2018-2019学年高中数学 第一章 立体几何初步 1.1 简单几何体 1.1.2 简单多面体讲义 北师大版必修2
- 格式:ppt
- 大小:2.68 MB
- 文档页数:40
教学设计《三视图》一、教材分析:本节课是在学习了空间几何体结构特征,尚未学习点、直线、平面位置关系的情况下教学的。
三视图是空间几何体的一种表示形式,是立体几何的基础之一。
学好三视图为学习直观图奠定基础,同时有利于培养学生的空间想象能力,几何直观能力,有利于培养学生学习立体几何的兴趣。
二、学情分析:(1)在义务教育阶段,学生已经初步接触了正方体,长方体的几何特征以及从不同的方向看物体得到不同的视图的方法。
但是对于三视图的概念还不清晰(2)只接触了从空间几何体到三视图的单向转化,还无法准确的识别三视图的立体模型。
三、教学目标:1、能画出简单空间图形(长方体,球,圆柱,圆锥,棱柱等简易组合)的三视图,能识别上述三视图表示的立体模型,从而进一步熟悉简单几何体的结构特征。
2、通过直观感知,操作确认,逐步提高学生的空间想象能力、几何直观能力,培养学生的应用意识。
3、通过游戏的参与,提高学生的学习立体几何的兴趣,逐步培养学生大胆创新、勇于探索、互相合作的精神。
四、教学的重点和难点:重点:空间几何体的三视图的画法。
难点:三视图所表示的空间几何体的识别。
五、教学准备:1、实物模型(长方体,球,圆柱,圆锥,棱柱、矿泉水瓶)。
2、若干个形状为正方体、长方体、球体、三棱柱的积木。
六、教学过程:活动一:创设情境,引入课题《题西林壁》苏轼横看成岭侧成峰,远近高低各不同。
不识庐山真面目,只缘身在此山中。
问题1:这首诗表达了什么意思?设计意图:引入古诗激发学生的学习兴趣,自然引入新课,同时与其它学科相联系,拓宽学生思维,发展他们联想、类比能力。
问题2:若要把握长方体的全貌,应该从几个视角来研究它?除了用文字的语言,是否可以用图形的语言表示?教师:上节课,我们学习了平行投影中的正投影,即一束平行光线正对着物体照射形成的投影。
为了较好地把握几何体的形状和大小,我们通常选择三种正投影,光线从几何体的前面向后面正投影在正面内得到正视图。
圆柱、圆锥、圆台和球教学目标:1.能根据几何结构特征理解空间旋转体形成过程;2.认识圆柱、圆锥、圆台和球的结构特征;3.掌握圆柱、圆锥、圆台和球的截面及它们之间的关系.教材先让学生思考圆柱、圆锥、圆台、球的生成规律,然后给出它们的定义,让学生初步理解“旋转体”的概念.教学中可结合实物模型或计算机演示圆柱、圆锥、圆台、球的生成过程,引导学生思考圆柱、圆锥、圆台、球的结构特征;也可以类比棱柱、棱锥、棱台的生成过程认识圆柱、圆锥、圆台的结构特征;类比圆的定义得出球面的定义.教学重点:让学生感受大量空间实物及模型、概括出圆柱、圆锥、圆台和球的概念.教学难点:难点是区分一个旋转体由哪些基本几何体构成.教学方法:观察、发现、探究.探究学习为主,发挥同学之间合作关系。
教学过程:一、问题情境1.复习棱柱、棱锥、棱台的有关概念.小结:移——缩——截.2.旋转会产生什么样的结果呢?仔细观察下面的几何体,它们有什么共同特点或生成规律?二、学生活动通过观察、思考、交流、讨论得出结论.三、建构数学1.圆柱、圆锥、圆台的概念;2.圆柱、圆锥、圆台的相关概念(轴、高、底面、母线);思考:圆柱、圆锥、圆台之间有何关系?(引导学生从概念的形成和结构特征来分析三者之间的关系)3.球面及球的概念;半圆绕着它的直径所在的直线旋转一周而形成的曲面叫做球面,球面围成的几何体叫做球体.球面也可以看作空间中到一个定点的距离等于定长的点的集合4.