电话线路工程)SY4032.3—1993石油建设工程质量检验评定标准通信工程(通信管道工程)SY4032.4—1993石油建设工程质量检验评定标准通信工程(长途通信明线载波电话安装工程)SY4032.5—1993石油建设工程质量检验评定标准通信工程(长途通信电话交换设备安装工程)SY4032.6—1993石油建设工程质量检验评定标准通信工程(市内电话交换设备安装工程) SY4032.7—1993石油建设工程质量检验评定标准通信工程(市内电话程控交换设备安装工程)SY4032.8—1993石油建设工程质量检验评定标准通信工程(电信网光纤数字传输系统工程)SY4032.9—1993石油建设工程质量检验评定标准通信工程(数字微波通信工程)SY4032.10—1993石油建设工程质量检验评定标准通信工程(通信电源设备安装工程)SY4033—1993石油建设工程质量检验评定标准道路工程SY4034—1993石油建设工程质量检验评定标准桥梁工程SY4035—1993石油建设工程质量检验评定标准采暖、通风、给排水安装工程SY4037—1993石油建设工程质量检验评定标准炼油厂建设工程SY4038—1993石油建设工程质量检验评定标准气田建设工程SY4052—1992油气管道焊接工艺评定方法SY4056—1993石油天然气钢质管道对接焊缝射线照相及质量分级SY4063—1993电气设施抗震鉴定技术标准SY4064—1993常压立式储罐抗震鉴定技术标准SY4065—1993石油天然气钢质管道对接焊缝超声波探伤及质量分级SY4081—1995钢制球型储罐抗震鉴定技术标准SY4104—1995石油建设工程质量检验评定标准管道穿跨越工程SY5131—1998石油放射性测井辐射防护安全规程SY5225—1994石油与天然气钻井、开发、储运防火防爆安全生产管理规定SY5317—1988原油管线自动取样法SY5669—199[HJ*5/9]3石油及液体石油产品立式金属罐交接计量规程SY5670—1993石油及液体石油产品铁路罐车交接计量规程SY5671—1993石油及液体石油产品流量计交接计量规程SY5719—1995天然气凝液安全管理规定SY5720—1995司钻安全技术考核规则SY5726—1995石油测井作业安全规程SY5727—1995井下作业井场用电安全要求SY5728—1995滩海石油地震队安全生产管理规定SY5737—1995原油管道输送安全规定SY5742—1995石油天然气钻井井控安全技术考核管理规则SY5747—1995滩海石油建设工程安全规则SY5853—1993石油工业车用压缩天然气气瓶安全管理规定SY5854—1993油田专用湿蒸汽发生器安全规定SY5856—1993油气田电业带电作业安全规程SY5857—1993地震勘探爆炸物品安全管理规定SY5858—1993石油企业工业动火安全规程SY5876—1993石油钻井队安全生产检查规定SY5974—1994钻井作业安全规程SY5984—1994油(气)田容器、管道和装卸设施接地装置安全检查规定SY5985—1994液化石油气安全管理规定SY6024—1994油田专用湿蒸汽发生器安全操作规程SY6043—1994钻井设备拆装安全规定SY6044—1994浅海石油作业人员应急撤离条件SY6047—1994沙漠地震队野外作业安全生产管理规定SY6048—1994电法队野外作业安全生产管理规定SY6137—1996含硫气井安全生产技术规定SY6204—1996滩海测井作业安全规程SY6277—1997含硫油气田硫化氢监测与人身安全防护规定SY6278—1997天然气净化厂安全规范SY6279—1997大型塔类设备吊装安全规程SY6303—1998浅海石油设施动火安全规定SY6307—1997浅海钻井安全规程SY6309—1997钻井井场照明、设备颜色、联络信号安全规范SY6320—1997陆上油气田油气集输安全规定SY6321—1997浅海采油与井下作业安全规程SY6322—1997油(气)田测井用密封型放射源库安全技术要求SY6345—1998浅海石油作业人员安全资格SY6346—1998浅海移动式平台拖带与系泊安全规定SY6348—1998地质录井作业安全规程SY6349—1998地震勘探钻机作业安全规程SY6350—1998油气井射孔用多级自控安全起爆器安全技术规程SY6353—1998油气田变电所安全管理规定SY6354—1998稠油注汽热力开采安全技术规程SY6355—1998石油天然气生产专用安全标志SY6360—1998油田注聚合物开采安全规程SY6428—1999浅海移动式平台沉浮与升降安全规定SY6429—1999浅海石油作业消防规定SY6430—1999浅海石油船舶吊装作业安全规程SY6431—1999浅海石油作业船舶安全基本要求SY6432—1999浅海石油作业井控要求SY6433—1999浅海石油作业安全应急计划编制要求SY6442—2000石油钻井井架分级评定规范SY6443—2000压裂酸化作业安全规定SY6444—2000石油工程建设施工安全规定SY6456—2000含硫天然气集气站安全生产规定SY6457—2000含硫天然气管道安全规程SY6516—2001石油工业电焊焊接作业安全规程SY7548—1998汽车用液化石油气SY/T0004—1998油田油气集输设计规范SY/T0005—1998油田注水设计规范SY/T0006—1998油田采出水处理设计规范SY/T0007—1998钢质管道及储罐腐蚀控制工程设计规范SY/T0009—1993石油地面工程设计文件编制规程SY/T0010—1996气田集气工程设计规范SY/T0011—1996气田天然气净化厂设计规范SY/T0015.1—1998原油和天然气输送管道穿跨越工程设计规范穿越工程SY/T0015.2—1998原油和天然气输送管道穿跨越工程设计规范跨越工程SY/T0017—1996埋地钢质管道直流排流保护技术标准SY/T0019—1997埋地钢质管道牺牲阳极阴极保护设计规范SY/T0023—1997埋地钢质管道阴极保护参数测试方法SY/T0025—1995石油设施电器装置场所分类SY/T0026—1998水腐蚀性测试方法SY/T0027—1994稠油集输及注蒸汽系统设计技术规定SY/T0029—1998埋地钢质检查片腐蚀速率测试方法SY/T0032—2000埋地钢质管道交流排流保护技术标准SY/T0036—2000埋地钢质管道强制电流阴极保护设计规范SY/T0037—1997管道防腐层阴极剥离试验方法SY/T0038—1997管道防腐层特定可弯曲性试验方法SY/T0039—1997管道防腐层化学稳定性试验方法SY/T0040—1997管道防腐层抗冲击性试验方法(落锤试验法)SY/T0041—1997管道防腐层与金属粘结的剪切强度试验方法SY/T0042—2002防腐蚀工程经济计算方法SY/T0045—1998原油电脱水设计规范SY/T0046—1998油田注水脱氧设计规范SY/T0047—1998原油处理容器内部阴极保护系统技术规范SY/T0048—2000石油天然气工程总图设计规范SY/T0049—1994油田地面建设规划设计规范SY/T0051—1992水文地质工程地质图列图式SY/T0053—1997输油气管道岩土工程勘察规范SY/T0054—2002油气田工程测量规范SY/T0055—1993长距离输气管道测量规范SY/T0058—1998静力触探技术规定SY/T0059—1998控制钢制设备焊缝硬度防止硫化物应力开裂技术规范SY/T0060—1992油田防静电接地设计规定SY/T0061—1992埋地钢质管道外壁涂敷有机覆盖层技术规定SY/T0062—2000管道防腐层针入度试验方法(钝杆法)SY/T0063—1998管道防腐层检漏试验方法SY/T0064—2000管道防腐层水渗透性试验方法SY/T0065—2000管道防腐层耐磨性试验方法(滚筒法)SY/T0066—1998管道防腐层厚度的无损测量方法(磁性法) SY/T0067—1998管道防腐层耐冲击性试验方法(石灰石落下法) SY/T0069—2000原油稳定设计规范SY/T0070—1993油田注水配水间设计规范SY/T0071—1993油气集输管子及管路附件选用标准SY/T0072—1993管道防腐层高温阴极剥离试验方法标准SY/T0073—1993管道防腐层补片材料试验方法标准SY/T0074—1993管道防腐层补口绝缘密封性试验方法标准SY/T0075—2002油罐区防火堤设计规范SY/T0076—1993天然气脱水设计规范SY/T0077—1993天然气凝液回收设计规范SY/T0078—1993钢质管道内腐蚀控制标准SY/T0079—1993埋地钢质管道煤焦油瓷漆外覆盖层技术标准SY/T0080—1993油气田柴油机发电站设计规范SY/T0081—1993原油热化学沉降脱水设计规范SY/T0082—1993原油及天然气地面工程初步设计内容规范SY/T0083—1994除油罐设计规范SY/T0084—1994管道防腐层环状弯曲性能试验方法SY/T0085—1994管道防腐层自然气候曝露试验方法SY/T0086—1995阴极保护管道的电绝缘标准SY/T0087—1995钢质管道及储罐腐蚀与防护调查方法标准SY/T0088—1995钢制储罐罐底外壁阴极保护技术标准SY/T0089—1996油气厂、站、库给排水设计规范SY/T0090—1996油气田及管道仪表控制系统设计规范SY/T0091—1996油气田及管道计算机控制系统设计规范SY/T0092—1998汽车用压缩天然气加气站设计规范SY/T0093—1998汽车用液化石油气加气站设计规范SY/T0094—1998管道防腐层阴极剥离试验方法粘结电解槽法SY/T0095—2000埋地镁牺牲阳极试样试验室评价试验方法SY/T0096—2000强制电流深阳极地床技术规范SY/T0097—2000稠油油田采出水用于蒸汽发生器给水处理设计规范SY/T0305—1996滩海管道系统技术规范SY/T0306—1996滩海石油工程热工采暖技术规范SY/T0307—1996滩海石油工程立式圆筒形钢制焊接固定顶储罐技术规范SY/T0308—1996滩海石油工程注水技术规范SY/T0309—1996滩海石油工程采出水处理技术规范SY/T0310—1996滩海石油工程仪表与自动控制技术规范SY/T0311—1996滩海石油工程通信技术规范SY/T0312—1996滩海石油工程舾装技术规范SY/T0313—1996滩海石油工程码头设计与建造技术规范SY/T0314—1996滩海混凝土平台结构设计与建造技术规范SY/T0315—1997钢质管道熔结环氧粉末外涂层技术标准SY/T0316—1997新管线管的现场检验推荐作法SY/T0317—1997盐渍土地区建筑规范SY/T0318—1998石油浮放设备隔震技术标准SY/T0319—1998钢制储罐液体环氧涂料内防腐层技术标准SY/T0320—1998钢制储罐氯磺化聚乙烯外防腐层技术标准SY/T0321—2000钢质管道水泥沙浆衬里技术标准SY/T0323—2000玻璃纤维增强热固性树脂压力管道施工及验收规范SY/T0324—2001直埋式钢质高温管道保温预制施工验收规范SY/T0325—2001钢质管道穿越铁路和公路推荐做法SY/T0326—2002钢制储罐内衬环氧玻璃钢技术标准SY/T0379—1998埋地钢质管道煤焦油瓷漆防腐层技术标准SY/T0403—1998输油泵组施工及验收规范SY/T0404—1998加热炉工程施工及验收规范SY/T0407—1997涂装前钢材表面预处理规范SY/T0408—2000抽油机安装工程施工及验收规范SY/T0413—2002埋地钢质管道聚乙烯防腐层技术标准SY/T0414—1998埋地钢质管道聚乙烯胶粘带防腐层施工及验收规范SY/T0415—1996埋地钢质管道硬质聚氨酯泡沫塑料防腐保温层技术标准SY/T0419—1997油田专用水套加热炉制造、安装及验收规范SY/T0420—1997埋地钢质管道石油沥青防腐层技术标准SY/T0422