结构力学 8.位移法(李廉锟_结构力学)解析
- 格式:ppt
- 大小:7.15 MB
- 文档页数:163
李廉锟《结构力学》笔记和课后习题(含考研真题)详解-第6章结构位移计算【圣才出品】第6章结构位移计算6.1 复习笔记【知识框架】【重点难点归纳】一、结构位移的基本概念(见表6-1-1)★★表6-1-1 结构位移的基本概念二、刚体的虚功原理★★★平衡方程是一种直接的受力分析方法,而虚功原理是一种间接手法。
虚功原理是(任意平衡力系)在(任意可能位移)上所做的总虚功为零。
根据虚设对象不同,刚体的虚功原理分两种应用形式(虚力原理、虚位移原理),具体见表6-1-2。
表6-1-2 刚体的虚功原理三、变形体系的虚功原理(见表6-1-3)★★★表6-1-3 变形体系的虚功原理四、位移计算的一般公式单位荷载法★★★★★基于化整为零、积零为整的原则,结构位移的计算从局部变形入手,通过虚力原理中的单位荷载法推导其拉伸、剪切、弯曲变形公式,再对这些局部变形公式进行叠加,得到整体变形公式,最后通过虚功方程推导出位移计算公式,见表6-1-4。
表6-1-4 单位荷载法求变形体系的位移注:为虚设单位荷载在支座处引起的反力;、N、Error!S分别为单位荷载在截面引起的弯矩、轴力、剪力。
拟求位移Δ可以引申理解为广义位移,将结构位移广义化,可以求解两点之间的广义位移。
广义位移、广义单位荷载和外力虚功三者之间满足:W=1·Δ。
单广义位移分类及单位荷载施加方式见表6-1-5。
表6-1-5 单广义位移分类及单位荷载施加方式五、静定结构在荷载作用下的位移计算(见表6-1-6)★★★★表6-1-6 静定结构在荷载作用下的位移计算注:G为材料的切变模量;A为杆件截面的面积;k为切应力沿截面分布不均匀而引用的改正系数(考试作为已知条件)。
六、图乘法(见表6-1-7)★★★★★。
结构力学中使用位移法来解决带有无限刚性杆结构的解法【摘要】主要介绍使用位移法来解决带有无限刚性杆件的复杂结构以及由于刚性杆的存在使得结构在发生位移时会产生复杂的牵连位移。
【关键词】位移法无限刚性杆牵连位移1 前言位移法是以结构的节点位移作为基本未知量来求解结构的受力状态。
在解决一般的超静定次数多,用力法不好解决的刚架、桁架以及组合结构中运用的相当广泛。
一般的结构用位移法都好解决,但是带有无限刚性杆的结构就不是那么容易解决的了。
要解决这类问题,第一,我们要了解结构的特点以及支座的类型从而可以判断出该结构的自由度数以及基本未知量。
第二,要了解无限刚性杆在这个结构中处于什么作用?当结构产生位移时,这个无限刚性杆是不是参与进去?如果参与进去将会产生何种位移以及连接在该刚性杆上的杆件会产生什么样的牵连位移?第三,确定好这些内容后,就可以增加相应的约束,以及根据几何关系来确定牵连位移。
所谓的牵连位移,是指由于某些附加条件,使得节点位移之间相互不独立,或者说它们之间存在一定的牵连关系。
如图1所示:如果忽略杆件的轴向变形,那么无论荷载情况如何,根据几何学的原理均可以判定C、D两节点的线位移均在水平方向,而且肯定是相等的,这是很简单的牵连位移。
复杂的牵连位移是指相互不独立的结点位移之间并非简单地相等,它们之间的关系可以用数学表达式表达。
牵连关系可以发生在线位移之间,也可以发生在线位移和角位移之间。
下面我们就用一道例题来详细讲解一下。
2 例题分析如图2所示,该结构为一平面刚架,杆AC、CD、CE长为L,CP长为0.5L,其中P处受一集中力F的作用,刚度EI为常数,其中DB杆的刚度为无穷大。
试用位移法作出该结构的弯矩图。
解:由图可知该结构有三个自由度,分别是E点、C点的角位移以及D点的线位移,因为有刚性杆的存在,当D点向左移动单位位移1时与D连接的杆件DE和DC也会相应的产生角位移和线位移这就构成了复杂的牵连位移,下面我们来一一作为解析。
