广东省广州市海珠区2017-2018学年高三上学期调研测试(一)数学理试题 Word版含答案
- 格式:doc
- 大小:954.00 KB
- 文档页数:12
2017届广州市普通高中毕业班综合测试(一)数学(理科)本试卷共4页,23小题, 满分150分。
考试用时120分钟。
注意事项:1. 本试卷分第I 卷(选择题)和第n 卷(非选择题)两部分.答卷前,考生务必将自 己的姓名、准考证号填写在答题卡上.2. 回答第I 卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑. 如 需改动,用橡皮擦干净后,再选涂其它答案标号•写在本试卷上无效.3. 回答第n 卷时,将答案写在答题卡上,写在本试卷上无效. 4•考试结束后,将本试卷和答题卡一并交回.(1)复数1的共轭复数是(B ) 13(C ) 4或 10(D ) 1 或 13、选择题:本小题共 12题,每小题 题目要求的。
在每小题给出的四个选项中,只有一项是符合(A) 1 (B) 1(C ) 1(D) 1 i(2)若集合 XX1 ,则(3) (5) 是双曲线C 的左,右焦点点P 在双曲线C 上,且PF 17,则PF ?等于(A) 1如图,网格纸上小正方形的边长为 1,粗线画出的是某几何体的正视图(等腰直角三角形)和侧视图 , 8且该几何体的体积为,则该几何体的俯视图可以是 3(7) 五个人围坐在一张圆桌旁,每个人面前放着完全相同的硬币,所有人同时翻转自己的硬币•若硬币正面朝上,则这个人站起来;若硬币正面朝下,则这个人继续坐着•那么, 没有相邻的两个人站起来的概率为,八 115115(A ) 一( B )( C )( D )2 3232 162 2X y(8) 已知F 1,F 2分别是椭圆2 1 a b 0的左,右焦点,椭圆C 上存在点Pa b使 F 1PF 2为钝角,则椭圆C 的离心率的取值范围是/A、血,1 c 迈1 (A ),1(B ) -,1(C )0,( D )0- 22 22(9)已知 p: x 0,e xax 1成立,qx:函数f Xa 1在R 上是减函数,贝U p 是q 的(A )充分不必要条件(B )必要不充分条件 (C )充要条件 (D )既不充分也不必要条件(10)《九章算术》中,将底面为长方形且有 条侧棱与底面垂直的四棱锥称之为阳马;将四个面都为直角三角形的三棱锥称之为鳖臑•若三棱锥P ABC 为鳖臑,PA 丄平面ABC ,PA AB 2, AC 4,三棱锥P ABC 的四个顶点都在球 0的球面上 则球O 的表面积为(11)若直线y 1与函数f x 2sin2x 的图象相交于点 P %,% , Q 屜,y 2,且x 1x 22,则线段PQ 与函数f x 的图象所围成的图形面积是3(A )-2-亦 (B )逅(C )43 2 (D )^3 233 3 33 3 1 2016 k (12 )已知函数f X Xx x 贝U f 的值为24 8’ k1 2017(B)(D)(6)(A) 8 (B) 12 (C ) 20(D) 24(A) 0 (B) 504 (C ) 1008 (D) 2016本卷包括必考题和选考题两部分。
海珠区2017-2018学年第一学期高三综合测试(一)文科数学第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每个小题给出的四个选项中,只有一项是符合题目要求的.(1)已知集合{}2,0,2,4,M =-,{}29N x x =<,则M N =(A){}0,2 (B){}2,0,2- (C) {}0,2,4 (D){}2,2- (2)复数3122⎛⎫-⎪⎝⎭(其中i 为虚数单位)的值是 (A)i - (B) i (C) 1- (D)1 (3)要得到函数sin 26y x π⎛⎫=+⎪⎝⎭的图象,只需要将函数sin 2y x =的图象 (A )向左平移π12个单位 (B )向右平移π12个单位(C )向左平移π6个单位 (D )向右平移π6个单位 (4)已知甲、乙两组数据如图茎叶图所示,若它们的中位数相同,平均数也相同,则图中的,m n 的比值=mn(A )38 (B )13 (C )29(D )1(5)如图,在底面边长为1,高为2的正四棱柱1111ABCD A B C D -中,点P 是平面1111A B C D 内一点,则三棱锥P BCD -的正视图与侧视图的面积之和为(A )2 (B )3 (C )4 (D )5(6)设点P 是双曲线22221x y a b-=(0,0)a b >>上的一点,1F ,2F 分别为双曲线的左、右焦点,已知12PF PF ⊥,且122PF PF =,则双曲线的离心率为(A(B(C )2 (D(7)在平面直角坐标系中,已知点()21A -,和坐标满足11y x x y y ≤⎧⎪+≤⎨⎪≥-⎩的动点(),M x y ,则目标函数z OA OM =⋅的最大值为(A )4 (B )5 (C )6 (D )7 (8)已知函数()ln f x x x =-,则()f x 的图像大致为(9)若1c >,01b a <<<,则(A )c c a b < (B )c c ba ab < (C )log log b a a c b c <(D )log log a b c c <(10)在ABC △中,角A ,B ,C 的对边分别是a ,b , c ,已知b c =,222(1sin )a b A =-,则A =(A )3π4 (B )π3 (C )π4 (D )π6(11)执行如图所示的程序框图,则输出的结果为 (A )1- (B )1 (C )2- (D )2(12)设奇函数()f x 在[]1,1-上是增函数,且()11f -=-,若函数()221f x t at ≤-+对所有的[]1,1x ∈-都成立,当[]1,1a ∈-时,则t 的取值范围是(A )1122t -≤≤ (B )22t -≤≤ (C )11022t t t ≥≤-=或或 (D )220t t t ≥≤-=或或 第Ⅱ卷本卷包括必考题和选考题两个部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答. 二、填空题:本大题共4小题,每小题5分.(13)设向量()1,2a x =- ,()1,b x =,且a b ⊥ ,则x = .(14)已知3,22πθπ⎛⎫∈⎪⎝⎭,且π3cos 45θ⎛⎫-= ⎪⎝⎭,则πtan 4θ⎛⎫+= ⎪⎝⎭ .(15)已知椭圆()222210x y a b a b+=>>的左、右焦点分别为12F F ,,上、下顶点分别是12B B ,,点C 是12B F 的中点,若11122B F B F ⋅=,且112CF B F ⊥,则椭圆的方程三、解答题:解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分)在公差不为零的等差数列{}n a 中,12a =,且1a ,2a ,4a 成等比数列.(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)令*11()n n n b n N a a +=∈⋅,求数列{}n b 的前n 项和n T .(18)(本小题满分12分)如图,在四棱锥P ABCD -中,底面ABCD 是菱形,60DAB ∠=︒,PD ⊥平面ABCD ,1PD AD ==,点E ,F 分别为AB 和PD 的中点.(Ⅰ)求证:直线//AF 平面PEC ;(Ⅱ)求三棱锥P BEF -的体积.(19)(本小题满分12分)某商店计划每天购进某商品若干件,商店每销售一件该商品可获利润60元,若供大于求,剩余商品全部退回,但每件商品亏损10元;若供不应求,则从外部调剂,此时每件调剂商品可获利40元.(Ⅰ)若商店一天购进该商品10件,求当天的利润y (单位:元)关于当天需求量n (单位:件,n N ∈)的函数解析式;(Ⅱ)商店记录了50天该商品的日需求量n (单位:件,n N ∈),整理得下表:若商店一天购进10件该商品,以50天记录的各需求量的频率作为各需求量发生的概率,求当天的利润在区间[]500650,内的概率.(20)(本小题满分12分)已知点F 为抛物线2:2(0)E y px p =>的焦点,点(2,)A m 在抛物线E 上,且到原点的距离为(Ⅰ)求抛物线E 的方程;(Ⅱ)已知点(1,0)G -,延长AF 交抛物线E 于点B ,证明:以点F 为圆心且与直线GA 相切的圆,必与直线GB 相切.(21)(本小题满分12分) 已知函数()2ln (2a f x x x x x a a =--+ (Ⅰ)求a 的取值范围;(Ⅱ)设两个极值点分别为12,x x ,证明:212x x e ⋅>.第18题图P FED C BA请考生从第(22)、(23)、(24)三题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分.作答时请用2B 铅笔在答题卡上将所选题号后的方框涂黑. (22)(本小题满分10分)选修4—1:几何证明选讲如图,在ABC ∆中,CD 是ACB ∠的平分线,ACD ∆的外接圆交BC 于点E , 2AB AC =.(Ⅰ)求证:2BE AD =;(Ⅱ)当1AC =,2EC =时,求AD 的长.(23)(本小题满分10分)选修4—4:坐标系与参数方程已知在直角坐标系xoy 中,曲线C 的参数方程为()22cos ,2sin ,x y θθθ=+⎧⎨=⎩为参数,在极坐标系(与直角坐标系xoy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,直线l 的方程为sin 4πρθ⎛⎫+= ⎪⎝⎭. (Ⅰ)求曲线C 在极坐标系中的方程;(Ⅱ)求直线l 被曲线C 截得的弦长.(24)(本小题满分10分)选修4—5:不等式选讲已知函数212)(--+=x x x f . (Ⅰ)解不等式0)(≥x f ;(Ⅱ)若存在实数x ,使得a x x f +≤)(,求实数a 的取值范围.2016-2017学年广东省广州市海珠区高三(上)调研数学试卷(文科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每个小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2016秋•海珠区月考)已知集合M={﹣2,0,2,4},N={x|x2<9},则M∩N=()A.{0,2}B.{﹣2,0,2}C.{0,2,4}D.{﹣2,2}【考点】交集及其运算.【专题】计算题;转化思想;综合法;集合.【分析】先求出集合N,由此利用交集的定义能求出M∩N.【解答】解:∵集合M={﹣2,0,2,4},N={x|x2<9}={x|﹣3<x<3},∴M∩N={﹣2,0,2}.故选:B.【点评】本题考查交集的求法,是基础题,解题时要认真审题,注意交集定义的合理运用.2.(5分)(2016秋•海珠区月考)复数(﹣i)3(其中i为虚数单位)的值是()A.﹣i B.i C.﹣1 D.1【考点】复数代数形式的混合运算.【专题】计算题;转化思想;数系的扩充和复数.【分析】利用复数的1的立方根求解即可.【解答】解:(﹣i)3=﹣(﹣+i)3=﹣1.故选:C.【点评】本题考查复数的基本运算,1的立方根的性质,考查计算能力.3.(5分)(2013•宁德二模)要得到函数y=sin(2x+)的图象,只需将函数y=sin2x的图象()A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度【考点】函数y=Asin(ωx+φ)的图象变换.【专题】三角函数的图像与性质.【分析】根据函数y=Asin(ωx+∅)的图象变换规律,得出结论.【解答】解:将函数y=sin2x的图象向左平移个单位长度,可得函数y=sin2(x+)=sin(2x+)的图象,故选A.【点评】本题主要考查函数y=Asin(ωx+∅)的图象变换规律,属于中档题.4.(5分)(2016秋•海珠区月考)已知甲、乙两组数据如图茎叶图所示,若它们的中位数相同,平均数也相同,则图中的m,n的比值=()A.B.C.D.1【考点】茎叶图.【专题】计算题;转化思想;综合法;概率与统计.【分析】由茎叶图性质及甲、乙两组数据的中位数相同,平均数也相同,列出方程组,能求出m,n,由此能求出结果.【解答】解:甲、乙两组数据如图茎叶图所示,∵它们的中位数相同,平均数也相同,∴,解得m=3,n=8,∴=.故选:A.【点评】本题考查两数比值的求法,是基础题,解题时要认真审题,注意茎叶图的性质的合理运用.5.(5分)(2016秋•海珠区月考)如图,在底面边长为1,高为2的正四棱柱ABCD﹣A1B1C1D1中,点P是平面A1B1C1D1内一点,则三棱锥P﹣BCD的正视图与侧视图的面积之和为()A.2 B.3 C.4 D.5【考点】简单空间图形的三视图.【专题】计算题;转化思想;立体几何.【分析】分析三棱锥P﹣BCD的正视图与侧视图的形状,并求出面积,相加可得答案.【解答】解:三棱锥P﹣BCD的正视图是底面边长为1,高为2的三角形,面积为:1;三棱锥P﹣BCD的假视图也是底面边长为1,高为2的三角形,面积为:1;故三棱锥P﹣BCD的正视图与侧视图的面积之和为2,故选:A【点评】本题考查的知识点是简单空间图形的三视图,根据已知分析出三棱锥P﹣BCD的正视图与侧视图的形状,是解答的关键.6.(5分)(2015•宿州一模)设点P是双曲线上的一点,F1,F2分别是双曲线的左、右焦点,已知PF1⊥PF2,且|PF1|=2|PF2|,则双曲线的离心率为()A.B.C.2 D.【考点】双曲线的简单性质.【专题】计算题;圆锥曲线的定义、性质与方程.【分析】根据双曲线的定义可知|PF1|﹣|PF2|=2a,进而根据|PF1|=2|PF2|,分别求得|PF2|和|PF1|,进而根据勾股定理建立等式求得a和c的关系,则离心率可得.【解答】解:由双曲线的定义可得|PF1|﹣|PF2|=2a,又|PF1|=2|PF2|,得|PF2|=2a,|PF1|=4a;在RT△PF1F2中,|F1F2|2=|PF1|2+|PF2|2,∴4c2=16a2+4a2,即c2=5a2,则e==.故选D.【点评】本题主要考查了双曲线的离心率的求法.考查了学生对双曲线定义和基本知识的掌握.7.(5分)(2016秋•海珠区月考)在平面直角坐标系xOy 中,已知点A(2,﹣1)和坐标满足的动点M(x,y),则目标函数z=的最大值为()A.4 B.5 C.6 D.7【考点】简单线性规划.【专题】数形结合;转化法;不等式.【分析】作出不等式组对应的平面区域,利用向量数量积公式计算z根据z的几何意义,结合数形结合进行求解即可.【解答】解:通解因为z=,则z=2x﹣y,根据线性约束条件,作出可行域如图中阴影部分所示,目标函数z=2x﹣y 的图象与直线y=2x 平行,由可行域知,当直线y=2x﹣z 经过点(2,﹣1)时,目标函数可以取到最大值5.法2.最优解由约束条件确定的可行域为三角形,其顶点的坐标分别为(﹣1,﹣1),(,),(2,﹣1),则由z=,得z=2x﹣y 过点(2,﹣1)时取到最大值5.故选:B.【点评】本题主要考查简单的线性规划等基础知识,考查考生的数形结合能力、转化与化归能力及运算求解能力.8.(5分)(2015秋•桂林校级期中)函数f(x)=x﹣ln|x|的图象为()A.B.C.D.【考点】函数的图象.【专题】作图题;数形结合;函数的性质及应用.【分析】易知当x<0时,f(x)=x﹣ln(﹣x)是增函数,从而利用排除法求得.【解答】解:当x<0时,f(x)=x﹣ln(﹣x)是增函数,故排除A,C,D;故选:B.【点评】本题考查了函数的性质的判断与应用,单调性表述了图象的变化趋势.9.(5分)(2016秋•海珠区月考)若c>1,0<b<a<1,则()A.a c<b c B.ba c<ab cC.alog b c<blog a c D.log a c<log b cE.alog b c<blog a c【考点】不等式的基本性质.【专题】转化思想;综合法;不等式.【分析】利用幂函数、对数函数与指数函数的单调性即可得出.【解答】解:∵0<b<a<1,c>1,∴a c>b c,故A错误,b c﹣1<a c﹣1即ab c<ba c,故B错误,alog b c﹣blog a c=﹣=,∵c>1,∴lgc>0,∵0<b<a<1,∴lgalgb>0,alga>blgb,∴alog b c>blog a c,故C错误,故选:D.【点评】本题考查了幂函数、对数函数与指数函数的单调性,考查了推理能力与计算能力.10.(5分)(2016•山东)△ABC中,角A,B,C的对边分别是a,b,c,已知b=c,a2=2b2(1﹣sinA),则A=()A.B.C.D.【考点】余弦定理的应用;正弦定理.【专题】方程思想;转化法;解三角形.【分析】利用余弦定理,建立方程关系得到1﹣cosA=1﹣sinA,即sinA=cosA,进行求解即可.【解答】解:∵b=c,∴a2=b2+c2﹣2bccosA=2b2﹣2b2cosA=2b2(1﹣cosA),∵a2=2b2(1﹣sinA),∴1﹣cosA=1﹣sinA,则sinA=cosA,即tanA=1,即A=,故选:C【点评】本题主要考查解三角形的应用,根据余弦定理建立方程关系是解决本题的关键.11.(5分)(2016秋•海珠区月考)执行如图所示的程序框图,则输出的结果为()A.﹣1 B.1 C.﹣2 D.2【考点】程序框图.【专题】综合题;转化思想;综合法;算法和程序框图.【分析】模拟执行程序,依次写出每次循环得到的i,S,A的值,观察规律可得S的取值以6为周期,A的取值以3为周期,从而有当i=2017时,满足i>2016,退出循环,输出S 的值为2,从而得解.【解答】解:模拟执行程序,可得i=0,S=1,A=2i=1,S=2,A=不满足i>2016,i=2,S=1,A=﹣1不满足i>2016,i=3,S=﹣1,A=2不满足i>2016,i=4,S=﹣2,A=不满足i>2016,i=5,S=﹣1,A=﹣1不满足i>2016,i=6,S=1,A=2不满足i>2016,i=7,S=2,A=不满足i>2016,i=8,S=1,A=﹣1不满足i>2016,i=9,S=﹣1,A=2不满足i>2016,i=10,S=﹣2,A=不满足i>2016,i=11,S=﹣1,A=﹣1不满足i>2016,i=12,S=1,A=2…观察规律可知,S的取值以6为周期,A的取值以3为周期,从而有:不满足i>2016,i=2014,S=﹣2,A=不满足i>2016,i=2015,S=﹣1,A=﹣1不满足i>2016,i=2016,S=1,A=2不满足i>2016,i=2017,S=2,A=,满足i>2016,退出循环,输出S的值为2.故选:D.【点评】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答,属于基本知识的考查.12.(5分)(2014•北京模拟)设奇函数f(x)在[﹣1,1]上是增函数,且f(﹣1)=﹣1,若函数f(x)≤t2﹣2at+1对所有的x∈[﹣1,1]都成立,则当a∈[﹣1,1]时,t的取值范围是()A.﹣2≤t≤2 B.C.t≥2或t≤﹣2或t=0 D.【考点】奇偶性与单调性的综合.【专题】探究型.【分析】奇函数f(x)在[﹣1,1]上是增函数,且f(﹣1)=﹣1,在[﹣1,1]最大值是1,由此可以得到1≤t2﹣2at+1,因其在a∈[﹣1,1]时恒成立,可以改变变量,以a为变量,利用一次函数的单调性转化求解.【解答】解:奇函数f(x)在[﹣1,1]上是增函数,且f(﹣1)=﹣1,在[﹣1,1]最大值是1,∴1≤t2﹣2at+1,当t=0时显然成立当t≠0时,则t2﹣2at≥0成立,又a∈[﹣1,1]令r(a)=﹣2ta+t2,a∈[﹣1,1]当t>0时,r(a)是减函数,故令r(1)≥0,解得t≥2当t<0时,r(a)是增函数,故令r(﹣1)≥0,解得t≤﹣2综上知,t≥2或t≤﹣2或t=0故选C.【点评】本题是一个恒成立求参数的问题,此类题求解的关键是解题中关系的转化,本题借助单调性确定最值进行转化,这是不等式型恒成立问题常用的转化技巧.二、填空题:本大题共4小题,每小题5分.13.(5分)(2016秋•海珠区月考)设向量=(x﹣1,2),=(1,x),且⊥,则x=.【考点】平面向量的坐标运算.【专题】方程思想;转化思想;平面向量及应用.【分析】由⊥,可得•=0,解出即可得出.【解答】解:∵⊥,∴•=x﹣1+2x=0,解得x=,故答案为:.【点评】本题考查了向量垂直与数量积的关系,考查了推理能力与计算能力,属于基础题.14.(5分)(2016秋•海珠区月考)已知θ∈(,2π),且cos(θ﹣)=,则tan(θ+)=.【考点】两角和与差的正切函数.【专题】计算题;转化思想;综合法;三角函数的求值.【分析】由已知θ的范围求得的范围,得到sin()的值,再由诱导公式及商的关系求得答案.【解答】解:∵θ∈(,2π),∴∈(),又cos(θ﹣)=,∴sin(θ﹣)=﹣=﹣,∴tan(θ+)=tan[()+]=﹣cot()=﹣.故答案为:.【点评】本题考查两角和与差的正切,考查诱导公式的应用,是基础的计算题.15.(5分)(2016秋•海珠区月考)已知椭圆+=1(a>b>0)的左、右焦点分别为F1,F2,上、下顶点分别是B1,B2,点C是B1F2的中点,若•=2,且CF1⊥B1F2,则椭圆的方程为.【考点】椭圆的简单性质.【专题】方程思想;转化思想;平面向量及应用;圆锥曲线的定义、性质与方程.【分析】由已知可得F1,F2,B1,B2四点的坐标,利用中点坐标公式可得C.由•=2,且CF1⊥B1F2,利用数量积运算性质即可得出.【解答】解:F1(﹣c,0),F2(c,0),B1(0,b),B2(0,﹣b),C.=(﹣c,﹣b),=(c,﹣b),=,∵•=2,且CF1⊥B1F2,∴﹣c2+b2=2,=+=0,又a2=b2+c2,联立解得:a=2,b2=3,c=1.∴椭圆的标准方程为:.故答案为:.【点评】本题考查了椭圆的标准方程及其性质、数量积运算性质、向量垂直与数量积的关系、中点坐标公式,考查了推理能力与计算能力,属于中档题.16.(5分)(2016秋•海珠区月考)已知三棱柱ABC﹣A1B1C1的侧棱垂直于底面,所有棱长都相等,若该三棱柱的顶点都在球O的表面上,且三棱柱的体积为,则球O的表面积为7π.【考点】球的体积和表面积.【专题】综合题;方程思想;综合法;立体几何.【分析】通过球的内接体,说明几何体的中心是球的直径,设出三棱柱的底面边长,由棱柱的体积公式得到三棱柱的底面边长,可得球的半径,由球的表面积求出球的表面积.【解答】解:如图,∵三棱柱ABC﹣A1B1C1的所有棱长都相等,6个顶点都在球O的球面上,∴三棱柱为正三棱柱,且其中心为球的球心,设为O,设三棱柱的底面边长为a,则∵三棱柱的体积为,∴=,∴a=.设球的半径为r,上底面所在圆的半径为a=1,且球心O到上底面中心H的距离OH= =,∴r==,∴球O的表面积为4πr2=7π故答案为:7π【点评】本题考查球的内接体与球的关系,球的半径的求解,考查计算能力,是中档题.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)(2016秋•雅安校级月考)在公差不为零的等差数列{a n}中,a1=2,且a1,a2,a4成等比数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)令b n=(n∈N*),求数列{b n}的前n项和T n.【考点】数列的求和.【专题】转化思想;综合法;等差数列与等比数列.【分析】(Ⅰ)由等比数列等比中项可知:(a1+d)2=a1•(a1+3d),即可求得d的值,根据等差通项公式即可求得数列{a n}的通项公式;(Ⅱ)===(﹣),利用“裂项法”即可求得数列{b n}的前n项和T n.【解答】解:(Ⅰ)设数列{a n}的公差为d(d≠0),…(1分)由题意知(a1+d)2=a1•(a1+3d),…(2分)即(2+d)2=2•(2+3d),即d(d﹣2)=0,又d≠0,∴d=2.…(3分)a n=2+(n﹣1)×2=2n,故数列{a n}的通项公式a n=2n.…(5分)(Ⅱ)由(Ⅰ)得===(﹣)…(7分)∴T n=b1+b2+b3+…+b n,…(8分)=[(1﹣)+(﹣)+(﹣)+…+(﹣)]…(9分)=(1﹣)…(10分)=.…(11分)∴数列数列{b n}的前n项和T n=.…(12分)【点评】本题考查等差数列通项公式,等比数列等比中项的性质,“裂项法”求数列的前n项和,考查计算能力,属于中档题.18.(12分)(2016秋•海珠区月考)如图,在四棱锥P﹣ABCD中,底面ABCD是菱形,∠DAB=60°,PD⊥平面ABCD,PD=AD=1,点E,F分别为AB和PD的中点.(Ⅰ)求证:直线AF∥平面PEC;(Ⅱ)求三棱锥P﹣BEF的体积.【考点】棱柱、棱锥、棱台的体积;直线与平面平行的判定.【专题】计算题;数形结合;转化思想;空间位置关系与距离.【分析】(Ⅰ)作FM∥CD交PC于M,连接ME.证明AF∥EM,然后证明直线AF∥平面PEC.(Ⅱ)连接ED,证明AB⊥平面PEF.求出三角形PEF的面积,利用V P﹣BEF=V B﹣PEF求解即可.【解答】(本小题满分12分)解:(Ⅰ)证明:作FM∥CD交PC于M,连接ME.…(1分)∵点F为PD的中点,∴,又,∴,∴四边形AEMF为平行四边形,∴AF∥EM,…(2分)∵AF⊄平面PEC,EM⊂平面PEC,…(3分)∴直线AF∥平面PEC.…(4分)(Ⅱ)连接ED,在△ADE中,AD=1,,∠DAE=60°,∴ED2=AD2+AE2﹣2AD×AE×cos60°=,∴,∴AE2+ED2=AD2,∴ED⊥AB.…(5分)PD⊥平面ABCD,AB⊂平面ABCD,∴PD⊥AB,…(6分)PD∩ED=D,PD⊂平面PEF,ED⊂平面PEF,…(7分)∴AB⊥平面PEF.…(8分),…(9分)∴三棱锥P﹣BEF的体积:V P﹣BEF=V B﹣PEF…(10分)=…(11分)==.…(12分)【点评】本题考查空间几何体的体积,直线与平面平行的判定定理的应用,考查空间想象能力以及计算能力.19.