—1997油田集输管道施工及验收规范SY/T0429—2000石油建设工程质量检验评定标准输油输气管道线路工程SY/T0441—2001油田注汽锅炉制造安装技术规范SY/T0442—1997钢质管道熔结环氧粉末内涂层技术标准SY/T0443—1998常压钢制焊接储罐及管道渗透检测技术标准SY/T0444—1998常压钢制焊接储罐及管道磁粉检测技术标准SY/T0447—1996埋地钢质管道环氧煤沥青防腐层技术标准SY/T0448—1997油田油气处理用钢制压力容器施工及验收规范SY/T0449—1997油气田用钢制常压容器施工及验收规范SY/T0450—1997输油(气)埋地钢质管道抗震设计规范SY/T0452—2002石油天然气金属管道焊接工艺评定SY/T0457—2000钢质管道液体环氧涂料内防腐层技术标准SY/T0460—2000天然气净化装置设备与管道安装工程施工及验收规范SY/T0468—2000石油建设工程质量检验评定标准防腐保温钢管制作SY/T0469—1998石油建设工程质量检验评定标准油田钢制容器及加热炉制作SY/T0510—1998钢制对焊管件SY/T0511—1996石油储罐呼吸阀SY/T0512—1996石油储罐阻火SY/T0515—1997油气分离器规范SY/T0516—1997绝缘法兰设计技术规定SY/T0518—2002油气管道钢制对焊管件设计规定SY/T0519—1993原油屈服值测定U形管法SY/T0520—1993原油粘度测定旋转粘度计平衡法SY/T0521—1993原油析蜡点测定显微观测法SY/T0522—1993原油析蜡点测定旋转粘度计法SY/T0523—1993油田水处理过滤器SY/T0524—1993热煤间接加热装置技术条件SY/T0525.1—1993石油储罐液压安全阀SY/T0525.2—1993石油储罐回转接头SY/T0525.3—1993石油储罐空心泡沫产作器SY/T0525.4—1993石油储罐钢制孔类附件SY/T0525.5—1993石油储罐量油孔SY/T0526.1—1993煤焦油瓷漆覆盖层底漆干提取物灰分测定SY/T0526.2—1993煤焦油瓷漆覆盖层瓷漆试样准备SY/T0526.3—1993煤焦油瓷漆覆盖层瓷漆针入度测定SY/T0526.4—1993煤焦油瓷漆覆盖层瓷漆冷弯试验SY/T0526.5—1993煤焦油瓷漆覆盖层瓷漆压痕测定SY/T0526.6—1993煤焦油瓷漆覆盖层瓷漆流淌性测定SY/T0526.7—1993煤焦油瓷漆覆盖层瓷漆流淌性测定SY/T0526.8—1993煤焦油瓷漆覆盖层瓷漆粘结相容性试验SY/T0526.9—1993煤焦油瓷漆覆盖层瓷漆加热变化试验SY/T0526.10—1993煤焦油瓷漆覆盖层瓷漆吸水率测定SY/T0526.11—1993煤焦油瓷漆覆盖层瓷漆灰分测定SY/T0526.12—1993煤焦油瓷漆覆盖层瓷漆低温脆裂和剥离试验SY/T0526.13—1993煤焦油瓷漆覆盖层瓷漆冲击试验SY/T0526.14—1993煤焦油瓷漆覆盖层瓷漆阴极剥离试验SY/T0526.15—1993煤焦油瓷漆覆盖层缠绕带拉伸强度测定SY/T0526.16—1993煤焦油瓷漆覆盖层缠绕带耐水性试验SY/T0526.17—1993煤焦油瓷漆覆盖层缠绕带稳定性试验SY/T0526.18—1993煤焦油瓷漆覆盖层缠绕带柔韧性试验SY/T0526.19—1993煤焦油瓷漆覆盖层缠绕带单位面积质量测定SY/T0526.20—1993煤焦油瓷漆覆盖层缠绕带厚度测定SY/T0526.21—1993煤焦油瓷漆覆盖层热烤缠带瓷漆取样SY/T0526.22—1993煤焦油瓷漆覆盖层热烤缠带粘结性试验SY/T0527—1993原油族组成分析高效液相色谱法SY/T0528—1993原油中微量砷含量测定法原子吸收光谱法SY/T0529—1993油田气中C-1,C-12,N-2,CO-2组分分析关联归一气相色谱法SY/T0530—1993油田污水中含油量测定方法分光光度法SY/T0531—1994油田注入水悬浮颗粒测定法电阻感应法SY/T0532—1993油田注入水细菌分析方法绝迹稀释法SY/T0536—1994原油盐含量测定法电量法SY/T0537—1994原油蜡含量测定法SY/T0538—1994管式加热炉技术条件SY/T0539—1994管式加热炉设计技术规定SY/T0540—1994石油工业加热炉型式与基本参数SY/T0541—1994原油凝点测定法SY/T0542—1994稳定轻烃组分分析气相色谱法SY/T0543—1994稳定轻烃取样方法SY/T0544—1995石油钻杆溶剂型涂料内涂层技术条件SY/T0545—1995原油析蜡热特性参数的测定差示扫描量热法SY/T0546—1996腐蚀产物的采集与鉴定SY/T0556—1998快速开关盲板SY/T0599—1997天然气地面设施抗硫化物应力开裂金属材料要求SY/T0600—1997油田水结垢趋势预测SY/T0601—1997水中乳化油、溶解油的测定SY/T4013—1995埋地钢质管道聚乙烯防腐层技术标准SY/T4041—1995油田专用湿蒸汽发生器安装及验收规范SY/T4054—1993辐射交联聚乙烯热收缩带SY/T4055—1993球形储罐[WTBZ]γ射线全景曝光技术要求SY/T4057—1993液体环氧涂料内防腐涂层钢管技术条件SY/T4068—1993石油建设工程质量检验评定标准防腐保温钢管制作SY/T4071—1993管道下向焊接工艺规程SY/T4073—1994钢质管道水泥沙浆衬里涂敷机涂敷工艺SY/T4074—1995钢制管道水泥沙浆衬里涂敷机涂敷工艺SY/T4075—1995钢质管道粉煤灰水泥沙浆衬里离心成型施工工艺SY/T4076—1995钢质管道液体涂料内涂层风送挤涂工艺SY/T4077—1995钢质管道水泥沙浆衬里风送挤涂工艺SY/T4078—1995钢质管道内涂层液体涂料补口机补口工艺SY/T4079—1995石油天然气管道穿越工程施工及验收规范SY/T4080—1995管道、储罐渗漏检测方法SY/T4083—1995电热法消除焊接应力工艺规程SY/T4084—1995滩海环境条件与荷载技术规范SY/T4085—1995滩海油田油气集输技术规范SY/T4086—1995滩海结构物上管网设计与施工技术规范SY/T4087—1995滩海石油工程通风空调技术规范SY/T4088—1995滩海石油工程给水排水技术规范SY/T4089—1995滩海石油工程电气技术规范SY/T4090—1995滩海石油工程发电设施技术规范SY/T4091—1995滩海石油工程防腐蚀技术规范SY/T4092—1995滩海石油工程保温技术规范SY/T4093—1995滩海石油设施上起重机选用与安装技术规范SY/T4094—1995浅海钢质固定平台结构设计与建造技术规范SY/T4095—1995浅海钢质移动平台结构设计与建造技术规范SY/T4096—1995滩海油田井口保护装置技术规范SY/T4097—1995滩海斜坡式砂石人工岛结构设计与施工技术规范SY/T4098—1995滩海环壁式钢模混凝土人工岛结构设计与施工技术规范SY/T4099—1995滩海海堤设计与施工技术规范SY/T4100—1995滩海工程测量技术规范SY/T4101—1995滩海岩土工程勘察技术规范SY/T4102—1995阀门的检查与安装规范SY/T4103—1995钢质管道焊接及验收SY/T5002—1996双作用钻井泵易损件连接尺寸SY/T5020—1997钻井泵用锥柱螺纹SY/T5022—1998泥浆泵用锥柱螺纹量规SY/T5023—1994石油钻机用刹车块SY/T5024—1993套管扶正器SY/T5025—1998石油钻机用井架及底座SY/T5026—1993石油钻采设备用气动元件型号编制方法SY/T5027—1993石油钻采设备用气动元件基本参数SY/T5029—1995抽油杆(抽油杆短节、光杆、接箍和异径接箍) SY/T5030—2000石油天然气工业用190系列柴油机SY/T5031—1998石油钻机用柴油机SY/T5035—1991吊钳SY/T5037—2000低压流体输送管道用螺旋缝埋弧焊钢管SY/T5040—2000桩用螺旋焊缝钢管SY/T5041—1992吊卡SY/T5043—1993石油钻采设备用气动元件通用技术条件SY5043—1984SY/T5044—2000游梁式抽油机SY/T5046.1—2000地震检波器第1部分:动圈式检波器SY/T5046.3—2002地震检波器第3部分涡流式检波器SY/T5046.4—2002地震检波器第4部分动圈式加速度检波器SY/T5048—1994石油钻机用190系列柴油机安装、操作和维护规范SY/T5049—1991钻井卡瓦SY/T5050—1993游梁式抽油机的使用与维护SY/T5051—1991钻具稳定器SY/T5053.1—2000防喷器及控制装置防喷器SY/T5053.2—2001地面防喷器及控制装置SY/T5054—1991开式下击器SY/T5055—1985XJ K型地面下击器SY/T5056—1993偏心辊子整形器SY/T5059—2000组合泵筒管式抽油泵SY/T5061—1993钻井液用石灰石粉SY/T5062—1994钻井液用水解聚丙烯腈钠盐SY/T5063—1994钻井液用水解聚丙烯腈钙盐SY/T5064—1985泥浆泵双金属缸套技术条件SY/T5066—1997地层测试器SY/T5066.2—1993油气田用地层测试器地面控制装置SY/T5067—1991安全接头SY/T5068—2000钻修井用打捞筒SY/T 5069—2000钻修井用打捞矛SY/T5070—2002钻修井用割刀SY/T5072—1998石油厢式工程车通用技术条件SY/T5073—1993测井绞车SY/T5074—1991石油修井用动力钳SY/T5078.1—1991水力活塞泵及地面装置水力活塞泵SY/T5078.2—1991水力活塞泵及地面装置地面泵SY/T5078.3—1991水力活塞泵及地面装置控制管汇SY/T5079—1998试井车SY/T5080—1992修井转盘SY/T5082—1991随钻震击器SY/T5083—1991尾管悬挂器SY/T5084—1993反循环打捞篮技术条件SY/T5085—1991可弯肘节SY/T5086—1985油压上击器和震击加速器SY/T5087—1993含硫油气田安全钻井作法SY/T5088—2002评定井身质量的项目和计算方法SY/T5089—1992钻井井史及班报表格式3SY/T5091—1993钻井液用磺化栲胶SY/T5092—2002钻井液用磺化褐煤SY/T5093—1992钻井液用羧甲基纤维素钠盐SY/T5094—1995钻井液用磺甲基酚醛树脂SY/T5095—1993石油钻采设备用气动元件换向阀试验方法SY/T5096—1993石油钻采设备用气动元件调压阀试验方法SY/T5097—1996钻(修)井多参数仪技术条件SY/T5098—1991石油下井仪表用计时器技术条件SY/T5099—1985石油下井仪器温度、压力分级及其匹配SY/T5100—1991石油下井仪表螺旋弹簧管技术条件SY/T5102—1993石油勘探开发仪器基本环境试验方法试验K:高温高压试验3SY/T5103—2000检波器组合软电缆SY/T5105—1997油气田用封隔器分类及型号编制方法SY/T5106—1998油气田封隔器通用技术条件SY/T5107—1995水基压裂液性能评价方法SY/T5108—1997压裂支撑剂性能测试推荐方法SY/T5110—2000套管刮削器SY/T5111—1986铅封注水泥套管补接器SY/T5112—1998钻井和采油提升设备规范SY/T5114—1992打捞公锥SY/T5115—1992打捞母锥SY/T5116—1997沉积岩中总有机碳的测定SY/T5117—1996岩石热解分析方法SY/T5118—1995岩石中氯仿沥青的测定脂肪抽提器法SY/T5119—1995岩石可溶有机物和原油族组分柱层析分析方法SY/T5120—1997岩石氯仿抽提物及原油中饱和烃气相色谱分析方法SY/T5121—1986岩石有机质及原油红外光谱分析方法SY/T5122—1999岩石有机质量中碳、氢、氧元素分析方法SY/T5123—1995沉积岩中干酪根分离方法SY/T5124—1995沉积岩中镜质组反射率测定方法SY/T5125—1996透射光荧光干酪根显微组分鉴定及类型划分方法SY/T5127—2002井口装置和采油树规范SY/T5128—1997油气井聚能射孔器通用技术条件SY/T5129—1996密度测井仪刻度SY/T5132—1997测井原始资料质量要求SY/T5133—1993可退式倒扣捞矛SY/T5134—1993石油勘探开发仪器基本环境试验方法试验G:振动(正弦)试验S