第8章位移法复习思考题1.位移法的基本思路是什么?为什么说位移法是建立在力法的基础之上的?答:(1)位移法的基本思路位移法的基本思路是首先确定原结构的基本未知量,加入附加联系从而得基本结构,令各附加联系发生与结构相同的结点位移;再根据在荷载等外因和各结点位移共同作用下,各附加联系上的反力偶或反力均等于零的条件,建立方程,求出未知位移;最后求出结构反力和内力。
(2)位移法是建立在力法的基础之上的原因因为位移法的基本结构是两端固定的或一端固定一端铰支的单跨超静定梁。
位移法进行计算是以这些基本结构为基础的,需要用力法算出单跨超静定梁在杆端发生各种位移时以及荷载等因素作用下的内力,才能继续进行位移法以后的求解。
2.位移法的基本未知量与超静定次数有关吗?答:位移法的基本未知量与超静定次数无关。
因为位移法的基本未知量是指独立的结点的角位移和独立的结点的线位移,而这两个量与超静定次数并无关系。
3.位移法的典型方程是平衡条件,那么在位移法中是否只用平衡条件就可以确定基本未知量,从而确定超静定结构的内力?在位移法中满足了结构的位移条件(包括支承条件和变形连续条件)没有?在力法中又是怎样满足结构的位移条件和平衡条件的?答:(1)在位移法中只用平衡条件就可以确定基本未知量,从而确定超静定结构的内力。
(2)在位移法中已满足结构的位移条件(包括支承条件和变形连续条件)。
因为在位移法的假设和取基本未知量时,结构的支承条件和变形连续条件就已经考虑进去了,所以位移法中结构的位移条件自动满足,故只需要平衡条件就可以确定基本未知量了。
(3)力法的典型方程实质上就是满足结构的位移条件(包括支承条件和变形连续条件)。
力法是在满足平衡条件下进行分析的,只要结构不破坏,平衡条件会自动满足。
4.在什么条件下独立的结点线位移数目等于使相应铰结体系成为几何不变所需添加的最少链杆数?答:不考虑受弯直杆的轴向变形(即受弯直杆两端距离不变)的条件下,独立的结点线位移数目等于使相应铰结体系成为几何不变所需添加的最少链杆数。
第8章位移法复习思考题1.位移法的基本思路是什么?为什么说位移法是建立在力法的基础之上的?答:(1)位移法的基本思路位移法的基本思路是首先确定原结构的基本未知量,加入附加联系从而得基本结构,令各附加联系发生与结构相同的结点位移;再根据在荷载等外因和各结点位移共同作用下,各附加联系上的反力偶或反力均等于零的条件,建立方程,求出未知位移;最后求出结构反力和内力。
(2)位移法是建立在力法的基础之上的原因因为位移法的基本结构是两端固定的或一端固定一端铰支的单跨超静定梁。
位移法进行计算是以这些基本结构为基础的,需要用力法算出单跨超静定梁在杆端发生各种位移时以及荷载等因素作用下的内力,才能继续进行位移法以后的求解。
2.位移法的基本未知量与超静定次数有关吗?答:位移法的基本未知量与超静定次数无关。
因为位移法的基本未知量是指独立的结点的角位移和独立的结点的线位移,而这两个量与超静定次数并无关系。
3.位移法的典型方程是平衡条件,那么在位移法中是否只用平衡条件就可以确定基本未知量,从而确定超静定结构的内力?在位移法中满足了结构的位移条件(包括支承条件和变形连续条件)没有?在力法中又是怎样满足结构的位移条件和平衡条件的?答:(1)在位移法中只用平衡条件就可以确定基本未知量,从而确定超静定结构的内力。
(2)在位移法中已满足结构的位移条件(包括支承条件和变形连续条件)。
因为在位移法的假设和取基本未知量时,结构的支承条件和变形连续条件就已经考虑进去了,所以位移法中结构的位移条件自动满足,故只需要平衡条件就可以确定基本未知量了。