(12分)(2016秋•海珠区月考)某商店计划每天购进某商品若干件,商店每销售一件该商品可获利润60元,若供大于求,剩余商品全部退回,但每件商品亏损10元;若供不应求,则从外部调剂,此时每件调剂商品可获利40元.(Ⅰ)若商店一天购进该商品10件,求当天的利润y(单位:元)关于当天需求量n(单位:件,n∈N)的函数解析式;,整理得如表:若商店一天购进10件该商品,以50天记录的各需求量的频率作为各需求量发生的概率,求当天的利润在区间[500,650]内的概率.【考点】概率的应用.【专题】综合题;函数思想;综合法;概率与统计.【分析】(Ⅰ)分类求出函数解析式,即可得出利润y关于需求量n的函数解析式;(Ⅱ)若利润在区间[500,650]内,日需求量为9、10、11,其对应的频数分别为10、14、9,即可求出概率.【解答】解:(Ⅰ)当日需求量n≥100时,利润为y=60×10+(n﹣10)×40=40n+200;…(2分)当日需求量n<10时,利润为y=60n﹣(10﹣n)×70=70n﹣100.…(4分)所以利润y关于需求量n的函数解析式为y=…(6分)(Ⅱ)50天内有4天获得的利润为390元,有8天获得的利润为460元,有10天获得的利润为530元,有14天获得的利润为600元,有9天获得的利润为640元,有5天获得的利润为680元.…(9分)若利润在区间[500,650]内,日需求量为9、10、11,其对应的频数分别为10、14、9.…(10分)则利润在区间[500,650]内的概率为.…(12分)【点评】本题考查分段函数,考查概率的计算,考查学生分析解决问题的能力,属于中档题.20.(12分)(2016秋•海珠区月考)已知点F为抛物线E:y2=2px(p>0)的焦点,点A(2,m)在抛物线E上,且到原点的距离为2.(Ⅰ)求抛物线E的方程;(Ⅱ)已知点G(﹣1,0),延长AF交抛物线E于点B,证明:以点F为圆心且与直线GA 相切的圆,必与直线GB相切.【考点】直线与圆锥曲线的综合问题;抛物线的标准方程.【专题】综合题;转化思想;综合法;圆锥曲线的定义、性质与方程.【分析】(Ⅰ)由题意可得:,求出p,即可求抛物线E的方程;(Ⅱ)证明k GA+k GB=0,从而∠AGF=∠BGF,这表明点F到直线G A,G B的距离相等,即可证明结论.【解答】解:(I)由题意可得:,…(2分)解得p=2,…(3分)所以抛物线E的方程为y2=4x.…(4分)(II)因为点A(2,m)在抛物线E:y2=4x上,所以,…(5分)由抛物线的对称性,不妨设.由,F(1,0)可得直线AF的方程.…(6分)由,得2x2﹣5x+2=0,解得x=2或,从而.…(7分)又G(﹣1,0),所以,…(8分),…(9分)所以k GA+k GB=0,从而∠AGF=∠BGF,…(10分)这表明点F到直线G A,G B的距离相等,…(11分)故以F为圆心且与直线G A相切的圆必与直线G B相切.…(12分)【点评】本题考查抛物线的方程,考查直线与抛物线的位置关系,考查直线与圆的位置关系,属于中档题.21.(12分)(2016秋•海珠区月考)已知函数f(x)=xlnx﹣x2﹣x+a(a∈R))在其定义域内有两个不同的极值点.(Ⅰ)求a的取值范围;(Ⅱ)设两个极值点分别为x1,x2,证明:x1•x2>e2.【考点】利用导数研究函数的极值.【专题】函数思想;综合法;导数的综合应用.【分析】(Ⅰ)由导数与极值的关系知可转化为方程f′(x)=lnx﹣ax=0在(0,+∞)有两个不同根;再转化为函数y=lnx与函数y=ax的图象在(0,+∞)上有两个不同交点,或转化为函数g(x)=与函数y=a的图象在(0,+∞)上有两个不同交点;或转化为g(x)=lnx﹣ax有两个不同零点,从而讨论求解;(Ⅱ)问题等价于ln>,令,则t>1,,设,根据函数的单调性证出结论即可.【解答】解:(Ⅰ)由题意知,函数f(x)的定义域为(0,+∞),方程f′(x)=0在(0,+∞)有两个不同根;即方程lnx﹣ax=0在(0,+∞)有两个不同根;(解法一)转化为函数y=lnx与函数y=ax的图象在(0,+∞)上有两个不同交点,如右图.可见,若令过原点且切于函数y=lnx图象的直线斜率为k,只须0<a<k.令切点A(x0,lnx0),故k=y′|x=x0=,又k=,故=,解得,x0=e,故k=,故0<a<.(解法二)转化为函数g(x)=与函数y=a的图象在(0,+∞)上有两个不同交点.又g′(x)=,即0<x<e时,g′(x)>0,x>e时,g′(x)<0,故g(x)在(0,e)上单调增,在(e,+∞)上单调减.=g(e)=;故g(x)极大又g(x)有且只有一个零点是1,且在x→0时,g(x)→﹣∞,在在x→+∞时,g(x)→0,故g(x)的草图如右图,可见,要想函数g(x)=与函数y=a的图象在(0,+∞)上有两个不同交点,只须0<a<.(解法三)令g(x)=lnx﹣ax,从而转化为函数g(x)有两个不同零点,而g′(x)=﹣ax=(x>0),若a≤0,可见g′(x)>0在(0,+∞)上恒成立,所以g(x)在(0,+∞)单调增,此时g(x)不可能有两个不同零点.若a>0,在0<x<时,g′(x)>0,在x>时,g′(x)<0,所以g(x)在(0,)上单调增,在(,+∞)上单调减,从而g(x)极大=g()=ln﹣1,又因为在x→0时,g(x)→﹣∞,在在x→+∞时,g(x)→﹣∞,>0,即ln﹣1>0,所以0<a<.于是只须:g(x)极大综上所述,0<a<.(Ⅱ)由(Ⅰ)可知x1,x2分别是方程lnx﹣ax=0的两个根,即lnx1=ax1,lnx2=ax2,设x1>x2,作差得ln=a(x1﹣x2),即a=原不等式等价于ln>,令,则t>1,,设,,∴函数g(t)在(1,+∞)上单调递增,∴g(t)>g(1)=0,即不等式成立,故所证不等式成立.【点评】本题考查了导数的综合应用及分类讨论,转化思想,数形结合的思想方法的应用,属于综合题.[选修4-1:几何证明选讲]22.(10分)(2016•河南模拟)如图,在△ABC中,CD是∠ACB的平分线,△ACD的外接圆交BC于点E,AB=2AC.(Ⅰ)求证:BE=2AD;(Ⅱ)当AC=1,EC=2时,求AD的长.【考点】圆內接多边形的性质与判定.【专题】推理和证明.【分析】(Ⅰ)利用圆的内接四边形得到三角形相似,进一步得到线段成比例,最后求出结果.(Ⅱ)利用上步的结论和割线定理求出结果.【解答】证明:(Ⅰ)连接DE,由于四边形DECA是圆的内接四边形,所以:∠BDE=∠BCA∠B是公共角,则:△BDE∽△BCA.则:,又:AB=2AC所以:BE=2DE,CD是∠ACB的平分线,所以:AD=DE,则:BE=2AD.(Ⅱ)由于AC=1,所以:AB=2AC=2.利用割线定理得:BD•AB=BE•BC,由于:BE=2AD,设AD=t,则:2(2﹣t)=(2+2t)•2t解得:t=,即AD的长为.【点评】本题考查的知识要点:三角形相似的判定的应用,圆周角的性质的应用,割线定理得应用,主要考查学生的应用能力.[选修4-4:坐标系与参数方程]23.(2013•郑州一模)已知在直角坐标系xOy中,曲线C的参数方程为为参数),在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,直线l的方程为ρsin(θ+)=2.(Ⅰ)求曲线C在极坐标系中的方程;(Ⅱ)求直线l被曲线C截得的弦长.【考点】简单曲线的极坐标方程;直线与圆的位置关系.【专题】直线与圆.【分析】(1)把曲线C的参数方程利用同角三角函数的基本关系消去参数θ,化为普通方程,再根据x=ρcosθ,y=ρsinθ,化为极坐标方程.(2)把直线和圆的直角坐标方程联立方程组,求得交点的坐标,再利用两点间的距离公式求得弦长.【解答】解:(1)把曲线C的参数方程利用同角三角函数的基本关系消去参数θ,化为普通方程为(x﹣2)2+y2=4,再化为极坐标方程是ρ=4cosθ.﹣﹣﹣﹣(5分)(2)∵直线l的直角坐标方程为x+y﹣4=0,由求得,或,可得直线l与曲线C的交点坐标为(2,2)(4,0),所以弦长为=2.﹣﹣﹣﹣(10分)【点评】本题主要考查把参数方程、极坐标方程化为直角坐标方程的方法,求直线和圆的交点坐标,两点间的距离公式的应用,属于基础题.[选修4-5:不等式选讲]24.(2016•信阳一模)已知函数f(x)=|2x+1|﹣|x|﹣2(Ⅰ)解不等式f(x)≥0(Ⅱ)若存在实数x,使得f(x)≤|x|+a,求实数a的取值范围.【考点】绝对值不等式的解法.【专题】不等式的解法及应用.【分析】(Ⅰ)化简函数的解析式,分类讨论,求得不等式的解集.(Ⅱ)不等式即|x+|﹣|x|≤+1①,由题意可得,不等式①有解.根据绝对值的意义可得|x+|﹣|x|∈[﹣,],故有+1≥﹣,由此求得a的范围.【解答】解:(Ⅰ)函数f(x)=|2x+1|﹣|x|﹣2=,当x<﹣时,由﹣x﹣3≥0,可得x≤﹣3.当﹣≤x<0时,由3x﹣1≥0,求得x∈∅.当x≥0时,由x﹣1≥0,求得x≥1.综上可得,不等式的解集为{x|x≤﹣3 或x≥1}.(Ⅱ)f(x)≤|x|+a,即|x+|﹣|x|≤+1①,由题意可得,不等式①有解.由于|x+|﹣|x|表示数轴上的x对应点到﹣对应点的距离减去它到原点的距离,故|x+|﹣|x|∈[﹣,],故有+1≥﹣,求得a≥﹣3.【点评】本题主要考查绝对值的意义,绝对值不等式的解法,函数的能成立问题,体现了转化、分类讨论的数学思想,属于基础题.。
2017-2018学年广东省广州市海珠区高三(上)月考数学试卷(理科)(1)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={(x,y)|x2+y2=4},B={(x,y)|y=2x+1},则A∩B中元素的个数为()A.3 B.2 C.1 D.02.(5分)设复数z满足(1﹣i)z=2i,则|z|=()A.B.C.D.23.(5分)下列说法中正确的是()①相关系数r用来衡量两个变量之间线性关系的强弱,|r|越接近于1,相关性越弱;②回归直线y=bx+a一定经过样本点的中心();③随机误差e满足E(e)=0,其方差D(e)的大小用来衡量预报的精确度;④相关指数R2用来刻画回归的效果,R越小,说明模型的拟合效果越好.A.①②B.③④C.①④D.②③4.(5分)已知向量,的夹角为60°,||=2,||=2,则||=()A.4 B.2 C.D.15.(5分)已知A,B为抛物线y2=2x上两点,且A与B的纵坐标之和为4,则直线AB的斜率为()A.B.﹣ C.﹣2 D.26.(5分)已知等差数列{a n}的公差为2,若a1,a3,a4成等比数列,则{a n}前6项的和为()A.﹣20 B.﹣18 C.﹣16 D.﹣147.(5分)(x+y)(2x﹣y)6的展开式中x4y3的系数为()A.﹣80 B.﹣40 C.40 D.808.(5分)已知圆锥的底面半径为4,高为8,则该圆锥的外接球的表面积为()A.10πB.64πC.100πD.9.(5分)设函数f(x)=cos(2x﹣),则下列结论错误的是()A.f(x)的一个周期为﹣πB.y=f(x)的图象关于直线x=对称C.f(x+)的一个零点为x=﹣D.f(x)在区间[]上单调递减10.(5分)执行如图所示的程序框图,如果输出S=,则输入的n=()A.3 B.4 C.5 D.611.(5分)已知双曲线C:=1(a>0,b>0)的两条渐近线均与圆x2+y2﹣6x+5=0相切,且双曲线的右焦点为该圆的圆心,则C的离心率为()A.B.C.D.12.(5分)已知函数f(x)=x(lnx﹣ax)有两个极值点,则实数a的取值范围是()A.(﹣∞,0)B.(0,)C.(0,1) D.(0,+∞)二、填空题:本题共4小题,每小题5分,共20分.13.(5分)已知{a n}是各项都为正数的等比数列,其前n项和为S n,且S2=3,S4=15,则a3=.14.(5分)若x,y满足约束条件,则z=x2+y2的最小值为.15.(5分)设函数f(x)=,若f(f(a))≤2,则实数a的取值范围是.16.(5分)如图,正方体ABCD﹣A1B1C1D1的棱长为1,P为BC的中点,Q为线段CC1上的动点,过点A,P,Q的平面截该正方体所得截面记为S,则下列命题正确的是.①当0时,S为四边形;②当CQ=时,S为五边形;③当时,S为六边形;④当CQ=1时,S为菱形.三、解答题:本大题共5小题,满分60分.解答应写出文字说明、证明过程或演算步骤.17.(12分)已知△ABC中的内角A,B,C的对边分别为a,b,c,若a=4,b=6,C=2A.(Ⅰ)求c的值;(Ⅱ)求△ABC的面积.18.(12分)如图,四棱锥P﹣ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AD=2BC=2,∠BAD=∠ABC=90°.(Ⅰ)证明:PC⊥BC;(Ⅱ)若直线PC与平面PAD所成角为30°,求二面角B﹣PC﹣D的余弦值.19.(12分)某厂生产不同规格的一种产品,根据检测标准,其合格产品的质量y(g)与尺寸x(mm)之间近似满足关系式y=ax b(a,b为大于0的常数).现随机抽取6件合格产品,测得数据如下:对数据作了初步处理,相关统计量的值如表:(Ⅰ)根据所给数据,求y关于x的回归方程;(Ⅱ)按照某项指标测定,当产品质量与尺寸的比在区间(,)内时为优等品.现从抽取的6件合格产品中再任选3件,记ξ为取到优等品的件数,试求随机变量ξ的分布列和期望.附:对于一组数据(v1,u1),(v2,u2),…,(v n,u n),其回归直线u=α+βv的斜率和截距的最小二乘估计分别为=,=﹣.20.(12分)已知椭圆C:=1(a>b>0)的焦距为2,且过点A(2,1).(Ⅰ)求椭圆C的方程;(Ⅱ)若不经过点A的直线l:y=kx+m与C交于P,Q两点,且直线AP与直线AQ的斜率之和为0,证明:直线PQ的斜率为定值.21.(12分)已知函数f(x)=lnx+.(Ⅰ)若函数f(x)有零点,求实数a的取值范围;(Ⅱ)证明:当a时,f(x)>e﹣x.请考生在第22~23题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.(10分)在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系.直线l的参数方程为(t为参数),曲线C的极坐标方程为()(Ⅰ)求直线l的普通方程和曲线C的参数方程;(Ⅱ)设点D在C上,C在D处的切线与直线l垂直,求D的直角坐标.[选修4-5:不等式选讲]23.已知f(x)=|2x+3|﹣|2x﹣1|.(Ⅰ)求不等式f(x)<2的解集;(Ⅱ)若存在x∈R,使得f(x)>|3a﹣2|成立,求实数a的取值范围.2017-2018学年广东省广州市海珠区高三(上)月考数学试卷(理科)(1)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={(x,y)|x2+y2=4},B={(x,y)|y=2x+1},则A∩B中元素的个数为()A.3 B.2 C.1 D.0【解答】解:根据题意,集合A={(x,y)|x2+y2=4},其元素为圆x2+y2=4上所有的点,B={(x,y)|y=2x+1},其元素为直线y=2x+1上所有的点;则A∩B中元素为直线与圆的交点;圆x2+y2=4的圆心坐标为(0,0),半径为2;圆x2+y2=4的圆心到直线的距离d==<2,直线与圆有2个交点,则A∩B中有2个元素,故选:B.2.(5分)设复数z满足(1﹣i)z=2i,则|z|=()A.B.C.D.2【解答】解:由(1﹣i)z=2i,得z=,∴|z|=.故选:A.3.(5分)下列说法中正确的是()①相关系数r用来衡量两个变量之间线性关系的强弱,|r|越接近于1,相关性越弱;②回归直线y=bx+a一定经过样本点的中心();③随机误差e满足E(e)=0,其方差D(e)的大小用来衡量预报的精确度;④相关指数R2用来刻画回归的效果,R越小,说明模型的拟合效果越好.A.①②B.③④C.①④D.②③【解答】解:对于①,相关系数r用来衡量两个变量之间线性关系的强弱,|r|越接近于1,相关性越强,∴①错误;对于②,回归直线y=bx+a一定经过样本点的中心(),②正确;对于③,随机误差e满足E(e)=0,其方差D(e)的大小用来衡量预报的精确度,③正确;对于④,相关指数R2用来刻画回归的效果,R越大,说明模型的拟合效果越好,∴④错误.综上,正确的命题是②③.故选:D.4.(5分)已知向量,的夹角为60°,||=2,||=2,则||=()A.4 B.2 C.D.1【解答】解:根据题意,设||=t,||=2,则()2=||2+4||2﹣4•=4+4t2﹣4×2×t×=4,即t2﹣t=0,又由t>0,则有t=1;故选:D.5.(5分)已知A,B为抛物线y2=2x上两点,且A与B的纵坐标之和为4,则直线AB的斜率为()A.B.﹣ C.﹣2 D.2【解答】解:A,B为抛物线y2=2x上两点,且A与B的纵坐标之和为4,不妨A为坐标原点,则B的纵坐标为4,此时B的横坐标为:2x=16,解得x=8,B(8,4),则直线AB的斜率为:.故选:A.6.(5分)已知等差数列{a n}的公差为2,若a1,a3,a4成等比数列,则{a n}前6项的和为()A.﹣20 B.﹣18 C.﹣16 D.﹣14【解答】解:等差数列{a n}的公差d为2,若a1,a3,a4成等比数列,可得a32=a1a4,即有(a1+4)2=a1(a1+6),解得a1=﹣8,则{a n}前6项的和为6×(﹣8)+×6×5×2=﹣18,故选:B.7.(5分)(x+y)(2x﹣y)6的展开式中x4y3的系数为()A.﹣80 B.﹣40 C.40 D.80【解答】解:(2x﹣y)6由通项公式可得:.那么(x+y)•=要得到x4y3项:可得:r=2或r=3.当r=2时,系数为=240.当r=3时,系数为﹣=﹣160.合并后系数为:240﹣160=80.故选:D.8.(5分)已知圆锥的底面半径为4,高为8,则该圆锥的外接球的表面积为()A.10πB.64πC.100πD.【解答】解:圆锥的底面半径r=4,高为h=8,设圆锥的外接球的半径为R,画出圆锥的轴截面如图所示,则外接球的半径是轴截面三角形的外接圆的半径;设O为△ABC的外心,则由勾股定理得R2=42+(8﹣R)2,解得R=5;∴该圆锥外接球的表面积为4π•52=100π.故选:C.9.(5分)设函数f(x)=cos(2x﹣),则下列结论错误的是()A.f(x)的一个周期为﹣πB.y=f(x)的图象关于直线x=对称C.f(x+)的一个零点为x=﹣D.f(x)在区间[]上单调递减【解答】解:根据题意,依次分析选项:对于A、f(x)=cos(2x﹣),其周期T==π,A正确;对于B、f(x)=cos(2x﹣),令2x﹣=kπ,解可得x=+,即y=f(x)的对称轴为x=+,当k=1时,x═,即y=f(x)的图象关于直线x=对称,B正确;对于C、f(x+)=cos(2x+π﹣)=cos(2x+),当x=﹣时,f(x+)=cos0=1,则x=﹣不是f(x+)的零点,C错误;对于D、f(x)=cos(2x﹣),2kπ≤2x﹣≤2kπ+π,解可得kπ+≤x≤kπ+,即函数f(x)的递减区间为[kπ+,kπ+],则函数在[,]上递减,又由[]∈[,],则f(x)在区间[]上递减,D正确;故选:C.10.(5分)执行如图所示的程序框图,如果输出S=,则输入的n=()A.3 B.4 C.5 D.6【解答】解:模拟程序的运行,可得i=1,S=0执行循环体,S=,i=2不满足条件i>n,执行循环体,S=+,i=3不满足条件i>n,执行循环体,S=++,i=4不满足条件i>n,执行循环体,S=+++=×(1﹣﹣+﹣+)=,i=5由题意,此时应该满足条件5>n,退出循环,输出S的值为.可得:4≤n<5,可得n的值为4.故选:B.11.(5分)已知双曲线C:=1(a>0,b>0)的两条渐近线均与圆x2+y2﹣6x+5=0相切,且双曲线的右焦点为该圆的圆心,则C的离心率为()A.B.C.D.【解答】解:因为圆C:x2+y2﹣6x+5=0⇔(x﹣3)2+y2=4,由此知道圆心C(3,0),圆的半径为2,又因为双曲线的右焦点为圆C的圆心而双曲线C:=1(a>0,b>0),∴a2+b2=9①又双曲线C:=1(a>0,b>0)的两条渐近线均和圆C:x2+y2﹣6x+5=0相切,而双曲线的渐近线方程为:y=±x⇔bx±ay=0,∴=2 ②连接①②得,可得c=3,所以双曲线的离心率为:=.故选:C.12.(5分)已知函数f(x)=x(lnx﹣ax)有两个极值点,则实数a的取值范围是()A.(﹣∞,0)B.(0,)C.(0,1) D.(0,+∞)【解答】解:函数f(x)=x(lnx﹣ax),则f′(x)=lnx﹣ax+x(﹣a)=lnx﹣2ax+1,令f′(x)=lnx﹣2ax+1=0得lnx=2ax﹣1,函数f(x)=x(lnx﹣ax)有两个极值点,等价于f′(x)=lnx﹣2ax+1有两个零点,等价于函数y=lnx与y=2ax﹣1的图象有两个交点,在同一个坐标系中作出它们的图象(如图)当a=时,直线y=2ax﹣1与y=lnx的图象相切,由图可知,当0<a<时,y=lnx与y=2ax﹣1的图象有两个交点.则实数a的取值范围是(0,).故选B.二、填空题:本题共4小题,每小题5分,共20分.13.(5分)已知{a n}是各项都为正数的等比数列,其前n项和为S n,且S2=3,S4=15,则a3=4.【解答】解:由已知可得q≠1.∴=3,=15,解得a1=1,q=2.∴a3=22=4.故答案为:4.14.(5分)若x,y满足约束条件,则z=x2+y2的最小值为.【解答】解:作出x,y满足约束条件,对应的平面区域如图,z的几何意义为区域内的点到原点的距离的平方,由图象知:OA的距离最小,则|OA|2==,故z=x2+y2的最小值为:,故答案为:.15.(5分)设函数f(x)=,若f(f(a))≤2,则实数a的取值范围是a≤.【解答】解:∵函数f(x)=,它的图象如图所示:由f(f(a))≤2,可得f(a)≥﹣2.由f(x)=﹣2,可得﹣x2=﹣2,x≥0,解得x=,故当f(f(a))≤2时,则实数a的取值范围是a≤;故答案为:16.(5分)如图,正方体ABCD﹣A1B1C1D1的棱长为1,P为BC的中点,Q为线段CC1上的动点,过点A,P,Q的平面截该正方体所得截面记为S,则下列命题正确的是①②④.①当0时,S为四边形;②当CQ=时,S为五边形;③当时,S为六边形;④当CQ=1时,S为菱形.【解答】解:对于①,如图所示当CQ=时,Q为CC1中点,此时可得PQ∥AD1,AP=QD1==,截面APQD1为等腰梯形;当点Q向C移动时,满足0<CQ<,只需在DD1上取点M满足AM∥PQ,即可得截面为四边形APQM,①正确;对于②,当CQ=时,如图所示,延长DD1至N,使D1N=,连接AN交A1D1于S,连接NQ交C1D1于R,连接SR,可证AN∥PQ,由△NRD1∽△QRC1,可得C1R:D1R=C1Q:D1N=1:2,故可得C1R=,∴截面APQRS是五边形,②正确;对于③,由②知当<CQ<1时,只需点Q上移,此时的截面形状仍然为上图所示的五边形APQRS,∴③错误;对于④,当CQ=1时,Q与C1重合,取A1D1的中点F,连接AF,可证PC1∥AF,且PC1=AF,可知截面APC1F为菱形,④正确.故答案为:①②④.三、解答题:本大题共5小题,满分60分.解答应写出文字说明、证明过程或演算步骤.17.(12分)已知△ABC中的内角A,B,C的对边分别为a,b,c,若a=4,b=6,C=2A.(Ⅰ)求c的值;(Ⅱ)求△ABC的面积.【解答】解:(1)因为C=2A,所以sinC=sin2A=2sinAcosA,…(2分)由正弦定理,得,…(3分)由余弦定理,得a(b2+c2﹣a2)=bc2.…(5分)由a=4,b=6,可得.…(6分)(2)由余弦定理,…(8分)又sin2C+cos2C=1,0<C<π,得,…(10分)所以△ABC的面积.…(12分).18.(12分)如图,四棱锥P﹣ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AD=2BC=2,∠BAD=∠ABC=90°.(Ⅰ)证明:PC⊥BC;(Ⅱ)若直线PC与平面PAD所成角为30°,求二面角B﹣PC﹣D的余弦值.【解答】解:(Ⅰ)取AD的中点为O,连接PO,CO,∵△PAD为等边三角形,∴PO⊥AD.底面ABCD中,可得四边形ABCO为矩形,∴CO⊥AD,…(1分)∵PO∩CO=O,∴AD⊥平面POC,…(2分)PC⊂平面POC,AD⊥PC.…(3分)又AD∥BC,所以BC⊥PC.…(4分)(Ⅱ)由面PAD⊥面ABCD,PO⊥AD知,∴PO⊥平面ABCD,…(5分)OP,OD,OC两两垂直,直线PC与平面PAD所成角为30°,即∠CPO=30°由AD=2,知,得CO=1.…(6分)分别以的方向为x轴,y轴,z轴的正方向建立空间直角坐标系O﹣xyz,则,,,…(7分)设平面PBC的法向量为.∴.则,…(8分)设平面PDC的法向量为=(x,y,z).∴.则,…(9分)=,…(11分)∴由图可知二面角B﹣PC﹣D的余弦值.…(12分)19.(12分)某厂生产不同规格的一种产品,根据检测标准,其合格产品的质量y(g)与尺寸x(mm)之间近似满足关系式y=ax b(a,b为大于0的常数).现随机抽取6件合格产品,测得数据如下:对数据作了初步处理,相关统计量的值如表:(Ⅰ)根据所给数据,求y关于x的回归方程;(Ⅱ)按照某项指标测定,当产品质量与尺寸的比在区间(,)内时为优等品.现从抽取的6件合格产品中再任选3件,记ξ为取到优等品的件数,试求随机变量ξ的分布列和期望.附:对于一组数据(v1,u1),(v2,u2),…,(v n,u n),其回归直线u=α+βv的斜率和截距的最小二乘估计分别为=,=﹣.【解答】解:(Ⅰ)对y=ax b(a,b>0)两边取科学对数得lny=blnx+lna,令v i=lnx i,u i=lny i得u=bv+lna,由=,ln=1,=e,故所求回归方程为.(Ⅱ)由,x=58,68,78,即优等品有3件,ξ的可能取值是0,1,2,3,且,,,.其分布列为:∴.20.(12分)已知椭圆C:=1(a>b>0)的焦距为2,且过点A(2,1).