球的相关概念(球心、球半径、球的表示);5.旋转面、旋转体的概念(引导学生总结).四、数学运用1.例题.例1 将直角梯形ABCD 绕AB 边所在的直线旋转一周,由此形成的几何体是有哪些简单的几何体构成的?例2 以下几何体是由哪些简单几何体构成的?例3(课本P12例1)把一个圆锥截成一个圆台,已知圆台的上下底面半径是1∶4,母线长为 4cm ,求圆锥的母线长.2.练习.(1)①如图1将平行四边形ABCD 绕AB 边所在的直线旋转一周,由此形成的几何体是由哪些简单几何体构成的?AB C D图1 图2②如图2钝角三角形ABC绕AB边所在的直线旋转一周,由此形成的几何体是由哪些简单几何体构成的?(图1) (图2)(2)下列命题中的说法正确的有________①以直角三角形的一边为轴旋转所得的旋转体是圆锥;②以直角梯形的一腰为轴旋转所得的旋转体是圆台;③圆柱、圆锥、圆台的底面都是圆;④圆锥侧面展开图为扇形,这个扇形所在圆的半径等于圆锥的底面圆的半径.⑤在圆柱的上下底面上各取一点,这两点的连线是圆柱的母线五、要点归纳与方法小结本节课学习了以下内容:1.圆柱、圆锥、圆台和球的有关概念;2.圆柱、圆锥、圆台和球的结构特征;3.圆柱、圆锥、圆台和球的应用.第二课时教学目标:1、理解球面、球体和组合体的基本概念。
《空间几何体的结构(一)》教学设计1、章节内容:本章学习空间几何体。
课时安排为8课时,本章重点是认识空间几何体的结构特征,画出空间几何体的三视图、直观图,培养空间想象能力、几何直观能力、运用图形语言进行交流的能力。
由空间图形说出其结构特征,由结构特征想象出空间几何体,进行空间图形与其三视图的相互转化。
1.1节安排两课时,学生通过观察图片认识空间几何体;1.2安排两课时,学生可以在平面上画出空间几何体的三视图、直观图;1.3安排两个课时,学生可以了解空间几何体的表面积和体积的计算方法,并能计算简单组合体的表面积与体积,后面一节“实习作业”,一节习题课,本章教学层层递进,学生可以深刻体会空间几何体图形来自于生活实际,又为研究实际物体图形服务。
《空间几何体的结构(一)》是人教版A版新课程高一数学必修2第一章第一节第一课时,这一章是是立体几何学习初步,教师在教学时要层层递进,逐步培养学生的空间立体感。
2、教学理念和教学思路:我觉得新课程标准重在培养学生的动手动脑能力,重在知识的形成过程,而且《空间几何体的结构》是新课程立体几何部分的起始课程,重在逐步培养学生的空间立体感,所以本节教学应加强几何直观的教学,通过实物结合,得出空间几何体的概念。
同时,通过学生激趣学习、类比学习,增强学生参与数学学习的意愿。
其次,在学生学习过程中能够经历观察、归纳、分类、抽象、概括这一过程,提高学生自主学习、分析问题和解决问题的能力,培养学生合作学习的意识.3、教材及学生学情分析:空间几何体是新课程立体几何部分的起始课程,新课标改变以往立体几何先研究点、直线、平面,再研究由它们构成的几何体,而改为从对空间几何体的整体观察入手,再研究组成空间几何体的点、直线和平面.这样设计巧妙解决了立体几何入门难的问题,强调几何直观,淡化几何论证,可以激发学生学习立体几何的兴趣.笨节为空间几何体第一课时,本节内容学生在初中数学课程“空间与图形”已有所涉及,但高中阶段要求不同,素材更为丰富,学习的深度和概括程度加大.教学时要领会新课标的意图,加强几何直观的训练,在引导学生直观感受空间几何体结构特征的同时,学会类比,学会推理,学会说理.本节在教学中学生容易出现以下问题:一是在归纳总结几何体的结构特征时,不能从现实生活空间中抽象出空间图形。
