基于缓冲算子的GM(1,1)模型的研究及其应用
- 格式:docx
- 大小:36.81 KB
- 文档页数:2
灰色预测模型GM(1,1)的应用一、问题背景:蠕变是材料在高温下的一个重要性能。
处于高温状态下的材料长期受到载荷作用时,即使其载荷较低,并且在短时间的高温拉伸试验中材料不发生变形,但在此情况下仍会有微小的蠕变,极端的情况下,甚至会使材料发生破坏。
高温材料多应用于各种车辆的发动机及冶金厂中各种设备上,如果因蠕变引起破坏,可能造成很大的事故。
为了保证设备的安全可靠,在某一使用温度下,预先知道该材料对不同载荷应力下断裂的时间是很重要的。
过去,人们都是通过蠕变试验测量断裂时间。
而做蠕变试验时,需要很长时间才能得到结果,即使通过试验得出的数据,也只是对某几个具体试样而言,存在很大的偶然性,不能代表普遍的规律。
如果将实测的数据用灰色系统理论来处理,可以预测在某一温度下的任何载荷应力的断裂时间。
二、低合金钢铸件蠕变性能的灰色预测下面是对Cr-mo-0.25V 低合金钢铸件高温蠕变情况利用灰色系统理论进行研究。
在500℃的高温下,已测得此铸件在载荷分别为37,36,35,34,33(kg/mm 2)情况下的蠕变断裂时间见下表。
数 列 序 数 K1 2 3 4 5载荷应力(kg/mm 2) 37 36 35 34 33 断裂时间()(100)0(K X ⨯小时)2.38 2.80 4.25 6.85 11.30 一次累加数列)()1(K X 2.38 5.18 9.43 16.28 27.581、建立GM (1,1)模型(1)数据处理:将同一数据列的前k 项元素累加后生成新数据列的第k 项元素。
即根据断裂时间数列)()0(k X 由∑==kn n X k X 1)0()1()()(得到 )()1(k X 。
(2)建立矩阵B,y:根据⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+--+-+-=1)]()1([5.01)]3()2([5.01)]2()1([5.0)1()1()1()1()1()1(N X N X X X X X B 得到 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----=19.2118.12130.7178.3B根据 T N N X X X Y )](,),3(),2([)0()0()0( =,得到 T N Y ]3.11,85.6,25.4,80.2[=(3)求出逆矩阵1()T BB - (4)作最小二乘估计,求参数u a ,N T T Y B B B u a 1)(ˆ-=⎪⎪⎭⎫⎝⎛=α 可得,⎪⎪⎭⎫ ⎝⎛-=97.05.0ˆα a = -0.5, u=0.97(5)建立时间响应函数,计算拟合值把a 和u 分别代入au e a u X t X at +-=+-))1(()1(ˆ)0()1(可得到解为2.24.4)1(ˆ5.0)1(-=+t e t X, 取t 为应力序数k 时,即得到时间响应方程为:2.24.4)1(ˆ5.0)1(-=+k e k X即可得到生成累加数列),2,1()1(ˆ)1( =+k k X 。
GM(1,1)模型的适用范围摘要GM(1,1)模型是一种常用的灰色系统数学模型,在许多领域得到了广泛的应用。
本文将介绍GM(1,1)模型的基本原理及其适用范围,并针对不同领域中GM(1,1)模型的具体应用进行详细讨论。
简介灰色系统理论是一种将统计学、数学和信息科学相结合的新兴跨学科领域,其研究的对象是具有不确定性、非完备信息的系统。
GM(1,1)模型是灰色系统理论中最常用的一种数学模型,用于预测和分析时间序列数据。
GM(1,1)模型的原理是基于灰色系统理论的灰色模型建模方法,该方法根据数据序列的变化规律,建立数据的动态变化模型,并通过建立灰色微分方程来进行预测。
GM(1,1)模型主要适用于简单的时间序列数据的预测和分析,具有简单、快速和高效等特点。
