《数据结构——C语言描述》习题及答案 耿国华 2
- 格式:doc
- 大小:1.36 MB
- 文档页数:94
第1章绪论习题一、问答题1. 什么是数据结构?2. 四类基本数据结构的名称与含义。
3. 算法的定义与特性。
4. 算法的时间复杂度.5. 数据类型的概念.6. 线性结构与非线性结构的差别.7. 面向对象程序设计语言的特点。
8. 在面向对象程序设计中,类的作用是什么?9. 参数传递的主要方式及特点。
10. 抽象数据类型的概念。
二、判断题1. 线性结构只能用顺序结构来存放,非线性结构只能用非顺序结构来存放。
2. 算法就是程序。
3. 在高级语言(如C、或 PASCAL)中,指针类型是原子类型。
三、计算下列程序段中X=X+1的语句频度for(i=1;i〈=n;i++)for(j=1;j〈=i;j++)for(k=1;k〈=j;k++)x=x+1;[提示]:i=1时: 1 = (1+1)×1/2 = (1+12)/2i=2时: 1+2 = (1+2)×2/2 = (2+22)/2i=3时: 1+2+3 = (1+3)×3/2 = (3+32)/2…i=n时: 1+2+3+……+n = (1+n)×n/2 = (n+n2)/2f(n) = [(1+2+3+……+n) + (12 + 22 + 32 + …… + n2 )] / 2=[(1+n)n/2 + n(n+1)(2n+1)/6 ] / 2=n(n+1)(n+2)/6=n3/6+n2/2+n/3区分语句频度和算法复杂度:O(f(n)) = O(n3)四、试编写算法求一元多项式Pn(x)=a0+a1x+a2x2+a3x3+…a n x n的值P n(x0),并确定算法中的每一语句的执行次数和整个算法的时间复杂度,要求时间复杂度尽可能的小,规定算法中不能使用求幂函数。
注意:本题中的输入a i(i=0,1,…,n), x和n,输出为P n(x0).通常算法的输入和输出可采用下列两种方式之一:(1)通过参数表中的参数显式传递;(2)通过全局变量隐式传递。
第1章绪论习题一、问答题1. 什么是数据结构?2. 四类基本数据结构的名称与含义。
3. 算法的定义与特性。
4. 算法的时间复杂度。
5. 数据类型的概念。
6. 线性结构与非线性结构的差异。
7. 面向对象程序设计语言的特点。
8. 在面向对象程序设计中,类的作用是什么?9. 参数传递的主要方式及特点。
10. 抽象数据类型的概念。
二、判断题1. 线性结构只能用顺序结构来存放,非线性结构只能用非顺序结构来存放。
2. 算法就是程序。
3. 在高级语言〔如C、或PASCAL〕中,指针类型是原子类型。
三、计算以下程序段中X=X+1的语句频度for(i=1;i<=n;i++)for(j=1;j<=i;j++)for(k=1;k<=j;k++)x=x+1;[提示]:i=1时:1 = (1+1)×1/2 = (1+12)/2i=2时:1+2 = (1+2)×2/2 = (2+22)/2i=3时:1+2+3 = (1+3)×3/2 = (3+32)/2…i=n时:1+2+3+……+n = (1+n)×n/2 = (n+n2)/2f(n) = [ (1+2+3+……+n) + (12 + 22 + 32 + …… + n2 ) ] / 2 =[ (1+n)n/2 + n(n+1)(2n+1)/6 ] / 2=n(n+1)(n+2)/6=n3/6+n2/2+n/3区分语句频度和算法复杂度:O(f(n)) = O(n3)四、试编写算法求一元多项式Pn(x)=a0+a1x+a2x2+a3x3+…a n x n的值P n(x0),并确定算法中的每一语句的执行次数和整个算法的时间复杂度,要求时间复杂度尽可能的小,规定算法中不能使用求幂函数。
注意:此题中的输入a i(i=0,1,…,n), x和n,输出为P n(x0).通常算法的输入和输出可采用以下两种方式之一:(1)通过参数表中的参数显式传递;(2)通过全局变量隐式传递。
数据结构c语言版耿国华课后习题答案数据结构是计算机科学中的一个重要领域,它涉及到数据的组织、管理和存储方式,以便可以高效地访问和修改数据。
C语言作为一种高级编程语言,提供了丰富的数据结构实现方法。