SY/T5138—1992三缸单作用钻井泵SY/T5139—1993立放运井架车SY/T5140—1987通井车通用技术条件SY/T5141—2002石油钻机用离心涡轮液力变矩器SY/T5142—1995石油钻机用190系列柴油机大修理技术条件SY/T5143—1998组合泵筒管式泵结构及主要零件基本尺寸SY/T5144—1997钻铤SY/T5146—1997整体加重钻杆SY/T5147—2000磁力打捞器SY/T5148—1998石油钻采设备用气动元件单向节流阀SY/T5149—1997石油钻采设备用气动元件快速排气阀试验方法SY/T5150—2000分级注水泥器SY/T5151—1993可退式倒扣捞筒SY/T5153—1998油藏岩石润湿性测定SY/T5154—1998油气藏流体取样推荐作法SY/T5157—1991数字地震仪SY/T5158—1991石油勘探数字测井仪技术条件SY/T5161—2002岩石中金属元素原子吸收光谱测定方法SY/T5162—1997岩石样品扫描电子显微镜分析方法SY/T5163—1995沉积岩粘土矿物相对含量X射线衍射分析方法SSY/T5164—1998三牙轮钻头SY/T5165—1987SQ3型取样器SY/T5166—1995电子示功仪SY/T5167.4—1993潜油电泵使用和维护SY/T5167.5—1993潜油电泵配套附件和工具SY/T5168—1999石油钻采设备零件分类编码系统SY/T5170—1998石油天然气工业用钢丝绳规范SY/T5171—1999石油物探测量规范SY/T5172—1996直井下部钻具组合设计方法SY/T5176—1993井下作业劳动定额SY/T5179—1993石油机械加工劳动定额SY/T5181—2000裸眼井砾石充填防砂推荐作法SY/T5182—1987绕焊不锈钢筛管SY/T5183—2000油井防砂效果评价推荐方法SY/T5184—1997油、气、水井防砂作业用石英砂SY/T5185—1987砾石充填防砂水基携砂液性能评价推荐方法SY/T5187—1997游梁式抽油机大修理技术条件SY/T5188—1997抽油泵维护与使用推荐作法SY/T5189—1987水力活塞泵的使用、维护SY/T5190—1991综合录井仪技术条件SY/T5191—1993气相色谱测井仪技术条件SY/T5192—1991地震勘探专用电缆SY/T5193—1991数控地震仪SY/T5196—1995抽油杆打捞筒SY/T5197—1995修井用滑牙块打捞矛SY/T5199—1997套管、油管、管线管用螺纹脂SY/T5200—2002钻柱转换接头SY/T5202—1991石油修井机技术条件SY/T5203—1991石油勘探开发仪器基本环境试验总则SY/T5204—1997石油下井仪器金属绝热瓶通用技术条件SY/T5207—1987石油钻采设备用气动元件活塞式气缸型式试验SY/T5208—2000石油修井主要提升设备SY/T5209—1991修井用天车SY/T5210—1991修井用水龙头SY/T5211—1993高压管接和高压活动弯头SY/T5212—2000游梁式抽油机质量分等SY/T5213—1987闭式下击器SY/T5215—1987钻具止回阀SY/T5216—2000常规取心工具SY/T5217—2000金刚石钻头及金刚石取心钻头SY/T5218—1991石油勘探开发仪器基本环境试验方法试验A:高温试验SY/T5221—1991石油勘探开发仪器基本环境试验方法试验B:冲击试验SY/T5222—1992修井与采油井架技术条件SY/T5226—1997CJT系列抽油机节能拖动装置SY/T5230—1991石油勘探开发仪器基本环境试验方法试验C:盐雾试验SY/T5231—1999石油工业计算机安全保密管理规程SY/T5232—1999石油工业应用软件工程规范SY/T5233—1991钻井液用絮凝剂评价程序SY/T5234—1991喷射钻井水力参数计算方法SY/T5235—1991抽油杆吊卡SY/T5236—2000抽油杆吊钩SY/T5237—1991水中氢同位素分析方法锌还原封管法SY/T5238—1991天然气中氢碳氧同位素制样方法SY/T5239—1991石油和沉积有机质的氢、碳同位素分析方法SY/T5240—1991照相测斜仪SY/T5241—1991水基钻井液用降滤失剂评价程序SY/T5242—1991钻井液用处理剂中磺基含量的测定方法SY/T5243—1991水基钻井液用降粘剂评价程序SY/T5244—1991钻井液管汇SY/T5246—1991修井打捞工具通用技术条件SY/T5247—1997套铣作业方法SY/T5248—1991钻井井下落物打捞方法SY/T5249—2000地面液压驱动可控震源车SY/T5250—1991YBG2500型液压背罐车技术条件SY/T5251—1991石油天然气探井质量基本要求SY/T5252—2002岩样的自然伽马能谱分析方法SY/T5254—2000裸眼井测井数据处理符号及计算方法SY/T5255—1991石油钻井用砂泵SY/T5256—1991快速开关盲板SY/T5257—1991钢制弯管SY/T5258—1991生物标志物色谱质谱分析鉴定方法SY/T5259—1991岩屑罐顶气轻烃的气相色谱分析方法SY/T5260—1991压裂管汇SY/T5261—1991火筒式加热炉受压元件强度计算方法SY/T5262—2000火筒式加热炉规范SY/T5263—1991火筒式加热炉设计技术规定SY/T5264—1996原油集输系统效率测试和单耗计算方法SY/T5265—1996油田注水地面系统效率测试和单耗计算方法SY/T5266—1996机械采油井系统效率测试方法SY/T5267—2000油田原油损耗测试方法SY/T5268—1996油田电力网网损率测试方法SY/T5270—2000高压注水管路配件设计技术规定SY/T5271—2000卡点确定与爆炸松扣作法SY/T5272—1991常规钻进安全技术规程SY/T5273—2000油田采出水用缓蚀剂性能评价方法SY/T5274—2000树脂涂层砂SY/T5275—2002偏心配水工具。
MANUAL EQUIPMENT IN LPG INSTALLATIONSDEP30.06.10.11-Gen.July1997DESIGN AND ENGINEERING PRACTICEUSED BYCOMPANIES OF THE ROYAL DUTCH/SHELL GROUPmeans(electronic,mechanical,reprographic,recording or otherwise)without the prior written consent of the copyright owners.PREFACEDEP(Design and Engineering Practice)publications reflect the views,at the time of publication,of:Shell International Oil Products B.V.(SIOP)andShell International Exploration and Production B.V.(SIEP)andShell International Chemicals B.V.(SIC)The Hague,The Netherlands,and other Service Companies.They are based on the experience acquired during their involvement with the design,construction,operation and maintenance of processing units and facilities,and they are supplemented with the experience of Group Operating companies.Where appropriate they are based on,or reference is made to,national and international standards and codes of practice.The objective is to set the recommended standard for good design and engineering practice applied by Group companies operating an oil refinery,gas handling installation,chemical plant,oil and gas production facility,or any other such facility,and thereby to achieve maximum technical and economic benefit from standardization.The information set forth in these publications is provided to users for their consideration and decision to implement. This is of particular importance where DEPs may not cover every requirement or diversity of condition at each locality. The system of DEPs is expected to be sufficiently flexible to allow individual operating companies to adapt the information set forth in DEPs to their own environment and requirements.When Contractors or Manufacturers/Suppliers use DEPs they shall be solely responsible for the quality of work and the attainment of the required design and engineering standards.In particular,for those requirements not specifically covered,the Principal will expect them to follow those design and engineering practices which will achieve the same level of integrity as reflected in the DEPs.If in doubt,the Contractor or Manufacturer/Supplier shall,without detracting from his own responsibility,consult the Principal or its