梯形常用辅助线的做法精编版
- 格式:doc
- 大小:637.50 KB
- 文档页数:22
怎样做梯形中的辅助线:如何做梯形的辅助线是四边形的难点也是重点,下面类聚了所有辅助线的类型,希望同学们理解并能熟练的运用解决梯形的有关问题,常常是通过添加恰当的辅助线,把梯形转化为三角形和平行四边形.下面列举数例,以说明梯形中常见辅助线的作法.一、平移一腰法例1如图1,梯形ABCD中,AB∥CD,以AC、AD为边作ACED.DC的延长线交BE于F.求证:EF=FB.二、平移对角线法例2如图2,等腰梯形ABCD中,AD∥BC,AB=CD,AC⊥BD于O点.若中位线长为m,求梯形ABCD的面积S.三、延长双腰法例3如图3,梯形ABCD中,AD∥BC,E为AB上一点,EF∥AD交DC于F,若AD=2,BC=3,梯形AEFD的面积为5,梯形BCFE的面积为11,求EF的长.四、作高法例4如图4,梯形ABCD中.AD∥BC,AC=BD,AC⊥BD于D点.且高为10cm,求中位线MN的长度.五、作中位线法例5如图5,梯形ABCD中,AD∥BC,M、N分别是两腰AB、CD的中点,ME∥AN,交下底BC于E.求证:NE=AM.六、作对角线法例6如图6,梯形ABCD中,两底AD、BC的中点为M、N,则MN与AB、CD的关系是[ ](D)不能确定.七、三角形割补法即连结梯形一底端点与腰(或对角线)的中点,并延长与另一底相交构造全等三角形.这就相当于将梯形的一角割下,补在恰当位置构成三角形或平行四边形.例7 如图7,梯形ABCD中,AD∥BC,∠C=90°,E是AB中点,求证:DE=CE.例8如图8,梯形ABCD中.AD∥BC,E、F是对角线BD、AC的中点,理解反思梯形辅助线练习题1(行之中学月考题).如图9,梯形ABFD中,AD∥CE∥BF,AC∶CB=m∶n,AD=a,BF=b,求CE的长.2.(复旦兰生)如图10,等腰梯形ABCD中,AC、BD交于E点,∠AEB=60°,AC=BD=24cm,AB=3DC,求梯形的面积.3.(市三女中期末考试题)如图11.梯形ABCD中,AB∥CD(DC<AB),M为BC中点,若AD=18cm,点M到AD的距离为10cm,求梯形ABCD的面积.。
全等梯形问题中常见的8种辅助线的作法(有答案解析)梯形是一种四边形,其中两条边是平行而另外两条边不平行。
在解决全等梯形问题时,我们可以使用一些辅助线的方法来简化问题并找到解答。
以下是常见的8种辅助线的作法,每种方法都附有答案解析。
1. 垂直辅助线法:垂直辅助线法是最基本的辅助线作法之一,它通过引入垂直辅助线来将梯形划分为上下两个小三角形或小梯形,并利用全等三角形的性质来解题。
2. 高度辅助线法:高度辅助线法通过引入高度辅助线来找到梯形的高,并利用相似三角形的性质来解题。
3. 中位线辅助线法:中位线辅助线法通过引入中位线辅助线来将梯形划分为两个全等的平行四边形,并利用平行四边形的性质来解题。
4. 对角线辅助线法:对角线辅助线法通过引入对角线辅助线来将梯形划分为两个全等的三角形,并利用全等三角形的性质来解题。
5. 平行边辅助线法:平行边辅助线法通过引入平行边辅助线来将梯形划分为两个全等的梯形,并利用梯形的性质来解题。
6. 外接圆辅助线法:外接圆辅助线法通过引入外接圆辅助线来找到梯形的外接圆,并利用外接圆的性质来解题。
7. 中心对称辅助线法:中心对称辅助线法通过引入中心对称辅助线来将梯形划分为两个全等的三角形,并利用全等三角形的性质来解题。
8. 连接线辅助线法:连接线辅助线法通过引入连接线辅助线来划分梯形并利用形成的图形的性质来解题。
这些辅助线的作法可以帮助我们在解决全等梯形问题时更简单而有条理地进行推导和解答。
通过灵活运用这些方法,我们可以提高解决问题的效率和准确性。
请注意:本文档中的答案解析仅供参考,具体解答的正确性应根据实际情况进行确认。
数学篇梯形作为一种比较特殊的四边形,其特点就是只有一组对边是平行的.因此,解答梯形问题的基本思路是通过添加辅助线来“搭桥”,对梯形进行割补、拼接,将其转化为熟悉的基本图形来解答.合理、巧妙地添加辅助线,不仅可以极大地降低解题难度,而且可以提高同学们思维的灵活性和创造性.一、平移一(两)腰平移腰即从梯形的一个顶点作一腰的平行线,把梯形转化为一个三角形和一个平行四边形;或利用梯形中的某个特殊点,过此点作两腰的平行线,把两腰转化到同一个三角形中,进而为解题创造条件.例1如图1,在梯形ABCD 中,AD //BC ,∠B +∠C =90°,AD =10,BC =30,E 、F 分别是AD 、BC 的中点,连接EF ,求EF 的长.图1图2解:过E 作EG //AB 交BC 于G ,过E 作EH //CD 交BC 于点H ,如图2所示.∵AD //BC ,∴四边形ABGE 是平行四边形,∴AE =BG ,同理可得DE =CH ,∴BG +CH =AE +DE =AD =10,又∵BC =30,∴GH =BC -BG -CH =20,又∵E 、F 分别是AD 、BC 的中点,∴BF =CF ,且AE =DE ,又∵AE =BG ,DE =CH ,∴GF =FH ,即F 为GH 的中点,在Rt△EGH 中GH =20,F 是GH 的中点,由直角三角形中线与斜边关系可知,EF =12CH =10,即EF =10.评注:平移梯形的一腰或两腰,可把梯形转化成三角形和平行四边形,从而把相对分散的条件集中到一个图形中以方便解题.