耿国华教授编写的《数据结构C语言版》一书,为学习者提供了深入理解和实践数据结构的机会。
以下是该书课后习题的一些参考答案。
# 第一章绪论1. 习题1:数据结构的定义是什么?- 参考答案:数据结构是计算机科学中用于组织、管理和存储数据的方式,以便可以高效地访问和修改数据。
2. 习题2:为什么需要学习数据结构?- 参考答案:学习数据结构有助于提高编程效率,优化算法性能,以及更好地解决实际问题。
# 第二章线性表1. 习题1:线性表的特点是什么?- 参考答案:线性表的特点是数据元素之间存在一对一的线性关系,可以顺序存储或链式存储。
2. 习题3:如何实现线性表的插入操作?- 参考答案:线性表的插入操作通常涉及找到插入位置,然后将新元素插入到该位置,并调整后续元素。
# 第三章栈和队列1. 习题1:栈的后进先出(LIFO)特性是什么?- 参考答案:栈的后进先出特性意味着最后插入的元素将是第一个被删除的元素。
2. 习题2:如何用C语言实现一个队列?- 参考答案:可以用数组或链表来实现队列。
队列的基本操作包括入队(enqueue)和出队(dequeue)。
# 第四章树和二叉树1. 习题1:二叉树的定义是什么?- 参考答案:二叉树是每个节点最多有两个子节点的树结构,通常分为左子节点和右子节点。
2. 习题3:二叉树的遍历方法有哪些?- 参考答案:二叉树的遍历方法包括前序遍历、中序遍历、后序遍历和层序遍历。
# 第五章图1. 习题1:图的基本概念有哪些?- 参考答案:图由顶点(节点)和边组成,可以表示对象之间的关系。
2. 习题2:图的存储方式有哪些?- 参考答案:图的存储方式主要有邻接矩阵和邻接表两种。
# 结语通过学习《数据结构C语言版》一书,读者可以掌握各种数据结构的基本概念、特性以及实现方法。
第1章绪论2.(1)×(2)×(3)√3.(1)A(2)C(3)C5.计算下列程序中x=x+1的语句频度for(i=1;i<=n;i++)for(j=1;j<=i;j++)for(k=1;k<=j;k++)x=x+1;【解答】x=x+1的语句频度为:T(n)=1+(1+2)+(1+2+3)+……+(1+2+……+n)=n(n+1)(n+2)/66.编写算法,求一元多项式p n(x)=a0+a1x+a2x2+…….+a n x n的值p n(x0),并确定算法中每一语句的执行次数和整个算法的时间复杂度,要求时间复杂度尽可能小,规定算法中不能使用求幂函数。
注意:本题中的输入为a i(i=0,1,…n)、x和n,输出为P n(x0)。
算法的输入和输出采用下列方法(1)通过参数表中的参数显式传递(2)通过全局变量隐式传递。
讨论两种方法的优缺点,并在算法中以你认为较好的一种实现输入输出。
【解答】(1)通过参数表中的参数显式传递优点:当没有调用函数时,不占用内存,调用结束后形参被释放,实参维持,函数通用性强,移置性强。
缺点:形参须与实参对应,且返回值数量有限。
(2)通过全局变量隐式传递优点:减少实参与形参的个数,从而减少内存空间以及传递数据时的时间消耗缺点:函数通用性降低,移植性差算法如下:通过全局变量隐式传递参数PolyValue(){ int i,n;float x,a[],p;printf(“\nn=”);scanf(“%f”,&n);printf(“\nx=”);scanf(“%f”,&x);for(i=0;i<n;i++)scanf(“%f ”,&a[i]); /*执行次数:n次*/p=a[0];for(i=1;i<=n;i++){ p=p+a[i]*x; /*执行次数:n次*/x=x*x;}printf(“%f”,p);}算法的时间复杂度:T(n)=O(n)通过参数表中的参数显式传递float PolyValue(float a[ ], float x, int n){float p,s;int i;p=x;s=a[0];for(i=1;i<=n;i++){s=s+a[i]*p; /*执行次数:n次*/p=p*x;}return(p);}算法的时间复杂度:T(n)=O(n)第2章线性表习题1.填空:(1)在顺序表中插入或删除一个元素,需要平均移动一半元素,具体移动的元素个数与插入或删除的位置有关。