technical advisor.The right to use DEPs is granted by SIOP,SIEP or SIC,in most cases under Service Agreements primarily with companies of the Royal Dutch/Shell Group and other companies receiving technical advice and services from SIOP, SIEP or SIC.Consequently,three categories of users of DEPs can be distinguished:1)Operating companies having a Service Agreement with SIOP,SIEP,SIC or other Service Company.The use ofDEPs by these Operating companies is subject in all respects to the terms and conditions of the relevant Service Agreement.2)Other parties who are authorized to use DEPs subject to appropriate contractual arrangements.3)Contractors/subcontractors and Manufacturers/Suppliers under a contract with users referred to under1)or2)which requires that tenders for projects,materials supplied or-generally-work performed on behalf of the said users comply with the relevant standards.Subject to any particular terms and conditions as may be set forth in specific agreements with users,SIOP,SIEP and SIC disclaim any liability of whatsoever nature for any damage(including injury or death)suffered by any company or person whomsoever as a result of or in connection with the use,application or implementation of any DEP,combination of DEPs or any part thereof.The benefit of this disclaimer shall inure in all respects to SIOP,SIEP,SIC and/or any company affiliated to these companies that may issue DEPs or require the use of DEPs.Without prejudice to any specific terms in respect of confidentiality under relevant contractual arrangements,DEPs shall not,without the prior written consent of SIOP and SIEP,be disclosed by users to any company or person whomsoever and the DEPs shall be used exclusively for the purpose for which they have been provided to the user.They shall be returned after use,including any copies which shall only be made by users with the express prior written consent of SIOP and SIEP.The copyright of DEPs vests in SIOP and ers shall arrange for DEPs to be held in safe custody and SIOP or SIEP may at any time require information satisfactory to them in order to ascertain how users implement this requirement.All administrative queries should be directed to the DEP Administrator in SIOP.NOTE:In addition to DEP publications there are Standard Specifications and Draft DEPs for Development(DDDs).DDDs generally introduce new procedures or techniques that will probably need updating as further experience develops during their use.The above requirements for distribution and use of DEPs are also applicable to Standard Specifications and DDDs.Standard Specifications and DDDs will gradually be replaced by DEPs.TABLE OF CONTENTS1.INTRODUCTION (4)1.1SCOPE (4)1.2DISTRIBUTION,INTENDED USE AND REGULATORY CONSIDERATIONS (4)1.3DEFINITIONS (4)1.4CROSS-REFERENCES (4)2.PUMPS (5)2.1GENERAL (5)2.2PUMP SELECTION (5)2.3NET POSITIVE SUCTION HEAD(NPSH) (5)2.4DIFFERENTIAL HEAD (5)2.5INSTALLATION REQUIREMENTS (5)PRESSORS (7)3.1GENERAL (7)3.2CENTRIFUGAL COMPRESSORS (7)3.3RECIPROCATING COMPRESSORS (7)3.4SCREW COMPRESSORS (7)3.5INSTALLATION REQUIREMENTS (7)4.STRAINERS (9)5.VALVES (10)6.FLEXIBLE ARMS,HOSES AND COUPLINGS (11)7.MEASURING/CONTROL INSTRUMENTS (12)7.1GENERAL (12)7.2SPECIFIC REQUIREMENTS (12)7.3LEVEL GAUGING EQUIPMENT (12)7.4PRESSURE INSTRUMENTS (13)7.5TEMPERATURE MEASURING INSTRUMENTS (13)7.6WEIGHING EQUIPMENT (13)7.7QUALITY MEASURING INSTRUMENTS(QMIs) (13)7.8METERING EQUIPMENT (14)7.9GAS DETECTORS (15)8.ODORISING FACILITIES (16)8.1GENERAL (16)8.2ODORISING AGENTS (16)8.3HEALTH AND SAFETY HAZARDS (16)8.4ODORANT INJECTION RATES (17)8.5STORAGE AND HANDLING OF ODORANTS (17)8.6INJECTION SYSTEMS (17)8.7EQUIPMENT MATERIALS FOR HANDLING ODORANTS (18)9.AREA CLASSIFICATION,EARTHING AND BONDING (19)9.1AREA CLASSIFICATION (19)9.2EARTHING AND BONDING (19)10.REFERENCES (20)APPENDICESAPPENDIX1TABLES (22)APPENDIX2FIGURES (25)1.INTRODUCTION1.1SCOPEThis DEP specifies requirements and gives recommendations for main equipment(pumps, compressors,strainers,valves,flexible loading arms,quality measuring instruments and odorisation facilities)available for use in LPG installations.LPG includes commercial propane,commercial butane and mixtures thereof.This DEP is a revision of the DEP with the same number dated November1986.1.2DISTRIBUTION,INTENDED USE AND REGULATORY CONSIDERATIONSUnless otherwise authorised by SIOP and SIEP,the distribution of this DEP is confined to companies forming part of the Royal Dutch/Shell Group or managed by a Group company, and to Contractors nominated by them(i.e.the distribution code is"C",as defined in DEP00.00.05.05-Gen.).This DEP is intended for use in oil refineries,chemical plants,gas plants,exploration and production facilities and supply/marketing installations.If national and/or local regulations exist in which some of the requirements may be more stringent than in this DEP the contractor shall determine by careful scrutiny which of the requirements are the more stringent and which combination of requirements will be acceptable as regards safety,environment,economic and legal aspects.In all cases the contractor shall inform