二、平移对角线平移对角线即过梯形上底的一个端点作梯形一条对角线的平行线,将梯形转化为一个平行四边形和几个三角形.当题目中有梯形的对角线相等或互相垂直时,可以平移对角线把两条对角线、上下底之和放在一个三角形中,就会出现等腰三角形、直角三角形等特殊三角形,然后利用特殊三角形的性质来解答此类问题.例2如图3,在等腰梯形ABCD 中,AD //BC ,AD =3,BC =7,BD =52,求证:AC ⊥BD.图3图4证明:过点C 作CE //BD 交AD 延长线于学思导引27数学篇学思导引E,如图4所示.∵AD//BC,∴四边形BCED为平行四边形,∴DE=BC且BD=CE,又∵AD=3,BC=7,∴AE=AD+DE=AD+BC=3+7=10,∵ABCD为等腰梯形,∴AC=BD,又∵BD=CE且BD=52,∴AC=CE=BD=52,在△ACE中,AC2+CE2=(52)2+(52)2=100,AE2=102=100,即AC2+CE2=AE2,所以,△ACE是以∠C为直角的直角三角形,即AC⊥BD.评注:过梯形的一个顶点平移对角线,把两条对角线转移到同一个三角形中,若对角线相等,则这个三角形是等腰三角形;若对角线垂直,则这个三角形是直角三角形;若对角线相等又垂直,则这个三角形是等腰直角三角形.这些结论可以为解题创造有利条件.三、延长两腰延长两腰即延长梯形的两腰使其交于一点,化梯形为两个(相似的)三角形.如果是等腰梯形,则得到两个分别以梯形两底为底的等腰三角形.延长两腰可以将梯形转化为多个三角形,从而借助三角形的性质定理等知识要点,为解题铺平道路.例3如图5所示,四边形ABCD中,AD不平行于BC,AC=BD,AD=BC.判断四边形ABCD的形状,并证明你的结论.图5图6解:四边形ABCD为等腰梯形,证明如下.延长AD、BC交于E,如图6所示.在△ABD和△BAC中,有ìíîïïBD=AC,AD=BC,AB=AB,∴△ABD≌△BAC,∴∠BAD=∠ABC,在△EAB中,∵∠BAD=∠ABC,∴△EAB为等腰三角形,即AE=BE,又∵AD=BC,∴DE=CE,∴DE AE=CE BE,即AB//CD,又∵AD=BC,∴四边形ABCD为等腰梯形.评注:预测四边形形状后根据需要寻找条件即可.此题要灵活运用三角形全等、对应线段成比例、平行线的判定等知识点.四、作对角线作对角线即连接对角线将梯形转化为三角形,再利用三角形的一些性质与规律去解答四边形的问题.尤其在特殊梯形中,将没有画出的对角线作出来,再利用特殊梯形对角线的性质(如等腰梯形对角线相等),将题目中的条件进行转化,可以实现有效解题.例4如图7,在直角梯形ABCD中,AD//BC,AB⊥AD,BC=CD,BE⊥CD于点E,求证:AD=DE.图7图8解:连接BD,如图8所示.∵AB⊥AD,∴∠BAD=90°,∵BE⊥CD,∴∠BED=90°,∵AD//BC,∴∠1=∠3,∵BC=CD,∴∠2=∠3,∴∠1=∠2,在△DBE和△DBA中,28数学篇学思导引有ìíîïï∠1=∠2,∠BAD =∠BED BD =BD ,,∴△DBE ≌△DBA ,∴AD =DE .评注:在直角梯形中连接对角线往往可以构造直角三角形,然后利用直角三角形与全等三角形的知识来证明.五、连接顶点和一腰中点并延长连接梯形上底一端点和一腰的中点,并延长与下底延长线相交,从而将梯形割补成几个三角形.这样作辅助线可以充分利用梯形中的平行和等量关系,将上下底之和统一到一段线段上来,再结合三角形全等和其他特殊三角形的性质使问题得到解答.例5如图9,在直角梯形ABCD 中,AD //BC ,E 是DC 的中点,连接AE 和BE ,求证:∠AEB =2∠CBE.1234图9图10证明:延长AE 、BC 交于F ,如图10所示,∵四边形ABCD 为直角梯形,且AD //BC ,∴AB ⊥BC ,∴△ABF 为以∠ABF 为直角的直角三角形.∵AD //BC ,∴∠1=∠2,又∵E 是DC 的中点,∴DE =CE ,在△ADE 和△FCE 中,有ìíîïï∠1=∠2,∠3=∠4,DE =CE ,∴△ADE ≌△FCE ,∴AE =EF ,即E 是AF 的中点,又∵△ABF 是直角三角形,∴BE =12AF =EF ,∴△BEF 是等腰三角形,∴∠F =∠CBE ,∴∠AEB =∠F +∠CBE =2∠CBE ,即∠AEB =2∠CBE .评注:在梯形中,只要有腰上的中点,可过中点构造全等三角形,从而把上下底之和与另一条腰集中在一个三角形中,而这个三角形又是一个特殊三角形,问题就简单了.在解答有关梯形的证明题和计算题时,辅助线的作法并不是单一的,有时可同时作两种或两种以上的辅助线,但目的是一致的,就是在梯形中构造三角形、平行四边形,再运用三角形、平行四边形的相关知识来解题.同学们要结合已知条件添加合适的辅助线,以探求简捷的解题方法.《〈圆〉拓展精练》参考答案1.D ;2.A ;3.C ;4.A ;5.23-π;6.6cm ;7.相离;8.30°或150°;9.100或700;10.(1)证明略;(2)S 阴影部分=S △OAC -S 扇形AOE =12×3×33-60π×32360=32π.11.(1)证明略;(2)解:由题意知方程x 2+(m -2)x +m +1=0有两个相等的实数根,∴Δ=(m -2)2-4(m +1)=0,∴m =0或8,当m =0时,方程为x 2-2x +1=0,解得x 1=x 2=1,∴CE =1.当m =8时,方程为x 2+6x +9=0,解得x 1=x 2=-3(不符合题意舍去).∴CE =1.综上所述,CE =1.29。
