匀速圆周运动的实例
- 格式:pptx
- 大小:123.74 KB
- 文档页数:15
匀速圆周运动的实例分析运动是物理学研究的重要方向,其中圆周运动,作为一种常见的运动形式,被广泛应用于各种物理学问题的研究中。
匀速圆周运动是指物体在圆周运动过程中,以恒定的速度绕圆周做匀速运动。
本文将通过实例分析,介绍匀速圆周运动的相关概念和实际应用。
1.实例分析假设有一质点在平面内绕一个半径为R的圆做匀速圆周运动,其速率为v。
我们来分析一下这个运动的相关物理量。
首先,介绍一下圆周运动的基本概念。
我们用质点做匀速圆周运动时,最基本的两个物理量是圆周运动的角速度ω和线速度v,它们之间的关系是:v = Rω。
圆周运动的周期T和频率f分别满足:T =2πR/v,f=1/T。
其次,我们来分析一些关于匀速圆周运动的性质。
在匀速圆周运动中,物体所受到的合力方向始终指向圆心,称为向心力;而切向速度始终保持不变,称为切向速度。
向心力的大小为F = mv²/R,其中m为物体质量。
顺便提一下,由于向心力的方向总是指向圆心,故物体的运动轨迹是一个圆形或弧形。
接下来,我们来看一个具体的实例,来更加深入地理解匀速圆周运动的相关概念。
2.实际应用例如,一个人手中握着一只小球,做匀速圆周运动,可以模拟地球绕太阳做的匀速圆周运动。
我们来计算一下这个小球的相关物理量。
假设这个小球的质量为m,半径为R,匀速圆周运动的速度为v。
根据向心力的定义,我们可以列出这个小球所受到的向心力的公式:F = mv²/R。
接下来,我们用圆周运动的角速度ω和线速度v,来表示小球的向心力F。
由于v = Rω,所以ω = v/R。
将ω代入向心力的公式中,可以得到:F = mω²R。
在这个例子中,我们可以用向心力的公式,计算出这个小球所受到的向心力。
当然,我们也可以通过小球的运动轨迹计算出小球所受到的向心力。
这个小球做匀速圆周运动时,其运动轨迹是一个圆形或弧形,因此我们可以用圆的相关公式计算出小球的向心力。
除此之外,对于圆周运动,还有许多其他的实际应用。
匀速圆周运动 典型例题【例1】如图所示的传动装置中,A 、B 两轮同轴转动.A 、B 、C 三轮的半径大小的关系是RA=RC=2RB.当皮带不打滑时,三轮的角速度之比、三轮边缘的线速度大小之比、三轮边缘的向心加速度大小之比分别为多少?【例2】一圆盘可绕一通过圆盘中心O 且垂直于盘面的竖直轴转动.在圆盘上放置一木块,当圆盘匀速转动时,木块随圆盘一起运动(见图),那么()A.木块受到圆盘对它的摩擦力,方向背离圆盘中心B.木块受到圆盘对它的摩擦力,方向指向圆盘中心C.因为木块随圆盘一起运动,所以木块受到圆盘对它的摩擦力,方向与木块的运动方向相同D.因为摩擦力总是阻碍物体运动,所以木块所受圆盘对它的摩擦力的方向与木块的运动方向相反【例3】在一个水平转台上放有A 、B 、C 三个物体,它们跟台面间的摩擦因数相同.A 的质量为2m ,B 、C 各为m.A 、B 离转轴均为r,C 为2r.则()A.若A 、B 、C 三物体随转台一起转动未发生滑动,A 、C 的向心加速度比B 大B.若A 、B 、C 三物体随转台一起转动未发生滑动,B 所受的静摩擦力最小C.当转台转速增加时,C 最先发生滑动D.当转台转速继续增加时,A 比B 先滑动【例4】如图,光滑的水平桌面上钉有两枚铁钉A 、B ,相距L0=0.1m.长L=1m 的柔软细线一端拴在A 上,另一端拴住一个质量为500g 的小球.小球的初始位置在AB 连线上A 的一侧.把细线拉直,给小球以2m/s的垂直细线方向的水平速度,使它做圆周运动.由于钉子B的存在,使细线逐步缠在A、B上.若细线能承受的最大张力Tm=7N,则从开始运动到细线断裂历时多长?【例5】如图(a)所示,在光滑的圆锥顶用长为L的细线悬挂一质量为m的小球,圆锥顶角为2θ,当圆锥和球一起以角速度ω匀速转动时,球压紧锥面.此时绳的张力是多少?