第一章习题答案2、××√3、(1)包含改变量定义的最小范围(2)数据抽象、信息隐蔽(3)数据对象、对象间的关系、一组处理数据的操作(4)指针类型(5)集合结构、线性结构、树形结构、图状结构(6)顺序存储、非顺序存储(7)一对一、一对多、多对多(8)一系列的操作(9)有限性、输入、可行性4、(1)A(2)C(3)C5、语句频度为1+(1+2)+(1+2+3)+…+(1+2+3+…+n)第二章习题答案1、(1)一半,插入、删除的位置(2)顺序和链式,显示,隐式(3)一定,不一定(4)头指针,头结点的指针域,其前驱的指针域2、(1)A(2)A:E、AB:H、L、I、E、AC:F、MD:L、J、A、G或J、A、G(3)D(4)D(5)C(6)A、C3、头指针:指向整个链表首地址的指针,标示着整个单链表的开始。
头结点:为了操作方便,可以在单链表的第一个结点之前附设一个结点,该结点的数据域可以存储一些关于线性表长度的附加信息,也可以什么都不存。
首元素结点:线性表中的第一个结点成为首元素结点。
4、算法如下:int Linser(SeqList *L,int X){ int i=0,k;if(L->last>=MAXSIZE-1){ printf(“表已满无法插入”);return(0);}while(i<=L->last&&L->elem[i]<X)i++;for(k=L->last;k>=I;k--)L->elem[k+1]=L->elem[k];L->elem[i]=X;L->last++;return(1);}5、算法如下:#define OK 1#define ERROR 0Int LDel(Seqlist *L,int i,int k){ int j;if(i<1||(i+k)>(L->last+2)){ printf(“输入的i,k值不合法”);return ERROR;}if((i+k)==(L->last+2)){ L->last=i-2;ruturn OK;}else{for(j=i+k-1;j<=L->last;j++)elem[j-k]=elem[j];L->last=L->last-k;return OK;}}6、算法如下:#define OK 1#define ERROR 0Int Delet(LInkList L,int mink,int maxk){ Node *p,*q;p=L;while(p->next!=NULL)p=p->next;if(mink<maxk||(L->next->data>=mink)||(p->data<=maxk)){ printf(“参数不合法”);return ERROR;}else{ p=L;while(p->next-data<=mink)p=p->next;while(q->data<maxk){ p->next=q->next;free(q);q=p->next;}return OK;}}9、算法如下:int Dele(Node *S){ Node *p;P=s->next;If(p= =s){printf(“只有一个结点,不删除”);return 0;}else{if((p->next= =s){s->next=s;free(p);return 1;}Else{ while(p->next->next!=s)P=p->next;P->next=s;Free(p); return 1;}}}第三章习题答案2、(1)3、栈有顺序栈和链栈两种存储结构。
耿国华《数据结构》程序算法课后答案第二章线性表2.4 设线性表存于a(1:arrsize)的前elenum 个分量中且递增有序。
试写一算法,将X 插入到线性表的适当位置上,以保持线性表的有序性。
Status Insert_SqList(SqList &va,int x)//把x 插入递增有序表va 中{if(va.length+1>va.listsize) return ERROR;va.length++;for(i=va.length-1;va.elem[i]>x&&i>=0;i--)va.elem[i+1]=va.elem[i];va.elem[i+1]=x;return OK;}//Insert_SqList2.6 已知线性表中的元素(整数)以值递增有序排列,并以单链表作存储结构。