GM(1,1)模型的适用范围GM(1,1)模型适用于许多领域,主要包括以下几个方面:经济领域GM(1,1)模型在经济领域中的应用非常广泛,用于进行经济增长预测、市场趋势分析和投资策略制定等。
例如,可以将GM(1,1)模型应用于GDP季度数据的预测和分析,对经济增长趋势进行精确预测,为决策者提供科学依据。
工程领域GM(1,1)模型在工程领域中主要应用于生产和管理技术的改进、质量控制和生产计划制定等。
例如,可以将GM(1,1)模型应用于生产过程中某个指标的预测和分析,帮助工程师优化生产过程,提高生产效率。
自然科学领域GM(1,1)模型在自然科学领域中主要应用于气象、环境、水资源和地震等领域的数据分析和预测。
例如,可以将GM(1,1)模型应用于气象领域的气温预测和降雨量预测,为决策者提供准确的气象数据,为灾害防治提供科学依据。
社会科学领域GM(1,1)模型在社会科学领域中主要应用于人口、教育、医疗和农业等领域的数据分析和预测。
例如,可以将GM(1,1)模型应用于人口结构和教育发展趋势的预测和分析,帮助政府制定科学的人口和教育政策。
GM(1,1)模型的优缺点GM(1,1)模型具有以下优点:1.GM(1,1)模型具有简单、快速和高效等特点;2.GM(1,1)模型可以使用少量的数据进行分析和预测;3.GM(1,1)模型对数据的数量级和分布形态要求不高。
Improvement and Application of GM(1,1)GrayPrediction ModelYANG Cun-dian 1,ZHANG Yan 1,WANG Yi 2(1.College of Urban,Rural Planning and Architectural Engineering,Shangluo University,Shangluo 726000,Shaanxi;2.Faculty of Economics and Management,Shangluo 726000,Shaanxi)Abstract:The improvement of application of GM(1,1)gray prediction model solved the inaccurate problem due to the reliance on initial value and background value in the process of model prediction.With the use of least square principle,estimate of parameters in initial value and background value is obtained and a prediction model is further obtained.Empirical analysis shows that the prediction accuracy has been improved,and the application of GM (1,1)gray prediction model in actual prediction is expanded.Key words:background value construction;GM(1,1)gray prediction model;the least squares 收稿日期:2020-11-25基金项目:国家社会科学基金西部项目(19XJL002);陕西省社会科学基金项目(09E021);陕西省教育厅专项科研计划项目(08JK036)作者简介:杨存典,男,陕西山阳人,教授(1.商洛学院城乡规划与建筑工程学院,陕西商洛726000;2.商洛学院经济管理学院,陕西商洛726000)灰色预测模型GM(1,1)的改进及应用杨存典1,张雁1,王怡2摘要:通过对GM(1,1)灰色预测模型预测方法的改进,解决了模型预测过程中依赖初始值和背景值所带来的预测精度不高的问题。