1.1.1 构成空间几何体的基本元素1.了解几何体的基本元素.2.理解平面的概念.3.掌握平面的画法及表示方法.1.几何体如果我们只考虑一个物体占有空间部分的形状和大小,而不考虑其他因素,则这个空间部分叫做一个几何体.2.构成空间几何体的基本元素(1)长方体由六个矩形(包括它的内部)围成,围成长方体的各个矩形,叫做长方体的面;相邻两个面的公共边,叫做长方体的棱;棱和棱的公共点,叫做长方体的顶点.(2)长方体有6个面,12条棱,8个顶点.(3)点、线、面是构成几何体的基本元素.3.空间点、线、面的特征(1)线有直线(段)和曲线(段)之分,面有平面(部分)和曲面(部分)之分.平面是处处平直的面,而曲面就不是处处平直的.(2)在立体几何中,平面是无限延展的,通常画一个平行四边形表示一个平面,并把它想象成无限延展的.平面一般用希腊字母α,β,γ,…来命名,还可以用表示它的平行四边形的对角顶点的字母来命名,如图中的平面α、平面β、平面ABCD或平面AC等.(3)在几何中,可以把线看成点运动的轨迹,如果点运动的方向始终不变,那么它的轨迹就是一条直线或线段;如果点运动的方向时刻在变化,则运动的轨迹是一条曲线或曲线的一段.(4)一条线运动的轨迹可以是一个面,面运动的轨迹(经过的空间部分)可以形成一个几何体.(5)直线平行移动,可以形成平面或曲面.固定射线的端点,让其绕着一个圆弧转动,可以形成锥面.4.几个定义的比较位置关系定义图形符号表示平行线面如果直线和平面没有公共点,则说直线和平面平行AB∥平面α面面如果两个平面没有公共点,则说这两个平面平行平面α∥平面β垂直线面如果一条直线和一个平面内的两条相交直线都垂直,则说直线与平面垂直l⊥平面α面面如果两个平面相交,并且其中一个平面通过另一个平面的一条垂线,则说这两个平面互相垂直平面α⊥平面β距离点面点到平面的垂线段的长度,称作点到平面的距离两平面夹在两平行平面间垂线段的长度称作两平面间的距离1.关于平面下列说法正确的是( )A.平行四边形是一个平面B.平面是有大小的C.平面是无限延展的D.长方体的一个面是平面答案:C2.下列说法中错误的是( )A.平面用一个希腊字母就可以表示B.平面可用表示平面的平行四边形对角顶点的两个英文字母表示C.三角形ABC所在的平面不可以写成平面ABCD.一条直线和一个平面可能没有公共点答案:C3.直线平行移动一定形成平面吗?解:不一定,还可能形成曲面.平面概念的理解判断下列说法是否正确?并说明理由.(1)平面的形状是平行四边形;(2)任何一个平面图形都是一个平面;(3)圆和平面多边形都可以表示平面;(4)若S▱ABCD>S▱A′B′C′D′,则平面ABCD大于平面A′B′C′D′;(5)用平行四边形表示平面时,平行四边形的四边是这一平面的边界.【解】(1)不正确.平行四边形只是平面的一种表示方式,它不能延展,而平面能无限延展,平面没有确定的形状;(2)不正确.任何一个平面图形,如点、线都不是平面;角、圆、多边形等都是平面的一部分,而不是平面;(3)正确.这样的图形可以表示平面,点、线这样的平面图形是平面的基本元素;(4)不正确.平面是不可度量的,不涉及大小;(5)不正确.平面是无限延展的,无边界.本题主要考查平面的特征等基础知识以及空间想象能力.给出下列命题:①书桌面是平面;②8个平面重叠起来,要比6个平面重叠起来厚;③有一个平面的长是50 m,宽是20 m;④平面是绝对的平、无厚度、可以无限延展的抽象的数学概念.其中正确的有( )A.1个B.2个C.3个D.4个解析:选A.平面无大小、无厚度、无边际,所以只有④是正确的.应选择A.