试写一高效算法,删除表中所有大于mink且小于maxk的元素(若表中存在这样的元素),分析你的算法的时间复杂度(注意:mink和maxk是给定的两个参变量,它们的值为任意的整数)。
Status Delete_Between(Linklist &L,int mink,int maxk)//删除元素递增排列的链表L中值大于mink 且小于maxk 的所有元素{p=L;while(p->next->data<=mink) p=p->next; //p 是最后一个不大于mink 的元素if(p->next) //如果还有比mink 更大的元素{q=p->next;while(q->data<maxk) q=q->next; //q 是第一个不小于maxk 的元素p->next=q;}}//Delete_Between2.7 试分别以不同的存储结构实现线性表的就地逆置算法,即在原表的存储空间将线性表(a, a ..., a )逆置为(a, a ,..., a )。
第一章习题答案2、××√3、(1)包含改变量定义的最小范围(2)数据抽象、信息隐蔽(3)数据对象、对象间的关系、一组处理数据的操作(4)指针类型(5)集合结构、线性结构、树形结构、图状结构(6)顺序存储、非顺序存储(7)一对一、一对多、多对多(8)一系列的操作(9)有限性、输入、可行性4、(1)A(2)C(3)C5、语句频度为1+(1+2)+(1+2+3)+…+(1+2+3+…+n)第二章习题答案1、(1)一半,插入、删除的位置(2)顺序和链式,显示,隐式(3)一定,不一定(4)头指针,头结点的指针域,其前驱的指针域2、(1)A(2)A:E、AB:H、L、I、E、AC:F、MD:L、J、A、G或J、A、G(3)D(4)D(5)C(6)A、C3、头指针:指向整个链表首地址的指针,标示着整个单链表的开始。
头结点:为了操作方便,可以在单链表的第一个结点之前附设一个结点,该结点的数据域可以存储一些关于线性表长度的附加信息,也可以什么都不存。
首元素结点:线性表中的第一个结点成为首元素结点。
4、算法如下:int Linser(SeqList *L,int X){ int i=0,k;if(L->last>=MAXSIZE-1){ printf(“表已满无法插入”);return(0);}while(i<=L->last&&L->elem[i]<X)i++;for(k=L->last;k>=I;k--)L->elem[k+1]=L->elem[k];L->elem[i]=X;L->last++;return(1);}5、算法如下:#define OK 1#define ERROR 0Int LDel(Seqlist *L,int i,int k){ int j;if(i<1||(i+k)>(L->last+2)){ printf(“输入的i,k值不合法”);return ERROR;}if((i+k)==(L->last+2)){ L->last=i-2;ruturn OK;}else{for(j=i+k-1;j<=L->last;j++)elem[j-k]=elem[j];L->last=L->last-k;return OK;}}6、算法如下:#define OK 1#define ERROR 0Int Delet(LInkList L,int mink,int maxk){ Node *p,*q;p=L;while(p->next!=NULL)p=p->next;if(mink<maxk||(L->next->data>=mink)||(p->data<=maxk)) { printf(“参数不合法”);return ERROR;}else{ p=L;while(p->next-data<=mink)p=p->next;while(q->data<maxk){ p->next=q->next;free(q);q=p->next;}return OK;}}9、算法如下:int Dele(Node *S){ Node *p;P=s->next;If(p= =s){printf(“只有一个结点,不删除”);return 0;}else{if((p->next= =s){s->next=s;free(p);return 1;}Else{ while(p->next->next!=s)P=p->next;P->next=s;Free(p);return 1;}}}第三章习题答案2、(1)3、栈有顺序栈和链栈两种存储结构。