【最新整理,下载后即可编辑】梯形常用辅助线的做法常见的梯形辅助线基本图形如下:1.平移梯形一腰或两腰,把梯形的腰、两底角等转移到一个三角形中,同时还得到平行四边形.【例1】已知:如图,在梯形ABCD中,.求证:.分析:平移一腰BC到DE,将题中已知条件转化在同一等腰三角形中解决,即AB=2CD.证明:过D作,交AB于 E.∵AB平行于CD,且,∴四边形是菱形.∴又∴为等边三角形.∴又,∴∴.【例2】如图,在梯形ABCD 中,AD∥BC , E、F 分别是AD 、BC 的中点,若.AD = 7 ,BC = 15 ,求EF .分析:由条件,我们通过平移AB 、DC ;构造直角三角形MEN ,使EF 恰好是△MEN 的中线.解:过E 作EM∥AB ,EN ∥DC ,分别交BC 于M 、N ,∵,∴∴是直角三角形,∵,,∴.∵、分别是、的中点,∴为的中点,∴.变式:如图1,梯形ABCD的上底AB=3,下底CD=8,腰AD=4,求另一腰BC的取值范围。
图1析解:过点B作BM//AD交CD于点M,则梯形ABCD转化为△BCM和平行四边形ABMD。
在△BCM中,BM=AD=4,CM=CD-DM=CD-AB=8-3=5,所以BC的取值范围是:5-4<BC<5+4,即1<BC<9。
2.延长梯形的两腰,使它们交于一点,可得到两个相似三角形或等腰三角形、直角三角形等进一步解决问题.【例3】.如图,在梯形中,,,梯形的面积与梯形的面积相等.求证:.分析:条件是两个梯形的面积相等,而结论是三线段长的平方关系,如果延长两腰交于一点,就可得到三个相似的三角形,再利用相似三角形的面积比与相似比的关系变形就可得出结论.证明:延长、使它们相交于点,∵,∴∴.同理,∵故得∴变式1:如图5,在梯形ABCD中,AD//BC,∠B=50°,∠C=80°,AD=2,BC=5,求CD的长。
图5析解:延长BA 、CD 交于点E 。
梯形中常见辅助线的作法岳雁翎甘肃省陇西县紫来学校 748100 在进行有关梯形的边、角、面积等计算和论证问题时,常常需要添加辅助线,将梯形问题转化为三角形、平行四边形、矩形等特殊图形问题.下面介绍六种常见辅助线的添加方法.1 平移一腰过梯形的一个顶点作一腰的平行线,通过平移腰,将梯形转化为三角形和平行四边形,利用三角形和平行四边形的性质,并结合题目条件,达到计算或证明的目的.图1例1 如图1,在梯形AB CD 中,AB ∥CD ,∠A D C=2∠B ,A D =a ,CD =b,求AB 的长.解 过D 作D E ∥BC ,交AB 与点E ,则∠D EA =∠B ,四边形D EB C 是平行四边形,故B E=CD =b,∠ED C =∠B ,由∠A D C =2∠B ,得∠A D E =∠A ED ,因而A E =AD =a ,所以AB =A E+B E =a +b .2 平移两腰过梯形的上底上的一点作两腰的平行线,将梯形转化为一个三角形和两个平行四边形,再利用三角形和平行四边形的性质,结合题目条件,来证明(或计算).图2例2 如图2,在梯形AB CD 中,A D ∥BC ,M 、N 分别为上、下底的中点,且∠B +∠C =90°.求证:MN =12(BC -A D).证明 过点M 作M E ∥AB 交B C 于点E ,作M F ∥CD 交B C 于点F ,则∠M EC =∠B ,∠M FB =∠,∵∠B +∠=°,∴∠M +∠M FB =°,即∠M F =°,又∵AD ∥BC ,∴四边形AB EM 和四边形MD CF 都是平行四边形,∴A M =B E ,D M =FC,∵A M =D M ,B N =CN ,∴B E +FC =A D ,EN =N F ,B C -A D =E F ,∵M ,N 分别是上、下底的中点,在Rt △M E F 中,E N =F N ,∴E F 是直角三角形斜边上的中线,∴MN =12E F ,即MN =12(B C-A D ).3 平移对角线过底的一端作对角线的平行线,通过作对角线的平行线,可以将梯形的上底加下底转化到一条线段上,也常通过作平行线将之转化为平行四边形的问题来解决.图3例3 如图3,已知梯形ABCD 的面积是32,两底与高的和为16,如果其中一条对角线与两底垂直,则另一条对角线的长为多少?解 S 梯形A B CD =12(A D +BC )BD =32,A D +BC +BD =16,得AD +B C =8,BD =8,过D 作DE ∥A C 交BC 的延长线于E.∴四边形A D E C 是平行四边形,∴D E =AC ,A D =CE.在Rt △DB E 中,∠D B E =90°,B E =CE +BC =AD +BC =8,BD =8,根据勾股定理得D E =B E 2+D B 2=82+82=8 2.因A C =D E ,故A C=8 2.4 作两条高过同一底的两个顶点作另一底的垂线,通过作高,将梯形分割成两个直角三角形和一个矩形,从而将梯形问题转化为直角三角形和矩形问题,用直角三角形和矩形的知识来解决45数学教学研究 第27卷第1期专辑 2008年6月C C 90EC 90E 90.图4例4 如图4,在等腰梯形AB CD 中,∠B =60°,AD =2,BC =4.计算梯形A BCD 的面积.