第15卷第3期2013年9月心用趁凼分析字撤A C T A A N A I j ySI S FU N C T I O N A L I S A PP L I C A l l AV bl.15.N O.3Sep.,2013D O I:10.3724/SP.J.1160.2013.00211文章编号:1009-1327(2013)03—0211-07G M(1,1)模型的改进及应用王国兴兰州商学院信息工程学院,兰州730020摘要:随着经济的飞速发展,对经济的预测已经是必要的手段,本文选择灰色预测模型来预测经济的发展.然而,传统的G M(1,1)模型存在一些不足,往往在数据之间变化很大时得不到理想的结果,预测精度不高.首先对G M(1,1)模型做了简单的介绍,然后通过改进初始值的光滑度和背景值的取值优化模型,最后运用改进的G M(1,1)模型预测兰州市未来几年的经济发展,从预测结果看到在2020年兰州市的全民生产总值将达到6000亿.关键词:灰色预测;光滑度;背景值;全民生产总值;数学模型中图分类号:0159文献标志码:A1引言1.1灰色系统的产生和发展灰色系统理论是由华中理工大学邓聚龙教授于1982年提出并加以发展的.二十几年来,引起了国内外不少学者的关注并得到了长足的发展[1--5】.目前,在我国已经成为社会、经济、科学技术等诸多领域进行预测、决策、评估、规划控制、系统分析与建模的重要方法之一.特别是它对时间序列短、统计数据少、信息不完全系统的分析与建模,具有独特的功效,因此得到了广泛的应用.当今是信息时代,对信息的处理已近成为人们日常生活中、生产、科研中的重要步骤.对于确定信息的研究,人们已经有了丰富的经验和知识.然而对于部分信息已知,部分信息未知的模糊系统来说,除了用概率统计和模糊数学的方法来描述外,还可以用灰色系统来描述那些“小样本,贫信息,不确定”的问题.灰色系统是通过对原始数据的收集与整理来寻找其发展变化的规律的,这是一种从数据中寻找数据实现规律的途径,灰色系统认为,尽管客观系统表象复杂、数据离乱,但他是有整体功能的,因此必然蕴含某种内在的规律.灰色系统通过部分已知信息的生成、开发去了解、认识现实世界,实现对系统运行行为和演化规律的正确把握和描述.灰色系统是一种十分简单,易学好用的新理论,应用范围极广,深受广大学者的喜爱.1.2问题的提出G M(1,1)模型是灰色系统理论中应用最为广泛的一种灰色动态预测模型,用于定量预测和分析,是灰色预测的核心.然而,在实践应用中发现,此模型的拟合和预测效果有时很好,有时偏差很大,经分析发现,灰色微分拟合建立的G M(1,1)模型的精度一方面和初始序列的光滑度有关,另一方面和背景值的选取有关.基于这种情况本文提出了一种改进的G M(1,1)模型,并就兰州市的全民生产总值进行了预测.收稿日期:2013—06-08资助项目:兰州商学院2011年度教学改革研究重点课题(20110113)作者简介:王国兴(1976-),男,甘肃天水人,副教授,硕士,研究向:经济学、学模型212应用泛函分析学报第15卷2G M(1,1)模型的建立2.1灰色生成1)灰色生成的定义将原始数据列中的数据,按某种要求作数据处理称为灰色生成.客观世界尽管复杂,表述其行为的数据可能是杂乱无章的,然而它必然是有序的,都存在着某种内在规律,不过这些规律被纷繁复杂的现象所掩盖,人们很难直接从原始数据中找到某种内在的规律.对原始数据的生成就是企图从杂乱无章的现象中去发现内在规律.2)累加生成设初始数据序列为x(o)=(z(o’(1),z(o)(2),…,z(o’(几)),记生成数据序列为x(1)=(z(1)(1),z(1)(2),…,z(1)(佗)).若x(1)和x(o)之间满足如下关系z(1’(七)=∑垒1z(o)(i),i=1,2,…,佗.称x(1)是x(o)的一次累加生成并记为1一A G O.3)累减生成令x(7)为r次生成数列,对x(’)作i次累减生成记为△(扪,其基本关系为:△(‘)(z(’)(七))= z(o)(七).更进一步的有z(r-1)=z(”)(南)一。
