第二节 刚体定轴转动的动力学方程
- 格式:ppt
- 大小:1.31 MB
- 文档页数:15
刚体定轴转动的角动量•转动惯量一、刚体对一转轴的转动惯量1、转动惯量定义:说明:转动惯量与刚体的质量分布和转轴的位置有关。
2、转动惯量的计算:①质量不连续分布情况:其中:表示质点对转轴的距离。
②质量连续分布的情况:3、平行轴定理若两轴平行,距离为d,其中一轴过质心,刚体对它的转动惯量为,则刚体对一轴转动惯量为:证明:如右图示,刚体的二轴分别为z和轴,由此可知:刚体对各平行轴的不同转动惯量中,对质心轴的转动惯量最小。
4、垂直轴定理:(仅适用于厚度无穷小的薄板,厚度)即:无穷小厚度的薄板对一与它垂直的坐标轴的转动惯量,等于薄板对板面内另两互相垂直轴的转动惯量之和。
证明:如右图所示,则:∴注意:垂直轴定理适用条件:x、y、z轴过同一点,且互相垂直,z轴垂直于板面x、y轴在板面内。
例1:均质杆长l,质量为m,求对过杆一端点的转动惯量。
解:由平行轴定理:例2:求一薄板质量为m,半径为R,密度均匀的圆盘,它对过圆心且与盘面垂直的转轴的转动惯量I。
解法一:利用积分法求转动惯量(利用对称性):解法二:由垂直轴定理:又∵∴二、刚体定轴转动的动力学方程——对轴的角动量定理刚体对转轴(假定为z轴)的角动量:应用质点系对Z轴的角动量定理,可得定轴转动刚体的角动量定理:其中为外力对Z轴的力矩;为刚体的角加速度在Z轴上的投影,可正可负。
三、定轴转动刚体对轴上一点的角动量以质量相等的两质点m,中间以一轻连杆组成刚体,绕Z轴转动为例,如图示:设,杆与水平方向成α角,求此刚体对轴上任一点O的角动量。
∵∴若Z轴过杆的中点,即:,则有:上式表明,定轴转动刚体对轴上任一点的角动量不一定沿转轴方向(或方向)。
四、刚体的重心1、定义:刚体处于不同方位时重力作用线都要通过的那一点叫作重心。
2、重心的位置与质心有何关系:如果刚体的形状不是特别大,保证各处的是完全相同,则刚体中各质元的力对任意一参考点o的力矩:∴一般有,且与不平行,故有:∴即:重心和质心重合。
第2章 刚体定轴转动2.28 质量为M 的空心圆柱体,质量均匀分布,其内外半径为R 1和R 2,求对通过其中心轴的转动惯量.解:设圆柱体的高为H ,其体积为V = π(R 22 – R 12)h ,体密度为ρ = M/V .在圆柱体中取一面积为S = 2πRH ,厚度为d r 的薄圆壳,体积元为d V = S d r = 2πrH d r ,其质量为d m = ρd V ,绕中心轴的转动惯量为d I = r 2d m = 2πρHr 3d r , 总转动惯量为213442112d ()2R R I Hr r H R R πρπρ==-⎰22211()2m R R =+.2.29 一矩形均匀薄板,边长为a 和b ,质量为M ,中心O 取为原点,坐标系OXYZ 如图所示.试证明:(1)薄板对OX 轴的转动惯量为2112OX I Mb =; (2)薄板对OZ 轴的转动惯量为221()12OZI M a b =+. 证: 薄板的面积为S = ab ,质量面密度为σ = M/S .(1)在板上取一长为a ,宽为d y 的矩形元,其面积为d S = a d y , 其质量为d m =σd S ,绕X 轴的转动惯量为d I OX = y 2d m = σay 2d y , 积分得薄板对OX 轴的转动惯量为/2/223/2/21d 3b b OXb b I a y y a y σσ--==⎰32111212ab Mb σ==. 同理可得薄板对OY 轴的转动惯量为2112OY I Ma =. (2)方法一:平行轴定理.在板上取一长为b ,宽为d x 的矩形元,其面积为d S = b d x ,质量为d m = σd S , 绕过质心的O`Z`轴的转动惯量等于绕OX 轴的转动惯量d I O`Z` = b 2d m /12. 根据平行轴定理,矩形元对OZ 轴的转动惯量为 d I OZ = x 2d m + d I O`Z ` = σbx 2d x + b 2d m /12, 积分得薄板对OZ 轴的转动惯量为/222/21d d 12a M OZa Ib x x b m σ-=+⎰⎰/232/211312a ab x b M σ-=+221()12M a b =+.方法二:垂直轴定理.在板上取一质量元d m ,绕OZ 轴的转动惯量为d I OZ = r 2d m .由于r 2 = x 2 + y 2,所以d I OZ = (x 2 + y 2)d m = d I OY + d I OX , 因此板绕OZ 轴的转动惯量为221()12OZ OY OX I I I M a b =+=+.2.30 一半圆形细杆,半径为R ,质量为M ,求对过细杆二端AA `轴的转动惯量.解:半圆的长度为C = πR ,质量的线密度为λ = M/C .在半圆上取图2.28一弧元d s = R d θ,其质量为d m = λd s ,到AA `轴的距离为r = R sin θ, 绕此轴的转动惯量为d I = r 2d m = λR 3sin 2θd θ,半圆绕AA `轴的转动惯量为32sin d I R λθθ=⎰π31(1cos 2)d 2Rλθθ=-⎰π32122R MR λ==π2.31 如图所示,在质量为M ,半径为R 的匀质圆盘上挖出半径为r 的两个圆孔.