the Principal of any deviation from the requirements of this DEP which is considered to be necessary in order to comply with national and/or local regulations.The Principal may then negotiate with the Authorities concerned with the object of obtaining agreement to follow this DEP as closely as possible.1.3DEFINITIONSThe Contractor is the party which carries out all or part of the design,procurement, construction,commissioning or management of a project or operation of a facility.The Principal may undertake all or part of the duties of the Contractor.The Manufacturer/Supplier is the party which manufactures or supplies equipment and services to perform the duties supplied by the Contractor.The Principal is the party which initiates the project and ultimately pays for its design and construction.The Principal will generally specify the technical requirements.The Principal may include an agent or consultant authorised to act for and on behalf of the Principal.The word shall indicates a requirement.The word should indicates a recommendation.1.4CROSS-REFERENCESWhere cross-references to other parts of this DEP are made,the referenced section number is shown in brackets.Other documents referenced by this DEP are listed in(10).2.PUMPS2.1GENERALThe choice of pumps depends on:•the power consumption;•the reliability required;•the required flow rate;•the net positive suction head(NPSH)available;•the differential head requirements.2.2PUMP SELECTIONCentrifugal pumps are the preferred type for LPG handling.However,certain conditions may prevail in which centrifugal pumps are not the optimum solution,in which case a positive displacement pump may be selected.For details,refer to DEP31.29.02.30-Gen., DEP 31.29.06.30-Gen.and DEP31.29.12.30-Gen.2.3NET POSITIVE SUCTION HEAD(NPSH)An important consideration when selecting a pump is the NPSH required(NPSH R)or available(NPSH A).The difference between NPSH A and NPSH R shall be at least1metre liquid under all circumstances.2.4DIFFERENTIAL HEADWhen calculating the differential head required,the following shall be taken into account:•Pressure decrease in the supply vessel because of vaporisation of liquid to replace the product removed.•Pressure increase in the receiving vessel,due to condensation of vapour as the liquid level rises.NOTE:The pressure in the supply/receiving vessel is affected by the presence or absence of a vapour return line.Figure1illustrates differential head and NPSH.2.5INSTALLATION REQUIREMENTS2.5.1GeneralRefer to DEP31.29.00.10-Gen.and DEP31.29.02.11-Gen.Pumps shall be located as close as practicable to the supply vessel,while complying with safety(refer to DEP30.06.10.12-Gen.),process operating and maintenance requirements.The location of pumps shall be such that in the event of leakage from glands,connections, etc.,potential flame impingement on vessels and piping shall be prevented.Pumps shall be located as close as possible to the supply vessel to:a)Minimise friction in the pump suction system,thereby having a positive effect on theNPSH available;b)Minimise heat transfer into the suction piping system, e.g.from solar heat.Heattransfer can be reduced by,for example,painting the pipes in a light,heat-reflectingcolour,fitting sun shades or applying insulation.If sun shades are used,they shouldnot obstruct fire fighting.Insulation should also be effective in protecting piping againstflame impingement.2.5.2Suction linesSuction lines shall be provided with suction strainers(see Section4)to remove extraneous solid material.They shall slope continuously downward from vessel outlet to pump inlet and,wherever possible,a straight length of pipe should be fitted immediately upstream of the pump suction flange.The pressure rating of the pump suction valve,as well as of the piping between this valve and the pump,shall be the same as that selected for the discharge piping.2.5.3Isolation valvesAll pumps and strainers shall be provided with isolation valves to enable them to be taken out of service for maintenance.2.5.4Bypass lines/'No Flow'cut-offIf a pump is operated against a closed discharge valve,the temperature of the liquid will rise,possibly causing vaporisation of the product and damage to the pump.To avoid this,a bypass line should be provided to return the liquid to the supply vessel.For non-centrifugal pumps,the bypass lines shall be fitted with either a pressure differential valve,set to lift at,or just below,the pump maximum working pressure,or with a low-flow controller.For centrifugal pumps,the bypass line and valve shall be sized for the minimum allowable flow of the pump,which shall be at least25%of the pump's design flow rate at its best efficiency point.For positive displacement pumps,the bypass system shall accommodate100%of the pump's design flow rate.For pumps with'direct on-line'starting,overheating of the liquid shall be avoided by the provision of a'no flow'switch in the discharge line.A suitable time delay should be included before the switch operates.2.5.5Discharge linesCentrifugal pumps shall be fitted with a non-return valve close to the discharge flange to