灰色GM(1,1)模型的应用研究0 前言:目前常用的沉降预测方法较多,但研究表明,每种预测方法均有一定的适用范围,如双曲线法对于典型断面的理想数据预测效果较好,而对于量级小,波动大的观测数据的适用性较差;三点法(固结度对数配合法)预测误差较小,对数据段选取的依赖性小,对异常数据的敏感性强,但对沉降曲线收敛后波动太敏感,适用性差;Asoaka法预测误差一般较小,但其在预测过程钱对原始数据的平滑处理过程影响了预测误差的稳定性;指数曲线法对沉降变形数据的单调性有严格的要求,局部数据的小幅起伏变化都可能导致无法进行预测计算。
而现在高层、超高层建筑物,尤其高速铁路对于沉降控制很高,沉降量级一般较小,沉降数据波动大,如武广高铁桥涵和隧道沉降变形小于5mm,同时观测数据出现跳跃或连续几个观测数据变化趋势与常规相反的情况较多[[1] 陈善雄.高速铁路沉降变形观测评估理论与实践[M].中国铁道出版社,2010,3.]。
针对这些情况,目前高速铁路对桥涵和隧道进行沉降预测及评估时,目前通用的办法就是根据相应的地质条件、地基或桩基处理方式及目前发生沉降量直接判定是否满足沉降评估的要求,但判定条件很难把握,至今仍无法统一,故一种专门针对变形量级小,数据波动相对大的沉降预测方法具有十分重要的现实意义。
1 灰色GM(1,1)模型灰色系统是一种综合运用数学方法对信息不完全的系统进行预测、预报的理论和方法。
灰色预测的思路是:把随时间变化的随机正的数据列。
通过适当的方式累加,使之变成非负递增的数据列,用适当的方式逼近,以此曲线作为预测模型,对系统进行预测[[2] 宋来中.高速铁路线下工程沉降评估方法[J].中国港湾建设,2010,12(6):35-36.]2。
目前常用的有GM(1,1)、GM(1,N)模型,其中GM(1,N)模型适合于建立系统的状态模型,为高阶系统提供基础,不适合预测用,预测模型应选用单个变量的模型即预测量本身数据模型(GM(1,1)模型)[[3] 陈启华.灰色GM (1,1)模型在高铁线下工程沉降变形预测中的应用[J].地理空间信息,2012,6(3):141-142.][3]。
GM(1,1)预测模型的应用灰色预测是基于GM(1,1)预测模型的预测,按其应用的对象可有四种类型: (1)数列预测。
这类预测是针对系统行为特征值的发展变化所进行的预测。
(2)灾变预测。
这类预测是针对系统行为的特征值超过某个阙值的异常值将在何时出现的预测。
(3)季节灾变预测。
若系统行为的特征有异常值出现或某种事件的发生是在一年中的某个特定的时区,则该预测为季节性灾变预测。
(4)拓扑预测。
这类预测是对一段时间内系统行为特征数据波形的预测。
例1(数列预测):设原始序列)679.3,390.3,337.3,278.3,874.2())5(),4(),3(),2(),1(()0()0()0()0()0()0(==x x x x x X 试用GM(1,1)模型对)0(X 进行模拟和预测,并计算模拟精度。
解:第一步:对)0(X 进行一次累加,得)558.16,897.12,489.9,152.6,874.2()1(=X 第二步:对)0(X 作准光滑性检验。
由)1()()()1()0(-=k x k x k ρ得5.029.0)5(,5.036.0)4(,54.0)3(<≈<≈≈ρρρ。
当k>3时准光滑条件满足。
第三步:检验)1(X 是否具有准指数规律。
由)(1)1()()()1()1()1(k k x k x k ρσ+=-=得29.1)5(,36.1)4(,54.1)3()1()1()1(≈≈≈σσσ当k>3时,5.0],5.1,1[)()1(<=∈δσk ,准指数规律满足,故可对)1(X 建立GM(1,1)模型。
第四步:对)1(X 作紧邻均值生成,得)718.14,184.11,820.7,513.4()1(=Z于是⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡----=679.3390.3337.3278.3)5()4()3()2(,1718.141184.111820.71513.41)5(1)4(1)3(1)2()0()0()0()0()1()1()1()1(x x x x Y z z z z B 第五步:对参数列T b a ],[ˆ=α进行最小二乘估计。