若要小球离开锥面,则小球的角速度至少为多少?【例6】杂技节目中的“水流星”表演,用一根绳子两端各拴一个盛水的杯子,演员抡起杯子在竖直面上做圆周运动,在最高点杯口朝下,但水不会流下,如下图所示,这是为什么?【例7】用长L1=4m和长为L2=3m的两根细线,拴一质量m=2kg的小球A,L1和L2的另两端点分别系在一竖直杆的O1,O2处,已知O1O2=5m如下图(g=10m⋯−2)(1)当竖直杆以的角速度ω匀速转动时,O2A线刚好伸直且不受拉力.求此时角速度ω1.(2)当O1A线所受力为100N时,求此时的角速度ω2.。
第4课时--复习总结-匀速圆周运动实例分析第4课时 匀速圆周运动实例分析基础知识1.圆周运动的动力学问题做匀速圆周运动的物体所受合外力提供向心力,即F 合=F 向,或F 合=2v m r =2m r ω=224m r Tπ。
注意:匀速圆周运动解题步骤:⑴明确研究对象,确定它在哪个平面内做圆周运动,找出圆心和半径⑵确定研究对象在某位置(某时刻)所处状态,进行受力分析,作出受力分析图,找出向心力的来源⑶根据向心力公式F 向= m ω2r=m v 2/r=m ωv=m (2π/T )2r 列方程,取“向心”方向为正⑷检查结果的合理性,并进行必要的分析讨论。
2、匀速圆周运动的实例分析 (1)汽车过拱桥:汽车通过拱形桥时的运动可以看做圆周运动,质量为m 的汽车以速度v 通过拱形桥最高点时,若桥面的圆弧半径为R ,则此时汽车对拱桥的压力为多大?,压力为零,汽车开始做平抛运动(2)旋转秋千---圆锥摆小球做圆锥摆运动时细绳长L ,与竖直方向成θ角,求小球做匀速圆周运动的角速度ω。
(3)火车拐弯问题: 由于火车的质量比较大,火车拐弯时所需的向心力就很大。
如果铁轨内外侧一样高,则外侧轮缘所受的压力很大,容易损坏;实用中使外轨略高于内轨,从而重力,铁轨支持力和侧向压力的合力提供火车拐弯时所需的向心力。
如图,内外轨间的距离为d ,内外轨的高度差为h注意:若火车实际速度大于v 0,则 轨将受到侧向压力,若火车实际速度小于v 0,则 轨将受到侧向压力。
2.竖直平面内的圆周运动中的临界问题(1)轻绳模型: 一轻绳系一小球在竖直平面内做圆周运动。
小球能到达最高点(刚好做圆周运动)的条件是小球的重力恰好提供向心力,即2v mg m R=,这时的速度是做圆周运动的最小速度min v =。
(2)轻杆模型: 一轻杆系一小球在竖直平面内做圆周运动,小球能到达最高点(刚好做圆周运动)的条件是在最高点的速度v ≥0. (1)当0v =时,杆对小球的支持力等于小球的重力; (2)当0v <<杆对小球的支持力小于小球的重力;(3)当v = (4)当v >针对训练:如图所示,杆长为L ,杆的一端固定一质量为m 的小球,杆的质量忽略不计,整个系统绕杆的另一端在竖直平面内的作圆周运动,求:(1)小球在最高点时速率v A12 3.小球对杆的压力是小球对杆的拉力是mg。
第六节 匀速圆周运动实例分析例1:一辆质量 2.0m =t 的小轿车,驶过半径90R =m 的一段圆弧形桥面,重力加速度210m/s g =.求:(1)若桥面为凹形,汽车以20 m /s 的速度通过桥面最低点时,对桥面压力是多大?(2)若桥面为凸形,汽车以10 m /s 的速度通过桥面最高点时,对桥面压力是多大?(3)汽车以多大速度通过凸形桥面顶点时,对桥面刚好没有压力?解:(1)汽车通过凹形桥面最低点时,在水平方向受到牵引力F 和阻力f .在竖直方向受到桥面向上的支持力1N 和向下的重力G mg =,如图(甲)所示.圆弧形轨道的圆心在汽车上方,支持力1N 与重力G mg =的合力为1N mg -,这个合力就是汽车通过桥面最低点时的向心力,即1F N mg =-向.由向心力公式有:21v N mg m R-=, 解得桥面的支持力大小为21v N m mg R=+ 2420(2000200010)N 902.8910N=⨯+⨯=⨯ 根据牛顿第三定律,汽车对桥面最低点的压力大小是42.8910⨯N .