圆孔中心在圆盘半径的中点.求剩余部分对大圆盘中心且与盘面垂直的轴线的转动惯量.解:大圆的面积为S = πR 2,质量的面密度为σ = M/S .大圆绕过圆心且与盘面垂直的轴线的转动惯量为I M = MR 2/2.小圆的面积为s = πr 2,质量为m = σs ,绕过自己圆心且垂直圆面的轴的转动惯量为I C = mr 2/2, 根据平行轴定理,绕大圆轴的转动惯量为I m = I C + m (R/2)2.2221()(2)24m C R I I m m r R =+=+2221(2)4r r R σπ=+22221(2)4r M r R R =+,剩余部分的转动惯量为4222122()2M m r I I I M R r R=-=--.2.32 飞轮质量m = 60kg ,半径R = 0.25m ,绕水平中心轴O 转动,转速为900r·min -1.现利用一制动用的轻质闸瓦,在剖杆一端加竖直方向的制动力F ,可使飞轮减速.闸杆尺寸如图所示,闸瓦与飞轮之间的摩擦因数μ = 0.4,飞轮的转动惯量可按匀质圆盘计算.(1)设F = 100N ,问可使飞轮在多长时间内停止转动?这段时间飞轮转了多少转?(2)若要在2s 内使飞轮转速减为一半,需加多大的制动力F ?解:设飞轮对闸瓦的支持力为N`,以左端为转动轴,在力矩平衡时有0.5N` – 1.25F = 0, 所以N`=2.5F = 250(N).闸瓦对飞轮的压力为N = N`= 250(N), 与飞轮之间摩擦力为f = μN = 100(N), 摩擦力产生的力矩为M = fR .飞轮的转动惯量为I = mR 2/2,角加速度大小为β = -M/I = -2f/mR = -40/3(rad·s -2), 负号表示其方向与角速度的方向相反.飞轮的初角速度为ω0 = 30π(rad·s -1).根据公式ω = ω0 + βt ,当ω = 0时,t = -ω0/β = 7.07(s).再根据公式ω2 = ω02 + 2βθ,可得飞轮转过的角度为θ = -ω02/2β = 333(rad), 转过的圈数为n = θ/2π = 53r .[注意]圈数等于角度的弧度数除以2π.(2)当t = 2s ,ω = ω0/2时,角加速度为β = -ω0/2t = -7.5π. 力矩为M = -Iβ,摩擦力为f = M/R = -mRβ/2 = (7.5)2π. 闸瓦对飞轮的压力为N = f /μ,需要的制动力为F = N /2.5 = (7.5)2π = 176.7(N).OrR r图2.31图2.322.33 一轻绳绕于r = 0.2m 的飞轮边缘,以恒力F = 98N 拉绳,如图(a )所示.已知飞轮的转动惯量I = 0.5kg·m 2,轴承无摩擦.求 (1)飞轮的角加速度.(2)绳子拉下5m 时,飞轮的角速度和动能.(3)将重力P = 98N 的物体挂在绳端,如图(b )所示,再求上面的结果.解:(1)恒力的力矩为M = Fr = 19.6(N·m), 对飞轮产生角加速度为β = M/I = 39.2(rad·s -2).(2)方法一:用运动学公式.飞轮转过的角度为θ = s/r = 25(rad), 由于飞轮开始静止,根据公式ω2 = 2βθ,可得角速度为ω=s -1); 飞轮的转动动能为E k = Iω2/2 = 490(J).方法二:用动力学定理.拉力的功为W = Fs = 490(J), 根据动能定理,这就是飞轮的转动动能E k .根据公式E k = Iω2/2,得角速度为ω=s -1). (3)物体的质量为m = P/g = 10(kg).设绳子的张力为T ,则P – T = ma ,T r = Iβ. 由于a = βr ,可得Pr = mr 2β + Iβ, 解得角加速度为2Prmr I β=+= 21.8(rad·s -2). 绳子的张力为2I IPT r mr Iβ==+= 54.4(N). 张力所做的功为W` = Ts = 272.2(J),这就是飞轮此时的转动动能E`k .飞轮的角速度为`ω=s -1).2.34 质量为m ,半径为R 的均匀圆盘在水平面上绕中心轴转动,如图所示.盘与水平面的摩擦因数为μ,圆盘从初角速度为ω0到停止转动,共转了多少圈?解:圆盘对水平面的压力为N = mg ,压在水平面上的面积为S = πR 2, 压强为p = N /S = mg /πR 2.当圆盘滑动时,在盘上取一半径为r 、对应角为d θ面积元,其面积为d S = r d θd r , 对水平面的压力为d N = p d S = pr d r d θ, 所受的摩擦力为d f = μd N = μpr d r d θ,其方向与半径垂直,摩擦力产生的力矩为d M = r d f = μpr 2d r d θ,总力矩为220d d RM pr r πμθ=⎰⎰312π3p R μ=23mgR μ=.圆盘的转动惯量为I = mR 2/2, 角加速度大小为43M gI Rμβ=-=-,负号表示其方向与角速度的方向相反. 根据转动公式ω2 = ω02 + 2βθ,当圆盘停止下来时ω = 0,所以圆盘转过的角度为2200328R g ωωθβμ=-=,转过的圈数为 203216R n gωθππμ==.F=98N P=98N(a)(b) (图2.33)图2.34[注意]在圆盘上取一个细圆环,其面积为d s = 2πr d r ,这样计算力矩等更简单。