prevent'back-flow'and consequent reverse rotation.2.5.6Vent valvesTo allow accumulated vapour to be vented before starting,pumps shall have a vent valve at the highest point and should also have one at the seal chamber,where applicable.In marketing depots/consumer installations small pumps need not have a provision for venting seals.Where venting is applied the vented vapour should be returned back to the suction vessel.Drain points on LPG pumps should be permanently blanked without valves.2.5.7Mechanical sealsRefer to API610,API682and DEP31.29.02.30-Gen.PRESSORS3.1GENERALThe choice of compressor depends on:•the reliability required,i.e.the cost of out-of-service time;•the required flow rate;•the differential head required;•the discharge pressure;•whether the use is continuous or intermittent.Compressors provide a flexible means of transferring LPG but are generally restricted,in terms of performance,to use in systems where differential pressures do not exceed around 2bar.Compressors are also used to evacuate vessels,piping and other equipment and to recover vapour.This is an important consideration when LPG is transported in vessels which do not drain completely,e.g.ships or rail tank wagons which are unloaded through a top connection dip pipe.Vapours may cool and condense in piping,and the compressor installation shall be designed so that condensate does not drain back towards the compressor.Compressors should be located as close as possible to the vessel being unloaded.Compressors shall be selected in accordance with DEP31.29.40.10-Gen.Installation shall comply with the requirements of DEP31.29.00.10-Gen.Selected compressor type shall comply with the type related DEP.3.2CENTRIFUGAL COMPRESSORSCentrifugal compressors-essentially constant pressure,variable volume machines-shall be used only for flow rates above120litres per second at compressor discharge conditions.Refer to DEP 31.29.40.30-Gen.3.3RECIPROCATING COMPRESSORSReciprocating compressors-essentially constant volume,variable pressure machines-are used for services where the flow/pressure requirements would cause problems with a centrifugal type,i.e.when small flow but high pressure is required.For LPG service,oil contamination of the gas shall be avoided.The gas system shall be isolated from the lubrication system.Refer to DEP 31.29.40.31-Gen.3.4SCREW COMPRESSORSOil-free screw compressors should not be used as they are close-clearance machines running at high speed,needing careful attention and operation.3.5INSTALLATION REQUIREMENTS3.5.1GeneralRefer to DEP31.29.00.10-Gen.and DEP31.29.40.10-Gen.Compressors should be conveniently sited for process and operating requirements.Easy access for maintenance is important.Adequate ventilation of the location shall be ensured in LPG service.3.5.2Suction linesCompressor suction lines shall be provided with suction strainers to remove solid material (refer to(4)).To prevent condensed product from reaching the compressor,knock-out vessels are required which shall have double-valve draining/bleed systems.A liquid high level emergency alarm with trip shall be provided on knock-out vessels.3.5.3Isolation,non-return and pressure relief valvesAll compressors and their ancillaries(strainers,knock-out vessels,etc.)shall be provided with isolation valves(preferably with spectacle blinds)to enable the unit to be taken out of service for maintenance.As centrifugal compressors can only generate a limited pressure increase before surging,it is normal practice to design upstream equipment so that it can cope with the maximum pressure produced by a centrifugal compressor at its surge point.If this is not economic due to the high differential pressures between normal operating pressure and surge pressure,a full flow pressure relief valve(PRV)followed by a non-return valve shall be fitted immediately downstream of the compressor to prevent back-flow and minimise surge effects.Reciprocating compressors shall be provided with PRVs set to protect the system from pressures higher than the maximum working pressure.Isolation and non-return valves shall be suitable for operation at the low temperatures which can occur during venting or depressuring.3.5.4Bypass linesBypass lines and valves shall be sized to take the full design flow rate of the compressor units being bypassed.3.5.5Discharge linesIf a compressor is used for liquid transfers(refer to DEP30.06.10.13-Gen.),the loss of compressor head shall be minimised;hence the compressed product discharge lines shall be as short as possible.In cold climates and/or with long discharge lines,insulation and/or tracing may also be necessary.This is not a requirement for other applications.To check compressor performance,suitable instrumentation indicating flow rate, temperature and pressure shall be provided.3.5.6Cooling water supplyAny cooling water supplied to compressors shall be at a temperature at least5°C above the gas entry temperature in order to prevent condensation.3.5.7Anti-surge controlIn order to ensure that a centrifugal compressor only operates in the stable region between its surge point and