数据结构耿国华c 语言版答案【篇一:《数据结构——c语言描述》习题及答案耿国华 2】题一、问答题1.什么是数据结构?2.四类基本数据结构的名称与含义。
3.算法的定义与特性。
4.算法的时间复杂度。
5.数据类型的概念。
6.线性结构与非线性结构的差别。
7.面向对象程序设计语言的特点。
8.在面向对象程序设计中,类的作用是什么?9.参数传递的主要方式及特点。
10.抽象数据类型的概念。
二、判断题1.线性结构只能用顺序结构来存放,非线性结构只能用非顺序结构来存放。
2.算法就是程序。
3.在高级语言(如 c、或 pascal )中,指针类型是原子类型。
三、计算下列程序段中x=x+1 的语句频度for(i=1;i=n;i++)for(j=1;j=i;j++)for(k=1;k=j;k++)x=x+1;[提示 ]:⋯f(n) = [ (1+2+3+⋯⋯+n) + (12 + 22 + 32 +⋯⋯+ n2 ) ] / 2=[ (1+n)n/2 + n(n+1)(2n+1)/6 ] / 2=n(n+1)(n+2)/6=n3/6+n2/2+n/3区分语句频度和算法复杂度:o(f(n)) = o(n3)四、试编写算法求一元多项式pn(x)=a0+a1x+a2x2+a3x3+ ⋯anxn的值 pn(x0) ,并确定算法中的每一语句的执行次数和整个算法的时间复杂度,要求时间复杂度尽可能的小,规定算法中不能使用求幂函数。
注意:本题中的输入 ai(i=0,1, ⋯,n), x和 n,输出为 pn(x0). 通常算法的输入和输出可采用下列两种方式之一:(1)通过参数表中的参数显式传递;(2)通过全局变量隐式传递。
试讨论这两种方法的优缺点,并在本题算法中以你认为较好的一种方式实现输入和输出。
[提示 ]: float polyvalue(float{ ⋯⋯}核心语句:p=1; (x的零次幂)s=0;i 从 0 到 n 循环s=s+a[i]*p;p=p*x;或:p=x; (x的一次幂)s=a[0];i 从 1 到 n 循环s=s+a[i]*p;p=p*x;a[ ], float x, int n)实习题设计实现抽象数据类型“有理数”。
第1章绪论习题一、问答题1.什么是数据结构?2.四类基本数据结构的名称与含义。
3.算法的定义与特性。
4.算法的时间复杂度。
5.数据类型的概念。
6.线性结构与非线性结构的差别。
7.面向对象程序设计语言的特点。
8.在面向对象程序设计中,类的作用是什么?9.参数传递的主要方式及特点。
10.抽象数据类型的概念。
二、判断题1.线性结构只能用顺序结构来存放,非线性结构只能用非顺序结构来存放。
2.算法就是程序。
3.在高级语言(如C、或 PASCAL)中,指针类型是原子类型。
三、计算下列程序段中X=X+1的语句频度for(i=1;i<=n;i++)for(j=1;j<=i;j++)for(k=1;k<=j;k++)x=x+1;[提示]:i=1时: 1 = (1+1)×1/2 = (1+12)/2i=2时: 1+2= (1+2)×2/2 = (2+22)/2i=3时: 1+2+3= (1+3)×3/2 = (3+32)/2…i=n时:1+2+3+……+n= (1+n)×n/2 = (n+n2)/2f(n) = [ (1+2+3+……+n) + (12 + 22 + 32 + …… + n2 ) ] / 2=[ (1+n)n/2 + n(n+1)(2n+1)/6 ] / 2=n(n+1)(n+2)/6=n3/6+n2/2+n/3区分语句频度和算法复杂度:O(f(n)) = O(n3)四、试编写算法求一元多项式Pn(x)=a0+a1x+a2x2+a3x3+…a n x n的值P n(x0),并确定算法中的每一语句的执行次数和整个算法的时间复杂度,要求时间复杂度尽可能的小,规定算法中不能使用求幂函数。