(Ⅰ)求椭圆C的方程;(Ⅱ)若不经过点A的直线l:y=kx+m与C交于P,Q两点,且直线AP与直线AQ的斜率之和为0,证明:直线PQ的斜率为定值.【解答】解:(Ⅰ)因为椭圆C的焦距为,且过点A(2,1),所以,2c=2.…(2分)因为a2=b2+c2,解得a2=8,b2=2,…(3分)所以椭圆C的方程为=1.…(4分)证明:(Ⅱ)设点P(x1,y1),Q(x2,y2),则y1=kx1+m,y2=kx2+m,由,消去y得(4k2+1)x2+8kmx+4m2﹣8=0,(*).…(5分)则,,…(6分)因为k PA+k QA=0,即=﹣,…(7分)化简得x1y2+x2y1﹣(x1+x2)﹣2(y1+y2)+4=0.即2kx1x2+(m﹣1﹣2k)(x1+x2)﹣4m+4=0.(**)…(8分)代入得﹣﹣4m+4=0,…(9分)整理得(2k﹣1)(m+2k﹣1)=0,所以k=或m=1﹣2k.…(10分)若m=1﹣2k,可得方程(*)的一个根为2,不合题意.…(11分)所以直线PQ的斜率为定值,该值为.…(12分)21.(12分)已知函数f(x)=lnx+.(Ⅰ)若函数f(x)有零点,求实数a的取值范围;(Ⅱ)证明:当a时,f(x)>e﹣x.【解答】解:(Ⅰ)函数的定义域为(0,+∞).由f(x)的解析式得.分类讨论:(1)当a≤0时,f'(x)>0恒成立,函数f(x)在(0,+∞)上单调递增.又f(1)=ln1+a=a<0,x→+∞,f(x)→+∞,所以函数f(x)在定义域(0,+∞)上有1个零点.(2)当a>0时,则x∈(0,a)时,f'(x)<0;x∈(a,+∞)时,f'(x)>0.所以函数f(x)在(0,a)上单调递减,在(a,+∞)上单调递增.当x=a时,[f(x)]min=lna+1.当lna+1≤0,即时,又f(1)=ln1+a=a>0,所以函数f(x)在定义域(0,+∞)上有2个零点.综上所述实数a的取值范围为.另解:(Ⅰ)函数的定义域为(0,+∞).由,得a=﹣xlnx.令g(x)=﹣xlnx,则g’(x)=﹣(lnx+1).当时,g’(x)>0;当时,g’(x)<0.所以函数g(x)在上单调递增,在上单调递减.故时,函数g(x)取得最大值,因x→+∞,f(x)→﹣∞两图象有交点得.综上所述实数a的取值范围为.(Ⅱ)要证明当时,f(x)>e﹣x,即证明当x>0,时,,即xlnx+a>xe﹣x.令h(x)=xlnx+a,则h'(x)=lnx+1.当时,f’(x)<0;当时,f’(x)>0.所以函数h(x)在上单调递减,在上单调递增.当时,.于是,当时,.令φ(x)=xe﹣x,则φ'(x)=e﹣x(1﹣x).当0<x<1时,f’(x)>0;当x>1时,f'(x)<0.所以函数φ(x)在(0,1)上单调递增,在(1,+∞)上单调递减.当x=1时,.于是,当x>0时,.②显然,不等式①、②中的等号不能同时成立.故当时,f(x)>e﹣x.请考生在第22~23题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.(10分)在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系.直线l的参数方程为(t为参数),曲线C的极坐标方程为()(Ⅰ)求直线l的普通方程和曲线C的参数方程;(Ⅱ)设点D在C上,C在D处的切线与直线l垂直,求D的直角坐标.【解答】解:(Ⅰ)∵直线l的参数方程为(t为参数),由,得,…(1分)消去t得直线l的普通方程为.…(2分)∵曲线C的极坐标方程为=,…(3分)∴ρ2=2ρcosθ+2ρsinθ.将ρ2=x2+y2,ρcosθ=x,ρsinθ=y代入上式,得到曲线C的直角坐标方程为x2+y2=2x+2y,即(x﹣1)2+(y﹣1)2=2.…(4分)∴曲线C的直角坐标方程为(α为参数,0≤α<2π).…(5分)(Ⅱ)设曲线C上的点为,…(6分)由(1)知C是以G(1,1)为圆心,半径为的圆.…(7分)∵C在D处的切线与直线l垂直,∴直线GD与l的斜率相等,…(8分),α=60°或者α=240°,…(9分)故D的直角坐标为或.…(10分)[选修4-5:不等式选讲]23.已知f(x)=|2x+3|﹣|2x﹣1|.(Ⅰ)求不等式f(x)<2的解集;(Ⅱ)若存在x∈R,使得f(x)>|3a﹣2|成立,求实数a的取值范围.【解答】解:(Ⅰ)不等式f(x)<2,等价于或或,得或,即f(x)<2的解集是(﹣∞,0);(Ⅱ)∵f(x)≤|(2x+3)﹣(2x﹣1)|=4,∴f(x)max=4,∴|3a﹣2|<4,解得实数a的取值范围是.。
2017-2018学年广东省珠海一中等六校联考高三(上)第一次月考数学试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x(x﹣1)<0},B={x|e x>1},则(∁R A)∩B=()A.[1,+∞)B.(0,+∞)C.(0,1) D.[0,1]2.(5分)欧拉公式e ix=cosx+isinx(i为虚数单位)是由瑞士著名数学家欧拉发明的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里占用非常重要的地位,被誉为“数学中的天桥”,根据欧拉公式可知,e2i表示的复数在复平面中位于()A.第一象限B.第二象限C.第三象限D.第四象限3.(5分)已知||=1,||=,且⊥,则|+|为()A.B.C.2 D.24.(5分)执行如图所示的程序框图,输出的S值为()A.2 B.4 C.8 D.165.(5分)函数y=的图象大致是()A.B. C.D.6.(5分)下列选项中,说法正确的是()A.若a>b>0,则lna<lnbB.向量,(m∈R)垂直的充要条件是m=1C.命题“∀n∈N*,3n>(n+2)•2n﹣1”的否定是“∀n∈N*,3n≥(n+2)•2n﹣1”D.已知函数f(x)在区间[a,b]上的图象是连续不断的,则命题“若f(a)•f (b)<0,则f(x)在区间(a,b)内至少有一个零点”的逆命题为假命题7.(5分)已知m,n为异面直线,α,β为平面,m⊥α,n⊥β.直线l满足l⊥m,l⊥n,l⊄α,l⊄β,则()A.α∥β,且l∥αB.α⊥β,且l⊥βC.α与β相交,且交线垂直于l D.α与β相交,且交线平行于l8.(5分)若x,y满足则z=3x﹣y的最大值为()A.B.C.1 D.29.(5分)某公司为激励创新,计划逐年加大研发资金投入.若该公司2015年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是()(参考数据:lg1.12=0.05,lg1.3=0.11,lg2=0.30)A.2018年B.2019年C.2020年D.2021年10.(5分)已知函数f(x)=cosxsin2x,下列结论中错误的是()A.y=f(x)的图象关于(π,0)中心对称B.y=f(x)的图象关于x=对称C.f(x)的最大值为D.f(x)既是奇函数,又是周期函数11.(5分)数列{a n}满足a1=1,且a n+1=a1+a n+n(n∈N*)则++…+等于()A.B.C.D.12.(5分)已知函数f(x)=,则函数F(x)=f[f(x)]﹣2f(x)﹣的零点个数是()A.4 B.5 C.6 D.7二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)若,则(2x﹣1)n的二项展开式中x2的系数为.14.(5分)已知直线y=ax与圆C:x2+y2﹣2ax﹣2y+2=0交于两点A,B,且△CAB 为等边三角形,则圆C的面积为.15.(5分)若曲线y=e﹣x上点P处的切线平行于直线2x+y+1=0,则点P的坐标为.16.(5分)一台仪器每启动一次都随机地出现一个5位的二进制数A=,其中A的各位数字中,a1=1,a k(k=2,3,4,5)出现0的概率为,出现1的概率为.若启动一次出现的数字为A=10101则称这次试验成功,若成功一次得2分,失败一次得﹣1分,则100次重复试验的总得分X的方差为.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)在△ABC,,BC=2.(1)若AC=3,求AB的长;(2)若点D在边AB上,AD=DC,DE⊥AC,E为垂足,,求角A的值.18.(12分)如图,已知四棱锥E﹣ABCD的底面为菱形,且∠ABC=60°,AB=EC=2,.(1)求证:平面EAB⊥平面ABCD.(2)求二面角A﹣EC﹣D的余弦值.19.(12分)中石化集团获得了某地深海油田块的开采权,集团在该地区随机初步勘探了部分几口井,取得了地质资料.进入全面勘探时期后,集团按网络点米布置井位进行全面勘探.由于勘探一口井的费用很高,如果新设计的井位与原有井位重合或接近,便利用旧井的地质资料,不必打这口新井,以节约勘探费用,勘探初期数据资料见下表:(Ⅰ)1~6号旧井位置线性分布,借助前5组数据求得回归直线方程为y=6.5x+a,求a,并估计y的预报值;(Ⅱ)现准备勘探新井7(1,25),若通过1、3、5、7号井计算出的,的值(,精确到0.01)与(I)中b,a的值差不超过10%,则使用位置最接近的已有旧井6(1,y),否则在新位置打开,请判断可否使用旧井?(参考公式和计算结果:=,=﹣,=94,=945)(Ⅲ)设出油量与勘探深度的比值k不低于20的勘探井称为优质井,那么在原有6口井中任意勘探4口井,求勘探优质井数X的分布列与数学期望.20.(12分)已知椭圆经过点,且两焦点与短轴的一个端点构成等腰直角三角形.(1)求椭圆的方程;(2)动直线交椭圆C于A、B两点,试问:在坐标平面上是否存在一个定点T,使得以AB为直径的圆恒过点T.若存在,求出点T 的坐标;若不存在,请说明理由.21.(12分)设函数f(x)=x2+aln(1+x)有两个极值点x1、x2,且x1<x2,(Ⅰ)求a的取值范围,并讨论f(x)的单调性;(Ⅱ)证明:f(x2)>.四、解答题(二选一,多选者以前一题的分数记入总分).22.(10分)在直角坐标系xoy中,曲线C的参数方程为(t为参数,a >0)以坐标原点O为极点,以x轴正半轴为极轴,建立极坐标系,已知直线l 的极坐标方程为.(Ⅰ)设P是曲线C上的一个动点,当a=2时,求点P到直线l的距离的最小值;(Ⅱ)若曲线C上的所有点均在直线l的右下方,求a的取值范围.23.已知f(x)=|2x﹣1|﹣|x+1|.(1)将f(x)的解析式写成分段函数的形式,并作出其图象.(2)若a+b=1,对∀a,b∈(0,+∞),恒成立,求x的取值范围.2017-2018学年广东省珠海一中等六校联考高三(上)第一次月考数学试卷(理科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x(x﹣1)<0},B={x|e x>1},则(∁R A)∩B=()A.[1,+∞)B.(0,+∞)C.(0,1) D.[0,1]【解答】解:∵集合A={x|x(x﹣1)<0}={x|0<x<1},B={x|e x>1}={x|x>0},∴C R A={x|x≤0或x≥1},∴(∁R A)∩B={x}x≥1}=[1,+∞).故选:A.2.(5分)欧拉公式e ix=cosx+isinx(i为虚数单位)是由瑞士著名数学家欧拉发明的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里占用非常重要的地位,被誉为“数学中的天桥”,根据欧拉公式可知,e2i表示的复数在复平面中位于()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:e2i=cos2+isin2,∵2∈,∴cos2∈(﹣1,0),sin2∈(0,1),∴e2i表示的复数在复平面中位于第二象限.故选:B.3.(5分)已知||=1,||=,且⊥,则|+|为()A.B.C.2 D.2【解答】解:∵;∴;∴||=.故选B.4.(5分)执行如图所示的程序框图,输出的S值为()A.2 B.4 C.8 D.16【解答】解:第1次判断后S=1,k=1,第2次判断后S=2,k=2,第3次判断后S=8,k=3,第4次判断后3<3,不满足判断框的条件,结束循环,输出结果:8.故选C.5.(5分)函数y=的图象大致是()A.B. C.D.【解答】解:当x>0时,y=xlnx,y′=1+lnx,即0<x<时,函数y单调递减,当x>,函数y单调递增,因为函数y为偶函数,故选:D6.(5分)下列选项中,说法正确的是()A.若a>b>0,则lna<lnbB.向量,(m∈R)垂直的充要条件是m=1C.命题“∀n∈N*,3n>(n+2)•2n﹣1”的否定是“∀n∈N*,3n≥(n+2)•2n﹣1”D.已知函数f(x)在区间[a,b]上的图象是连续不断的,则命题“若f(a)•f (b)<0,则f(x)在区间(a,b)内至少有一个零点”的逆命题为假命题【解答】解:对于A,当a>b>0时,lna>lnb,∴A错误;对于B,向量,垂直的充要条件=m+m(2m﹣1)=0,解得m=0,∴B错误;对于C,命题“∀n∈N*,3n>(n+2)•2n﹣1”的否定是“∀n∈N*,3n≤(n+2)•2n﹣1”,∴C错误;对于D,命题“若f(a)•f(b)<0,则f(x)在区间(a,b)内至少有一个零点”的逆命题是:“f(x)在区间(a,b)内有一个零点“,则f(a)•f(b)<0;因为f(a)•f(b)≥0时,f(x)在区间(a,b)内也可能有零点,∴D正确.故选:D.7.(5分)已知m,n为异面直线,α,β为平面,m⊥α,n⊥β.直线l满足l⊥m,l⊥n,l⊄α,l⊄β,则()A.α∥β,且l∥αB.α⊥β,且l⊥βC.α与β相交,且交线垂直于l D.α与β相交,且交线平行于l【解答】解:由m⊥α,直线l满足l⊥m,且l⊄α,所以l∥α,又n⊥β,l⊥n,l⊄β,所以l∥β.由直线m,n为异面直线,且m⊥α,n⊥β,则α与β相交,否则,若α∥β则推出m∥n,与m,n异面矛盾.故α与β相交,且交线平行于l.故选:D.8.(5分)若x,y满足则z=3x﹣y的最大值为()A.B.C.1 D.2【解答】解:作出不等式组对应的平面区域如图:由z=3x﹣y得y=3x﹣z,平移直线y=3x﹣z由图象可知当直线y=3x﹣z经过点A时,直线y=3x﹣z的截距小,此时z最大,由得A(2,4),z=3×2﹣4=2,故选:D.9.(5分)某公司为激励创新,计划逐年加大研发资金投入.若该公司2015年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是()(参考数据:lg1.12=0.05,lg1.3=0.11,lg2=0.30)A.2018年B.2019年C.2020年D.2021年【解答】解:设第n年开始超过200万元,则130×(1+12%)n﹣2015>200,化为:(n﹣2015)lg1.12>lg2﹣lg1.3,n﹣2015>=3.8.取n=2019.因此开始超过200万元的年份是2019年.故选:B.10.(5分)已知函数f(x)=cosxsin2x,下列结论中错误的是()A.y=f(x)的图象关于(π,0)中心对称B.y=f(x)的图象关于x=对称C.f(x)的最大值为D.f(x)既是奇函数,又是周期函数【解答】解:A、因为f(2π﹣x)+f(x)=cos(2π﹣x)sin2(2π﹣x)+cosxsin2x=﹣cosxsin2x+cosxsin2x=0,故y=f(x)的图象关于(π,0)中心对称,A正确;B、因为f(π﹣x)=cos(π﹣x)sin2(π﹣x)=cosxsin2x=f(x),故y=f(x)的图象关于x=对称,故B正确;C、f(x)=cosxsin2x=2sinxcos2x=2sinx(1﹣sin2x)=2sinx﹣2sin3x,令t=sinx∈[﹣1,1],则y=2t﹣2t3,t∈[﹣1,1],则y′=2﹣6t2,令y′>0解得,故y=2t﹣2t3,在[]上增,在[]与[]上减,又y(﹣1)=0,y()=,故函数的最大值为,故C错误;D、因为f(﹣x)+f(x)=﹣cosxsin2x+cosxsin2x=0,故是奇函数,又f(x+2π)=cos (2π+x)sin2(2π+x)=cosxsin2x,故2π是函数的周期,所以函数即是奇函数,又是周期函数,故D正确.由于该题选择错误的,故选:C.11.(5分)数列{a n}满足a1=1,且a n+1=a1+a n+n(n∈N*)则++…+等于()A.B.C.D.=a1+a n+n(n∈N*),a1=1.【解答】解:∵a n+1﹣a n=n+1,∴a n+1∴a n=(a n﹣a n﹣1)+(a n﹣1﹣a n﹣2)+…+(a2﹣a1)+a1=n+(n﹣1)+…+2+1=.∴==2(﹣).则++…+=2[(1﹣)+(﹣)+…+(﹣)]=2(1﹣)=.故选:A.12.(5分)已知函数f(x)=,则函数F(x)=f[f(x)]﹣2f(x)﹣的零点个数是()A.4 B.5 C.6 D.7【解答】解:令t=f(x),F(x)=0,则f(t)﹣2t﹣=0,分别作出y=f(x)和直线y=2x+,由图象可得有两个交点,横坐标设为t1,t2,则t1=0,1<t2<2,即有f(x)=0有一根;1<f(x)<2时,t2=f(x)有3个不等实根,综上可得F(x)=0的实根个数为4,即函数F(x)=f[f(x)]﹣2f(x)﹣的零点个数是4.故选:A.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)若,则(2x﹣1)n的二项展开式中x2的系数为180.【解答】解:∵,∴n=10.则(2x﹣1)10的二项展开式中,x2的系数为C10222(﹣1)8=180,故答案为180.14.(5分)已知直线y=ax与圆C:x2+y2﹣2ax﹣2y+2=0交于两点A,B,且△CAB 为等边三角形,则圆C的面积为6π.【解答】解:圆C化为x2+y2﹣2ax﹣2y+2=0,即(x﹣a)2+(y﹣1)2=a2﹣1,且圆心C(a,1),半径R=,∵直线y=ax和圆C相交,△ABC为等边三角形,∴圆心C到直线ax﹣y=0的距离为Rsin60°=×,即d==,解得a2=7,∴圆C的面积为πR2=π(7﹣1)=6π.故答案为:6π.15.(5分)若曲线y=e﹣x上点P处的切线平行于直线2x+y+1=0,则点P的坐标为(﹣ln2,2).【解答】解:设P(x,y),则y=e﹣x,∵y′=﹣e﹣x,在点P处的切线与直线2x+y+1=0平行,令﹣e﹣x=﹣2,解得x=﹣ln2,∴y=e﹣x=2,故P(﹣ln2,2).故答案为:(﹣ln2,2).16.(5分)一台仪器每启动一次都随机地出现一个5位的二进制数A=,其中A的各位数字中,a1=1,a k(k=2,3,4,5)出现0的概率为,出现1的概率为.若启动一次出现的数字为A=10101则称这次试验成功,若成功一次得2分,失败一次得﹣1分,则100次重复试验的总得分X的方差为.【解答】解:一次试验成功的概率为=,∴100次重复试验中成功次数ξ服从二项分布ξ~B(100,),∴D(ξ)=100×=,又X=2ξ﹣(100﹣ξ)=3ξ﹣100,∴D(X)=9D(ξ)=.故答案为:.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)在△ABC,,BC=2.(1)若AC=3,求AB的长;(2)若点D在边AB上,AD=DC,DE⊥AC,E为垂足,,求角A的值.【解答】解:(1)设AB=x,则由余弦定理有:AC2=AB2+BC2﹣2AB•BCcosB,即32=22+x2﹣2x•2cos60°,解得:,所以;(2)因为,所以.在△BCD中,由正弦定理可得:,因为∠BDC=2∠A,所以.所以,所以.18.(12分)如图,已知四棱锥E﹣ABCD的底面为菱形,且∠ABC=60°,AB=EC=2,.(1)求证:平面EAB⊥平面ABCD.(2)求二面角A﹣EC﹣D的余弦值.【解答】(1)证明:取AB的中点O,连接EO,CO,,△AEB为等腰直角三角形,∴EO⊥AB,EO=1又∵AB=BC,∠ABC=60°,∴△ABC是等边三角形.∴,EC=2,∴EC2=EO2+CO2∴EO⊥CO∵EO⊥平面ABCD,又EO⊂平面EAB,∴平面EAB⊥平面ABCD.(2)解:以AB的中点O为坐标原点,OB所在直线为y轴,OE所在直线为z 轴,如图建系则A(0,﹣1,0),,,E(0,0,1),,,设平面DCE的法向量为,则,即,解得:,∴同理求得平面EAC的一个法向量为,所以二面角A﹣EC﹣D的余弦值为.19.(12分)中石化集团获得了某地深海油田块的开采权,集团在该地区随机初步勘探了部分几口井,取得了地质资料.进入全面勘探时期后,集团按网络点米布置井位进行全面勘探.由于勘探一口井的费用很高,如果新设计的井位与原有井位重合或接近,便利用旧井的地质资料,不必打这口新井,以节约勘探费用,勘探初期数据资料见下表:(Ⅰ)1~6号旧井位置线性分布,借助前5组数据求得回归直线方程为y=6.5x+a,求a,并估计y的预报值;(Ⅱ)现准备勘探新井7(1,25),若通过1、3、5、7号井计算出的,的值(,精确到0.01)与(I)中b,a的值差不超过10%,则使用位置最接近的已有旧井6(1,y),否则在新位置打开,请判断可否使用旧井?(参考公式和计算结果:=,=﹣,=94,=945)(Ⅲ)设出油量与勘探深度的比值k不低于20的勘探井称为优质井,那么在原有6口井中任意勘探4口井,求勘探优质井数X的分布列与数学期望.【解答】解:(Ⅰ)利用前5组数据得到=(2+4+5+6+8)=5,=(30+40+60+50+70)=50,∵y=6.5x+a,∴a=50﹣6.5×5=17.5,∴回归直线方程为y=6.5x+17.5,当x=1时,y=6.5+17.5=24,∴y的预报值为24.(Ⅱ)∵=4,=46.25,=84,=945,∴==≈10.25,∴=46.25﹣10.25×4=5.25,即=10.25,=5.25,b=6.5,a=17.5,≈57%,≈70%,均超过10%,∴均超过10%,∴不可使用位置最接近的已有旧井6(1,24).(Ⅲ)由题意,1、3、5、6这4口井是优质井,2,4这两口井是非优质井,∴勘察优质井数X的可能取值为2,3,4,P(X=k)=,可得P(X=2)=,P(X=3)=,P(X=4)=.∴X的分布列为:EX=2×+3×+4×=.20.(12分)已知椭圆经过点,且两焦点与短轴的一个端点构成等腰直角三角形.(1)求椭圆的方程;(2)动直线交椭圆C于A、B两点,试问:在坐标平面上是否存在一个定点T,使得以AB为直径的圆恒过点T.若存在,求出点T 的坐标;若不存在,请说明理由.【解答】解:(1)∵椭圆的两焦点与短轴的一个端点的连线构成等腰直角三角形,∴b=c,∴,∴.又∵椭圆经过点,代入得,解得b=1,∴,故所求椭圆方程为.(2)由动直线mx+,得到动直线l过定点(0,).当l与x轴平行时,以AB为直径的圆的方程:.当l与y轴平行时,以AB为直径的圆的方程:x2+y2=1.由即两圆相切于点(0,1),因此,所求的点T如果存在,只能是(0,1).事实上,点T(0,1)就是所求的点.证明如下:当直线l垂直于x轴时,以AB为直径的圆过点T(0,1)若直线l不垂直于x轴,可设直线L:由记点A(x1,y1)、,==∴TA⊥TB,即以AB为直径的圆恒过点T(0,1)∴在坐标平面上存在一个定点T(0,1)满足条件.21.(12分)设函数f(x)=x2+aln(1+x)有两个极值点x1、x2,且x1<x2,(Ⅰ)求a的取值范围,并讨论f(x)的单调性;(Ⅱ)证明:f(x2)>.【解答】解:(I)令g(x)=2x2+2x+a,其对称轴为.由题意知x1、x2是方程g(x)=0的两个均大于﹣1的不相等的实根,其充要条件为,得(1)当x∈(﹣1,x1)时,f'(x)>0,∴f(x)在(﹣1,x1)内为增函数;(2)当x∈(x1,x2)时,f'(x)<0,∴f(x)在(x1,x2)内为减函数;(3)当x∈(x2,+∞)时,f'(x)>0,∴f(x)在(x2,+∞)内为增函数;(II)由(I)g(0)=a>0,∴,a=﹣(2x22+2x2)∴f(x2)=x22+aln(1+x2)=x22﹣(2x22+2x2)ln(1+x2)设h(x)=x2﹣(2x2+2x)ln(1+x),(﹣<x<0)则h'(x)=2x﹣2(2x+1)ln(1+x)﹣2x=﹣2(2x+1)ln(1+x)(1)当时,h'(x)>0,∴h(x)在单调递增;(2)当x∈(0,+∞)时,h'(x)<0,h(x)在(0,+∞)单调递减.∴故.四、解答题(二选一,多选者以前一题的分数记入总分).22.(10分)在直角坐标系xoy中,曲线C的参数方程为(t为参数,a >0)以坐标原点O为极点,以x轴正半轴为极轴,建立极坐标系,已知直线l 的极坐标方程为.(Ⅰ)设P是曲线C上的一个动点,当a=2时,求点P到直线l的距离的最小值;(Ⅱ)若曲线C上的所有点均在直线l的右下方,求a的取值范围.【解答】解:(Ⅰ)由,得,化成直角坐标方程,得,即直线l的方程为x﹣y+4=0.依题意,设P(2cost,2sint),则P到直线l的距离,当,即时,.故点P到直线l的距离的最小值为.(Ⅱ)∵曲线C上的所有点均在直线l的右下方,∴对∀t∈R,有acost﹣2sint+4>0恒成立,即(其中)恒成立,∴,又a>0,解得,故a的取值范围为.23.已知f(x)=|2x﹣1|﹣|x+1|.(1)将f(x)的解析式写成分段函数的形式,并作出其图象.(2)若a+b=1,对∀a,b∈(0,+∞),恒成立,求x的取值范围.【解答】解:(1)由f(x)=|2x﹣1|﹣|x+1|.得,函数f(x)的图象如图所示.(2)因为a,b∈(0,+∞),且a+b=1,所以=,当且仅当,即,时等号成立.因为恒成立,所以|2x﹣1|﹣|x+1|≤3,结合图象知﹣1≤x≤5,所以x的取值范围是[﹣1,5].。
广州市2018届高三上学期第一次调研测试理科数学2017.12本试卷共5页,23小题, 满分150分。
考试用时120分钟。
注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名和考生号、试室号、座位号填写在答题卡上,并用2B 铅笔在答题卡的相应位置填涂考生号。