GM(1,1)灰色模型对单桩竖向静载荷试验Q-S曲线拟合应用摘要:采用传统GM(1,1)灰色模型对单桩静荷载试验Q-S曲线进行拟合分析,其实质是通过指数函数拟合Q-S曲线实测数据,对缓降型Q~S曲线拟合度较好,但只能外推1~2级。
对具有明显的直线段、拐点段、陡降段的Q~S曲线,全线段拟合度不理想;同一Q~S曲线,原始数据段取舍不同,拟合曲线将有较大的变化。
结果表明传统GM(1,1)灰色预测模型对于单桩静荷载试验Q-S曲线的拟合程度与预测精度有限。
关键词:灰色系统理论GM(1,1)模型单桩极限承载力1 引言概率统计、模糊数学和灰色系统理论是三种常用的不确定系统研究方法。
概率统计研究的是“随机不确定”现象,考察具有多种可能发生的结果之“随机不确定”现象中每一种结果发生的可能性大小。
要求大样本,并服从某种典型分布。
模糊数学着重研究“认识不确定”问题,其研究对象具有“内涵明确,外延不明确”的特点。
比如“年轻人”内涵明确,但要你划定一个明确的范围,在这个范围内是年轻人,范围外不是年轻人,则很难办到。
灰色系统理论由我国学者邓聚龙在1982年创立,灰色系统理论研究概率统计、模糊数学难以解决的“小样本,贫信息”不确定性问题,着重研究“外延明确,内涵不明确”的对象[1]。
在建设工程实践中有很多问题可用灰色系统理论进行研究,如滑坡位移分析、基坑变形分析、建筑地基基础承载力预测等等[2][3][4][5]。
在建筑地基基础静载试验中,随竖向荷载增加,受试对象向下的位移也在增加,“在某级荷载下位移的变化是增加的,并且大于前一级荷载下的位移”这是个灰概念,其外延很明确,但要知道位移的具体数值,则不明确。
利用灰色系统理论来预估位移量,就是一个灰色预测问题。
灰色系统理论用于建设工程地基基础检测结果预估已有很多应用实例发表在各类专业期刊杂志,其应用效果参次不齐。
很多研究者也采用各种修正后的GM(1,1)模型(如非等步长的GM(1,1)模型、缓冲算子修正的灰色模型、遗传算法的灰色预测模型等[6][7][8])来提高灰色预测的精度。
《灰色GM(1,1)模型的优化及其应用》篇一一、引言灰色系统理论是一种研究信息不完全、数据不精确的系统的理论。
其中,灰色GM(1,1)模型是灰色系统理论中最为重要和常用的预测模型之一。
该模型通过累加生成序列和一次微分方程进行建模,具有较高的预测精度和实用性。
然而,传统的灰色GM(1,1)模型在某些情况下仍存在模型参数不够准确、预测精度不高等问题。
因此,对灰色GM(1,1)模型进行优化及其应用的研究具有重要意义。
本文将首先介绍灰色GM(1,1)模型的基本原理,然后探讨其优化方法,并最后分析其在不同领域的应用。
二、灰色GM(1,1)模型的基本原理灰色GM(1,1)模型是一种基于微分方程的预测模型,主要用于处理小样本、不完全信息的数据。
该模型通过累加生成序列和一次微分方程进行建模,将原始数据序列转化为微分方程的形式,从而进行预测。
其基本步骤包括:数据累加、建立微分方程、求解微分方程、模型检验等。
三、灰色GM(1,1)模型的优化针对传统灰色GM(1,1)模型的不足,学者们提出了多种优化方法。
其中,基于数据预处理、模型参数优化和预测结果修正的优化方法较为常见。
1. 数据预处理:通过对原始数据进行处理,如去趋势、归一化等,以提高模型的适应性和预测精度。
2. 模型参数优化:通过引入其他因素或变量,如时间序列的波动性、随机性等,对模型参数进行优化,提高模型的预测精度。
3. 预测结果修正:通过对预测结果进行修正,如引入专家知识、其他预测方法的结果等,进一步提高预测精度。
四、灰色GM(1,1)模型的应用灰色GM(1,1)模型在各个领域都有广泛的应用。
下面以几个典型领域为例,介绍其应用。
1. 经济学领域:灰色GM(1,1)模型可以用于预测经济增长、股市走势等经济指标,为经济决策提供参考。