解 过点A ,D 分别作A E ⊥B C,D F ⊥BC,垂足分别为E ,F ,则∠A EB =∠D F C =90°,A E ∥D F ,而A D ∥B C,∴四边形A E FD 是矩形,∴E F =A D =2,易证得△AB E ≌△DC F ,∴B E =F C =12(B C-A D )=12(4-2)=1.在Rt △AB E 中,A E =B Eta n ∠B =B Etan60°=1×3=3,∴S =12(2+4)×3=3 3.5 延长两腰构成三角形延长两腰交于一点,构造出两个相似三角形,利用相似三角形以及三角形的有关性质来解题.图5例5 如图5,等腰梯形的对角线分它的中位线为8c m ,20cm 的两部分,腰长为24c m.则梯形的下底角的度数为多少?解 延长A D ,BC 交于点G ,易证得E P ,F P 分别是△A D C,△CA B 的中位线,则D C =2E P =16c m ,AB=2P F =40cm ,由D C ∥AB ,得∠GD C =∠D AB ,∠GCD =∠GB A ,故△GD C ∽△GA B ,所以DC ∶AB =D G ∶AG ,即16∶40=D G ∶(D G +24),解得D G =16,则A G =40,同理可得B G =40,△GAB 为等边三角形,所以梯形的下底角的度数为60°.6 连结顶点与腰的中点,把梯形割补成三角形通过连结顶点与腰的中点并延长与另一底边相交,把梯形中的边、角转化到一个三角形中进行解决.图6例6 如图6,在梯形AB CD 中,A D ∥BC ,E ,F 分别为AB ,CD 边上的中点.求证E F 12(A D +B C ).证明 连结A F 并延长交BC 的延长线于点P.∵A D ∥BC(已知),∴∠AD F =∠P CF (两直线平行,内错角相等),在△AD F 和△P CF 中∠D FA =∠CF P (对顶角相等)D F =FC(已知)∠A D F =∠PCF (已证),△A D F ≌△P CF ,∴C P =AD ,A F =P F ,又∵A E =B E ,∴E F 是三角形AB C 的中位线,∴E F ∥B P ,E F 12B P ,即E F 12(A D +BC ).通过添加辅助线,将梯形分成一个或几个特殊图形是解决梯形问题的基本思路,它把分散的条件得以集中,隐含条件加以显现,把复杂的问题转化为容易解答的简单问题,体现了解数学问题的一个基本而重要的方法———化归法.只要细心观察、认真体会,就会找到解题的捷径.55第27卷第1期专辑 2008年6月 数学教学研究。
梯形中常见辅助线的添法上海市杨行中学:罗成梯形是在学习完三角形和平行四边形的基础上进行研究的,因此,梯形的问题可通过添加辅助线化归成我们熟悉的平行四边形和三角形,添辅助线可达到集中已知条件或构造基本图形等目的。
这种化归的思想是数学中研究问题的重要方法.下面我们来看看几种在梯形中常见的添辅助线的方法.(一)与腰有关的辅助线例1、已知:在梯形ABCD 中,AD ∥BC ,AB=CD ,AD=4,BC=12,∠C=60°,求AB 的长.(1)梯形内平移一腰(也就是我们常说的作腰的平行线)解:方法一(平移腰)过点D 作DE ∥AB 交BC 于E∵AD ∥BC∴四边形ABED 是平行四边形 ∴AD=BE=4∴EC=BC-BE=8∵AB=CD∴DE=DC∴∠C=60°∴EC=DE=DE=8∴AB=8(2)梯形外平移一腰解:方法二过点C 作CE ∥AB 交AD 的延长线于E∵AD ∥BC∴四边形ABCE 是平行四边形∴AB=CE∵AB=CD∴CD=CE∵AD ∥BC ,∠C=60°∴∠CDE=60°△CDE 是等边三角形∵AD=4,BC=12∴EC=DE=DE=8∴AB=8(3)延长两腰解:方法三(延腰)延长BA 、CD 交于点E ,∵AD ∥BC ,AB=CD ,∠C=60°,∴∠B=∠C=60°∠EAD=∠EDA=60°.∴△EBC 和△EAD 都是等边三角形.∵AD=4,BC=12,∴EA=4,EB=12.∴AB=EB-EA=12-4=8.(二)与高有关的辅助线例2、已知:在梯形ABCD 中,AD ∥BC ,AB=CD ,AD=4,BC=12,∠C=60°,求AB 的长.解:过点A 作AE ⊥BC 于E ,过点D 作DF ⊥BC 于F∵AD ∥BC∴AE=DF ,四边形AEFD 是矩形∴AD=EF=4∵AB=DC∴Rt △ABE ≌Rt △DFC (HL )∴BE=FC∴2CF=BC-EF=12-4=8∴CF=4∵∠C=60°∴∠CDF=30°在Rt △DFC 中,DC=2CF=8∴AB=8例3、如图,已知在直角梯形ABCD 中,AB=BC ,AB ∥CD ,∠D=90°,AE ⊥BC .求证:CD=CE分析:这是一个直角梯形,对于直角梯形的题目通常我们会通过添加辅助线高来完成题目,作CF ⊥AB ,可以将梯形分成矩形和三角形,结合直角梯形的性质,利用两次全等,从而达到证明CD=CE 的目的。
梯形辅助线的常见作法梯形辅助线的常见作法梯形是一种特殊的四边形。
它是平行四边形、三角形知识的综合,通过添加适当的辅助线将梯形问题化归为平行四边形问题或三角形问题来解决。
辅助线的添加成为问题解决的桥梁,梯形中常用到的辅助线有:(1)在梯形内部平移一腰。
例1(如图1)已知在梯形ABCD中,AD//BC,BA=DC。
求证:B=C证明:过点D作DM//AB交BC于点M。