2.作答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。
写在本试卷上无效。
3.第Ⅱ卷必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}1,0,1,2,3A =-,{}230B x x x =->,则A B =IA .{}1-B .{}1,0-C .{}1,3-D .{}1,0,3-2.若复数z 满足()12i 1i z +=-,则z =A .25B .35CD3.在等差数列{}n a 中,已知22a =,前7项和756S =,则公差d =A .2B .3C .2-D .3-4.已知变量x ,y 满足202300x y x y y -≤⎧⎪-+≥⎨⎪≥⎩,,,则2z x y =+的最大值为A .0B .4C .5D .65.912x x ⎛⎫- ⎪⎝⎭的展开式中3x 的系数为22226.在如图的程序框图中,()i f x '为()i f x 的导函数,若0()sin f x x =,则输出的结果是 A .sin x -B .cos xC .sin xD .cos x -7.正方体1111ABCD A B C D -的棱长为2,点M 为1CC 的中点,点N 为线段1DD 上靠近1D 的三等分点,平面BMN 交1AA 于点Q ,则AQ 的长为 A .23B .12C .16D .138.已知直线2y kx =-与曲线ln y x x =相切,则实数k 的值为A .ln 2B .1C .1ln 2-D .1ln 2+9.某学校获得5个高校自主招生推荐名额,其中甲大学2名,乙大学2名,丙大学1名,并且甲大学和乙大学都要求必须有男生参加,学校通过选拔定下3男2女共5个推荐对象,则不同的推荐方法共有 A .36种B .24种C .22种D .20种10.()0ϕϕ>个单位,所得图象对应的函数恰为奇函数,则ϕ的最小值为 A .6πB .12πC .4π D .3π 11.在直角坐标系xOy 中,设F 为双曲线C :22221(0,0)x y a b a b-=>>的右焦点,P 为双曲线C 的右支上一点,且△OPF 为正三角形,则双曲线C 的离心率为12.对于定义域为R 的函数()f x ,若满足① ()00f =;② 当x ∈R ,且0x ≠时,都有()0xf x '>;③ 当120x x <<,且12x x =时,都有()()12f x f x <,则称()f x 为“偏对称函数”.现给出四个函数:()32132f x x x =-+;()2e 1x f x x =--;()()3ln 1,0,0;2,x x f x x x ⎧-+≤⎪= ⎨>⎪⎩ ()411,0,2120,0.x x x f x x ⎛⎫+≠ ⎪-⎝⎭=⎧⎪=⎨⎪⎩则其中是“偏对称函数”的函数个数为 A .0B .1C .2D .3二、填空题:本题共4小题,每小题5分,共20分.13.已知向量(),2x x =-a ,()3,4=b ,若a b P ,则向量a 的模为________. 14.在各项都为正数的等比数列{}n a 中,若201822a =,则2017201912a a +的最小值为________. 15.过抛物线C :22(0)y px p => 的焦点F 的直线交抛物线C 于A ,B 两点.若6AF =,3BF =,则p 的值为________.16.如图,格纸上正方形小格的边长为1,图中粗线画出的是某三棱锥的三视图,则该三棱锥的外接球的表面积为________.三、解答题:共70分.解答应写出文字说明、证明过程和演算步骤.第17~21题为必考题,每个试题考生都必须做答.第22、23题为选考题,考生根据要求做答.(一)必考题:共60分. 17.(本小题满分12分)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且满足2a =,cos (2)cos a B c b A =-. (1)求角A 的大小;(2)求△ABC 周长的最大值.18.(本小题满分12分)如图,已知多面体PABCDE 的底面ABCD 是边长为2的菱形,PA ⊥底面ABCD ,ED PA P ,且22PA ED ==.(1)证明:平面PAC ⊥平面PCE ;(2)若直线 PC 与平面ABCD 所成的角为o45,求二面角D CE P --的余弦值.19.(本小题满分12分)某基地蔬菜大棚采用水培、无土栽培方式种植各类蔬菜.过去50周的资料显示,该地周光照量X (小时)都在30小时以上,其中不足50小时的周数有5周,不低于50小时且不超过70小时的周数有35周,超过70小时的周数有10周.根据统计,该基地的西红柿增加量y (百斤)与使用某种液体肥料x (千克)之间对应数据为如图所示的折线图.(1)依据数据的折线图,是否可用线性回归模型拟合y 与x 的关系?请计算相关系数r 并加以说明(精确到0.01).(若75.0||>r ,则线性相关程度很高,可用线性回归模型拟合)(2)蔬菜大棚对光照要求较大,某光照控制仪商家为该基地提供了部分光照控制仪,但每周光照控制仪最多可运行台数受周光照量X 限制,并有如下关系:若某台光照控制仪运行,则该台光照控制仪周利润为3000元;若某台光照控制仪未运行,则该EDBCAP台光照控制仪周亏损1000元.以过去50周的周光照量的频率作为周光照量发生的概率,商家欲使周总利润的均值达到最大,应安装光照控制仪多少台?附:相关系数公式∑∑∑===----=ni i ni i ni iiy y x x y yx x r 12121)()())((,参考数据55.03.0≈,95.09.0≈.20.(本小题满分12分)如图,在直角坐标系xOy 中,椭圆C :22221y x a b+=()0a b >>的上焦点为1F ,椭圆C 的离心率为12 ,且过点261,⎛⎫ ⎪ ⎪⎝⎭. (1)求椭圆C 的方程;(2)设过椭圆C 的上顶点A 的直线l 与椭圆C 交于点B (B 不在y 轴上),垂直于l 的直线与l交于点M ,与x 轴交于点H ,若110F B F H •=u u u r u u u u r,且MO MA =,求直线l 的方程.21.(本小题满分12分)已知函数()ln bf x a x x=+()0a ≠.(1)当2b =时,若函数()f x 恰有一个零点,求实数a 的取值范围;(2)当0a b +=,0b >时,对任意121,,e e x x ⎡⎤∈⎢⎥⎣⎦,有()()12e 2f x f x -≤-成立,求实数b的取值范围.(二)选考题:共10分.请考生在第22、23题中任选一题做答,如果多做,则按所做的第一题计分.22.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线1C 的参数方程为cos 2sin x y αα=⎧⎨=⎩,(α为参数),将曲线1C 经过伸缩变换2x x y y'=⎧⎨'=⎩,后得到曲线2C .在以原点为极点,x 轴正半轴为极轴的极坐标系中,直线l 的极坐标方程为cos sin 100ρθρθ--=.(1)说明曲线2C 是哪一种曲线,并将曲线2C 的方程化为极坐标方程;(2)已知点M 是曲线2C 上的任意一点,求点M 到直线l 的距离的最大值和最小值. 23.(本小题满分10分)选修4-5:不等式选讲已知函数()||f x x a =+. (1)当1=a 时,求不等式()211f x x ≤+-的解集;(2)若函数()()3g x f x x =-+的值域为A ,且[]2,1A -⊆,求a 的取值范围.2018届广州市高三年级调研测试 理科数学试题答案及评分参考评分说明:1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分参考制订相应的评分细则.2.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数.选择题不给中间分.一.选择题二.填空题13.10 14.4 15.4 16.11π三、解答题 17.(1)解法1:由已知,得cos cos 2cos a B b A c A +=.由正弦定理,得sin cos sin cos 2sin cos A B B A C A +=,…………………………………………1分即sin()2sin cos A B C A +=.…………………………………………………………………………2分因为sin()sin()sin A B C C π+=-=,…………………………………………………………………3分所以sin 2sin cos C C A =.………………………………………………………………………………4分因为sin 0C ≠,所以1cos 2A =.………………………………………………………………………5分因为0A <<π,所以3A π=.…………………………………………………………………………6分解法2:由已知根据余弦定理,得()222222222a c b b c a a c b ac bc+-+-⨯=-⨯.……………………1分即222b c a bc +-=.……………………………………………………………………………………3分所以2221cos 22b c a A bc +-==.…………………………………………………………………………5分 因为0A <<π, 所以3A π=.…………………………………………………………………………6分(2)解法1:由余弦定理2222cos a b c bc A =+-,得224bc b c +=+,………………………………………………………………………………………7分即2()34b c bc +=+.……………………………………………………………………………………8分因为22b c bc +⎛⎫≤ ⎪⎝⎭,………………………………………………………………………………………9分所以223()()44b c b c +≤++. 即4b c +≤(当且仅当2b c == 时等号成立).……………………………………………………11分所以6a b c ++≤.故△ABC 周长a b c ++的最大值为6.………………………………………………………………12分解法2:因为2sin sin sin a b c R A B C ===,且2a =,3A π=,所以b B =,c C =.…………………………………………………………………8分所以)2sin sin a b c B C ++=+22sin sin 33B B ⎡π⎤⎛⎫=++- ⎪⎢⎥⎝⎭⎣⎦………………………9分 24sin 6B π⎛⎫=++ ⎪⎝⎭.……………………………………………………………………10分因为203B π<<,所以当3B π=时,a b c ++取得最大值6. 故△ABC 周长a b c ++的最大值为6.………………………………………………………………12分18.(1)证明:连接 BD ,交 AC 于点O ,设PC 中点为F , 连接OF ,EF .因为O ,F 分别为AC ,PC 的中点, 所以OF PA P ,且12OF PA =, 因为DE PA P ,且12DE PA =,所以OF DE P ,且OF DE =.………………………………………………………………………1分所以四边形OFED 为平行四边形,所以OD EF P ,即BD EF P .………………………………2分因为PA ⊥平面ABCD ,BD ⊂平面ABCD ,所以PA BD ⊥. 因为ABCD 是菱形,所以BD AC ⊥.因为PA AC A =I ,所以BD ⊥平面PAC .…………………………………………………………4分因为BD EF P ,所以EF ⊥平面PAC .………………………………………………………………5分因为FE ⊂平面PCE ,所以平面PAC ⊥平面PCE . ………………………………………………6分(2)解法1:因为直线 PC 与平面ABCD 所成角为o45,所以ο45=∠PCA ,所以2AC PA ==.………………………………………………………………7分所以AC AB =,故△ABC 为等边三角形. 设BC 的中点为M ,连接AM ,则AM BC ⊥.以A 为原点,AM ,AD ,AP 分别为x y z ,,轴,建立空间直角坐标系xyz A -(如图).则()20,0,P ,()01,3,C ,()12,0,E ,()02,0,D , ()21,3-=,PC ,()11,3,-=CE ,()10,0,=DE .…………………………9分设平面PCE 的法向量为{}111,,x y z n =,则0,0,PC CE ⎧=⎪⎨=⎪⎩u u u r g u u u r g n n即11111120,0.y z y z +-=++=⎪⎩ 11,y =令则11 2.x z ⎧=⎪⎨=⎪⎩所以)=n .……………………………………………………………10分设平面CDE 的法向量为()222,,x y z =m ,则0,0,DE CE ⎧⋅=⎪⎨⋅=⎪⎩u u u ru u u r m m即22220,0.z y z =⎧⎪⎨++=⎪⎩令21,x =则220.y z ⎧=⎪⎨=⎪⎩所以()=m .…………11分设二面角D CE P --的大小为θ,由于θ为钝角,所以cos cos ,4θ⋅=-=-==-⋅n m n m n m.所以二面角D CE P --的余弦值为46-.…………………………………………………………12分解法2:因为直线PC 与平面ABCD 所成角为45o,且⊥PA 平面ABCD ,所以45PCA ∠=o,所以2==AC PA .………………………………………………………………7分因为2AB BC ==,所以∆ABC 为等边三角形. 因为⊥PA 平面ABCD ,由(1)知//PA OF , 所以⊥OF 平面ABCD .因为⊂OB 平面ABCD ,⊂OC 平面ABCD ,所以⊥OF OB 且⊥OF OC . 在菱形ABCD 中,⊥OB OC .以点O 为原点,OB ,OC ,OF 分别为x ,y ,z 轴,建立空间直角坐标系-O xyz (如图).则(0,0,0),(0,1,2),(0,1,0),((-O P C D E ,则(0,2,2),(1,1),(1,0)=-=-=-u u u r u u u r u u u rCP CE CD .……………………………………………9分设平面PCE 的法向量为111(,,)x y z =n ,则0,0,CP CE ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u u r n n即11111220,0.y z y z -+=⎧⎪⎨-+=⎪⎩ 令11=y ,则111,1.y z =⎧⎨=⎩,则法向量()0,1,1=n .……………10分设平面CDE 的法向量为222(,,)x y z =m ,则0,0,CE CD ⎧⋅=⎪⎨⋅=⎪⎩u u u ru u u r m m即222220,0.y z y ⎧-+=⎪⎨-=⎪⎩ 令21=x,则220.y z ⎧=⎪⎨=⎪⎩则法向量()1,=m .………………………………………………z OyxPACBDE11分设二面角--P CE D 的大小为θ,由于θ为钝角,则cos cos ,θ⋅=-=-==⋅n m n m n m.所以二面角--P CE D的余弦值为.…………………………………………………………12分19.解:(1)由已知数据可得24568344455,455x y ++++++++====.……………………1分因为51()()(3)(1)000316ii i xx y y =--=-⨯-++++⨯=∑,………………………………………2分,52310)1()3()(22222512=+++-+-=-∑=i ix x ………………………………………………3分==…………………………………………………4分所以相关系数()()0.95nii xx y y r --===≈∑.………………5分因为0.75r >,所以可用线性回归模型拟合y 与x 的关系. …………………………………………6分(2)记商家周总利润为Y 元,由条件可知至少需安装1台,最多安装3台光照控制仪.①安装1台光照控制仪可获得周总利润3000元.………………………………………………………7分②安装2台光照控制仪的情形:当X >70时,只有1台光照控制仪运行,此时周总利润Y=3000-1000=2000元,当30<X≤70时,2台光照控制仪都运行,此时周总利润Y=2×3000=6000元,故Y的分布列为所以20000.260000.85200EY=⨯+⨯=元.………………………………………………………9分③安装3台光照控制仪的情形:当X >70时,只有1台光照控制仪运行,此时周总利润Y=1×3000-2×1000=1000元,当50≤X≤70时,有2台光照控制仪运行,此时周总利润Y=2×3000-1×1000=5000元,当30<X≤70时,3台光照控制仪都运行,周总利润Y=3×3000=9000元,故Y的分布列为所以10000.250000.790000.14600EY=⨯+⨯+⨯=元.………………………………………11分综上可知,为使商家周总利润的均值达到最大应该安装2台光照控制仪.…………………………12分20.解:(1)因为椭圆C的离心率为12,所以12ca=,即2a c=.……………………………………1分又222+a b c=,得22=3b c,即2234b a=,所以椭圆C的方程为2222134y xa a+=.把点⎛⎝⎭代人C中,解得24a=.………………………………………………………………2分所以椭圆C的方程为22143y x+=.……………………………………………………………………3分(2)解法1:设直线l 的斜率为k ,则直线l 的方程为+2y kx =,由222,1,34y kx x y ⎧=++=⎪⎨⎪⎩得()2234120k x kx ++=.…………………………………………………………4分设(),A A A x y , (),B B B x y ,则有0A x =,21234B kx k -=+,…………………………………………5分所以226834B k y k -+=+.所以2221268,3434k k B k k ⎛⎫--+ ⎪++⎝⎭……………………………………………………………………………6分因为MO MA =,所以M 在线段OA 的中垂线上, 所以1M y =,因为2M M y kx =+,所以1M x k =-,即1,1M k ⎛⎫- ⎪⎝⎭.………………………………7分设(,0)H H x ,又直线HM 垂直l ,所以1MH k k =-,即111H k x k=---.…………………………8分所以1H x k k =-,即1,0H k k ⎛⎫- ⎪⎝⎭.……………………………………………………………………9分又()10,1F ,所以21221249,3434k k F B k k ⎛⎫--= ⎪++⎝⎭u u u r ,11,1F H k k ⎛⎫=-- ⎪⎝⎭u u u u r . 因为110F B F H ⋅=u u u r u u u u r ,所以2221249034341k k k k k k --⎛⎫⋅-= ⎪+⎝⎭-+,………………………………………10分解得283k =.……………………………………………………………………………………………11分12分解法2:设直线l 的斜率为k ,则直线l 方程+2y kx =,由222,1,34y kx x y ⎧=++=⎪⎨⎪⎩得()2234120k x kx ++=,…………………………………………………………4分设(),A A A x y ,(),B B B x y ,则有0A x =,21234B kx k -=+.…………………………………………5分所以226834B k y k -+=+. 所以21221249,3434k k F B k k ⎛⎫--= ⎪++⎝⎭u u u r ,()1,1H F H x =-u u u u r.…………………………………………………6分因为110F B F H ⋅=u u u r u u u u r ,所以21234H kx k -⋅+2249034k k --=+,解得29412H k x k -=.………………………7分因为MO MA =u u u u r u u u r ,所以()22222M M M M x y x y +=+-,解得1M y =.………………………………8分 所以直线MH 的方程为219412k y x k k ⎛⎫-=-- ⎪⎝⎭.………………………………………………………9分联立22,194,12y kx k y x k k =+⎛⎫-=--⎧ ⎪⎝⎭⎪⎨⎪⎩解得()22920121M k y k +=+.……………………………………………10分由()229201121M k y k+==+,解得283k =.………………………………………………………………11分12分21.解:(1)函数()f x 的定义域为()0,+∞.当2b =时,()2ln f x a x x =+,所以()222a x af x x x x+'=+=.………………………………1分① 当0a >时,()0f x '>,所以()f x 在()0,+∞上单调递增, (2)分取10e ax -=,则211e 1e 0a af --⎛⎫⎛⎫=-+< ⎪ ⎪⎝⎭⎝⎭,…………………………………………………………3分(或:因为00x <<01e x <时,所以()200001ln ln ln 0ef x a x x a x a a a =+<+<+=.) 因为()11f =,所以()()010f x f <g ,此时函数()f x 有一个零点.………………………………4分②当0a <时,令()0f x '=,解得x =当0x <<()0f x '<,所以()f x 在⎛ ⎝上单调递减;当x >()0f x '>,所以()f x 在⎫+∞⎪⎪⎭上单调递增.要使函数()f x 有一个零点,则ln 02af a ==即2e a =-.………………………5分综上所述,若函数()f x 恰有一个零点,则2e a =-或0a >.………………………………………6分(2)因为对任意121,,e ex x ⎡⎤∈⎢⎥⎣⎦,有()()12e 2f x f x -≤-成立,因为()()()()12max min f x f x f x f x -≤-⎡⎤⎡⎤⎣⎦⎣⎦,所以()()max min e 2f x f x -≤-⎡⎤⎡⎤⎣⎦⎣⎦.…………………………………………………………………7分因为0a b +=,则a b =-.所以()ln b f x b x x =-+,所以()()11bb b x b f x bx x x---'=+=. 当01x <<时,()0f x '<,当1x >时,()0f x '>,所以函数()f x 在1,1e ⎡⎫⎪⎢⎣⎭上单调递减,在(]1,e 上单调递增,()()min 11f x f ==⎡⎤⎣⎦,………………8分因为1e e bf b -⎛⎫=+ ⎪⎝⎭与()e e bf b =-+,所以()()max 1max ,e e f x f f ⎧⎫⎛⎫=⎡⎤⎨⎬ ⎪⎣⎦⎝⎭⎩⎭. (9)分设()()1e e e2e bbg b f f b -⎛⎫=-=-- ⎪⎝⎭()0b >,则()e e220bbg b -'=+->=.所以()g b 在()0,+∞上单调递增,故()()00g b g >=,所以()1e e f f ⎛⎫> ⎪⎝⎭.从而()maxf x =⎡⎤⎣⎦()e e bf b =-+.………………………………………………………………………10分所以e 1e 2b b -+-≤-即e e 10bb --+≤,设()=e e 1bb b ϕ--+()0b >,则()=e 1bb ϕ'-.当0b >时,()0b ϕ'>,所以()b ϕ在()0,+∞上单调递增.又()10ϕ=,所以e e 10bb --+≤,即为()()1b ϕϕ≤,解得1b ≤.……………………………11分因为0b >,所以b 的取值范围为(]0,1.………………………………………………………………12分22.解:(1)因为曲线1C 的参数方程为cos 2sin x y αα=⎧⎨=⎩(α为参数),因为2.x x y y '=⎧⎨'=⎩,,则曲线2C 的参数方程2cos 2sin .x y αα'=⎧⎨'=⎩,.………………………………………………2分所以2C 的普通方程为224x y ''+=.……………………………………………………………………3分所以2C 为圆心在原点,半径为2的圆.…………………………………………………………………4分所以2C 的极坐标方程为24ρ=,即2ρ=.…………………………………………………………5分(2)解法1:直线l 的普通方程为100x y --=.…………………………………………………………6分曲线2C 上的点M 到直线l的距离+)10|d απ-==8分 当cos +=14απ⎛⎫ ⎪⎝⎭即()=24k k αππ-∈Z 时,d2-.……………9分当cos +=14απ⎛⎫- ⎪⎝⎭即()3=24k k απ+π∈Z 时,d+10分解法2:直线l 的普通方程为100x y --=.…………………………………………………………6分因为圆2C 的半径为2,且圆心到直线l 的距离252|1000|=--=d ,…………………………7分因为225>,所以圆2C 与直线l 相离.………………………………………………………………8分所以圆2C 上的点M 到直线l 的距离最大值为225+=+r d ,最小值为225-=-r d .…10分23.解:(1)当1=a 时,()|1|=+f x x .…………………………………………………………………1分①当1x ≤-时,原不等式可化为122x x --≤--,解得1≤-x .…………………………………2分②当112x -<<-时,原不等式可化为122+≤--x x ,解得1≤-x ,此时原不等式无解.……3分③当12x ≥-时,原不等式可化为12+≤x x ,解得1≥x .…………………………………………4分综上可知,原不等式的解集为{1x x ≤-或}1≥x .…………………………………………………5分(2)解法1:①当3a ≤时,()3,3,23,3,3,.a x g x x a x a a x a -≤-⎧⎪=----<<-⎨⎪-≥-⎩ (6)分所以函数()g x 的值域[]3,3A a a =--, 因为[2,1]-⊆A ,所以3231a a -≤-⎧⎨-≥⎩,,解得1a ≤.………………………………………………………7分②当3a >时,()3,,23,3,3, 3.a x a g x x a a x a x -≤-⎧⎪=++-<<-⎨⎪-≥-⎩…………………………………………………8分所以函数()g x 的值域[]3,3A a a =--, 因为[2,1]-⊆A ,所以3231a a -≤-⎧⎨-≥⎩,,解得5a ≥.………………………………………………………9分综上可知,a 的取值范围是(][),15,-∞+∞U .………………………………………………………10分解法2:因为|+||+3|x a x -≤()+(+3)3x a x a -=-,…………………………………7分 所以()g x =()|+3||+||+3|[|3|,|3|]-=-∈---f x x x a x a a . 所以函数()g x 的值域[|3|,|3|]A a a =---.…………………………………………………………8分因为[2,1]-⊆A ,所以|3|2|3|1a a --≤-⎧⎨-≥⎩,,解得1a ≤或5a ≥.所以a 的取值范围是(][),15,-∞+∞U .…………………………………………………10分。