its rated point,an anti-surge control and independent trip system shall be provided.Facilities should be provided so that in the event of a trip,adequate seal oil pressure is maintained to obviate the need for depressuring the compressor.3.5.8Purging facilitiesSuitable purging connections on the inlet and discharge piping shall be provided to enable compressors to be safely commissioned and maintained.4.STRAINERSRefer to DEP31.29.00.10-Gen.,DEP31.38.01.11-Gen.and Standard Drawings S38.002, S38.004and S38.041.5.VALVESDEP31.38.01.11-Gen.shall apply.For the uses of the various types of valves,refer also to DEP30.06.10.12-Gen.,where valves are described in relation to the systems in which they perform their specific functions:•drain valves;•vent valves;•pressure relief valves;•emergency valves;•non-return valves;•excess flow valves;•thermal expansion relief valves.A wide range of shut-off valves are available for LPG service,including ball,gate,butterfly,plug or globe valves,and the choice will depend on the type of operation,the service (including fire-safe features),piping class requirements and economic factors.If the first valve in the bottom line of a vessel is larger than DN150it shall not be a gate valve(refer to DEP30.06.10.12-Gen.).General technical considerations relevant to all valves are as follows:•Careful consideration shall be given to those parts of LPG systems where valves may be subjected to fire engulfment.This is of particular relevance for emergency shutdown(ESD)valves(refer to DEP30.06.10.12-Gen.).Such valves shall be fire-safe inaccordance with BS6755or API Spec.6FA.•Although gate valves are considered to be fire-safe due to their all-metal construction, they tend to leak when subjected to flame engulfment.Ball valves with special two-piece valve seal designs,with a primary soft(PTFE)seal and a secondary(back-up)metal seal,are also considered to be fire-safe.High-performance butterfly valves,often with a triple seal design,also meet current fire-safe requirements.•In general,ball valves with PTFE sealing are recommended.6.FLEXIBLE ARMS,HOSES AND COUPLINGSRefer to DEP30.06.10.13-Gen.7.MEASURING/CONTROL INSTRUMENTS7.1GENERALSuitable measurement and control equipment shall be installed in LPG pressure storage facilities,to provide:•operational measurement data and warning signals,should undesirable or unsafe operating conditions develop(the same equipment giving warning signals mayautomatically initiate corrective actions);•measurement data with sufficient accuracy to ensure the effective operation and control of stocks and custody transfers.The installation and selection of instruments used on LPG pressure storage facilities shall be guided by:•The safe operation procedures of the facilities(including presentation to the operator of measurement data,and the facilities allowing maintenance and calibrations to beperformed without disturbing normal operations).•The required method of displaying operational and accounting measurement data,e.g.local read-out only,or local read-out with data display in a central operations oraccounting centre.Safety/operating aspects,local regulations and economic justifications will normally determine the extent of automation(refer to DEP32.31.00.32-Gen.).7.2SPECIFIC REQUIREMENTSInstruments shall be LPG-compatible and suitable for operation at the design pressure of the storage vessel,and preferably at its test pressure.Wetted parts of instruments shall be suitable for use with LPG containing traces of sulphur, sodium hydroxide and other contaminants unless the absence of these can be guaranteed.If the presence of liquid LPG in the instrument tubing adversely affects instrument performance,then such tubing shall drain into the vessel liquid space.Conversely,instrument connections made to the liquid space shall vent to the vapour space.This is important because small temperature differences between the instrument tubing and the storage vessel can cause vaporisation of liquid LPG or condensation of gaseous LPG.Electrical and electronic instruments shall be suitable for the hazardous area class in which they are located(see9.1).Glass gauges shall not be used.If instruments are not mounted in pockets which are an integral part of the vessel(e.g.thermowells)then they shall be connected to the vapour space or shall be provided with means(e.g.restricted orifices)to minimise product loss in the event of failure.Instruments with a detachable sensor which is unlikely to need maintenance(e.g.solid state)should be used wherever possible.7.3LEVEL GAUGING EQUIPMENTLevel gauging in LPG storage vessels shall be possible under all circumstances.Storage vessels shall be equipped with one self-revealing level gauge,of the servo-operated or radar type.For details,refer to DEP30.06.10.12-Gen.and DEP32.31.00.32-Gen.For operational information,an accuracy of1%of measuring span is adequate.Foraccounting purposes,the resolution of the level gauge shall be approximately2mm or equivalent.Level gauges used for custody measurements usually require the approval of the Local Authorities.Ready verification of