因为 AD//BC DM//AB 所以AB=DM因为 BA=DC 所以 DM=DCDMC=CDMC=BB=C(2)梯形外平移一腰例2 (如图2)在梯形ABCD中,AB∥DC,作□ACED延长DC交BE于F求证:EF=FB证明:过点B作BG∥AD,交DC的延长线于G∴四边形ABGD是平行四边形∴AD=BG∵□ACED中,AD∥CE AD=CE∴CE∥BG且CE=BG ∴∠1=∠2又∵∠3=∠4 ∴⊿ECF≌⊿BGF ∴:EF=FB(3)梯形内平移两腰例3 (如图3)在梯形ABCD中,AD∥BC,AD﹤BC,E、F分别为AD、BC的中点,且EF⊥BC,试说明∠B=∠C解:过E作EM∥AB,EN∥CD,分别交BC于M,N得□ABME ,□NCDE ∴AE=BM DE=CN, ∵AE=DE ∴BM=CN又∵BF=CF ∴FM=FN ∵EF⊥BC ∴EM=EN ∴∠1=∠2∵EM∥AB,EN∥CD, ∴∠1=∠B , ∠2=∠C∴∠B=∠C(4)延长两腰例4(如图4)在梯形ABCD中, ∠B=∠C ,AD∥BC。
求证:梯形ABCD是等腰梯形。
证明:延长BA,CD交于点E∵∠B=∠C ∴BE=CE∵AD∥BC ∴∠EAD=∠B ∠EDA=∠C∵∠B=∠C ∴∠EAD=∠EDA∴AB=CD结论得证(5)过梯形上底的两端点向下底作高例5(如图5)在梯形ABCD中,DC∥AB,AD=BC,若AD=5,CD=2 ,AB=8,求梯形ABCD的面积。
解:过点D、C分别作DE⊥AB于E,CF⊥AB于F.根据等腰梯形的轴对称性可知,AE=BF.∵DC∥AB, DE⊥AB,CF⊥AB∴四边形CDEF是矩形∴DC=EF∴AE=(AB-EF)=(AB-CD)=3 ∴ DE===4 ∴=(2+8)x4=20(6)平移对角线例6求证:对角线相等的梯形是等腰梯形。
那些年,我们一起连过的梯形辅助线平移两腰作高线,延长两腰是关键;若已平移对角线,上下底和差出现;如果腰上有中点,中位线来细心连;上述方法不奏效,顶点中点倍长线;想要易解梯形题,还得注意小暗算;注意梯形割与补,巧变成为□和△.1.平移梯形一腰或两腰,把梯形的腰、两底角等转移到一个三角形中,同时还得到平行四边形例1.已知:如图,在梯形ABCD中,AD∥CB,∠B=60°,AD=AB=DC.求证:BC=2AD例2.如图,在梯形ABCD 中,AD∥BC , E、F 分别是AD 、BC 的中点,若∠B+∠C=90°.AD = 7 ,BC = 15 ,求EF例3.在梯形ABCD中AD∥BC AD<BC E、F分别为AD、BC的中点EF⊥BC ABCD 是等腰梯形吗?为什么?例4.如果等腰梯形,两底之差等于一腰长,那么这个等腰梯形的锐角是_____________例5.(希望杯邀请赛)如如图,在四边形ABCD中,AB//CD,∠D=2∠B,若AD=a,AB=b,则CD的长例6 已知一个梯形的4条边长分别是1、2、3、4,则此梯形的面积等于_______。
2.延长梯形的两腰,使它们交于一点,可得到两个相似三角形或等腰三角形、直角三角形等进一步解决问题.例1.如图所示,在梯形ABCD中,AD∥BC,CE是∠BCD的平分线,且CE⊥AB,E为垂足,BE=2AE,若四边形AECD的面积为1,则梯形ABCD的面积为。
例2如图,在等腰梯形ABCD中,AD∥BC,AB=DC,点P为BC边上一点,PE⊥AB于点E,PF⊥DC于点F,BG⊥CD于点G,试说明PE+PF=BG.(分别延长BA、CD用面积法可以证明,或者截长补短法证明)3.平移一条对角线一般是过上底的一个端点作一条对角线的平行线,与另一底的延长线相交,得到一个平行四边形和三角形,把梯形问题转化为平行四边形和三角形问题解决.例 1.如图,在梯形ABCD中,AD∥BC,对角线AC、BD相交于点O,AD=2,BC=BD=3,AC=4。
梯形中常见的辅助线内容基本要求略高要求较高要求梯形会识别梯形、等腰梯形:了解等腰梯形的性质和判定.掌握梯形的槪念,会用等腰梯形的性质和判定解决简单问题.例我们可以看到,梯形本身的性质并不多,所以实际解梯形的问题时,往往通过添加辅助线将梯形分成三角形或平行四边形,三角形是最简单的直线形,而平行四边形具有很好的对称性质•下而给出几个常见的添加辅助线的方法.1.作梯形的高:一般是过梯形的一个顶点作高,英好处是将梯形分成一个直角三角形和一个直角梯形,从而可以用勾股;4^理,如果过梯形的两个顶点分别作高•则会出现矩形•2.过梯形的一个顶点作另一腰的平行线:这样便将梯形分成了一个平行四边形和一个三角形,这样做的好处是可以将两条腰拉到同一个三角形中,并且三角形的另一条边恰好是梯形的两底之差,从而将问题集中到三角形中•3.延长梯形的两腰交于一点:这样做可以同样地使问题转化为三角形的问题.4.过梯形一腰的中点作另一腰的平行线:可以将梯形等积变换成一个平行四边形.5.连接梯形一个顶点和另一腰上的中点并延长交另一底边:可以将梯形等积变换成一个三角形.常见的辅助线添加方式如下:梯形中的辅助线较多,其实质是采用割补法将梯形问题划归为三角形、平行四边形问题处理.解题时要根据题目的条件和结论来确总作哪种辅助线.常见辅助线1.梯形问题通常是通过分割和拼接转化为三角形或平行四边形,英分割拼接的方法有如下几种(如图):1,把梯形分成一个平行四边形和一个三角形(图1所示):【答案】(1)作一腰的平行线; (2)作另一底边的垂线: (3)作对角线的平行线:(4)交于一点:(5)对称中心: (6)对称轴.【例1】 等腰梯形ABCD 中,AD//BC,若AD=3, AB=4・ BC=7,则ZB= 【答案】60° 如图,直角梯形ABCD 中,AB//CD. CB 丄AB, △ABD 是等边三角形,若AB=2,则BC=在梯形ABCD 中,AD//BC. AD=5, BC=7.