2018届广州市高三上学期第一次调研测试数学(理)试题一、单选题1.设集合{}1,0,1,2,3A =-, {}2|3 0B x x x =->,则A B ⋂=A. {}1-B. {}1,0-C. {}1,3-D. {}1,0,3- 【答案】A 【解析】由B 中不等式变形得()30x x ->,解得0x <或3x >,即{| 0B x x =<或}3x >,{}1,0,1,2,3A =-, {}1A B ∴⋂=-,故选A.2.若复数z 满足()121i z i +=-,则z = ( )A.25 B. 35C.D. 【答案】C【解析】()121i z i +=-111121212i i i z z i i i ---⇒=⇒====+++ ,选C. 3.在等差数列{}n a 中,已知22a =,前7项和756S =,则公差d = A. 2 B. 3 C. 2- D. 3-【答案】B【解析】因为等差数列{}n a 中,已知22a =,前7项和756S =,所以可得()117121{ { 73563a d a S a d d +==-⇒=+==,故选B. 4.已知变量x , y 满足20{230 0x y x y y -≤-+≥≥,,,则2z x y =+的最大值为A. 0B. 4C. 5D. 6 【答案】B【解析】画出20{230 0x y x y y -≤-+≥≥,,表示的可行域,如图, 2z x y =+化为2y x z =-+,由20{230x y x y -=-+=,可得()1,2P ,平移直线2y x z =-+,当直线经点()1,2P 时,直线截距最大值为2124z =⋅+=,故选B.【方法点晴】本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.5.912x x ⎛⎫- ⎪⎝⎭的展开式中3x 的系数为A. 212-B. 92-C. 92D. 212【答案】A 【解析】912x x ⎛⎫- ⎪⎝⎭的展开式的通项为9992999111222nnnn n nn n n n C x Cx x C x x----⎛⎫⎛⎫⎛⎫⋅-=⋅-⋅=⋅-⋅⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,当923n -=时, 3391213,22n C ⎛⎫=-=- ⎪⎝⎭,故选A.6.在如图的程序框图中, ()i f x '为()i f x 的导函数,若()0sin f x x =,则输出的结果是A. sin x -B. cos xC. sin xD. cos x -【答案】A【解析】执行程序框图,()0sin f x x =; ()()10'cos f x f x x ==;()()21'sin f x f x x ==-; ()()32'cos f x f x x ==-; ()()43'f x f x sinx ==; ()()54'cos f x f x x ==,可得()n f x 是周期4T =的函数,当2018i =时,结束循环,输()()20182sin f x f x x ==-,故选A.7.正方体1111ABCD A BC D -的棱长为2,点M 为1CC 的中点,点N 为线段1DD 上靠近1D 的三等分点,平面BMN 交1AA 于点Q ,则AQ 的长为 A.23 B. 12 C. 16 D. 13【答案】D【解析】如图,将MB 平移至',M A N 为靠近1DD 的三个等分点处, 123D N ∴=, M 为1CC 的中点, 'M ∴也为1D D 中点, 11'1,'3D M NM ∴=∴=,根据四点共面, //'QN AM , 1'3AQ NM ∴==,故选D. 8.已知直线2y kx =-与曲线ln y x x =相切,则实数k 的值为 A. ln2 B. 1 C. 1ln2- D. 1ln2+ 【答案】D【解析】由ln y x x =得'ln 1y x =+,设切点为()00,x y ,则0ln 1k x =+,000002{ y kx y x lnx =-=,0002ln kx x x ∴-=, 002ln k x x ∴=+,对比0ln 1k x =+, 02x ∴=,ln21k ∴=+,故选D.9.某学校获得5个高校自主招生推荐名额,其中甲大学2名,乙大学2名,丙大学1名,并且甲大学和乙大学都要求必须有男生参加,学校通过选拔定下3男2女共5个推荐对象,则不同的推荐方法共有A. 36种B. 24种C. 22种D. 20种 【答案】B【解析】第一类:男生分为1,1,1,女生全排,男生全排得323212A A ⋅=,第二类:男生分为2,1,所以男生两堆全排后女生全排22232212C A A ⋅=,不同的推荐方法共有121224+= ,故选B.10.将函数2sin sin 36y x x ππ⎛⎫⎛⎫=+- ⎪ ⎪⎝⎭⎝⎭的图象向左平移()0ϕϕ>个单位,所得图象对应的函数恰为奇函数,则ϕ的最小值为 A.6π B. 12π C. 4π D. 3π【答案】A 【解析】2323y s i n xs i n x πππ⎡⎤⎛⎫⎛⎫=+-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ 2cos 33sin x x ππ⎛⎫⎛⎫=++ ⎪ ⎪⎝⎭⎝⎭223sin x π⎛⎫=+ ⎪⎝⎭,平移ϕ, 222,3sin x πϕ⎛⎫++⎪⎝⎭平移作为奇函数, 223k πϕπ∴+=, 32πϕπϕ=-+,当1k =时, 6πϕ=,故选A. 11.在直角坐标系xOy 中,设F 为双曲线C : 22221(0,0)x y a b a b-=>>的右焦点,P 为双曲线C 的右支上一点,且△OPF 为正三角形,则双曲线C 的离心率为A.B.3C. 1D. 2【答案】C【解析】因为三角形OPF 为正三角形,所以PF FO c ==,设双曲线左焦点为'F 可得'60PFF ∠= '90F PF ∠=, '2F F c =, 'PF ∴,根据双曲线的定义可得'2PF PF c a -=-=, 1ce a∴==+ C. 【 方法点睛】本题主要考查双曲线的定义及离心率,属于难题. 离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:①直接求出,a c ,从而求出e ;②构造,a c 的齐次式,求出e ;③采用离心率的定义以及圆锥曲线的定义来求解;④根据圆锥曲线的统一定义求解.本题中,根据题设条件利用特殊直角三角形的性质.从而找出,a c 之间的关系,求出离心率e .12.对于定义域为R 的函数()f x ,若满足① ()00f =;② 当x R ∈,且0x ≠时,都有()0xf x '>;③ 当120x x <<,且12x x =时,都有()()12f x f x <,则称()f x 为“偏对称函数”.现给出四个函数:()32132f x x x =-+; ()21x f x e x =--;()411,0,{ 2120,0.x x x f x x ⎛⎫+≠ ⎪=-⎝⎭=则其中是“偏对称函数”的函数个数为A. 0B. 1C. 2D. 3 【答案】C【解析】因为条件②()0xf x '>,所以x 与()'f x 同号, ()21'33f x x x =-+不符合②, ()1f x 不是“偏对称函数”;对于()21xf x e x =--; ()2'1xf x e =-,满足①②,构造函数()()()222x x x f x f x e e xϕ-=--=--,()'220x x x e e ϕ-=+-≥=, ()2x x x e e x ϕ-=--在R 上递增,当120x x <<,且12x x =时,都有()()()()()()12121212200x f x f x f x f x ϕϕ=--=-<=, ()()2122f x f x <,满足条件 ③, ()21xf x e x =--是“偏对称函数”;对于()3f x , ()31'1f x x =- ,满足条件①②,画出函数()3y f x =的图象以及()3y f x =在原点处的切线, 2y x = 关于y 轴对称直线2y x =-,如图,由图可知()3y f x =满足条件③,所以知()3y f x =是“偏对称函数”;函数()4f x 为偶函数, ()()1212x x f x f x =⇒=,不符合③,函数()4f x 不是,“偏对称函数”,故选C. 【方法点睛】本题考查函数的图象与性质以及导数的应用、新定义问题及数形结合思想,属于难题. 新定义题型的特点是:通过给出一个新概念,或约定一种新运算,或给出几个新模型来创设全新的问题情景,要求考生在阅读理解的基础上,依据题目提供的信息,联系所学的知识和方法,实现信息的迁移,达到灵活解题的目的.遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质,按新定义的要求,“照章办事”,逐条分析、验证、运算,使问题得以解决.本题定义“偏对称函数”达到考查函数的图象与性质以及导数的应用的目的.二、填空题13.已知向量(),2a x x =-, ()3,4b =,若a b ,则向量a 的模为________. 【答案】10【解析】因为//a b,所以234x x -=, 6x =-,10a =,故答案为10.14.在各项都为正数的等比数列{}n a 中,若20182a =,则2017201912a a +的最小值为______. 【答案】4【解析】因为等比数列{}n a 各项都为正数,所以220182017201912aa a ==,20172019124a a +≥=,故答案为4.15.过抛物线C : 22(0)y px p =>的焦点F 的直线交抛物线C 于A , B 两点.若6AF =, 3BF =,则p 的值为________.【答案】4【解析】设过抛物线C : 22(0)y px p =>的准线l 与x 轴交于点G ,与直线AB 交于C ,过A 作l 的垂线,垂足为E ,作BD l ⊥ 于D ,根据相似三角形性质可得12BD BF B AE AF ==⇒是AC 中点,可得9BC =,124618FG CF FG FG AE AC =⇒=⇒=, 4P ∴=,故答案为4.16.如图,网格纸上正方形小格的边长为1,图中粗线画出的是某三棱锥的三视图,则该三棱锥的外接球的表面积为________.【答案】11π【解析】由三视图可知,三棱锥直观图A BCD - ,如图G 是BCD ∆的外心, GP ⊥平面BCD ,令AP BP =,则P 是外接球球心,设G Pa =, 22BP AP = ,222212BP BG GP a =+=+, ()()222222311122AP EG a a ⎛⎫⎛⎫=+-=++- ⎪ ⎪⎝⎭⎝⎭,32a ∴=, ∴球半径2r BP ===, 2244112S r πππ⎛⎫==⋅= ⎪ ⎪⎝⎭,故答案为11π.【方法点睛】本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于难题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响.三、解答题17.△ABC 的内角A , B , C 的对边分别为a , b ,c ,且满足2a =,()cos 2cos a B c b A =-.(1)求角A 的大小;(2)求△ABC 周长的最大值. 【答案】(1)3A π=(2)最大值为6【解析】试题分析:(1)由()cos 2cos a B c b A =-根据正弦定理以及两角好的正弦公式可得1c o s A 2=,从而可得角A 的大小;(2)由2a =,利用余弦定理可得224bc b c +=+,配方后利用基本不等式可得4b c +≤,从而可得△ABC 周长的最大值.试题解析:(1)由已知,得cos cos 2cos a B b A c A +=. 2ccosA acosB bcosA +=由正弦定理,得sin cos sin cos 2sin cos A B B A C A += 2sinCcosA sinAcosB sinBcosA +=,即()sin 2sin cos A B C A += ()sin A B 2sinCcosA +=.因为()()sin sin sin A B C C π+=-=, ()()sin A B sin πC sinC +=-= 所以sin 2sin cos C C A =. sinC 2sinCcosA =因为sin 0C ≠ sinC 0≠,所以1cos 2A =. 因为0A π<<,所以π3 3A π=. (2)由余弦定理2222cos a b c bc A =+-, 2222a b c bccosA =+- 得224bc b c +=+, 即()234b c bc +=+.因为22b c bc +⎛⎫≤ ⎪⎝⎭,所以()()22344b c b c +≤++. 即4b c +≤(当且仅当2b c == 2b c == 时等号成立). 所以6a b c ++≤.故△ABC 周长 a b c ++的最大值为6.18.如图,已知多面体PABCDE 的底面ABCD 是边长为2的菱形, PA ⊥底面ABCD , ED PA ,且22PA ED ==.(1)证明:平面PAC ⊥平面PCE ; (2)若直线PC ?与平面所成的角为,求二面角的余弦值.【答案】(1)见解析;(2)【解析】试题分析:(1)连接BD ,交AC 于点O ,设PC 中点为F ,连接OF , EF ,先根据三角形中位线定理及平行四边形的性质可得BD EF ,再证明BD ⊥平面PAC ,从而可得EF ⊥平面PAC ,进而可得平面PAC ⊥平面PCE ;(2)以A 为原点, AM , AD , AP 分别为x y z ,,轴,建立空间直角坐标系A xyz -,分别求出平面PCE 与平面CDE 的一个法向量,根据空间向量夹角余弦公式,可得结果 试题解析:(1)证明:连接,交于点O ,设PC 中点为F ,连接OF , EF .因为O , F 分别为AC , PC 的中点,所以OF PA ,且12OF PA =, 因为DE PA ,且12DE PA =,所以OF DE ,且OF DE =.所以四边形OFED 为平行四边形,所以OD EF ,即BD EF . 因为PA ⊥平面ABCD , BD ⊂平面ABCD ,所以PA BD ⊥. 因为ABCD 是菱形,所以BD AC ⊥.因为PA AC A ⋂=,所以BD ⊥平面PAC . 因为BD EF ,所以EF ⊥平面PAC .因为FE ⊂平面PCE ,所以平面PAC ⊥平面PCE . (2)解法:因为直线PC ?与平面ABCD 所成角为45 ,所以45PCA ∠=,所以2AC PA ==.所以 AC AB =,故△ABC 为等边三角形.设BC 的中点为M ,连接AM ,则AM BC ⊥.以A 为原点, AM , AD , AP 分别为x y z ,,轴,建立空间直角坐标系A xyz -(如图).则()0,02P ,, )0C,, ()0,21E ,, ()0,20D ,,,()CE =,,==. 设平面PCE 的法向量为{}111,,n x y z =,则·0,{·0,n PC n CE ==即11111120, 0.y z y z +-=++= 11,y =令则11{2.x z ==所以)n =.设平面CDE 的法向量为()222,,m x y z =,则0,{ 0,m DE m CE ⋅=⋅=即22220,{0.z y z =++=令21,x =则22{ 0.yz ==所以()13,0m =. 设二面角P CE D --的大小为θ,由于θ为钝角,所以cos cos ,n m n m n mθ⋅=-=-==⋅ 所以二面角P CED --的余弦值为 【方法点晴】本题主要考查线面垂直及面面垂直的判定定理以及利用空间向量求二面角,属于难题. 空间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂直数量积为零列出方程组求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定理结论求出相应的角和距离.19.某基地蔬菜大棚采用水培、无土栽培方式种植各类蔬菜.过去50周的资料显示,该地周光照量X (小时)都在30小时以上,其中不足50小时的周数有5周,不低于50小时且不超过70小时的周数有35周,超过70小时的周数有10周.根据统计,该基地的西红柿增加量y (百斤)与使用某种液体肥料x (千克)之间对应数据为如图所示的折线图.(1)依据数据的折线图,是否可用线性回归模型拟合y 与x 的关系?请计算相关系数r 并加以说明(精确到0.01).(若0.75r >,则线性相关程度很高,可用线性回归模型拟合)(2)蔬菜大棚对光照要求较大,某光照控制仪商家为该基地提供了部分光照控制仪,但每周光照控制仪最多可运行台数受周光照量X 限制,并有如下关系:若某台光照控制仪运行,则该台光照控制仪周利润为3000元;若某台光照控制仪未运行,则该台光照控制仪周亏损1000元.若商家安装了3台光照控制仪,求商家在过去50周周总利润的平均值.附:相关系数公式()()niix x y y r --=,参考数据0.55≈,.【答案】(1)可用线性回归模型拟合y与x 的关系(2)商家在过去50周周总利润的平均值为4600元【解析】试题分析:(1)先算出相关系数0.950.75nx x y y r --===≈>可得结论;(2)安装1台光照控制仪可获得周总利润3000元,分别列出离散型随机变量的分布列,算出安装2台光照控制仪总利润为5200元,安装3台光照控制仪总利润为4600元,从而可得结果.试题解析:(1)由已知数据可得24568344455,455x y ++++++++====.因为()()()()5131000316iii x x y y =--=-⨯-++++⨯=∑,===所以相关系数0.95nx x y y r --===≈.因为0.75r >,所以可用线性回归模型拟合与的关系.(2)记商家周总利润为Y 元,由条件可知至少需安装1台,最多安装3台光照控制仪.①安装1台光照控制仪可获得周总利润3000元. ②安装2台光照控制仪的情形:当X >70时,只有1台光照控制仪运行,此时周总利润Y =3000-1000=2000元, 当30<X ≤70时,2台光照控制仪都运行,此时周总利润Y =2×3000=6000元, 故Y 的分布列为所以20000.260000.85200EY =⨯+⨯=元. ③安装3台光照控制仪的情形:当X >70时,只有1台光照控制仪运行,此时周总利润Y =1×3000-2×1000=1000元, 当50≤X ≤70时,有2台光照控制仪运行,此时周总利润Y =2×3000-1×1000=5000元, 当30<X ≤70时,3台光照控制仪都运行,周总利润Y =3×3000=9000元, Y所以10000.250000.790000.14600EY =⨯+⨯+⨯=元.综上可知,为使商家周总利润的均值达到最大应该安装2台光照控制仪.20.如图,在直角坐标系xOy 中,椭圆C : 22221y x a b+= ()0a b >>的上焦点为1F ,椭圆C 的离心率为12 ,且过点⎛ ⎝⎭. (1)求椭圆C 的方程;(2)设过椭圆C 的上顶点A 的直线l 与椭圆C 交于点B (B 不在y 轴上),垂直于l 的直线与l 交于点M ,与x 轴交于点H ,若11•0F B F H =,且MO MA =,求直线l 的方程.【答案】(1)22143y x +=(2)2y x =+【解析】试题分析:(1)由椭圆C 的离心率为12得12c a =,把点⎛ ⎝⎭代人椭圆方程,结合222+a b c =,可求得,a b 的值,从而可得椭圆方程;(2)直线l 的方程为+2y kx =,由222,{ 1,34y kx x y =++=得()2234120k x kx ++=,根据韦达定理及斜率公式,结合题设11•0F B F H = ,且MO MA =,可得2221214903434k k k k k k --⎛⎫⋅--= ⎪++⎝⎭,求得k 的值即可得结果.试题解析:(1)因为椭圆C 的离心率为12,所以12c a =,即2a c =. 又222+a b c =,得22=3b c ,即2234b a =,所以椭圆C 的方程为2222134y x a a +=.把点⎛ ⎝⎭代人C 中,解得24a =. 所以椭圆C 的方程为22143y x +=. (2)解法1:设直线l 的斜率为k ,则直线l 的方程为+2y kx =,由222,{ 1,34y kx x y =++=得()2234120k x kx ++=. 设(),A A A x y , (),B B B x y ,则有0A x =, 21234B kx k -=+,所以226834B k y k -+=+.所以2221268,3434k k B k k ⎛⎫--+ ⎪++⎝⎭因为MO MA =,所以M 在线段OA 的中垂线上,所以1M y =,因为2M M y kx =+,所以1M x k =-,即1,1M k ⎛⎫- ⎪⎝⎭. 设(),0H H x ,又直线HM 垂直l ,所以1MH k k=-,即111H k x k=---.所以1H x k k =-,即1,0H k k ⎛⎫- ⎪⎝⎭. 又()10,1F ,所以21221249,3434k k F B k k ⎛⎫--= ⎪++⎝⎭, 11,1F H k k ⎛⎫=-- ⎪⎝⎭ .因为110F B F H ⋅= ,所以2221214903434k k k k k k --⎛⎫⋅--= ⎪++⎝⎭, 解得283k =.所以直线l 的方程为2y x =+. 【方法点晴】本题主要考查待定系数求椭圆方程以及直线与椭圆的位置关系和数量积公式,属于难题. 利用待定系数法求椭圆方程的一般步骤;①作判断:根据条件判断椭圆的焦点在x 轴上,还是在y 轴上,还是两个坐标轴都有可能;②设方程:根据上述判断设方程()222210x y a b a b +=>>或22221x y b a+= ()0a b >>;③找关系:根据已知条件,建立关于a 、b 、c 的方程组;④得方程:解方程组,将解代入所设方程,即为所求. 21.已知函数()ln bf x a x x =+ ()0a ≠.(1)当2b =时,若函数()f x 恰有一个零点,求实数a 的取值范围;(2)当0a b +=, 0b >时,对任意121,,e e x x ⎡⎤∈⎢⎥⎣⎦,有()()12e 2f x f x -≤-成立,求实数b 的取值范围.【答案】(1)2a e =-或a 0>(2)](01 ,【解析】试题分析:(1)讨论0a >、0a <两种情况,分别利用导数研究函数的单调性,结合函数的单调性,利用零点存在定理可得函数()f x 恰有一个零点时实数a 的取值范围;(2)对任意121,,e ex x ⎡⎤∈⎢⎥⎣⎦,有()()12e 2f x f x -≤-成立,等价于()()max min 2f x f x e ⎡⎤⎡⎤-≤-⎣⎦⎣⎦,利用导数研究函数的单调性,分别求出最大值与最小值,解不等式即可的结果.试题解析:(1)函数()f x 的定义域为()0,+∞.当2b =时, ()2ln f x a x x =+,所以()222a x a f x x x x='+=+.①当0a >时, ()0f x '>,所以()f x 在()0,+∞上单调递增,取10ax e -=,则21110a af e e --⎛⎫⎛⎫=-+< ⎪ ⎪⎝⎭⎝⎭,(或:因为00x <<且01ex <时,所以()200001ln ln ln 0ef x a x x a x a a a =+<+<+=.)因为()11f =,所以()()0·10f x f <,此时函数()f x 有一个零点.②当0a <时,令()0f x '=,解得x =.当0x << ()0f x '<,所以()f x 在⎛ ⎝上单调递减;当x >时, ()0f x '>,所以()f x 在⎫+∞⎪⎪⎭上单调递增.要使函数()f x 有一个零点,则02af a ==即2a e =-.综上所述,若函数()f x 恰有一个零点,则2a e =-或a 0>. (2)因为对任意121,,e e x x ⎡⎤∈⎢⎥⎣⎦,有()()12e 2f x f x -≤-成立,因为()()()()12max min f x f x f x f x ⎡⎤⎡⎤-≤-⎣⎦⎣⎦, 所以()()max min 2f x f x e ⎡⎤⎡⎤-≤-⎣⎦⎣⎦. 