构成空间几何体的基本元素下列元素属于构成几何体的基本元素的有( )①点;②线;③曲面;④平行四边形(不含内部的点);⑤长方体;⑥线段.A.3个B.4个C.5个D.6个【解析】①②③⑥均为构成几何体的基本元素,只有④⑤不属于构成几何体的基本元素,故选B.【答案】 B点、线、面是构成几何体的基本元素,任何一个几何体都是由这些基本元素组成的,而其他图形有时也能构成另外复杂的几何体,但是不能称之为基本元素.以下结论中正确的是( )A.“点动成线”中的线一定是直线B.直线运动的轨迹一定是平面或曲面C.曲面上一定没有直线D.平面上一定有曲线答案:D长方体中基本元素间的位置关系如图所示,在长方体ABCDA1B1C1D1中,如果把它的12条棱延伸为直线,6个面延展为平面,那么在这12条直线与6个平面中,回答下列问题:(1)与直线B1C1平行的平面有哪几个?(2)与直线B1C1垂直的平面有哪几个?(3)与平面BC1平行的平面有哪几个?(4)与平面BC1垂直的平面有哪几个?【解】(1)与直线B1C1平行的平面有:平面AD1,平面AC.(2)与直线B1C1垂直的平面有平面AB1,平面CD1.(3)与平面BC1平行的平面有:平面AD1.(4)与平面BC1垂直的平面有:平面AC,平面A1C1,平面AB1,平面DC1.若本例中的题干不变,将问题(1)(2)中的“直线B1C1”改为“直线BC1”,再去解答前两个小题.解:(1)与直线BC1平行的平面有:平面AD1.(2)所给6个平面中,与直线BC1垂直的平面不存在.以长方体为载体研究几何体中的点、线、面的关系,有助于形成空间观念,也可以利用运动的观点来分析图形中的线面位置关系.1.点、线、面是构成几何体的基本元素.2.平面是无限延展的,通常画一个平行四边形表示一个平面.3.平面的记法(1)平面一般用希腊字母α、β、γ…来命名;(2)平面图形顶点法.4.认识空间中的点、直线和平面之间的位置关系,我们可以动手制作一些模型或画出图形,来帮助我们理解和提高空间想象能力.通常所说“点动成线,线动成面,面动成体”中的线可能是曲线或直线,面也可能是平面或曲面,到底是哪一种,取决于其运动的方向与方式.1.下列命题:①正方形是一个平面;②平面是有边界的;③20个平面重合在一起比一个平面厚20倍.其中正确的个数为( )A.0 B.1C.2 D.3答案:A2.飞机飞行表演在空中留下漂亮的“彩带”,用数学知识解释为________.答案:点动成线3.一个平面将空间分成________部分;两个平面将空间分成________部分.答案:2 3或4,[学生用书P77(单独成册)])[A 基础达标]1.下列不属于构成几何体的基本元素的是( )A.点B.线段C.曲面D.多边形(不含内部的点)解析:选D.点、线、面是构成几何体的基本元素.2.已知下列三个结论:①铺得很平的一张白纸是一个平面;②平面是矩形的形状;③一个平面的面积可以等于1 m2.其中正确结论的个数是( )A.0 B.1C.2 D.3解析:选A.在立体几何中,平面是无限延展的,所以①③错误;通常我们画一个矩形来表示一个平面,但并不是说平面就是矩形,故②错.3.在正方体ABCDA1B1C1D1中,与对角线BD1既不相交又不平行的棱有( )A.3条B.4条C.6条D.8条解析:选C.在平面A1B1C1D1上的四条棱中有A1B1,B1C1,在平面ABCD上的四条棱中有AD,CD,上、下两底面之间的四条棱中,有AA1,CC1,故与BD1既不相交又不平行的棱共有6条.4.下面给出的四个平面图形能制作成正方体的个数为( )A.1 B.2C.3 D.4解析:选D.可制作成上述四个平面图形,然后折叠而得.5.下列命题正确的是( )A.