若E 为DC 的中点,対线交BC 的延长线于F 点,则BF= •梯形ABCD 中.AD//BC,若对角线AC 丄BD ■且AC=5cm. BD=12cm,则梯形的而积等于((1)平移一腰,即从梯形的一个顶点(2)从同一底的两端. ,把梯形分成一个矩形和两个宜角三角形(图2所示);(3)平移对角线,即过底的一端图2,可以借助新得的平行四边形或三角形来研究梯形(图3所示):(4)延长梯形的两腰.图3,得到两个三角形,如果梯形是等腰梯形,则得到两个等腰三角形(图4所示):(5)以梯形一腰的中点为.图4,作某图形的中心对称图形(图5、图6所(6)以梯形一腰为.图5 图6,作梯形的轴对称图形(图7所【例2】【答案】 73【例3】【答案】 12 【例4】 A. 30cw- B. 60CW' C- 90cm~2D- } 69 cm-【例10】如图,等腰梯形ABCD 中,AB//CD.对角线AC 平分Z BAD, ZB=60。
梯形常用辅助线的做法常见的梯形辅助线基本图形如下:1.平移梯形一腰或两腰,把梯形的腰、两底角等转移到一个三角形中,同时还得到平行四边形.【例1】已知:如图,在梯形ABCD中,.求证:.分析:平移一腰BC到DE,将题中已知条件转化在同一等腰三角形中解决,即AB=2CD.证明:过D作 ,交AB于E.∵ AB平行于CD,且 ,∴四边形是菱形.∴又∴为等边三角形.∴又 ,∴∴.【例2】如图,在梯形ABCD 中,AD∥BC , E、F 分别是AD 、BC 的中点,若.AD = 7 ,BC = 15 ,求EF .分析:由条件 ,我们通过平移AB 、DC ;构造直角三角形MEN ,使EF 恰好是△MEN 的中线.解:过E 作EM∥AB ,EN ∥DC ,分别交BC 于M 、N ,∵ ,∴∴是直角三角形,∵ , ,∴ .∵、分别是、的中点,∴为的中点,∴ .变式:如图1,梯形ABCD的上底AB=3,下底CD=8,腰AD=4,求另一腰BC的取值范围。
图1析解:过点B作BM//AD交CD于点M,则梯形ABCD转化为△BCM和平行四边形ABMD。
在△BCM中,BM=AD=4,CM=CD-DM=CD-AB=8-3=5,所以BC的取值范围是:5-4<BC<5+4,即1<BC<9。
2.延长梯形的两腰,使它们交于一点,可得到两个相似三角形或等腰三角形、直角三角形等进一步解决问题.【例3】.如图,在梯形中, , ,梯形的面积与梯形的面积相等.求证: .分析:条件是两个梯形的面积相等,而结论是三线段长的平方关系,如果延长两腰交于一点,就可得到三个相似的三角形,再利用相似三角形的面积比与相似比的关系变形就可得出结论.证明:延长、使它们相交于点,∵ ,∴∴.同理,∵故得∴变式1:如图5,在梯形ABCD中,AD//BC,∠B=50°,∠C=80°,AD=2,BC=5,求CD 的长。
图5析解:延长BA、CD交于点E。
在△BCE中,∠B=50°,∠C=80°。
所以∠E=50°,从而BC=EC=5 同理可得AD=ED=2 所以CD=EC -ED=5-2=3变式2:如图所示,四边形ABCD 中,AD 不平行于BC ,AC =BD ,AD =BC. 判断四边形ABCD 的形状,并证明你的结论.A BCD变式3:(延长两腰)如图,在梯形中,,,、为、的中点。
3.从梯形上底的两端向下底引垂线作高,可以得到一个矩形和两个直角三角形.然后利用构造的直角三角形和矩形解决问题.例4.如图,在梯形中,.求证:.分析:过上底向下底作两高,构造Rt△,然后利用两三角形全等解决问题.证明:分别过D、C、作AB的垂线,垂足分别为E、F.∵ ,∴ .又 ,∴≌ .∴变式:如图7,在直角梯形ABCD中,AB//DC,∠ABC=90°,AB=2DC,对角线AC⊥BD,垂足为F,过点F作EF//AB,交AD于点E,求证:四边形ABFE是等腰梯形。
图7析证:过点D作DG⊥AB于点G,则易知四边形DGBC是矩形,所以DC=BG。
因为AB=2DC,所以AG=GB。
从而DA=DB,于是∠DAB=∠DBA。
又EF//AB,所以四边形ABFE是等腰梯形。
如图8,在梯形ABCD中,AD为上底,AB>CD,求证:BD>AC。
图8析证:作AE⊥BC于E,作DF⊥BC于F,则易知AE=DF。
在Rt△ABE和Rt△DCF中,因为AB>CD,AE=DF。
所以由勾股定理得BE>CF。
即BF>CE。
在Rt△BDF和Rt△CAE中由勾股定理得BD>AC4.平移对角线一般是过上底的一个端点作一条对角线的平行线,与另一底的延长线相交,得到一个平行四边形和三角形,把梯形问题转化为平行四边形和三角形问题解决.【例5】.如图,等腰梯形中, , ,且 ,是高,是中位线,求证:.分析:由梯形中位线性质得 ,欲证 ,只要证.过点作 ,交的延长线于 ,就可以把、和移到三角形中,再证明等式成立就简单多了.证明:过点作交的延长线于点 ,则四边形是平行四边形.∴ ,∵四边形是等腰梯形,∴ ,∴又∵ ,∴ ,∴ ,∴ .∵ ,∴又∵ ,∴ .【例6】.已知:如图,在梯形中, .求证:梯形是等腰梯形.证明:过D作 ,交BA延长线于E.则四边形是平行四边形.∴.∴又 ,∴于是,可得∴∴梯形ABCD是等腰梯形.5,求证:AC⊥BD。