注意:本题中的输入a i(i=0,1,…,n), x和n,输出为P n(x0).通常算法的输入和输出可采用下列两种方式之一:(1)通过参数表中的参数显式传递;(2)通过全局变量隐式传递。
第1章绪论之蔡仲巾千创作习题一、问答题1. 什么是数据结构?2. 四类基本数据结构的名称与含义。
3. 算法的定义与特性。
4. 算法的时间复杂度。
5. 数据类型的概念。
6. 线性结构与非线性结构的不同。
7. 面向对象程序设计语言的特点。
8. 在面向对象程序设计中,类的作用是什么?9. 参数传递的主要方式及特点。
10. 抽象数据类型的概念。
二、判断题1. 线性结构只能用顺序结构来存放,非线性结构只能用非顺序结构来存放。
2. 算法就是程序。
3. 在高级语言(如C、或 PASCAL)中,指针类型是原子类型。
三、计算下列程序段中X=X+1的语句频度for(i=1;i<=n;i++)for(j=1;j<=i;j++)for(k=1;k<=j;k++)x=x+1;[提示]:i=1时:1 = (1+1)×1/2 = (1+12)/2i=2时:1+2 = (1+2)×2/2 = (2+22)/2i=3时:1+2+3 = (1+3)×3/2 = (3+32)/2…i=n时:1+2+3+……+n = (1+n)×n/2 = (n+n2)/2f(n) = [ (1+2+3+……+n) + (12 + 22 + 32 + …… + n2 ) ] / 2=[ (1+n)n/2 + n(n+1)(2n+1)/6 ] / 2=n(n+1)(n+2)/6=n3/6+n2/2+n/3区分语句频度和算法复杂度:O(f(n)) = O(n3)四、试编写算法求一元多项式Pn(x)=a0+a1x+a2x2+a3x3+…anxn的值Pn(x0),并确定算法中的每一语句的执行次数和整个算法的时间复杂度,要求时间复杂度尽可能的小,规定算法中不克不及使用求幂函数。
注意:本题中的输入ai(i=0,1,…,n), x和n,输出为Pn(x0).通常算法的输入和输出可采取下列两种方式之一:(1)通过参数表中的参数显式传递;(2)通过全局变量隐式传递。
第1章绪论习题一、问答题1. 什么是数据结构?2. 四类基本数据结构的名称与含义。
3. 算法的定义与特性。
4. 算法的时间复杂度。
5. 数据类型的概念。
6. 线性结构与非线性结构的差别。
7. 面向对象程序设计语言的特点。
8. 在面向对象程序设计中,类的作用是什么?9. 参数传递的主要方式及特点。
10. 抽象数据类型的概念。
二、判断题1. 线性结构只能用顺序结构来存放,非线性结构只能用非顺序结构来存放。
2. 算法就是程序。
3. 在高级语言(如C、或PASCAL)中,指针类型是原子类型。
三、计算下列程序段中X=X+1的语句频度for(i=1;i<=n;i++)for(j=1;j<=i;j++)for(k=1;k<=j;k++)x=x+1;[提示]:i=1时:1 = (1+1)×1/2 = (1+12)/2i=2时:1+2 = (1+2)×2/2 = (2+22)/2i=3时:1+2+3 = (1+3)×3/2 = (3+32)/2…i=n时:1+2+3+……+n = (1+n)×n/2 = (n+n2)/2f(n) = [ (1+2+3+……+n) + (12 + 22 + 32 + …… + n2 ) ] / 2 =[ (1+n)n/2 + n(n+1)(2n+1)/6 ] / 2=n(n+1)(n+2)/6=n3/6+n2/2+n/3区分语句频度和算法复杂度:O(f(n)) = O(n3)四、试编写算法求一元多项式Pn(x)=a0+a1x+a2x2+a3x3+…a n x n的值P n(x0),并确定算法中的每一语句的执行次数和整个算法的时间复杂度,要求时间复杂度尽可能的小,规定算法中不能使用求幂函数。
注意:本题中的输入a i(i=0,1,…,n), x和n,输出为P n(x0).通常算法的输入和输出可采用下列两种方式之一:(1)通过参数表中的参数显式传递;(2)通过全局变量隐式传递。