2. 农业领域:灰色GM(1,1)模型可以用于预测农作物产量、农业气候等指标,为农业生产提供指导。
3. 医学领域:灰色GM(1,1)模型可以用于预测疾病发病率、死亡率等指标,为医学研究和卫生政策制定提供参考。
7.3 灰色预测模型7.3.1 GM (1,1) 模型符号含义为G M (1, 1)Grey Model 1阶方程 1个变量1.GM(1,1)模型令为GM(1,1)建模序列,,为的一次累加序列,,,令为的紧邻均值(MEAN )生成序列=0.5+0.5则GM(1,1)的定义型,即GM(1,1)的灰微分方程模型为(7.3.2)式中称为发展系数,为灰色作用量。
设为待估参数向量,即,则灰微分方程(7.3.2)的最小二乘估计参数列满足= 其中=,=称(7.3.3)为灰色微分方程的白化方程,也叫影子方程。
如上所述,则有1) 白化方程的解也称时间响应函数为2) GM(1,1)灰色微分方程的时间响应序列为(0)X(0)(0)(0)(0)((1),(2),...,())X x x x n =(1)X (0)X (1)(1)(1)(1)((1),(2),...,())X x x x n =(1)(0)1()()ki x k x i ==∑1,2,...,k n =(1)Z(1)X(1)(1)(1)(1)((2),(3),...,())Z z z z n =)()1(k z )()1(k x )1()1(-k x b k az k x =+)()()1()0(a b ˆαˆ(,)Ta b α=∧αn TT Y B B B 1)(-B (1)(1)(1)(2)1(3)1......()1z z z n ⎡⎤-⎢⎥-⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦n Y (0)(0)(0)(2)(3)...()x x x n ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦(1)(1)dx ax b dt +=b k az k x =+)()()1()0((1)(1)dx ax bdt +=(1)(1)ˆ()((0))at b bxt x e a a -=-+b k az k x =+)()()1()0([]+, 3) 取,则 []+,4) 还原值上式即为预测方程。
基于GM(1,1)模型的区域能耗特征及预测研究——盐城市能耗样本数据分析宋辉;王阳【摘要】能源利用效率研究视角比较广泛,衡量区域能源利用效率的量化指标能源强度是研究的主要内容之一,可是对区域未来节能空间等问题的研究上,存在着进一步柔性化这个量化指标的必要.基于GM(1,1)良好的数据处理特性,分析了盐城市相关年份的数据,结果表明:盐城市的生活能耗呈现较强的增长态势;在2011~2015期间,相对于政府的能耗预测量,该市存在着最小节能潜力是248.78万吨标煤、最大节能潜力是900.91万吨标煤,基于此,最后提出了相关节能建议.【期刊名称】《产业与科技论坛》【年(卷),期】2012(011)024【总页数】3页(P22-24)【关键词】GM(1,1);区域能耗;节能潜力;柔性能源强度【作者】宋辉;王阳【作者单位】盐城工学院经济与管理学院;盐城工学院经济与管理学院【正文语种】中文一、引言2006年3月我国政府首次将能源强度(Energy Intensity,EI)列入经济政策,并规定到2010年,单位GDP能耗降低20%左右目标;2009年12月我国政府在哥本哈根气候大会上承诺,到2020年单位GDP的二氧化碳排放量相比于2005年下降40%~50%;这一系列事件表明我国政府正在实施并加强转变能源型经济、粗放型经济为集约型经济的决心。
“十七大”的创新型国家理念推动了我国创新型省份、创新型城市、创新型乡镇、创新型园区等的建设步伐,在衡量以上不同层次实体创新的指标上,无论是国家科技部的《关于进一步推进创新型城市试点工作的指导意见》(国科发体[2010]155号)创新型城市建设检测评价指标、还是省级关于不同层次创新实体考核指标(比如,江苏省创新型城市、乡镇、园区建设评价考核指标体系)中都有关于万元GDP综合能耗(吨标煤)的衡量标准要求。