变式1:如图3,在等腰梯形ABCD中,AD//BC,AD=3,BC=7,BD=2图3析解:过点C 作BD 的平行线交AD 的延长线于点E ,易得四边形BCED 是平行四边形,则DE=BC ,CE=BD=25,所以AE=AD +DE=AD +BC=3+7=10。
在等腰梯形ABCD 中,AC=BD=25,所以在△ACE 中,22222AE 100)25()25(CE AC ==+=+,从而AC ⊥CE ,于是AC ⊥BD 。
变式2:(平移对角线)已知梯形ABCD 的面积是32,两底与高的和为16,如果其中一条对角线与两底垂直,则另一条对角线长为_____________变式3:如图4,在梯形ABCD 中,AD//BC ,AC=15cm ,BD=20cm ,高DH=12cm ,求梯形ABCD 的面积。
图4析解:过点D 作DE//AC ,交BC 的延长线于点E ,则四边形ACED 是平行四边形,即DCE ACD ABD S S S ∆∆∆==。
所以DBE ABCD S S ∆=梯形由勾股定理得2222DH AC DH DE EH -=-=9121522=-=(cm )161220DH BD BH 2222=-=-=(cm )所以)cm (15012)169(21DH BE 21S 2DBE =⨯+⨯=⋅=∆,即梯形ABCD 的面积是150cm 2。
5.遇到梯形一腰中点的问题可以作出梯形的中位线,中位线与上、下底都平行,且三线段有数量关系. 或利用“等积变形”,连结梯形上底一端点和另一腰中点,并延长与下底延长线交于一点,构成三角形解决问题.【例7】.已知:如图4,在梯形中,是的中点,且.求证:.证明:取的中点F,连结FE.则∵ ,∴.∴.【例8】.已知:梯形 ABCD中AD BC,E为AB中点,且AD+BC=DC , 求证:DE⊥EC,DE平分∠ADC,CE平分∠BCD.证法1:取DC中点F,连结EF,E为AD中点,则EF为梯形的中位线∴EF∥AD∥BC EF=(AD+BC)∴∠1=∠5,∠3=∠6∵DC=AD+BC∴EF=DC=DF=CF∴∠1=∠2,∠3=∠4∴∠2=∠5,∠4=∠6∴∠1+∠3+∠2+∠4=180°∴∠1+∠3=90°∴DE⊥C,DE平分ADC,CE平分∠CD证法2:延长CE 与DA 延长线交于一点F,过程略.证法3:在DC 上截取DF=AD,连结AF 、BF 、EF 解决.变式1:如图9,在梯形ABCD 中,AB//DC ,O 是BC 的中点,∠AOD=90°,求证:AB +CD=AD 。
图9析证:取AD 的中点E ,连接OE ,则易知OE 是梯形ABCD 的中位线,从而OE=21(AB +CD )①在△AOD 中,∠AOD=90°,AE=DE 所以AD 21OE② 由①、②得AB +CD=AD 。
变式2:在梯形ABCD 中,AD ∥BC , ∠BAD=900,E 是DC 上的中点,连接AE 和BE ,求∠AEB=2∠CBE 。
解、分析:分别延长AE 与BC ,并交于F 点,从而等到△ADE 与△FCE 是全等的,在利用“直角三角形斜边上的中线等于斜边的一半就可以求出结论”。
解:分别延长AE 与BC ,并交于F 点∵∠BAD=900且AD ∥BC∴∠FBA=1800-∠BAD=900又∵AD ∥BC∴∠DAE=∠F(两直线平行内错角相等) ∠AED=∠FEC (对顶角相等)DE=EC (E 点是CD 的中点) ∴△ADE ≌△FCE (AAS ) ∴ AE=FE在△ABF 中∠FBA=900且AE=FE∴ BE=FE (直角三角形斜边上的中线等于斜边的一半) ∴ 在△FEB 中 ∠EBF=∠FEB ∠AEB=∠EBF+ ∠FEB=2∠CBE6.已知梯形两条对角线的中点,连接梯形一顶点与一条对角线中点,并延长与底边相交,使问题转化为三角形中位线。
[例10]如图10,在梯形ABCD 中,AD//BC ,E 、F 分别是BD 、AC 的中点,求证:(1)EF//AD ;(2))AD BC (21EF -=。
图10析证:连接DF ,并延长交BC 于点G ,易证△AFD ≌△CFG 则AD=CG ,DF=GF由于DE=BE ,所以EF 是△BDG 的中位线 从而EF//BG ,且BG 21EF =因为AD//BG ,AD BC CG BC BG -=-= 所以EF//AD ,EF )AD BC (21-=7.当遇到以上的梯形辅助线添加后不能解决问题时,可以特题特解,结合具体问题中的具体条件,寻求特殊的方法解决问题.比如可将对角线绕中点旋转 、利用一腰中点旋转、将梯形补成平行四边形或三角形问题.【例9】.已知:如图5,在梯形ABCD 中, M、N分别是BD 、AC 的中点.求证:.证明:连结并延长 ,交于E.则 .∴又N是AC的中点,∴ ,故取一腰的中点,连结顶点和这个中点并延长与对边的延长线相交,可得两个全等三角形.【例10】.如图,梯形中, ,、分别平分和 ,为中点,求证:.分析:要证明 ,可以利用为中点,延长与的延长线交于 ,,得到,再证明即可.证明:延长、交于点 F,显然.∴ , .又∵ ,, ,∴ ,∴∴是线段的垂直平分线.∴ ,∴ .评注:添加辅助线后,沟通了、与的联系,由线段垂直平分线性质得出 ,从而问题获得解决.利用一腰中点旋转【例11】.已知:如图,在梯形中,是CD的中点.求证:.证明:延长AE、BC相交于点F.易证.∴ ,∵ ,∴即 .∴BE是等腰底边上的高.∴ .说明:在图5中,相当于由绕点E旋转得到;在图6中,是由绕点E旋转得到.【例12】.如图,梯形中, ,为腰的中点,求证:.