(3)力法的典型方程实质上就是满足结构的位移条件(包括支承条件和变形连续条件)。
力法是在满足平衡条件下进行分析的,只要结构不破坏,平衡条件会自动满足。
4.在什么条件下独立的结点线位移数目等于使相应铰结体系成为几何不变所需添加的最少链杆数?答:不考虑受弯直杆的轴向变形(即受弯直杆两端距离不变)的条件下,独立的结点线位移数目等于使相应铰结体系成为几何不变所需添加的最少链杆数。
第8章位移法复习思考题1.位移法的基本思路是什么?为什么说位移法是建立在力法的基础之上的?答:(1)位移法的基本思路位移法的基本思路是首先确定原结构的基本未知量,加入附加联系从而得基本结构,令各附加联系发生与结构相同的结点位移;再根据在荷载等外因和各结点位移共同作用下,各附加联系上的反力偶或反力均等于零的条件,建立方程,求出未知位移;最后求出结构反力和内力。
(2)位移法是建立在力法的基础之上的原因因为位移法的基本结构是两端固定的或一端固定一端铰支的单跨超静定梁。
位移法进行计算是以这些基本结构为基础的,需要用力法算出单跨超静定梁在杆端发生各种位移时以及荷载等因素作用下的内力,才能继续进行位移法以后的求解。
2.位移法的基本未知量与超静定次数有关吗?答:位移法的基本未知量与超静定次数无关。
因为位移法的基本未知量是指独立的结点的角位移和独立的结点的线位移,而这两个量与超静定次数并无关系。
3.位移法的典型方程是平衡条件,那么在位移法中是否只用平衡条件就可以确定基本未知量,从而确定超静定结构的内力?在位移法中满足了结构的位移条件(包括支承条件和变形连续条件)没有?在力法中又是怎样满足结构的位移条件和平衡条件的?答:(1)在位移法中只用平衡条件就可以确定基本未知量,从而确定超静定结构的内力。
(2)在位移法中已满足结构的位移条件(包括支承条件和变形连续条件)。
因为在位移法的假设和取基本未知量时,结构的支承条件和变形连续条件就已经考虑进去了,所以位移法中结构的位移条件自动满足,故只需要平衡条件就可以确定基本未知量了。
(3)力法的典型方程实质上就是满足结构的位移条件(包括支承条件和变形连续条件)。
力法是在满足平衡条件下进行分析的,只要结构不破坏,平衡条件会自动满足。
4.在什么条件下独立的结点线位移数目等于使相应铰结体系成为几何不变所需添加的最少链杆数?答:不考虑受弯直杆的轴向变形(即受弯直杆两端距离不变)的条件下,独立的结点线位移数目等于使相应铰结体系成为几何不变所需添加的最少链杆数。
结构力学位移法详解结构力学是一门研究物体受力和变形关系的科学,它对于工程结构的设计和分析具有重要的意义。
结构力学包括静力学和动力学两个方面,其中位移法是解决结构静力学问题的一种重要方法。
位移法是一种基于结构位移的方法,通过建立结构的位移方程来求解结构中的受力和变形情况。
相比于应力法,位移法在简化问题过程中能够更好地处理约束条件和边界条件,使得解题更加简化和精确。
在位移法中,首先需要确定结构的边界条件,即结构的约束条件和边界条件。
然后根据结构的受力平衡和力的平衡条件,建立结构的位移方程。
位移方程是一个描述结构变形情况的方程,通过解这个方程可以得到结构的位移分布。
位移方程的建立通常需要以结构单元为基础,将整个结构分解为不同的单元进行分析。
每个单元之间通过节点连接,将力和位移传递给下一个单元。
而每个单元的位移方程则可以通过应力-应变关系、平衡方程和简化条件得到。
在求解位移方程时,常常使用有限差分法、有限元法或弹性力学公式等数值方法来近似求解。
这些数值方法将结构离散化,并通过数值计算得到结构的位移分布。
在得到结构的位移分布后,可以进一步计算结构的应力和应变分布,以及其它受力和变形相关的参数。
这样,就可以对结构的安全性和机械性能进行评估和优化。