直线的平移只能形成平面B.直线绕定直线旋转肯定形成柱面C.直线绕定点旋转可以形成锥面D.曲线的平移一定形成曲面解析:选C.直线的平移,可以形成平面或曲面,命题A不正确;只有当两直线平行时旋转形成柱面,命题B不正确;曲线平移的方向与曲线本身所在的平面平行时,不能形成曲面,D不正确,只有C正确.故选C.6.在以下几种几何体的图形中,正方体ABCDA1B1C1D1不可以由四边形________(填序号)平移而得到.①ABCD;②A1B1C1D1;③A1B1BA;④A1BCD1.解析:①ABCD,②A1B1C1D1,③A1B1BA,按某一方向平移可以得到正方体ABCDA1B1C1D1,④A1BCD1平移不能得到正方体ABCDA1B1C1D1.答案:④7.把如图的平面沿虚线折叠可以折叠成的几何体是________.解析:图中由六个长方形组成,可以动手折叠试验,得到长方体.答案:长方体8.下列关于长方体的说法中,正确的是________.①长方体中有3组对面互相平行;②长方体ABCDA1B1C1D1中,与AB垂直的只有棱AD,BC和AA1;③长方体可看成是由一个矩形平移形成的;④长方体ABCDA1B1C1D1中,棱AA1,BB1,CC1,DD1平行且相等.解析:如图,在长方体ABCDA1B1C1D1中,平面ABCD∥平面A1B1C1D1,平面ADD1A1∥平面BCC1B1,平面ABB1A1∥平面CDD1C1,故①正确;与AB垂直的棱除了AD,BC,AA1外,还有B1C1,A1D1,BB1,CC1和DD1,故②错误;这个长方体可看成由它的一个面ABCD上各点沿竖直方向向上移动相同距离AA1所形成的几何体,故③正确;棱AA1,BB1,CC1,DD1的长度是长方体中面ABCD 和面A1B1C1D1的距离,因此它们平行且相等,故答案是①③④.答案:①③④9.下列各题说法对吗?(1)点运动的轨迹是线;(2)线运动的轨迹一定是面;(3)面运动的轨迹一定是体.答案:(1)正确;(2)错误;(3)错误10.已知长方体ABCDA1B1C1D1的长、宽、高分别为5、4、3,试分别求面ABCD与面A1B1C1D1,面ADD1A1与面BCC1B1,面ABB1A1与面DCC1D1间的距离.解:因为面ABCD∥面A1B1C1D1,AA1与该两平面垂直.且长方体的高为3.所以面ABCD与面A1B1C1D1之间的距离为3.同理:面ADD1A1与面BCC1B1之间的距离为5.面ABB1A1与面DCC1D1之间的距离为4.[B 能力提升]11.下列几何图形中,可能不是平面图形的是( )A.梯形B.菱形C.平行四边形D.四边形解析:选D.四边形可能是空间四边形,如将菱形沿一条对角线折叠成4个顶点不共面的四边形.12.下列说法:①长方体是由六个平面围成的几何体;②长方体可以看作一个矩形ABCD(水平放置)上各点沿铅垂线方向向上移动相同的距离到矩形A′B′C′D′所形成的几何体;③长方体一个面上的任一点到对面的距离相等.其中正确命题的序号是________.解析:①是错误的,面与矩形是不同的.答案:②③13.在正方体ABCDA1B1C1D1中,判断平面AB1D1和平面BC1D的位置关系.解:因为平面AB1D1和平面BC1D不论怎样延展都是没有交点的,所以它们互相平行.14.(选做题)要将一个正方体模型展开成平面图形,需要剪断多少条棱?你能从中得出什么规律来吗?解:需要剪断7条棱.因为正方体有6个面,12条棱,两个面有一条棱相连,展开后六个面就有5条棱相连,所以剪断7条棱.规律是正方体的平面展开图只能有5条棱相连,但是,有5条棱相连的6个正方形图形不一定是正方体的平面展开图.。