分析:与梯形ABCD的面积关系不明显,如果利用梯形助特点把它补成如图7的平行四边形,它们之间的关系就清晰了.梯形补成平行四边形,各种关系明显、直观,解题思路清晰.证明:延长 ,使 ,延长 ,使;则 ,则四边形是平行四边形.为的中点,连结 ,与交于点 .连结、 ,则.∵ ,是中点,∴为中点且是中点.∴四边形是平行四边形,∴ ,∴【模拟试题】1. 若等腰梯形的锐角是60°,它的两底分别为11cm,35cm,则它的腰长为__________cm.2. 如图所示,已知等腰梯形ABCD中,AD∥BC,∠B=60°,AD=2,BC=8,则此等腰梯形的周长为()A. 19B. 20C. 21D. 22A B CD3. 如图所示,AB ∥CD ,AE ⊥DC ,AE =12,BD =20,AC =15,则梯形ABCD 的面积为( ) A. 130 B. 140 C. 150 D. 160A BCDE4. 如图所示,在等腰梯形ABCD 中,已知AD ∥BC ,对角线AC 与BD 互相垂直,且AD =30,BC =70,求BD 的长.AB CD5. 如图所示,已知等腰梯形的锐角等于60°,它的两底分别为15cm 和49cm ,求它的腰长.AB CD6. 如图所示,已知等腰梯形ABCD 中,AD ∥BC ,AC ⊥BD ,AD +BC =10,DE ⊥BC 于E ,求DE 的长.ABCDE7. 如图所示,梯形ABCD 中,AB ∥CD ,∠D =2∠B ,AD +DC =8,求AB 的长.ABCD8. 如图所示,梯形ABCD 中,AD ∥BC ,(1)若E 是AB 的中点,且AD +BC =CD ,则DE 与CE 有何位置关系?(2)E 是∠ADC 与∠BCD 的角平分线的交点,则DE 与CE 有何位置关系?AB CDE【课后演练】1(本小题满分5分)已知:如图,梯形ABCD 中,AD ∥BC ,AB=DC ,∠BAD 、∠CDA 的平分线AE 、DF 分别交直线BC 于点E 、F .求证: CE=BF .2.如图,在梯形A B C D 中,A D B C ∥,9038BD CD BDC AD BC =∠===,°,,.求AB 的长.B CAD E3.如图6,在梯形ABCD 中,AD BC ∥,90A ∠=︒,︒=∠45C ,DE=EC ,AB=4,AD=2,求BE 的长.4.如图,在平面直角坐标系中,A(0),B(2).把矩形OABC 逆时针旋转30︒得到矩形111OA B C . (1)求1B 点的坐标;(2)求过点(2,0)且平分矩形111OA B C 面积的直线l 方程;(3)设(2)中直线l 交y 轴于点P ,直接写出1PC O ∆与11PB A ∆的面积和的值及1POA ∆与11PB C ∆的面积差的值.5. 如图,矩形纸片ABCD 中,BC=4,AB=3,点P 是BC 边上的动点(点P 不与点B 、C 重合).现将△PCD 沿PD 翻折,得到△PC ’D ;作∠BPC ’的角平分线,交AB 于点E .设BP= x,BE= y,则下列图象中,能表示y 与x 的函数关系的图象大致是6.已知:如图,梯形ABCD 中,DC ∥AB ,AD =BC ,对角线AC 、BD 交于点O ,∠COD =60°,若CD =3,AB =8,求梯形ABCD 的高.B CD O A7.已知如图,直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD=2,BC=DC=5,点P 在BC 上移动,则当PA+PD 取最小值时,△APD 中边AP 上的高为 . 8 如图,在矩形ABCD 中,AB=2,BC=1,动点P 从点B 出发,沿路线B C D →→作匀速运动,那么△ABP 的面积S 与点P 运动的路程x 之间的函数图象大致是9.如图,在四边形ABCD 中,AC 平分∠BAD ,10CD B C ==,21AB =,9AD =.求AC 的长.10如图,直线1l :1y x =+与直线2l :y mx n =+相交于点), 1(b P . (1)求b 的值;(2)不解关于y x ,的方程组 请你直接写出它的解;(3)直线3l :y nx m =+是否也经过点P ?请说明理由.A .B.C .D .12题图 D C PB AOxyP10题1l2l21 11.已知:关于x 的一元二次方程01)2()1(2=--+-x m x m (m 为实数)若方程有两个不相等的实数根,求m 的取值范围;12.已知:如图,直线323+-=x y 与x 轴、y 轴分别交于点A 和点B ,D 是y 轴上的一点,若将△DAB 沿直线DA 折叠,点B 恰好落在x 轴正半轴上的点C 处,求直线CD 的解析式.14.如图,在梯形ABCD 中,AD //BC ,BD ⊥DC ,∠C =60°,AD=4,BC=6,求AB 的长.15.已知:如图,在梯形ABCD 中,AD ∥BC ,∠B=45°,∠BAC=105°,AD =CD =4.求BC 的长.D C B A D A B C22 x16.已知:将函数y =的图象向上平移2个单位,得到一个新的函数的图像. (1)求这个新的函数的解析式;(2)若平移前后的这两个函数图象分别与y 轴交于O 、A 两点,与直线x =C 、B 两点.试判断以A 、B 、C 、O 四点为顶点的四边形形状,并说明理由;17 如图,在梯形CD AB 中,AB ∥DC ,DC A DB ∠平分,过点A 30B DC =∠°,3AD =求CD 的长.。