试讨论这两种方法的优缺点,并在本题算法中以你认为较好的一种方式实现输入和输出。
[提示]:float PolyValue(float a[ ], float x, int n) {……}核心语句:p=1; (x的零次幂)s=0;i从0到n循环s=s+a[i]*p;p=p*x;或:p=x; (x的一次幂)s=a[0];i从1到n循环s=s+a[i]*p;p=p*x;实习题设计实现抽象数据类型“有理数”。
基本操作包括有理数的加法、减法、乘法、除法,以及求有理数的分子、分母。
第一章答案1.3计算下列程序中x=x+1的语句频度for(i=1;i<=n;i++)for(j=1;j<=i;j++)for(k=1;k<=j;k++)x=x+1;【解答】x=x+1的语句频度为:T(n)=1+(1+2)+(1+2+3)+……+(1+2+……+n)=n(n+1)(n+2)/61. 4试编写算法,求p n(x)=a0+a1x+a2x2+…….+a n x n的值p n(x0),并确定算法中每一语句的执行次数和整个算法的时间复杂度,要求时间复杂度尽可能小,规定算法中不能使用求幂函数。
注意:本题中的输入为a i(i=0,1,…n)、x和n,输出为P n(x0)。
算法的输入和输出采用下列方法(1)通过参数表中的参数显式传递(2)通过全局变量隐式传递。
讨论两种方法的优缺点,并在算法中以你认为较好的一种实现输入输出。
【解答】(1)通过参数表中的参数显式传递优点:当没有调用函数时,不占用内存,调用结束后形参被释放,实参维持,函数通用性强,移置性强。
缺点:形参须与实参对应,且返回值数量有限。
(2)通过全局变量隐式传递优点:减少实参与形参的个数,从而减少内存空间以及传递数据时的时间消耗缺点:函数通用性降低,移植性差算法如下:通过全局变量隐式传递参数PolyValue(){ int i,n;float x,a[],p;printf(“\nn=”);scanf(“%f”,&n);printf(“\nx=”);scanf(“%f”,&x);for(i=0;i<n;i++)sc anf(“%f ”,&a[i]); /*执行次数:n次*/p=a[0];for(i=1;i<=n;i++){ p=p+a[i]*x; /*执行次数:n次*/x=x*x;}printf(“%f”,p);}算法的时间复杂度:T(n)=O(n)通过参数表中的参数显式传递float PolyValue(float a[ ], float x, int n){float p,s;int i;p=x;s=a[0];for(i=1;i<=n;i++){s=s+a[i]*p; /*执行次数:n次*/p=p*x;}return(p);}算法的时间复杂度:T(n)=O(n)第2章线性表习题2.1 描述以下三个概念的区别:头指针,头结点,首元素结点。
2.2 填空:(1)在顺序表中插入或删除一个元素,需要平均移动__一半__元素,具体移动的元素个数与__插入或删除的位置__有关。
(2)在顺序表中,逻辑上相邻的元素,其物理位置______相邻。
在单链表中,逻辑上相邻的元素,其物理位置______相邻。
(3)在带头结点的非空单链表中,头结点的存储位置由______指示,首元素结点的存储位置由______指示,除首元素结点外,其它任一元素结点的存储位置由__其直接前趋的next域__指示。
2.3 已知L是无表头结点的单链表,且P结点既不是首元素结点,也不是尾元素结点。
按要求从下列语句中选择合适的语句序列。
a. 在P结点后插入S结点的语句序列是:_(4)、(1)_。
b. 在P结点前插入S结点的语句序列是:(7)、(11)、(8)、(4)、(1)。
c. 在表首插入S结点的语句序列是:(5)、(12)。
d. 在表尾插入S结点的语句序列是:(11)、(9)、(1)、(6)。
供选择的语句有:(1)P->next=S;(2)P->next= P->next->next;(3)P->next= S->next;(4)S->next= P->next;(5)S->next= L;(6)S->next= NULL;(7)Q= P;(8)while(P->next!=Q) P=P->next;(9)while(P->next!=NULL) P=P->next;(10)P= Q;(11)P= L;(12)L= S;(13)L= P;2.4 已知线性表L递增有序。