the datum setting shall be possible for calibration purposes.7.4PRESSURE INSTRUMENTSPressure measurements in the vapour space of LPG storage vessels shall be possible for the following reasons:•as a check on product quality,as the vapour pressure is related to temperature and product characteristics;•to enable the calculation of the liquid equivalent of the vapour phase;•as a safety check against overpressure.Pressure gauges are also used for operational control purposes, e.g.pump pressures, pipeline pressures.For details,refer to DEP32.31.00.32-Gen.7.5TEMPERATURE MEASURING INSTRUMENTSRefer to DEP32.31.00.32-Gen.7.6WEIGHING EQUIPMENTOnly approved equipment meeting at least the requirements of the local regulations shall be used.Weighbridges with concrete or steel platforms for handling complete vehicles with capacities up to120tonnes are available.They may be equipped with electronic ticket printers,etc.The bridge should be protected from excessive wind forces,and shall be properly ventilated and drained.7.7QUALITY MEASURING INSTRUMENTS(QMIs)7.7.1GeneralQMIs shall be selected in accordance with DEP32.31.50.12-Gen.For a full description of LPG quality specifications,test procedures,methods and equipment,refer to ASTM D1835,EN589and ISO9162.7.7.2Sampling equipmentHigh pressure sample containers or bombs shall be used for taking samples.The size and type of the sampling bomb used depends upon the tests and analyses required on the sample.For details,refer to ASTM D1265.7.7.3Quality measuringLPG transactions are generally on the basis of mass or weight.In most countries commercial transactions are carried out as weight in air.The density must be known in order to calculate this.The density of LPG can be measured manually by means of a pressure hydrometer or by automatic on-line density analysers.Alternatively,the density can be calculated from thecompositional analysis of the LPG as determined by GLC analysis,but such equipment is not normally available in the relatively small scale operations involving ambient temperature pressurised LPG.GLC analyses are more often performed when dealing with refrigerated LPG,where densities can then be calculated close to operational temperatures in order to give more accurate results.Representative sampling is essential for overall accuracy,and so for custody transfer operations direct on-line density measurement should be employed rather than spot sampling followed by laboratory measurement.This is particularly relevant if product is being drawn from a stratified storage vessel,where a series of spot samples taken from the delivery line may not reflect the average quality.7.8METERING EQUIPMENT7.8.1GeneralRefer to DEP32.31.00.32-Gen.For batch transfers(e.g.into bulk road vehicles and rail tank wagons)volume difference measurements in the storage or transport vessels may not give the required accuracy.For these product deliveries,weighing or metering is more accurate and should be used instead.A weighbridge has the advantage that the amount remaining in the transport vessel is taken into account when determining the tare weight,and the required fill quantity is adjusted accordingly.For product deliveries via ship and pipeline,quantity assessments are usually made either by in-line metering(often on-line density measurement),or by measurement of tank levels and density analysis.Quantities delivered to customers are normally measured by metering.Meters can be fitted with mechanical temperature compensators which automatically adjust the meter register to give a readout in volume units at standard reference temperature(normally15°C).In some types of meters this temperature compensator is designed specifically for one product(e.g.propane).If different quality LPGs are passed through the one meter,then the temperature compensated readout may be in error.In automated installations electronic instrumentation should be applied.Pulse transmitters are installed on the meter shaft,while resistance thermometers are located either in the meter body or in the piping adjacent to the meter, and the transmitted signals from both instruments are processed in a micro-processor.Digital outputs of ambient and temperature-compensated volumes can be given,and the software can be written to allow changes of expansion coefficient to reflect changes in flowing product density.It is also possible to adjust the reference temperature to a value different from the normal15°C,if required.If a vapour return line is not used,the meter indicates directly the transferred quantity.Otherwise a correction has to be made for the returned vapour.Factors affecting the choice of meters:•suitability for LPG service;•required degree of accuracy and repeatability;•range of ancillary equipment which can be combined with them;•maximum flow rate turndown and operating pressure;•price,delivery times,service and provision of spare parts.Factors affecting the performance of meters:•LPG has poor lubricating properties.This may create wear problems with the moving elements of turbine and positive displacement(PD)meters.In some designs of PD。