可见,能源效率问题已经由单一的强调其重要性模式过渡到具体实践,也就是说,能源约束的刚性特征正在深入人心。
GM(1,1)模型的几种基本形式及其适用范围研究刘思峰;曾波;刘解放;谢乃明【期刊名称】《系统工程与电子技术》【年(卷),期】2014(036)003【摘要】定义了GM(1,1)模型的4种基本形式:均值GM(1,1)模型(even grey model,EGM)、原始差分GM(1,1)模型(original difference grey model,ODGM)、均值差分GM(1,1)模型(even difference grey model,EDGM)和离散GM(1,1)模型(discrete grey model,DGM),并深入研究了不同模型的性质和特点,证明了不同形式的模型相互等价.通过对齐次指数序列、非指数增长序列和振荡序列的模拟分析,明确了不同模型的适用范围:ODGM、EDGM和DGM均适用于齐次指数序列和近似齐次指数序列的情形.微分、差分混合形态的EGM适宜于非指数增长序列和振荡序列的情形.相关结论可作为实际建模过程中选择模型的参考和依据.【总页数】8页(P501-508)【作者】刘思峰;曾波;刘解放;谢乃明【作者单位】南京航空航天大学灰色系统研究所,江苏南京210016;重庆工商大学商务策划学院,重庆400067;南京航空航天大学灰色系统研究所,江苏南京210016;南京航空航天大学灰色系统研究所,江苏南京210016【正文语种】中文【中图分类】N941.5【相关文献】1.优化的GM(1,1)模型及其适用范围 [J], 刘斌;赵亮;翟振杰;党耀国;张荣2.关于灰色系统模型GM(1,1)适用范围的讨论 [J], 武悦3.自适应GM(1,1,λ)模型及其适用范围 [J], 赵越;赵嵩正4.灰色系统GM(1,1)模型适用范围拓广 [J], 李希灿5.直接离散的GM(1,1,tα)模型及其适用范围 [J], 罗友洪;陈友军;陈静因版权原因,仅展示原文概要,查看原文内容请购买。
基于缓冲算子的GM(1,1)模型的研究及其应用
随着经济的发展和社会的进步,越来越多的人们开始关注于经济预测和数据分析的问题。
针对这个课题,GM(1,1)模型在近几年得到了广泛的应用和研究。
而在这些研究中,基于缓冲算子的GM(1,1)模型得到了更广泛的认可和应用。
一、什么是GM(1,1)模型
GM(1,1)模型,即灰色预测模型,它是一种基于灰色系统理论的时间序列预测模型。
该模型通过灰色系统理论的分析方法,对时间序列中的趋势进行拟合,并通过预测模型,将这个趋势推向未来。
该模型具有模型简单、易于解释、适用性广、准确性高等优点。
二、基于缓冲算子的GM(1,1)模型
在GM(1,1)模型的基础上,缓冲算子概念的提出,为GM(1,1)模型的研究和应用提供了更多的思路和方法。
缓冲算子的概念是指,对于一个时间序列数据,通过对其进行平滑处理,去除其中的噪声值和异常值,从而降低其干扰程度,提取出有效信号。
这样做的好处是,在GM(1,1)模型中,通过对数据进行缓冲处理,可以减少模型拟合误差,提高模型的预测精度。
三、基于缓冲算子的GM(1,1)模型的应用
基于缓冲算子的GM(1,1)模型在多个领域的应用中得到了广泛的推广和应用。
例如,在宏观经济预测中,通过对宏观经济数
据的缓冲处理,构建GM(1,1)模型,对未来的经济变化趋势进行预测和分析,对于决策者制定宏观政策提供了重要的参考意义。
在企业经营管理中,对企业经营数据进行缓冲处理,构建GM(1,1)模型,可以对企业未来的经营趋势进行预测和分析,为企业的决策提供重要的参考。
四、结论
基于缓冲算子的GM(1,1)模型在时间序列数据的预测和分析中具有重要的应用,可以有效地降低数据的拟合误差,提高模型的预测精度。
在未来的研究中,还需要进一步改进和优化此模型的算法和结构,以更好地满足实际应用的需求和要求。