试写一算法,将X插入到L的适当位置上,以保持线性表L的有序性。
[提示]:void insert(SeqList *L; ElemType x)< 方法1 >(1)找出应插入位置i,(2)移位,(3)……< 方法2 > 参P. 2292.5 写一算法,从顺序表中删除自第i个元素开始的k个元素。
[提示]:注意检查i和k的合法性。
(集体搬迁,“新房”、“旧房”)< 方法1 > 以待移动元素下标m(“旧房号”)为中心,计算应移入位置(“新房号”):for ( m= i-1+k; m<= L->last; m++)L->elem[ m-k ] = L->elem[ m ];< 方法2 > 同时以待移动元素下标m和应移入位置j为中心:< 方法3 > 以应移入位置j为中心,计算待移动元素下标:2.6已知线性表中的元素(整数)以值递增有序排列,并以单链表作存储结构。
试写一高效算法,删除表中所有大于mink且小于maxk的元素(若表中存在这样的元素),分析你的算法的时间复杂度(注意:mink和maxk是给定的两个参变量,它们的值为任意的整数)。
[提示]:注意检查mink和maxk的合法性:mink < maxk不要一个一个的删除(多次修改next域)。
(1)找到第一个应删结点的前驱prepre=L; p=L->next;while (p!=NULL && p->data <= mink){ pre=p; p=p->next; }(2)找到最后一个应删结点的后继s,边找边释放应删结点s=p;while (s!=NULL && s->data < maxk){ t =s; s=s->next; free(t); }(3)pre->next = s;2.7试分别以不同的存储结构实现线性表的就地逆置算法,即在原表的存储空间将线性表(a1, a2..., a n)逆置为(a n, a n-1,..., a1)。
(1)以一维数组作存储结构,设线性表存于a(1:arrsize)的前elenum个分量中。
(2)以单链表作存储结构。
[方法1]:在原头结点后重新头插一遍[方法2]:可设三个同步移动的指针p, q, r,将q的后继r改为p2.8 假设两个按元素值递增有序排列的线性表A和B,均以单链表作为存储结构,请编写算法,将A表和B表归并成一个按元素值递减有序的排列的线性表C,并要求利用原表(即A表和B表的)结点空间存放表C.[提示]:参P.28 例2-1< 方法1 >void merge(LinkList A; LinkList B; LinkList *C) { ……pa=A->next; pb=B->next;*C=A; (*C)->next=NULL;while ( pa!=NULL && pb!=NULL ){ if ( pa->data <= pb->data ){ smaller=pa; pa=pa->next;smaller->next = (*C)->next; /* 头插法*/(*C)->next = smaller;}else{ smaller=pb; pb=pb->next;smaller->next = (*C)->next;(*C)->next = smaller;}while ( pa!=NULL){ smaller=pa; pa=pa->next;smaller->next = (*C)->next;(*C)->next = smaller;}while ( pb!=NULL){ smaller=pb; pb=pb->next;smaller->next = (*C)->next;(*C)->next = smaller;}< 方法2 >LinkList merge(LinkList A; LinkList B) { ……LinkList C;pa=A->next; pb=B->next;C=A; C->next=NULL;…………return C;2.9 假设有一个循环链表的长度大于1,且表中既无头结点也无头指针。