(2)汽车通过凸形桥面最高点时,在水平方向受到牵引力F 和阻力f ,在竖直方向受到竖直向下的重力G mg =和桥面向上的支持力2N ,如图(乙)所示.圆弧形轨道的圆心在汽车的下方,重力G mg =与支持力2N 的合力为2mg N -,这个合力就是汽车通过桥面顶点时的向心力,即2F mg N =-向,由向心力公式有22v mg N m R-=, 解得桥面的支持力大小为222410(2000102000)N 901.7810Nv N mg m R =-=⨯-⨯=⨯ 根据牛顿第三定律,汽车在桥的顶点时对桥面压力的大小为41.7810⨯N .(3)设汽车速度为m v 时,通过凸形桥面顶点时对桥面压力为零.根据牛顿第三定律,这时桥面对汽车的支持力也为零,汽车在竖直方向只受到重力G 作用,重力G mg =就是汽车驶过桥顶点时的向心力,即F mg =向,由向心力公式有2m v mg m R=, 解得:210m/s g = 汽车以30 m /s 的速度通过桥面顶点时,对桥面刚好没有压力.例2:如图所示,飞机以15/v m s =的恒定速率沿半径10R m =的外切圆轨道,在竖直平面内做特技飞行,求质量为60M kg =的飞行员在A .B .C .D 各点对机座或保险带的作用力?选题目的:考查向心力的实际应用和计算.解析:设机座对飞行员的支持力为N F ,保险带对飞行员的拉力为F(1)在A 点时,0A F =. 根据向心力公式,有2NA v F Mg M R-= (2)在B 点时,N F .F 均为零的临界速度为010/v Rg m s ==因为0v v >,所以0NB F =,根据向心力公式,有2B g v F M M R+= ∴ 2()750B v F M g N R=-= (3)在C 点时,0NC F =, 同理2C v F Mg M R -= ∴ 2()1950C v F M g N R=+= (4)在D 点时,因为0v v >,所以0D F = 同理2ND v F Mg M R += ∴ 2()750ND v F M g N R=-=例3:一辆载重汽车的质量为4m ,通过半径为R 的拱形桥,若桥顶能承受的最大压力为3F mg =,为了安全行驶,汽车应以多大速度通过桥顶?选题目的:考查向心力的实际应用.解析:如图所示,由向心力公式得244N v mg F m R-= ∴ 244N v F mg m R=- …… ① 为了保证汽车不压坏桥顶,同时又不飞离桥面,根据牛顿第三定律,支持力的取值范围为03N F mg ≤≤ …… ②将①代入②解得 12Rg v Rg ≤≤ 例4:如图所示,用细绳拴着质量为m 的物体,在竖直平面内做圆周运动,圆周半径为R 则下列说法正确的是( )A .小球过最高点时,绳子张力可以为零B .小球过最高点时的最小速度为零C .小球刚好过最高点时的速度是RgD .小球过最高点时,绳子对小球的作用力可以与球所受的重力方向相反选题目的:考查圆周运动的受力分析及速度计算.解析:小球在最高点时,受重力mg .绳子竖直向下的拉力F (注意:绳子不能产生竖直向上的支持力).向心力为n F mg F =+根据牛顿第二定律得2v mg F mR+=可见,v越大时,F越大,v越小时,F越小当0F=时,2nvF mg mR==得v Rg=最小讨论:(1)v很小时,可保证小球通过最高点,但F很小.(2)当v很小并趋近于零时,则2vmR很小并趋近于零,由于重力一定,重力大于小球所需向心力,小球偏向圆心方向,不能达到最高点,在到最高点之前已做斜抛运动离开圆轨道.(3)当v Rg=时,0F=,即刚好通过.所以,正确选项为A.C.例5:如图(a)所示,质量为m的物体,沿半径为R的圆形轨道自A点滑下,A点的法线为水平方向,B点的法线为竖直方向,物体与轨道间的动摩擦因数为μ,物体滑至B点时的速度为v,求此时物体所受的摩擦力.