因为0a b +=,则a b =-.所以()ln b f x b x x =-+,所以()()11bb b x b f x bx x x---=='+. 当01x <<时, ()0f x '<,当1x >时, ()0f x '>,所以函数()f x 在1,1e ⎡⎫⎪⎢⎣⎭上单调递减,在(]1,e 上单调递增, ()()min 11f x f ⎡⎤==⎣⎦,因为1e e b f b -⎛⎫=+ ⎪⎝⎭与()e e bf b =-+,所以()()max 1max ,f x f f e e ⎧⎫⎛⎫⎡⎤=⎨⎬ ⎪⎣⎦⎝⎭⎩⎭. 设()()1e e e 2e b b g b f f b -⎛⎫=-=-- ⎪⎝⎭()0b >,则()e e220bbg b -=+->='.所以()g b 在()0,+∞上单调递增,故()()00g b g >=,所以()1e e f f ⎛⎫> ⎪⎝⎭. 从而()max f x ⎡⎤=⎣⎦ ()e e bf b =-+.所以e 1e 2b b -+-≤-即e e 10bb --+≤,设()=e e 1bb b ϕ--+ ()0b >,则()=e 1bb ϕ'-.当0b >时,()0b ϕ'>,所以()b ϕ在()0,+∞上单调递增.又()10ϕ=,所以e e 10b b --+≤,即为()()1b ϕϕ≤,解得1b ≤. 因为0b >,所以b 的取值范围为(]0,1. 22.选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线1C 的参数方程为{2x cos y sin αα==,(α为参数),将曲线1C 经过伸缩变换2{x x y y=''=,后得到曲线2C .在以原点为极点, x 轴正半轴为极轴的极坐标系中,直线l 的极坐标方程为cos sin 100ρθρθ--=.(1)说明曲线2C 是哪一种曲线,并将曲线2C 的方程化为极坐标方程;(2)已知点M 是曲线2C 上的任意一点,求点M 到直线l 的距离的最大值和最小值.【答案】(1)2C 为圆心在原点,半径为2的圆, 2ρ=(2)d 取到最小值为2最大值为2+【解析】试题分析:(1)利用三角恒等式消元法消去参数可得曲线1C 的普通方程,再利用放缩公式可得曲线2C 方程,从而可判定2C 是哪一种曲线,利用极坐标护互化公式可得2C 的方程化为极坐标方程;(2)利用2C 的参数方程设出点M 的坐标,利用点到直线距离公式、辅助角公式及三角函数的有界性可得结果. 试题解析:(1)因为曲线1C 的参数方程为{2x cos y sin αα==(α为参数), 因为2{ .x x y y ''==,,则曲线2C 的参数方程2{ 2.x cos y sin αα''==,.所以2C 的普通方程为224x y ''+=. 所以2C 为圆心在原点,半径为2的圆. 所以2C 的极坐标方程为24ρ=,即2ρ=. (2)解法:直线l 的普通方程为100x y --=.曲线2C 上的点M 到直线l的距离+)10|d πα-==当cos +=14πα⎛⎫⎪⎝⎭即()=24k k Z παπ-∈时, d2. 当cos +=14πα⎛⎫- ⎪⎝⎭即()3=24k k Z παπ+∈时, d 取到最大值为122+23.选修4-5:不等式选讲 已知函数()f x x a =+.(1)当1a =时,求不等式()211f x x ≤+-的解集;(2)若函数()()3g x f x x =-+的值域为A ,且[]2,1A -⊆,求a 的取值范围 【答案】(1){}|1x 1x x ≤-≥,或(2)(][),15,-∞⋃+∞【解析】试题分析:(1)对x 分三种情况讨论,分别求解不等式组,然后求并集即可得结果;(2)将函数()()3g x f x x =-+化为分段函数,根据分类讨论思想结合分段函数的图象,求出分段函数的值域,根据集合的包含关系列不等式求解即可. 试题解析:(1)当1a =时, ()1f x x =+.①当1x ≤-时,原不等式可化为122x x --≤--,解得1x ≤-. ②当112x -<<-时,原不等式可化为122x x +≤--,解得1x ≤-,此时原不等式无解. ③当12x ≥-时,原不等式可化为12x x +≤,解得1x ≥. 综上可知,原不等式的解集为{ 1 x x ≤-或}1x ≥.(2)解法:①当3a ≤时, ()3,3,{23,3, 3,.a x g x x a x a a x a -≤-=----<<--≥-所以函数()g x 的值域[]3,3A a a =--, 因为[]2,1A -⊆,所以32{31a a -≤--≥,,解得1a ≤.②当3a >时, ()3,,{23,3, 3, 3.a x a g x x a a x a x -≤-=++-<<--≥-所以函数()g x 的值域[]3,3A a a =--, 因为[]2,1A -⊆,所以32{31a a -≤--≥,,解得5a ≥.综上可知, a 的取值范围是(][),15,-∞⋃+∞.。
x 二项式定理1.【来源】浙江省 2017 届高三“超级全能生”3 月联考数学试题 在二项式(2x - 1)6的展开式中,常数项是( C )xA .-240B .240C .-160D .160答案及解析:2.【来源】安徽省黄山市 2019 届高三第一次质量检测(一模)数学(理)试题在(1+x )6(1-2x )展开式中,含 x 5 的项的系数是( D ) A. 36B. 24C. -36D. -243.【来源】新疆维吾尔自治区 2018 届高三第二次适应性(模拟)检测数学(理)试题若⎛ 2 1 ⎫n- x ⎪ 展开式中含 x 项的系数为-80,则 n 等于( A )⎝ ⎭A .5B .6 C.7 D .84.【来源】浙江省金丽衢十二校联考 2017 届高考二模数学试题在(1+x 3)(1﹣x )8 的展开式中,x 5 的系数是( A ) A .﹣28B .﹣84C .28D .84答案及解析:【考点】二项式定理的应用.【分析】利用二项式定理的通项公式求解即可.【解答】解:由(1+x 3)展开可知含有 x 3 与(1﹣x )8 展开的 x 2 可得 x 5 的系数; 由(1+x 3)展开可知常数项与(1﹣x )8 展开的 x 5,同样可得 x 5 的系数; ∴含 x 5 的项+=28x 5﹣56x 5=﹣28x 5;∴x 5 的系数为﹣28, 故选 A【点评】本题主要考查二项式定理的应用,求展开式的系数把含有 x 5 的项找到.从而可以利用通项求解.属于中档题5.【来源】北京东城景山学校 2016-2017 学年高二下学期期中考试数学(理)试题设(3x -1)4 = a + a x + a x 2 + a x 3 + a x 4 ,则 a + a + a + a的值为( A ).12341234A .15B .16C .1D .-15答案及解析: 在(3x -1)4= a + a x + a x 2 + a x 3 + a x 4 中,令 x = 0 ,可得 a = 1 ,1234再令 x = 1可得 a 0 + a 1 + a 2 + a 3 + a 4 = 16 , 所以 a 1 + a 2 + a 3 + a 4 = 15 .n 7 7 7 故选 A .6.【来源】北京西城八中少年班 2016-2017 学年高一下学期期末考试数学试题在(x + y )n的展开式中,若第七项系数最大,则 n 的值可能等于( D ).A .13,14B .14,15C .12,13D .11,12,13答案及解析:(x + y )n 的展开式第七项系数为 C 6 ,且最大,可知此为展开式中间项,当展开式为奇数项时: n= 6 , n = 12 ,2当有偶数项时 n + 1= 6 , n = 11, 2 或 n + 1 = 7 , n = 13 ,2故 n = 11,12 ,13 . 选 D .7.【来源】广东省广州市海珠区 2018 届高三综合测试(一)数学(理)试题(x + y )(2x - y )6 的展开式中 x 4 y 3 的系数为( D )A .-80B .-40C. 40D .808.【来源】广东省潮州市 2017 届高三数学二模试卷数学(理)试题 在(1﹣2x )7(1+x )的展开式中,含 x 2 项的系数为( B ) A .71 B .70 C .21 D .49答案及解析:【分析】先将问题转化为二项式(1﹣2x )7 的系数问题,利用二项展开式的通项公式求出展开式的第 r+1 项,令 x 的指数分别等于 1,2 求出特定项的系数【解答】解:(1﹣2x )7(1+x )的展开式中 x 2 的系数等于(1﹣2x )7 展开式的 x 的系数+(1﹣2x )7 展开式的 x 2 的系数,(x+1)7 展开式的通项为 T r+1=(﹣2)r C r x r ,故展开式中 x 2 的系数是(﹣2)2C 2+(﹣2)•C 1=84﹣14=60,故选:B .9.【来源】浙江省新高考研究联盟 2017 届第四次联考数学试题 在二项式(x 2- 1)5 的展开式中,含 x 7的项的系数是( C )xA . -10B. 10C. -5D. 510.【来源】辽宁省重点高中协作校 2016-2017 学年高二下学期期末考试数学(理)试题 已知(1 + x )n的展开式中只有第 6 项的二项式系数最大,则展开式奇数项的二项式系数和为( D ) A .212B .211C.210D .2911.【来源】上海市浦东新区 2018 届高三上学期期中考试数学试卷展开式中的常数项为( C )x -A.-1320B.1320C.-220D.22012.【来源】浙江省绍兴一中2017 届高三上学期期末数学试题在(x﹣y)10 的展开式中,系数最小的项是(C )A.第4 项B.第5 项C.第6 项D.第7 项答案及解析:【考点】二项式定理的应用.【分析】由二项展开式可得出系数最小的项系数一定为负,再结合组合数的性质即可判断出系数最小的项.【解答】解:展开式共有11 项,奇数项为正,偶数项为负,且第6 项的二项式系数最大,则展开式中系数最小的项第 6项.故选C.13.【来源】浙江省金华十校联考2017 届高三上学期期末数学试题在(1﹣x)n=a0+a1x+a2x2+a3x3+…+a n x n中,若2a2+a n﹣5=0,则自然数n的值是(B)A.7 B.8 C.9 D.10答案及解析:【考点】二项式定理的应用.【分析】由二项展开式的通项公式T r+1=•(﹣1)r x r可得a r=(﹣1)r•,于是有2(﹣1)2+(﹣1)n﹣5=0,由此可解得自然数n 的值.【解答】解:由题意得,该二项展开式的通项公式•(﹣1)r x r,∴该项的系数,∵2a2+a n﹣5=0,∴2(﹣1)2+(﹣1)n﹣5=0,即+(﹣1)n﹣5•=0,∴n﹣5 为奇数,∴2==,∴2×=,∴(n﹣2)(n﹣3)(n﹣4)=120.∴n=8.故答案为:8.14.【来源】浙江省重点中学2019 届高三上学期期末热身联考数学试题⎛ 2 ⎫5 1⎪1展开式中,x2的系数是( B )⎝⎭A、80B、-80C、40D、-4015.【来源】山东省德州市2016-2017 学年高二下学期期末考试数学(理)试题a 2 4如果x + x - 的展开式中各项系数之和为2,则展开式中x 的系数是( C ) x xA.8 B.-8 C.16 D.-1616.【来源】云南省昆明市第一中学2018 届高三第八次月考数学(理)试题x x2 ⎪ ⎛1- 1 ⎫ (1+ x )6x 3⎝ ⎭ 展开式中 x 的系数为(B )A .-14B .14C. 15D .3017.【来源】安徽省安庆一中、山西省太原五中等五省六校(K12 联盟)2018 届高三上学期期末联考数学(理)试题在二项式(x - 1)n 的展开式中恰好第 5 项的二项式系数最大,则展开式中含有 x 2项的系数是( C )xA .35B .-35C .-56D .56答案及解析:第五项的二项式系数最大,则,通项,令,故系数.18.【来源】辽宁省实验中学、沈阳市东北育才学校等五校 2016-2017 学年高二下学期期末联考数学(理)试题 在( - 2)n 的展开式中,各项的二项式系数之和为 64,则展开式中常数项为( A )xA .60B .45C . 30D .1519.【来源】湖北省武汉市 2018 届高三四月调研测试数学理试题 在(x + 1-1)6 的展开式中,含 x 5项的系数为( B )xA .6B .-6C .24D .-24答案及解析:的展开式的通项 .的展开式的通项=. 由 6﹣r ﹣2s=5,得 r+2s=1,∵r ,s ∈N ,∴r=1,s=0. ∴的展开式中,含 x 5 项的系数为 . 故选:B .20.【来源】辽宁省抚顺市 2018 届高三 3 月高考模拟考试数学(理)试题在(2 -1)6 的展开式中,含 1项的系数为( C )xA. -60B. 160C. 60D. 6421.【来源】2018 年高考真题——数学理(全国卷Ⅲ)(x 2+ 2)5 的展开式中 x 4 的系数为( C )xA .10B .20C .40D .80答案及解析:由题可得 令 ,则所以x2× 4x9 n故选 C.22.【来源】浙江省金华市十校联考 2016-2017 学年高二下学期期末数学试卷在(x 2﹣4)5 的展开式中,含 x 6 的项的系数为( D ) A .20 B .40 C .80 D .160答案及解析:【分析】=(﹣4)r,令 10﹣2r=6,解得 r=2,由此能求出含 x 6 的项的系数.【解答】解:∵(x 2﹣4)5, ∴T r+1==(﹣4)r,令 10﹣2r=6,解得 r=2, ∴含 x 6 的项的系数为=160. 故选:D .23.【来源】浙江省诸暨市牌头中学 2018 届高三 1 月月考数学试题 在⎛x 2 - ⎝2 ⎫6的展开式中,常数项为( D )⎪⎭ A .-240 B .-60 C .60 D .24024.【来源】浙江省湖州市 2017 届高三上学期期末数学试题在(1﹣x )5+(1﹣x )6+(1﹣x )7+(1﹣x )8 的展开式中,含 x 3 的项的系数是( D ) A .121 B .﹣74C .74D .﹣121答案及解析:【考点】二项式定理的应用.【分析】利用等比数列的前 n 项公式化简代数式;利用二项展开式的通项公式求出含 x 4 的项的系数,即是代数式的含 x 3 的项的系数.【解答】解:(1﹣x )5+(1﹣x )6+(1﹣x )7+(1﹣x )8 ==,(1﹣x )5 中 x 4 的系数 ,﹣(1﹣x )9 中 x 4 的系数为﹣C 4=﹣126,﹣126+5=﹣121. 故选:D25.【来源】甘肃省兰州市第一中学 2018 届高三上学期期中考试数学(理)试题在(x 2-1)(x +1)4 的展开式中,x 3 的系数是( A ) A .0B .10C .-10D .20答案及解析:(x +1)4 的展开式的通项, 因此在(x 2-1)(x +1)4 的展开式中,x 3 的系数是26.【来源】山西重点中学协作体 2017 届高三暑期联考数学(理)试题在二项式 + 1的展开式中,前三项的系数成等差数列,把展开式中所有的项重新排成一列,有理项都互 x xx 1 ⎝ ⎭不相邻的概率为( D ) A . 16B . 14C. 1 3D . 51227.【来源】湖北省孝感市八校 2017-2018 学年高二上学期期末考试数学(理)试题已知C 0- 4C 1+ 42C 2- 43C 3+ + (-1)n 4nC n= 729 ,则C 1+ C 2+ + C n的值等于( C )nnnnnA .64B .32 C.63 D .31答案及解析:nnn因为 ,所因,选 C. 28.【来源】辽宁省重点高中协作校 2016-2017 学年高二下学期期末考试数学(理)试题若òn(2x -1)dx = 6 ,则二项式(1 - 2x )n的展开式各项系数和为( A ) A .-1 B .26 C .1 D . 2n29.【来源】浙江省金华十校 2017 届高三数学模拟试卷(4 月份)数学试题若(x -1)8=1+a 1x +a 2x 2+…+a 8x 8,则 a 5=( B ) A .56B .﹣56C .35D .﹣35答案及解析:利用通项公式即可得出. 解:通项公式 T r+1=(﹣1)8﹣r x r ,令 r=5,则(﹣1)3=﹣56.故选:B .30.【来源】广东省茂名市五大联盟学校 2018 届高三 3 月联考数学(理)试题6⎛ 1 ⎫ x 4在( + x ) 1+ y ⎪ 的展开式中, y 2 项的系数为( C )A .200B .180 C. 150 D .120答案及解析:展开式的通项公式,令可得:,,展开式的通项公式 ,令可得,据此可得: 项的系数为 .本题选择 C 选项.31.【来源】吉林省长春外国语学校 2019 届高三上学期期末考试数学(理)试题 (2-x )(1+2x )5 展开式中,含 x 2 项的系数为( B )x x 0 1 2 2017 3n nx A . 30 B . 70 C .90 D .-15032.【来源】浙江省新高考研究联盟 2017 届第三次联考数学试题若(1 + x )3 + (1 + x )4 + (1 + x )5 + + (1 + x )2017 = a + a x + a x 2 + + a x 2017 ,则 a 的值为( D )3 2017 32018 420174201833.【来源】广东省肇庆市 2017 届高考二模数学(理)试题若(x 6+ 1 )n的展开式中含有常数项,则 n 的最小值等于( C )A .3B .4C .5D .6答案及解析:【分析】二项式的通项公式 T r+1=C )r ,对其进行整理,令 x 的指数为 0,建立方程求出 n 的最小值.【解答】解:由题意 )n 的展开式的项为)r =C n r=C r令r=0,得 r ,当 r=4 时,n 取到最小值 5故选:C .【点评】本题考查二项式的性质,解题的关键是熟练掌握二项式的项,且能根据指数的形式及题设中有常数的条 件转化成指数为 0,得到 n 的表达式,推测出它的值.34.【来源】上海市金山中学 2017-2018 学年高二下学期期中考试数学试题 设(3x -1)6= a x 6+ a x 5+ + a x + a ,则| a | + | a | + | a | + + | a| 的值为…( B )651126(A) 26(B) 46(C) 56(D) 26+ 4635.【来源】浙江省台州市 2016-2017 学年高二下学期期末数学试题x -已知在( 2 1 )n的展开式中,第 6 项为常数项,则 n =( D )A .9B .8C .7D .6答案及解析:【考点】二项式系数的性质. 【分析】利用通项公式即可得出. 【解答】解:∵第 6 项为常数项,由 =﹣ •x n ﹣6,可得 n ﹣6=0.解得 n=6. 故选:D .36.【来源】山东省潍坊寿光市 2016-2017 学年高二下学期期末考试数学(理)试题⎛ 1 ⎫6+ 2x ⎪ ⎝ ⎭的展开式中常数项为( B ) A .120B .160C. 200D .24037.【来源】北京西城八中少年班 2016-2017 学年高一下学期期末考试数学试题 (2x + 3)4 = a + a x + a x 2 + a x 3 + a x 4(a + a + a )2 - (a + a )2若0 1 2 3 4,则 0 2 41 3 的值为( A ). 5 x A . C B . C C . C D . Cx x A .1 B .-1 C .0 D .2答案及解析:令 x = 1, a + a + + a = (2 + 3)4 ,1 4令 x = -1, a - a + a - a + a= (-2 + 3)4 ,1234而 (a + a + a )2 - (a + a )22413= (a 0 + a 2 + a 4 + a 1 + a 3 )(a 0 - a 1 + a 2 - a 3 + a 4 )= (2 + 选 A .3)4 (-2 + 3)4 = (3 - 4)4 = 1. 38.【来源】云南省曲靖市第一中学 2018 届高三 4 月高考复习质量监测卷(七)数学(理)试题设 i 是虚数单位,a 是(x + i )6的展开式的各项系数和,则 a 的共轭复数 a 的值是( B ) A . -8iB . 8iC . 8D .-8答案及解析:由题意,不妨令 ,则,将转化为三角函数形式,,由复数三角形式的乘方法则,,则,故正确答案为 B.39.【来源】福建省三明市 2016-2017 学年高二下学期普通高中期末数学(理)试题 a 2 52x + x - 的展开式中各项系数的和为-1,则该展开式中常数项为( A ) x xA .-200B .-120 C.120 D .20040.【来源】甘肃省天水一中 2018 届高三上学期第四次阶段(期末)数学(理)试题已知(1+ax )(1+x )5 的展开式中 x 2 的系数为 5,则 a =( D )A.-4B.-3C.-2D.-141.【来源】广东省深圳市宝安区 2018 届高三 9 月调研测数学(理)试题(1 + 1)(1 + x )5 展开式中 x 2 的系数为 ( A )xA .20B .15C .6D .142.【来源】甘肃省民乐一中、张掖二中 2019 届高三上学期第一次调研考试(12 月)数学(理)试题⎛ a ⎫ ⎛1 ⎫5x + ⎪ 2x - ⎪ ⎝ ⎭ ⎝⎭ 的展开式中各项系数的和为 2,则该展开式中常数项为( D )A .-40B .-20C .20D .4043.【来源】浙江省名校协作体 2018 届高三上学期考试数学试题⎛ 1+ 2⎫(1- x )4 展开式中 x 2 的系数为( C ) x ⎪ ⎝ ⎭A .16B .12C .8D .444.【来源】山西省太原市 2018 届高三第三次模拟考试数学(理)试题已知(x -1)(ax +1)6展开式中 x 2 的系数为 0,则正实数a = ( B ) 22 A .1B .C.53D . 2x 4 5 5 答案及解析:的展开式的通项公式为.令 得 ;令得.展开式 为. 由题意知,解得(舍).故选 B. 45.【来源】吉林省松原市实验高级中学、长春市第十一高中、东北师范大学附属中学 2016 届高三下学期三校联合模拟考试数学(理)试题(x +1)2 (x - 2)4的展开式中含 x 3 项的系数为( D )A .16B .40 C.-40 D .846.【来源】海南省天一大联考 2018 届高三毕业班阶段性测试(三)数学(理)试题若(2x - 3)2018= a + a x + a x 2 + L + ax 2018 ,则 a + 2a + 3a + L + 2018a= ( D )122018A .4036B .2018C .-2018D .-4036123201847.【来源】湖北省天门、仙桃、潜江 2018 届高三上学期期末联考数学(理)试题(1 + x )8 (1 + y )4 的展开式中 x 2y 2 的系数是 ( D )A .56B .84C .112D .168答案及解析:因的展开式 的系数 ,的展开式 的系数 ,所的系数.故选 D.48.【来源】北京西城八中 2016-2017 学年高一下学期期末考试数学试题 ⎛ x 2 - 在二项式⎝ 1 ⎫5⎪⎭ 的展开式中,含 x 的项的系数是( C ). A .-10B .-5C .10D .5答案及解析:解: ⎛ x 2 - 1 ⎫5⎪ 的展开项T = C k (x 2 )k (-x -1 )5-k = (-1)5-k C k x 3k -5 ,令3k - 5 = 4 ,可得 k = 3, ⎝x ⎭ k +1 5 5∴ (-1)5-k C k = (-1)5-3 C 3= 10 . 故选 C .49.【来源】广东省化州市 2019 届高三上学期第二次模拟考生数学(理)试题 已知(x +1)(ax - 1)5的展开式中常数项为-40,则 a 的值为( C )xA. 2B. -2C. ±2D. 450.【来源】福建省“华安一中、长泰一中、南靖一中、平和一中”四校联考 2017-2018 学年高二下学期第二次联考试题(5 月)数学(理)试题若(1 - 2 x )n(n ∈ N *) 的展开式中 x 4的系数为 80,则(1 - 2 x )n的展开式中各项系数的绝对值之和为( C ) A .32B .81C .243D .256。
2017届广州市普通高中毕业班综合测试(一)数学(理科)本试卷共4页,23小题, 满分150分。
考试用时120分钟。
注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效. 4.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题:本小题共12题,每小题5分,在每小题给出的四个选项中,只有一项是符合 题目要求的。