总结起来,位移法是通过建立结构的位移方程来求解结构静力学问题的一种方法。
通过分析结构的位移分布,可以得到结构的应力和应变情况,进而评估结构的安全性和机械性能。
在实际工程问题中,位移法经常用于分析和设计各类结构,具有重要的实际应用价值。
第十章位移法§10-1 概述位移法——以结点位移(线位移,转角)为基本未知量的方法。
基本概念:以刚架为例(图10-1)基本思路:以角位移Z1为基本未知量平衡条件——结点1的力矩平衡位移法要点:一分一合①确定基本未知量(变形协调)基本体系-独立受力变形的杆件②将结构拆成杆件-杆件分析(刚度方程-位移产生内力、荷载产生内力)③将结构杆件合成结构:整体分析——平衡条件——建立方程§10-2 等截面直杆的转角位移方程单跨超静定梁——由杆端位移求杆端力——转角位移方程矩阵形式一、端(B端)有不同支座时的刚度方程(1)B端固定支座(2)B端饺支座(3)B端滑动支座二、由荷载求固端力(3*,4,11*,12,19,20)(1)两端固定(2)一端固定,一端简支(3)一端固定,一端滑动(可由两端固定导出)三、一般公式叠加原理杆端位移与荷载共同作用杆端弯矩:(10-1)位移法意义(对于静定、超静定解法相同)基本未知量-被动(由荷载等因素引起)→按主动计算——位移引起杆端力+荷载的固端力→结点满足平衡正负号规则——结点转角(杆端转角)弦转角——顺时针为正杆端弯矩位移法三要素:1.基本未知量-独立的结点位移2.基本体系-原结构附加约束,分隔成独立变力变形的杆件体系。
3.基本方程-基本体系在附加约束上的约束力(矩)与原结构一致(平衡条件)§10-3基本未知量的确定角位移数=刚结点数(不计固定端)线位移数=独立的结点线位移观察几何构造分析方法——结点包括固定支座)变铰结点铰结体系的自由度数=线位移数――即使其成为几何不变所需添加的链杆数。
§10-4典型方程及计算步骤典型方程(10-5、6)无侧移刚架的计算无侧移刚架-只有未知结点角位移的刚架(包括连续梁)(△=0) 有侧移刚架计算有侧移刚架――除结点有位移外还有结点线位移求解步骤:(1)确定基本未知量:Z i (按正方向设基本未知量)——基本体系,(2)作荷载、Z i = 1 —— ()()01i P i i M M ∆∆==、图(3)求结点约束力矩:荷载 —— 自由项R Ip ,及ΔJ = 1 —— 刚度系数 k IJ(4)建立基本方程:[k IJ ]{ Z i } + { R Ip } = {0} —— 附加约束的平衡条件 求解Z i (Δi )(5) 叠加法作i i P Z M M M ∑+=§10-5 直接建立位移法方程求解步骤:(1)确定基本未知量:Z i (按正方向设基本未知量)——基本体系,(2)写杆端弯矩(转角位移方程)(3)建立位移法方程—— 附加约束的平衡,求解Z i(4) 叠加法作i i P Z M M M ∑+=§10-6 对称性利用对称结构对称荷载作用 —— 变形对称,内力对称(M 、N 图对称,Q 图反对称——Q 对称)反对称荷载作用 —— 变形反对称,内力反对称(M 、N 图反对称,Q 图对称——Q 反对称)—— 取半跨对称结构上的任意荷载 ——对称荷载+反对称荷载§10-7支座位移和温度改变时的计算一、支座位移的计算超静定结构:支座有已知位移 —— 引起内力位移法计算:基本未知量、(基本体系)、基本方程及解题步骤与荷载作用时一样 区别在于固端力——自由项: R 1P ——荷载引起R 1C —— 支座位移引起二、温度改变时的计算与支座位移相同,超静定结构:温度改变 —— 内力固端力(相当荷载作用)(表11—1,5、11、15)Δt = t 1 — t 2 ——M 图,受拉面在温度铰低一侧。