选题目的:考查圆周运动的向心力的分析.解析:物体由A滑到B的过程中,受到重力.轨道对其弹力.及轨道对其摩擦力作用,物体一般做变速圆周运动.已知物体滑到B点时的速度大小为v,它在B点时的受力情况如图(b)所示.其中轨道的弹力NF.重力G的合力提供物体做圆周运动的向心力,方向一定指向圆心.故2 Nv F mg mR -=2N vF mg mR =+则滑动摩擦力为2 1()Nv F F mg mR μμ==+注意:解决圆周运动问题关键在于找出向心力的来源.向心力公式.向心加速度公式虽然是从匀速圆周运动这一特例得出,但它同样适用于变速圆周运动.同步练习一.选择题1.若火车按规定速率转弯时,内、外轨对车轮的轮缘皆无侧压力,则火车以较小速率转弯时()A.仅内轨对车轮的轮缘有侧压力B.仅外轨对车轮的轮缘有侧压力C.内.外轨对车轮的轮缘都有侧压力D.内.外轨对车轮的轮缘均无侧压力2.把盛水的水桶拴在长为l的绳子一端,使这水桶在竖直平面做圆周运动,要使水在水桶转到最高点时不从桶里流出来,这时水桶的线速度至少应该是()A.2gl B./2gl C.gl D.2gl3.如图所示,水平圆盘可绕过圆的竖直轴转动,两个小物体M和m之间连一根跨过位于圆心的定滑轮的细线,M与盘间的最大静摩擦力为mF,物体M随圆盘一起以角速度ω匀速转动,下述的ω取值范围已保证物体M 相对圆盘无滑动,则A .无论取何值,M 所受静摩擦力都指向圆心B .取不同值时,M 所受静摩擦力有可能指向圆心,也有可能背向圆心C .无论取何值,细线拉力不变D .ω取值越大,细线拉力越大4.汽车在倾斜的弯道上拐弯,如图所示,弯道的倾角为θ(半径为r ),则汽车完全不靠摩擦力转弯,速率应是( )A .sin gl θB .cos gr θC .tan gr θD .cot gr θ5.在一段半径为R 的圆弧形水平弯道上,已知地面对汽车轮胎的最大摩擦力等于车重的μ倍(1μ<)则汽车拐弯时的安全速度是()A .v Rg ω≤B .Rgv μ≤C .2v Rg μ≤D .v Rg ≤6.质量为m 的小球在竖直平面内的圆形轨道内侧运动,若经最高不脱离轨道的临界速度为v ,则当小球以2v 速度经过最高点时,小球对轨道压力的大小为()A .0B .mgC .3mgD .5mg7.如图所示,小球m 在竖直放置的光滑形管道内做圆周运动.下列说法中正确的有()A .小球通过最高点的最小速度为v Rg =B .小球通过最高点的最小速度为0C .小球在水平线ab 以下管道中运动时,内侧管壁对小球一定有作用力D .小球在水平线ab 以上管道中运动时,内侧管壁对小球一定有作用力8.长为L 的细绳,一端系一质量为m 的小球,另一端固定于某点,当绳竖直时小球静止,再给小球一水平初速度0v ,使小球在竖直平面内做圆周运动,并且刚好能过最高点,则下列说法中正确的是()A .小球过最高点时速度为零B .小球开始运动时绳对小球的拉力为20v m LC .小球过最高点时绳对小球的拉力为mgD .小球过最高点时速度大小为Lg9.一个物块从内壁粗糙的半球形碗边下滑,在下滑过程中由于摩擦力的作用,物块的速率恰好保持不变,如图所示,下列说法正确的是( )A .物块所受合外力为零B .物块所受合外力越来越大C .物块所受合外力大小不变,方向时刻改变D .物块所受摩擦力大小不变10.如图所示,长度0.5m L =的轻质细杆OP ,P 端有一质量 3.0kg m =的小球,小球以O 点为圆心在竖直平面内做匀速圆周运动,其运动速率为2.0m/s ,则小球通过最高点时杆OP 受到(g 取210m/s )A .6.0N 的拉力B .6.0N 有压力C .24N 的拉力D .54N 的拉力参考答案:1.A 2.C 3.BC 4.C 5.A 6.C 7.BC 8.D 9.C 10.B二.填空题1.M 为在水平传送带上被传送的物体,A 为终端皮带轮。