(1)复数()221i 1i+++的共轭复数是 (A )1i + (B )1i - (C )1i -+ (D )1i -- (2)若集合}{1M x x =≤,}{2,1N y y x x ==≤,则(A )M N = (B )M N ⊆ (C )N M ⊆ (D )M N =∅I (3)已知等比数列{}n a 的各项都为正数, 且35412a ,a ,a 成等差数列,则3546a a a a ++的值是(A 51- (B 51+ (C )35- (D 35+ (4)阅读如图的程序框图. 若输入5n =, 则输出k 的值为(A )2 (B )3 (C )4 (D )5(5)已知双曲线C 222:14x y a -=的一条渐近线方程为230+=x y ,1F ,2F 分别 是双曲线C 的左,右焦点, 点P 在双曲线C 上, 且17PF =, 则2PF 等于 (A )1 (B )13 (C )4或10 (D )1或13(6)如图, 网格纸上小正方形的边长为1, 粗线画出的是某几何体的正视图(等腰直角三角形)和侧视图,且该几何体的体积为83, 则该几何体的俯视图可以是(7)五个人围坐在一张圆桌旁,每个人面前放着完全相同的硬币,所有人同时翻转自己的硬币. 若硬币正面朝上, 则这个人站起来; 若硬币正面朝下, 则这个人继续坐着. 那么, 没有相邻的两个人站起来的概率为(A)12(B)1532(C)1132(D)516(8)已知1F,2F分别是椭圆C()2222:10x ya ba b+=>>的左, 右焦点, 椭圆C上存在点P使12F PF∠为钝角, 则椭圆C的离心率的取值范围是(A)22⎛⎫⎪⎪⎝⎭(B)1,12⎛⎫⎪⎝⎭(C)20,2⎛⎝⎭(D)10,2⎛⎫⎪⎝⎭(9)已知:0,1xp x e ax∃>-<成立, :q函数()()1xf x a=--在R上是减函数, 则p是q的(A)充分不必要条件(B)必要不充分条件(C)充要条件(D)既不充分也不必要条件(10)《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马;将四个面都为直角三角形的三棱锥称之为鳖臑.若三棱锥-P ABC为鳖臑, PA⊥平面ABC, 2PA AB==,4AC=, 三棱锥-P ABC的四个顶点都在球O的球面上, 则球O的表面积为(A)8π(B)12π(C)20π(D)24π(11)若直线1y=与函数()2sin2f x x=的图象相交于点()11,P x y,()22,Q x y,且12x x-=23π,则线段PQ与函数()f x的图象所围成的图形面积是(A)233π+(B)33π+(C)2323π+(D)323π(12)已知函数()32331248f x x x x=-++, 则201612017kkf=⎛⎫⎪⎝⎭∑的值为(A)0(B)504(C)1008(D)2016P CBA第Ⅱ卷本卷包括必考题和选考题两部分。
文案秘密★启用前试卷类型: A2018届市高三年级调研测试 理科数学2017.12本试卷共5 页,23 小题,满分150 分,考试用时120 分钟.注意事项:1.本试卷分第1卷(选择题)和第2卷(非选择题)两部分。
答卷前,考生务必将自己的和考生号、试室号、座位号填写在答题卡上,并用2B 铅笔在答题卡的相应位置填涂考生号。
2.作答第1卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。
写在本试卷上无效.3.第2卷必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答无效。
4.考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}1,0,1,2,3A =-,{}230B x x x =->,则AB =()A.{}1-B.{}1,0-C.{}1,3-D.{}1,0,3- 2.若复数z 满足()121i z i +=-,则z =() A.25B.35C.53.在等差数列{}n a 中,已知22a =,前7项和756S =,则公差d =() A.2 B.3 C.2- D.3-4.已知变量x 、y 满足202300x y x y y -≤⎧⎪-+≥⎨⎪≥⎩,则2z x y =+的最大值为()A.0B.4C.5D.65.912x x ⎛⎫- ⎪⎝⎭的展开式中3x 的系数为()文案A.212-B.92-C.92D.2126.在如图所示的程序框图中,()i f x '是()i f x 的导函数,若()0sin f x x =,则输出的结果是() A.sin x - B.cos x C.sin x D.cos x -7.正方体1111ABCD A B C D -的棱长为2,点M 为1CC 的中点,点N 为线段1DD 上靠近1D 的三等分点,平面BMN 交1AA 于点Q ,则AQ 的长为() A.23 B.12 C.16 D.138.已知直线2y kx =-与曲线ln y x x =相切,则实数k 的值为() A.ln 2 B.1 C.1ln2- D.1ln2+9.某学校获得5个高校自主招生推荐名额,其中甲大学2名,乙大学2名,丙大学1名,并且甲大学和乙大学都要求必须有男生参加,学校通过选拔定下3男2女共5个推荐对象,则不同的推荐方法共有() A.36种B.24种 C.22种 D.20种 10.将函数2sin sin 36y x x ππ⎛⎫⎛⎫=+- ⎪ ⎪⎝⎭⎝⎭的图象向左平移()0ϕϕ>个单位,所得图象对应的函数恰为奇函数,则ϕ的最小值为()文案A.6π B.12π C.4π D.3π11.在直角坐标系xOy 中,设F 为双曲线()2222:10,0x y C a b a b-=>>的右焦点,P 为双曲线C 右支上一点,且OPF ∆为正三角形,则双曲线C 的离心率为()B.3C.12 12.对于定义域为R 的函数()f x ,若满足①()00f =;②当x R ∈,且0x ≠时,都有()0xf x '>;③当120x x <<,且12x x =时,都有()()12f x f x <,则称()f x 为“偏对称函数”.现给出四个函数:()32132f x x x =-+;()21x f x e x =--;()()3ln 1,02,0x x f x x x -+≤⎧⎪=⎨>⎪⎩;()411,02120,0xx x f x x ⎧⎛⎫+≠⎪ ⎪=-⎝⎭⎨⎪=⎩.则其中是“偏对称函数”的函数个数为() A.0 B.1 C.2 D.3二、填空题:本题共 4 小题,每小题 5 分,共 20 分.13.已知向量(),2a x x =-,()3,4b =,若//a b ,则向量a 的模为. 14.在各项都为正数的等比数列{}n a中,若2018a =2017201912a a +的最小值为.15.过抛物线()2:20C y px p =>的焦点F 的直线交抛物线C 于A 、B 两点,若6AF =,3BF =,则p 的值为.16.如图,网格纸上正方形小格的边长为1,图中粗线画出的是某三棱锥的三视图,则该三棱锥的外接球的表面积为________.三、解答题:共70分.解答应写出文字说明、证明过程和演算步骤.第 17~21 题为必考题,每个试题考生都必须做答.第 22、23 题为选考题,考生根据要求做答. (一)必考题:共 60 分.文案17.(本小题满分 12 分)ABC ∆的角A 、B 、C 的对边分别为a 、b 、c ,且满足2a =,()cos 2cos a B c b A =-.(1)求角A 的大小; (2)求ABC ∆周长的最大值.18.(本小题满分 12 分)如图,已知多面体PABCDE 的底面ABCD 是边长为2的菱形,PA ⊥底面ABCD ,//ED PA ,且PA =22ED =.文案(1)证明:平面PAC ⊥平面PCE ;(2)若直线PC 与平面ABCD 所成的角为45,求二面角P CE D --的余弦值.19.(本小题满分 12 分)某基地蔬菜大棚采用水培、无土栽培方式种植各类蔬菜.过去50周的资料显示,该地周光照量X (小时)都在30小时以上,其中不足50小时的周数有5周,不低于50小时且不超过70小时的周数有35周,超过EDCBAP文案70小时的周数有10周.根据统计,该基地的西红柿增加量y (百斤)与使用某种液体肥料x (千克)之间对应数据为如图所示的折线图.(1)依据数据的折线图,是否可用线性回归模型拟合y 与x 的关系?请计算相关系数r 并加以说明(精确到0.01).(若0.75r >,则线性相关程度很高,可用线性回归模型拟合)(2)蔬菜大棚对光照要求较大,某光照控制仪商家为该基地提供了部分光照控制仪,但每周光照控制仪最多可运行台数受周光照量X 限制,并有如下关系:制仪周亏损1000元.以过去50周的周光照量的频率作为周光照量发生的概率,商家欲使周总利润的均值达到最大,应安装光照控制仪多少台?附:相关系数公式()()niix x y y r --=∑0.55≈0.95≈.20.(本小题满分 12 分)文案如图,在直角坐标系xOy 中,椭圆()2222:10y x C a b a b +=>>的上焦点为1F ,椭圆C 的离心率为12,且过点1,3⎛⎫⎪ ⎪⎝⎭.(1)求椭圆C 的方程;(2)设过椭圆C 的上顶点A 的直线l 与椭圆C 交于点B (B 不在y 轴上),垂直于l 的直线与l 交于点M ,与x 轴交于点H ,若110F B F H ⋅=,且MO MA =,求直线l 的方程.21.(本小题满分 12 分)文案已知函数()()ln 0bf x a x xa =+≠.(1)当2b =时,若函数()f x 恰有一个零点,数a 的取值围;(2)当0a b +=,0b >时,对任意1x 、21,x e e ⎡⎤∈⎢⎥⎣⎦,有()()122f x f x e -≤-成立,数b 的取值围.(二)选考题:共 10 分.请考生在第 22、23 题中任选一题做答,如果多做,则按所做的第一题计分. 22.(本小题满分 10 分)选修 4-4:坐标系与参数方程文案在直角坐标系xOy 中,曲线1C 的参数方程为cos 2sin x y αα=⎧⎨=⎩(α为参数),将曲线1C 经过伸缩变换2x xy y'=⎧⎨'=⎩后得到曲线2C ,在以原点为极点,x 轴正半轴为极轴的极坐标系中,直线l 的极坐标方程为cos ρθ-sin 100ρθ-=.(1)说明曲线2C 是哪一种曲线,并将曲线2C 的方程化为极坐标方程;(2)已知点M 是曲线2C 上任意一点,求点M 到直线l 的距离的最大值和最小值.23.(本小题满分 10 分)选修 4-5:不等式选讲 已知函数()f x x a =+.文案(1)当1a =时,求不等式()211f x x ≤+-的解集;(2)若函数()()3g x f x x =-+的值域为A ,[]2,1A -⊆,求a 的取值围.。
2017-2018学年广东省高三(上)第一次联考试卷(理科数学)一、选择题(共12小题,每小题5分,满分60分)1.(5分)cos600°的值为()A.﹣B.﹣ C.D.2.(5分)i为虚数单位,则(1+i55)2=()A.4 B.0 C.2i D.﹣2i3.(5分)下列有关命题的说法中,正确的是()A.命题“若x2>1,则x>1”的否命题为“若x2>1,则x≤1”B.命题“若α>β,则tanα>tanβ”的逆否命题为真命题C.命题“∃x∈R,使得x2+x+1<0”的否定是“∀x∈R,都有x2+x+1>0”D.“x>1”是“x2+x﹣2>0”的充分不必要条件4.(5分)集合P={x∈Z|y=},Q={y∈R|y=2cosx,x∈R},则P∩Q=()A.[﹣1,1] B.{0,1} C.{﹣1,1} D.{﹣1,0,1}5.(5分)已知=(﹣1,2),=(m2﹣2,2m),若与共线且方向相反,则m的值为()A.1 或﹣2 B.2 C.﹣2 D.﹣1或26.(5分)下列函数中,在其定义域内是减函数的是()A.f(x)=B.f(x)=()|x|C.f(x)=sinx﹣x D.f(x)=7.(5分)下列命题中正确的是()A.函数y=sinx,x∈[0,2π]是奇函数B.函数y=2sin(﹣2x)在区间[﹣]上单调递减C.函数y=2sin()﹣cos()(x∈R)的一条对称轴方程是x=D.函数y=sinπx•cosπx的最小正周期为2,且它的最大值为18.(5分)m,n是空间两条不同的直线,α,β是两个不同的平面,则下列命题正确的是()①m⊥α,n∥β,α∥β⇒m⊥n;②m⊥n,α∥β,m⊥α⇒n∥β;③m⊥n,α∥β,m∥α⇒n⊥β;④m⊥α,m∥n,α∥β⇒n⊥β;()A.①② B.①④ C.②④ D.③④9.(5分)=()A.﹣1 B.e﹣1 C.1 D.e10.(5分)已知定义在R上的奇函数f(x),设其导函数为f′(x),当x∈(﹣∞,0]时,恒有xf′(x)<f(﹣x),令F(x)=xf(x),则满足F(3)>F(2x﹣1)的实数x的取值范围是()A.(﹣2,1)B.(﹣1,)C.(,2) D.(﹣1,2)11.(5分)某几何体的三视图如图所示,其中三个图中的四边形均为边长为1的正方形,则此几何体的表面积可以是()A.3 B.6 C.3+D.212.(5分)已知函数,则下列关于函数y=f[f(x)]+1的零点个数的判断正确的是()A.当k>0时,有3个零点;当k<0时,有2个零点B.当k>0时,有4个零点;当k<0时,有1个零点C.无论k为何值,均有2个零点D.无论k为何值,均有4个零点二、填空题(共4小题,每小题5分,满分20分)13.(5分)已知sinθ+cosθ=(0<θ<),则sinθ﹣cosθ的值为.14.(5分)设f(x)是定义在R上的周期为2的函数,当x∈[﹣1,1)时,f(x)=,则f(f())= .15.(5分)已知,是两个互相垂直的单位向量,且•=•=1,则对任意的正实数t,|+t+|的最小值是.16.(5分)直三棱柱ABC﹣A1B1C1的各顶点都在同一球面上,若AB=3,AC=2,AA1=,∠BAC=60°,则它的这个外接球的表面积为.三、解答题(共6小题,满分70分)17.(10分)在极坐标系中,曲线L的极坐标方程为:7cos,以极点为原点,极轴为x的非负半轴,取与极坐标系相同的单位长度,建立平面直角坐标系,在直角坐标系中,直线l的参数方程为(t为参数).(1)在直角坐标系中,写出曲线L的一个参数方程和直线l的普通方程;(2)在曲线L上任取一点P,求点P到直线l距离的最小值,并求此时点P的坐标.18.(12分)设向量=(sinωx,cosωx),=(cosφ,sinφ),(x∈R,|φ|<,ω>0),函数f(x)=的图象在y轴右侧的第一个最高点(即函数取得最大值的一个点)为P(),在原点右侧与x 轴的第一个交点为Q()(1)求函数f(x)的解析式;(2)在△ABC中,角A,B,C的对应边分别是a,b,c若f(C)=﹣1,,且a+b=2,求边长c.19.(12分)如图,底面为平行四边形的四棱柱ABCD﹣A′B′C′D′,DD′⊥底面ABCD,∠DAB=60°,AB=2AD,DD′=3AD,E、F分别是AB、D′E的中点.(Ⅰ)求证:DF⊥CE;(Ⅱ)求二面角A﹣EF﹣C的余弦值.20.(12分)如图,平面四边形ABCD中,AB=,AD=DC=CB=1.(1)若∠A=60°,求cosC.(2)若△ABD和△BCD的面积分别为S、T,求S2+T2的取值范围.21.(12分)已知函数f(x)=lnx﹣ax2+(a﹣2)x (a∈R)(1)若f(x)在x=1处取得极值,求a的值;(2)当x∈[a2,a]时,求函数y=f(x)的最大值.22.(12分)已知函数f(x)=x(lnx﹣ax)(a∈R),g(x)=f'(x).(1)若曲线y=f(x)在点(1,f(1))处的切线与直线3x﹣y﹣1=0平行,求实数a的值.(2)若函数F(x)=g(x)+x2①若函数F(x)有两个极值点,求a的取值范围②将函数F(x)的两个极值点记为s、t,且s<t,求证:﹣1<f(s)2017-2018学年广东省高三(上)第一次联考试卷(理科数学)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2012秋•南岗区校级期末)cos600°的值为()A.﹣B.﹣ C.D.【分析】把600°变为720°﹣120°,然后利用诱导公式及余弦函数为偶函数化简后,再利用cos(180°﹣α)=﹣cosα和特殊角的三角函数值化简后即可得到值.【解答】解:co s600°=cos(2×360°﹣120°)=cos(﹣120°)=cos120°=cos(180°﹣60°)=﹣cos60°=﹣.故选B【点评】此题考查学生灵活运用诱导公式及特殊角的三角函数值化简求值,掌握余弦函数的奇偶性,是一道基础题.学生做题时注意角度的变换.2.(5分)(2015秋•广东月考)i为虚数单位,则(1+i55)2=()A.4 B.0 C.2i D.﹣2i【分析】利用虚数单位i的运算性质化简,展开平方得答案.【解答】解:(1+i55)2=[1+(i4)13•i3]2=(1﹣i)2=﹣2i,故选:D.【点评】本题考查复数代数形式的乘除运算,是基础的计算题.3.(5分)(2014•东昌区校级二模)下列有关命题的说法中,正确的是()A.命题“若x2>1,则x>1”的否命题为“若x2>1,则x≤1”B.命题“若α>β,则tanα>tanβ”的逆否命题为真命题C.命题“∃x∈R,使得x2+x+1<0”的否定是“∀x∈R,都有x2+x+1>0”D.“x>1”是“x2+x﹣2>0”的充分不必要条件【分析】若x2>1,则x>1的否命题为:若x2≤1,则x≤1原命题为假命题,根据互为逆否命题的真假关系相同可知逆否命题为假命题,x∈R,使得x2+x+1<0的否定是∀x∈R,都有x2+x+1≥0由x2+x﹣2>0,可得x>1或x<﹣2,由推出关系即可判断【解答】解:命题“若x2>1,则x>1”的否命题为“若x2≤1,则x≤1”,故A错误“若α>β,则tanα>tanβ”为假命题,根据互为逆否命题的真假关系相同可知逆否命题为假命题,故B错误命题“∃x∈R,使得x2+x+1<0”的否定是“∀x∈R,都有x2+x+1≥0”,故C错误x>1⇒x2+x﹣2>0,但是x2+x﹣2>0时,x>1或x<﹣2,即x>1”是“x2+x﹣2>0”的充分不必要条件,故D正确故选D【点评】本题主要考查了命题的否定、互为逆否命题的真假关系及特称命题的否定,充分必要条件的判断的应用,属于知识的综合应用4.(5分)(2015秋•广东月考)集合P={x∈Z|y=},Q={y∈R|y=2cosx,x∈R},则P∩Q=()A.[﹣1,1] B.{0,1} C.{﹣1,1} D.{﹣1,0,1}【分析】求出集合P,Q,然后求解交集即可.【解答】解:P={x∈Z|y=}={﹣1,0,1},Q={y∈R|y=2cosx,x∈R}=(﹣2,2),则P∩Q={﹣1,0,1}.故选:D.【点评】本题考查交集的运算,是基础题.5.(5分)(2015秋•广东月考)已知=(﹣1,2),=(m2﹣2,2m),若与共线且方向相反,则m的值为()A.1 或﹣2 B.2 C.﹣2 D.﹣1或2【分析】利用向量共线定理即可得出.【解答】解:∵∥,∴2(m2﹣2)﹣(﹣1)×2m=0,化为:m2+m﹣2=0,解得m=﹣2或m=1.当m=1时,=(﹣1,2)=,共线且方向相同,舍去.当m=﹣2时,=(2,﹣4)=﹣2,共线且方向相反,满足题意.∴m=﹣2故选:C.【点评】本题考查向量共线定理,考查了推理能力与计算能力,属于基础题.6.(5分)(2015秋•广东月考)下列函数中,在其定义域内是减函数的是()A.f(x)=B.f(x)=()|x|C.f(x)=sinx﹣x D.f(x)=【分析】根据反比例函数的性质判断A,根据指数函数的性质判断B,根据导数的应用判断C、D即可.【解答】解:对于A:f(x)=在定义域(﹣∞,0)∪(0,+∞)上不单调,故A不合题意;对于B:f(x)=3﹣|x|,x≥0时,递减,x<0时,递增,故B不合题意;对于C:f(x)=sinx﹣x,f′(x)=cosx﹣1≤0,故f(x)在R递减,符合题意;对于D:f(x)=,f′(x)=,令f′(x)>0,解得:0<x<e,令f′(x)<0,解得:x>e,故f(x)在(0,e)递增,在(e,+∞)递减,不合题意;故选:C.【点评】本题考查了函数的单调性问题,考查导数的应用以及常见函数的性质,是一道基础题.7.(5分)(2015秋•广东月考)下列命题中正确的是()A.函数y=sinx,x∈[0,2π]是奇函数B.函数y=2sin(﹣2x)在区间[﹣]上单调递减C.函数y=2sin()﹣cos()(x∈R)的一条对称轴方程是x=D.函数y=sinπx•cosπx的最小正周期为2,且它的最大值为1【分析】利用诱导公式及二倍角公式化简,利用正弦及余弦函数图象及性质,分别判断,即可求得答案.【解答】解:由y=sinx为奇函数,并不是x∈[0,2π]是奇函数,故A错误;由令+2kπ≤﹣2x≤+2kπ,k∈Z,解得:﹣+kπ≤x≤﹣+kπ,k∈Z,∴y=2sin(﹣2x)单调递减区间为[﹣+kπ,﹣+kπ],k∈Z,当k=1时,单调递减区间为[﹣,],∴函数y=2sin(﹣2x)在区间[﹣]上单调递减,故B正确;y=2sin()﹣cos()=2cos[﹣()]﹣cos()=cos(2x+),令2x+=kπ,k∈Z,解得:x=﹣,k∈Z,x=不是数y=2sin()﹣cos()(x∈R)的一条对称轴,故C错误;由y=sinπx•cosπx=sin2πx,∴函数的周期T==1,最大值为,故D错误,故选B.【点评】本题考查诱导公式及二倍角公式的应用,考查正弦函数的单调性,周期及最值的性质,考查正弦函数的综合应用,属于中档题.8.(5分)(2014秋•仙游县校级期末)m,n是空间两条不同的直线,α,β是两个不同的平面,则下列命题正确的是()①m⊥α,n∥β,α∥β⇒m⊥n;②m⊥n,α∥β,m⊥α⇒n∥β;③m⊥n,α∥β,m∥α⇒n⊥β;④m⊥α,m∥n,α∥β⇒n⊥β;()A.①② B.①④ C.②④ D.③④【分析】利用线面垂直、线面平行、面面平行的性质定理和判定定理对四个命题分别分析解答.【解答】解:对于①,m⊥α,n∥β,α∥β利用线面垂直、线面平行以及面面平行的性质定理可以得到m⊥n;故①正确;对于②,m⊥n,α∥β,m⊥α⇒n∥β或者n在β内;故②错误;对于③,m⊥n,α∥β,m∥α得到n与β可能相交或者平行或者在β内;故③错误;对于④,m⊥α,m∥n,得到n⊥α,又α∥β⇒n⊥β;故④正确;故选:B.【点评】本题考查了线面垂直、线面平行、面面平行的性质定理和判定定理的运用;关键是正确利用定理,注意定理满足的充分条件.9.(5分)(2015秋•广东月考)=()A.﹣1 B.e﹣1 C.1 D.e【分析】因为(xlnx﹣x)′=lnx,根据定积分的计算法则计算即可.【解答】解:=(xlnx﹣x)|=(elne﹣e)﹣(1ln1﹣1)=1,故选:C【点评】本题考查了定积分的计算,关键是求出原函数,属于基础题.10.(5分)(2014春•新郑市期末)已知定义在R上的奇函数f(x),设其导函数为f′(x),当x∈(﹣∞,0]时,恒有xf′(x)<f(﹣x),令F(x)=xf(x),则满足F(3)>F(2x﹣1)的实数x的取值范围是()A.(﹣2,1)B.(﹣1,)C.(,2) D.(﹣1,2)【分析】根据函数的奇偶性和条件,判断函数F(x)的单调性,利用函数的奇偶性和单调性解不等式即可.【解答】解:∵f(x)是奇函数,∴不等式xf′(x)<f(﹣x),等价为xf′(x)<﹣f(x),即xf′(x)+f(x)<0,∵F(x)=xf(x),∴F′(x)=xf′(x)+f(x),即当x∈(﹣∞,0]时,F′(x)=xf′(x)+f(x)<0,函数F(x)为减函数,∵f(x)是奇函数,∴F(x)=xf(x)为偶数,且当x>0为增函数.即不等式F(3)>F(2x﹣1)等价为F(3)>F(|2x﹣1|),∴|2x﹣1|<3,∴﹣3<2x﹣1<3,即﹣2<2x<4,∴﹣1<x<2,即实数x的取值范围是(﹣1,2),故选:D.【点评】本题主要考查函数单调性和导数之间的关系的应用,根据函数的奇偶性和单调性之间的关系,是解决本题的关键,综合考查了函数性质的应用.11.(5分)(2015秋•广东月考)某几何体的三视图如图所示,其中三个图中的四边形均为边长为1的正方形,则此几何体的表面积可以是()A.3 B.6 C.3+D.2【分析】如图所示,该几何体是正方体的内接正三棱锥,利用面积公式可得几何体的表面积.【解答】解:如图所示,该几何体是正方体的内接正三棱锥.因此此几何体的表面积S=4×=2,故选D.【点评】本题考查了正方体的内接正三棱锥表面积计算,考查了推理能力与计算能力,属于基础题.12.(5分)(2016•河北区三模)已知函数,则下列关于函数y=f[f(x)]+1的零点个数的判断正确的是()A.当k>0时,有3个零点;当k<0时,有2个零点B.当k>0时,有4个零点;当k<0时,有1个零点C.无论k为何值,均有2个零点D.无论k为何值,均有4个零点【分析】因为函数f(x)为分段函数,函数y=f(f(x))+1为复合函数,故需要分类讨论,确定函数y=f (f(x))+1的解析式,从而可得函数y=f(f(x))+1的零点个数;【解答】解:分四种情况讨论.(1)x>1时,lnx>0,∴y=f(f(x))+1=ln(lnx)+1,此时的零点为x=>1;(2)0<x<1时,lnx<0,∴y=f(f(x))+1=klnx+1,则k>0时,有一个零点,k<0时,klnx+1>0没有零点;(3)若x<0,kx+1≤0时,y=f(f(x))+1=k2x+k+1,则k>0时,kx≤﹣1,k2x≤﹣k,可得k2x+k≤0,y有一个零点,若k<0时,则k2x+k≥0,y没有零点,(4)若x<0,kx+1>0时,y=f(f(x))+1=ln(kx+1)+1,则k>0时,即y=0可得kx+1=,y有一个零点,k<0时kx>0,y没有零点,综上可知,当k>0时,有4个零点;当k<0时,有1个零点;故选B.【点评】本题考查分段函数,考查复合函数的零点,解题的关键是分类讨论确定函数y=f(f(x))+1的解析式,考查学生的分析能力,是一道中档题;二、填空题(共4小题,每小题5分,满分20分)13.(2015秋•天津校级期末)已知sinθ+cosθ=(0<θ<),则sinθ﹣cosθ的值为﹣.(5分)【分析】已知等式两边平方,利用完全平方公式及同角三角函数间基本关系化简,整理求出2sinθcosθ的值,判断出sinθ﹣cosθ小于0,再利用完全平方公式及同角三角函数间基本关系化简,开方即可求出sinθ﹣cosθ的值.【解答】解:∵sinθ+cosθ=>0,0<θ<,∴(sinθ+cosθ)2=sin2θ+cos2θ+2sinθcosθ=1+2sinθcosθ=,sinθ﹣cosθ<0,∴2sinθcosθ=,∴(sinθ﹣cosθ)2=sin2θ+cos2θ﹣2sinθcosθ=1﹣2sinθcosθ=,则sinθ﹣cosθ=﹣.故答案为:﹣.【点评】此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键.14.(5分)(2015秋•广东月考)设f(x)是定义在R上的周期为2的函数,当x∈[﹣1,1)时,f(x)=,则f(f())= ﹣2 .【分析】根据周期函数的定义得到f()=f(2﹣)=f(﹣),然后将其代入函数解析式求值即可.【解答】解:∵f(x)是定义在R上的周期为2的函数,∴f()=f(2﹣)=f(﹣),∵f(x)=,∴f(﹣)=﹣4×(﹣)2+=,∴f()=log3=﹣2.故答案是:﹣2.【点评】本题主要考查函数周期的求解,根据条件推导f(x+T)=f(x)的形式是解决本题的关键.15.(5分)(2015•湖南校级模拟)已知,是两个互相垂直的单位向量,且•=•=1,则对任意的正实数t,|+t+|的最小值是2.【分析】由题意建立直角坐标系,取=(1,0),=(0,1),从而可得=(1,1),||=;从而可得|+t+|==≥=2.【解答】解:∵•=0,||=||=1,•=•=1,建立如图所示的直角坐标系,取=(1,0),=(0,1),设=(x,y),∴(x,y)•(1,0)=(x,y)•(0,1)=1.∴x=y=1.∴=(1,1),∴||=;∵t>0.∴|+t+|==≥=2,当且仅当t=1时取等号.故答案为:2.【点评】本题考查了平面向量应用及基本不等式在求最值中的应用,属于中档题.16.(5分)(2015秋•广东月考)直三棱柱ABC﹣A1B1C1的各顶点都在同一球面上,若AB=3,AC=2,AA1=,∠BAC=60°,则它的这个外接球的表面积为12π.【分析】画出球的内接直三棱ABC﹣A1B1C1,作出球的半径,然后可求球的表面积.【解答】解:直三棱ABC﹣A1B1C1的各顶点都在同一球面上,若AB=3,AC=2,∠BAC=60°,则BC==,如图,连接上下底面外心,O为PQ的中点,OP⊥平面ABC,则球的半径为OA,由题意,AP==,OP=,∴OA==,所以球的表面积为:4πR2=12π.故答案为:12π.【点评】本题考查球的体积和表面积,球的内接体问题,考查学生空间想象能力理解失误能力,是中档题.三、解答题(共6小题,满分70分)17.(10分)(2015秋•广东月考)在极坐标系中,曲线L的极坐标方程为:7cos,以极点为原点,极轴为x的非负半轴,取与极坐标系相同的单位长度,建立平面直角坐标系,在直角坐标系中,直线l的参数方程为(t为参数).(1)在直角坐标系中,写出曲线L的一个参数方程和直线l的普通方程;(2)在曲线L上任取一点P,求点P到直线l距离的最小值,并求此时点P的坐标.【分析】(1)先求出曲线L的直角坐标方程,再求出曲线L的一个参数方程,消去参数可得直线l的普通方程;(2)由(1)知曲线L的一个参数方程为(θ为参数),可得曲线L上的点到直线l距离d==(sinα=,cosα=),即可得出结论.【解答】解:(1)方程 7cos可化为7ρ2cos2θ=144﹣9ρ2,﹣﹣﹣﹣﹣﹣﹣﹣(1分)所以,曲线L的直角坐标方程为:=1﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(2分)曲线L的一个参数方程为(θ为参数)﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(3分)直线l的普通方程为x+y﹣10=0﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分)(2)由(1)知曲线L的一个参数方程为(θ为参数)所以,曲线L上的点到直线l距离d==(sinα=,cosα=)﹣﹣﹣﹣﹣﹣﹣﹣(7分)当sin(θ+α)=1时曲线L上的点到直线l距离最小,最小值为﹣﹣﹣﹣﹣﹣﹣﹣(8分)此时P点直角坐标为(,)﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)【点评】本题主要考查坐标系和参数方程的应用,利用此时方程和极坐标与普通方程的关系进行转化是解决本题的关键.18.(12分)(2015秋•广东月考)设向量=(sinωx,cosωx),=(cosφ,sinφ),(x∈R,|φ|<,ω>0),函数f(x)=的图象在y轴右侧的第一个最高点(即函数取得最大值的一个点)为P(),在原点右侧与x轴的第一个交点为Q()(1)求函数f(x)的解析式;(2)在△ABC中,角A,B,C的对应边分别是a,b,c若f(C)=﹣1,,且a+b=2,求边长c.【分析】(1)利用平面向量数量积的运算,两角和的正弦函数公式化简可得f(x)=sin(ωx+φ),利用周期公式可求ω,将点P()代入y=sin(2x+φ),结合范围|φ|<,可求φ,即可得解函数f(x)的解析式.(2)由题意可得sin(2C+)=﹣1,结合范围0<C<π,可得C=.由,解得ab=3,利用余弦定理即可解得c的值.【解答】(本小题满分12分)解:f(x)==sinωxcosφ+cosωxsinφ=sin(ωx+φ),﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(2分)由题意,得=﹣,可得:T=π,所以ω=2.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(3分)将点P(),代入y=sin(2x+φ)得sin(2×+φ)=1,所以φ=2kπ+,(k∈Z),又因为|φ|<,所以φ=,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(5分)即函数f(x)的解析式为f(x)=sin(2x+),(x∈R)﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)(2)由f(C)=﹣1,即sin(2C+)=﹣1,又因为0<C<π,可得:C=.﹣﹣﹣﹣﹣﹣(8分)由,知abcosC=﹣,所以,ab=3.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)由余弦定理知c2=a2+b2﹣2abcosC=(a+b)2﹣2ab﹣2abcosC=(2)2﹣2×3﹣2×3×(﹣)=9,所以c=3或﹣3(舍去),故c=3.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)【点评】本题主要考查了平面向量数量积的运算,两角和的正弦函数公式,周期公式,余弦定理的综合应用,考查了转化思想和数形结合思想,属于中档题.19.(12分)(2012•浙江模拟)如图,底面为平行四边形的四棱柱ABCD﹣A′B′C′D′,DD′⊥底面ABCD,∠DAB=60°,AB=2AD,DD′=3AD,E、F分别是AB、D′E的中点.(Ⅰ)求证:DF⊥CE;(Ⅱ)求二面角A﹣EF﹣C的余弦值.【分析】(Ⅰ)证明CE⊥DE,CE⊥DD′,从而可得CE⊥平面DD′E,进而可得CE⊥DF;(Ⅱ)取AE中点H,分别以DH、DC、DD'所在直线为x、y、z轴建立空间直角坐标系,用坐标表示点与向量,求得平面AEF的法向量,平面CEF的法向量,利用向量夹角公式,即可求得二面角A﹣EF﹣C的余弦值.【解答】(Ⅰ)证明:∵AD=AE,∠DAE=60°∴△DAE为等边三角形,设AD=1,则,∴∠DEC=90°,即CE⊥DE.…(3分)∵DD'⊥底面ABCD,CE⊂平面ABCD,∴CE⊥DD′.∵DE∩DD′=D∴CE⊥平面DD′E∵DF⊂平面DD′E∴CE⊥DF.…(6分)(Ⅱ)解:取AE中点H,则,又∠DAE=60°,所以△DAE为等边三角形,则DH⊥AB,DH⊥CD.分别以DH、DC、DD'所在直线为x、y、z轴建立空间直角坐标系,设AD=1,则..设平面AEF的法向量为,则,取.…(10分)平面CEF的法向量为,则,取.…(12分)∴.∵二面角A﹣EF﹣C为钝二面角∴二面角A﹣EF﹣C的余弦值为.…(15分)【点评】本题考查线面垂直、线线垂直、考查面面角,解题的关键是掌握线面垂直的判定,正确求出平面的法向量,属于中档题.20.(12分)(2015秋•广东月考)如图,平面四边形ABCD中,AB=,AD=DC=CB=1.(1)若∠A=60°,求cosC.(2)若△ABD和△BCD的面积分别为S、T,求S2+T2的取值范围.【分析】(1)连接BD,在△ABD中,△BCD中利用余弦定理即可得解cosC的值.(2)分别在△ABD,△BCD中由余弦定理得cosC=cosA﹣1,两边平方整理得sin2C=﹣3cos2A+2cosA,利用三角形面积公式,三角函数恒等变换的应用化简可得S2+T2=﹣(cosA﹣)2+,结合范围0<A<且A≠,利用二次函数的图象和性质即可得解范围.【解答】(本小题满分12分)解:(1)如图,连接BD,在△ABD中由余弦定理得:BD2=AB2+AD2﹣2AB•ADcos60°=4﹣,在△BCD中由余弦定理得:BD2=BC2+DC2﹣2BC•DCcosC=2﹣2cosC,∴cosC=﹣1.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(3分)(2)在△ABD中由余弦定理得:BD2=AB2+AD2﹣2AB•ADcosA=4﹣2cosA,在△BCD中由余弦定理得:BD2=BC2+DC2﹣2BC•DCcosC=2﹣2cosC,∴cosC=cosA﹣1,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(5分)两边平方整理得:sinC=﹣3cosA+2cosA,sin2C=﹣3cos2A+2cosA,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)S2+T2=(AB•ADsinA)2+(CB•CDsinC)2=sin2A+sin2C=sin2A+(﹣3cos2A+2cosA)=﹣cos2A+cosA+=﹣(cosA﹣)2+,﹣﹣﹣﹣﹣﹣﹣﹣﹣(8分)依题意知:0<A<且A≠,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)∴0<cosA<1,且cosA≠,所以S2+T2的取值范围为(,)∪(,).﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)【点评】本题主要考查了余弦定理,三角形面积公式,三角函数恒等变换的应用,二次函数的图象和性质在解三角形中的综合应用,考查了转化思想和函数思想的应用,属于中档题.21.(12分)(2015秋•广东月考)已知函数f(x)=lnx﹣ax2+(a﹣2)x (a∈R)(1)若f(x)在x=1处取得极值,求a的值;(2)当x∈[a2,a]时,求函数y=f(x)的最大值.【分析】(1)求出函数的定义域为(0,+∞),=,由此利用导数性质能求出a.(2)求出0<a<1,=,由此利用导数性质和分类讨论思想能求出f(x)在[a2,a]上的最大值.【解答】(本小题满分12分)解:(1)因为函数f(x)=lnx﹣ax2+(a﹣2)x (a∈R),所以函数的定义域为(0,+∞),所以=,(2分)因为f(x)在x=1处取得极值,即f′(1)=﹣(2﹣1)(a+1)=0,解得a=﹣1,(3分)当a=﹣1 时,在(,1)内,f′(x)<0,在(1,+∞)内,f′(x)>0,所以f(x)在x=1处取得极小值,符合题意.所以a=﹣1.(5分)(2)因为${a}^{2},所以0<a<1,(7分)=,因为x∈(0,+∞),所以ax+1>0,所以f(x)在(0,)上单调递增,在(,+∞)上单调递减.(8分)当0<a时,f(x)在[a2,a]上单调递增,所以f(x)max=f(a)=lna﹣a3+a2﹣2a,(9分)当时,f(x)在(a2,)上单调递增,在()上单调递减,所以f(x)max=f()=﹣ln2﹣+=,(10分)当时,f(x)在[a2,a]上单调递减,所以,(11分)综上所述,当0<a时,f(x)在[a2,a]上的最大值是lna﹣a3+a2﹣2a;当时,f(x)在[a2,a]上的最大值是;当时,f(x)在[a2,a]上的最大值是2lna﹣a5+a3﹣2a2.(12分)【点评】本题考查实数值的求法和函数在闭区间的上的最大值的求法,是中档题,解题时要认真审题,注意导数性质和分类讨论思想的合理运用.22.(12分)(2015秋•广东月考)已知函数f(x)=x(lnx﹣ax)(a∈R),g(x)=f'(x).(1)若曲线y=f(x)在点(1,f(1))处的切线与直线3x﹣y﹣1=0平行,求实数a的值.(2)若函数F(x)=g(x)+x2①若函数F(x)有两个极值点,求a的取值范围②将函数F(x)的两个极值点记为s、t,且s<t,求证:﹣1<f(s)【分析】(1)求出f(x)的导数,解关于a的方程,求出a的值,检验即可;(2)①求出F(x)的导数,结合函数的极值的个数以及二次函数的性质求出a的范围即可;②求出s的范围,问题转化为证明lns﹣﹣+>0,根据函数的单调性证明即可.【解答】解:(1)f′(x)=lnx﹣ax+x(﹣a)=lnx﹣2ax+1﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(1分)f′(1)=1﹣2a,因为直线3x﹣y﹣1=0的斜率为3,所以1﹣2a=3,解得a=﹣1,﹣﹣(2分)经检验a=﹣1时,曲线y=f(x)在点(1,f(1))处的切线与直线3x﹣y﹣1=0平行,所以a=﹣1﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(3分)(2)①因为F(x)=lnx﹣2ax+1+x2,所以,F′(x)=﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分)若函数F(x)有两个极值点s、t,s<t,即h(x)=x2﹣2ax+1在(0,+∞)首先要存在两个相异零点s、t,由 h(x)=x2﹣2ax+1的系数可知 st=1>0,所以,,所以a>1,当0<x<s或x>t时,F′(x)>0,当s<x<t时F′(x)<0,所以F(x)有两个极值点s、t所以,若函数F(x)有两个极值点a的取值范围为(1,+∞)﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)②由前所述,易知s=a﹣=(a>1),所以 s∈(0,1)﹣﹣﹣﹣﹣(7分)又s2﹣2as+1=0,得:as=,f(s)=s(lns﹣as)=s(lns﹣)﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(8分)要证﹣1<f(s)只要证s(lns﹣)>﹣1即证lns﹣﹣+>0﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)设函数g(s)=lns﹣﹣+,0<s<1,g′(s)=,当0<s<1时,g′(s)<0,所以g(s)在区间(0,1)上是减函数,所以g(s)>g(1)=0,即 lns﹣﹣+>0,得证.﹣﹣﹣﹣﹣(12分)【点评】本题考查了切线方程问题,考查函数的单调性、最值问题,考查导数的应用,是一道中档题.。
海珠区2017-2018学年第一学期高三综合测试(一)理科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答题前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每个小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮搽干净后,再选涂其他答案标号,写在本试卷上无效. 3.回答第Ⅱ卷时,将答案写在答题卡上,答在本试题上无效. 4.考试结束,将答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每个小题给出的四个选项中,只有一项是符合题目要求的.(1)若复数z 满足(1i)2z +=,则z 的虚部为(A )1-(B )i -(C )i (D )1(2)已知集合2{|16},{|}A x x B x x m =<=<,若A B A =,则实数m 的取值范围是(A )[)4,-+∞ (B )[)4,+∞ (C )(,4]-∞- (D )(,4]-∞ (3)设偶函数()f x 的定义域为R ,当[)0,x ∈+∞时,()f x 是增函数,则 ()()()2,,3f f f π--的大小关系是 (A )()()()23f ff π-<<- (B )()()()23f f f π<-<-(C )()()()23f f f π-<-< (D )()()()32f f f π-<-<(4) 双曲线E 的中心在原点,离心率等于2,若它的一个顶点恰好是抛物线28y x =的焦点,则双曲线E 的虚轴长等于(A )4 (B (C ) (D )(5)某食品厂为了促销,制作了3种不同的精美卡片,每袋食品中随机装入一张卡片,集齐3种卡片可获奖,现购买该食品4袋,能获奖的概率为(A )427 (B )827 (C )49(D )89 (6)在ABC ∆中,内角,,A B C 的对边分别是,,a b c ,若12,s i n s i n s i n 2c a b B a A a C =-=,则sin B 为(A )4 (B )34 (C )3(D )13(7)公差不为0的等差数列{}n a 的部分项123,,k k k a a a ,…构成等比数列{}n k a ,且121,2,6k k k ===231,2,6k k k ===,则4k 为 (A )20 (B )22 (C )24 (D )28 (8)已知函数()ln f x x x =-,则()f x 的图像大致为(A ) (B ) (C ) (D )(9)若,x y 满足20400x y x y y -+≥⎧⎪+-≤⎨⎪>⎩,则2z y x =-的最大值为(A )8- (B )4- (C )1 (D )2 (10)执行如图所示的程序框图,则输出的结果为(A )1- (B )1 (C )2- (D )2 (11)过抛物线)0(22>=p px y 的焦点F 且倾斜角为60°的直线l与抛物线在第一、四象限分别交于A 、B 两点,则||||BF AF 的值等于(A )5 (B )4(C )3 (D )2(12)已知函数()cos sin f x x x =,给出下列四个说法:①函数()f x 的周期为π;②若12()()f x f x =,则Z k k x x ∈+=,21π;③()f x 在区间,44ππ⎡⎤-⎢⎥⎣⎦上单调递增;④()f x 的图象关于点,02π⎛⎫- ⎪⎝⎭中心对称.其中正确说法的个数是(A )3个 (B )2个 (C )1个 (D )0个第Ⅱ卷本卷包括必考题和选考题两个部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答. 二、填空题:本大题共4小题,每小题5分. (13)二项式6(2x 的展开式中常数项为_______.(14)已知4cos()35πα-=,则7sin()6πα+的值是_______. (15)如图所示是一个几何体的三视图,则这个几何体外接球的表面积为 . (16)已知△ABC 的外接圆的圆心为O ,若2A B A CA O +=,且AC A O =,则AB 与BC的夹角为 .三、解答题:解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分)已知数列{n a }的前n 项和为n S ,1a =1,0n a ≠,141n n n a a S +=-. (Ⅰ)求{}n a 的通项公式; (Ⅱ)证明: 12111...2nS S S +++<.(18)(本小题满分12分)社区服务是综合实践活动课程的重要内容.某市教育部门在全市高中学生中随机抽取200位学生参加社区服务的数据,按时间段[)75,80,[)80,85,[)85,90,[)90,95,[]95,100(单位:小时)进行统计,其频率分布直方图如图所示.(Ⅰ)求抽取的200位学生中,参加社区服务时间不少于90小时的学生人数,并估计从全市高中学生中任意选取一人,其参加社区服务时间不少于90小时的概率; (Ⅱ)从全市高中学生(人数很多)中任意选取3位学生,记X 为3位学生中参加社区服务时间不少于90小时的人数.试求随机变量X 的分布列和数学期望EX .(19)(本小题满分12分)如图,四棱锥S ABCD -中,//AB CD ,BC CD ⊥,2AB BC ==,1CD SD ==,侧面SAB 为等边三角形. (Ⅰ)证明:AB SD ⊥;(Ⅱ)求二面角A SB C --的正弦值.(20)(本小题满分12分)设椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为12,F F ,点(A 在椭圆上,且满足2120AF F F ⋅=. (Ⅰ)求椭圆C 的标准方程;(Ⅱ)动直线:l y kx m =+与椭圆C 交于,P Q 两点,且OP OQ ⊥,是否存在圆222x y r +=使得l 恰好是该圆的切线,若存在,求出r ;若不存在,说明理由.(21)(本小题满分12分) 已知函数()2ln (2a f x x x x x a a=--+ (Ⅰ)求a 的取值范围;(Ⅱ)设两个极值点分别为12,x x ,证明:212x x e ⋅>.请考生从第(22)、(23)、(24)三题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分.作答时请用2B 铅笔在答题卡上将所选题号后的方框涂黑. (22)(本小题满分10分)选修4—1:几何证明选讲如图,在ABC ∆中,CD 是ACB ∠的平分线,ACD ∆的外接圆交BC 于点E , 2AB AC =. (Ⅰ)求证:2BE AD =;(Ⅱ)当1AC =,2EC =时,求AD 的长.(23)(本小题满分10分)选修4-4:坐标系与参数方程已知在直角坐标系xoy 中,曲线C 的参数方程为()22cos ,2sin ,x y θθθ=+⎧⎨=⎩为参数,在极坐标系(与直角坐标系xoy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,直线l 的方程为sin 4πρθ⎛⎫+= ⎪⎝⎭(Ⅰ)求曲线C 在极坐标系中的方程;(Ⅱ)求直线l 被曲线C 截得的弦长.(24)(本小题满分10分)选修4-5:不等式选讲已知函数212)(--+=x x x f . (Ⅰ)解不等式0)(≥x f ;(Ⅱ)若存在实数x ,使得a x x f +≤)(,求实数a 的取值范围.海珠区2017-2018学年第一学期高三综合测试(一)第22题图 E D C BA理科数学试题答案及评分参考说明:1.参考答案与评分标准给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力比照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分.一、选择题(每小题5分,共12小题,共60分)二、填空题(每小题5分,共6小题,共20分) (13)60. (14)45- (15)32π (16)56π 三、解答题(共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) (17)(本小题满分12分)解:(I )由题设,112141,4 1.n n n n n n a a S a a S ++++=-=- 两式相减得121()4.n n n a a a a +++-= ………………1分由于10n a +≠,所以2 4.n n a a +-= ………………2分由题设,11a =,12141a a S =-,可得2 3.a = ………………3分故可得{}21n a -是首项为1,公差为4的等差数列,()2143=2211n a n n -=---;………………4分{}2n a 是首项为3,公差为4的等差数列,241=221n a n n =-⋅-. ………………5分所以()21n a n n N *=-∈. (6)分(Ⅱ)()21212n n n S n +-==,………………7分 当1n >时()2111111n n n n n<=---. ………………9分 2222121111111......123n S S S n+++=++++ 11111111...2112231n n n<+-+-++-=-- ………………11分121112nS S S ∴+++< ………………12分(18)(本小题满分12分) (1)根据题意,参加社区服务在时间段[)90,95的学生人数为2000.06560⨯⨯=(人); ………………1分参加社区服务在时间段[)95,100的学生人数为2000.02520⨯⨯=(人). ………………2分∴抽取的200位学生中,参加社区服务时间不少于90小时的学生人数为80人. ……………3分∴从全市高中学生中任意选取一人,其参加社区服务时间不少于90小时的概率为8022005P ==.……4分 (2)由(1)可知,从全市高中生中任意选取1人,其参加社区服务时间不少于90小时的概率为25. 由已知得,随机变量X 的可能取值为0,1,2,3, ………………5分则()03032327055125P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭;()12132354155125P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭; ()21232336255125P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭;()333238355125P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭.(每个等式给1分)……9分随机变量X 的分布列为………………10分(19)(本小题满分12分)解:(1)取AB 的中点E ,连接DE ,则四边形BCDE 为矩形, ∴BE DE ⊥, ………………1分 ∵SAB ∆为等边三角形,∴AB SE ⊥. ………………2分 ∵SEDE E =, ………………3分∴AB ⊥平面SED , ………………4分SD ⊂平面SED ,AB SD⊥. ………………5分(2)由(1)知,DE DC ⊥,过D 作DF ⊥平面ABCD ,则,,DE DC DF 两两垂直,分别以,,DE DC DF 的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系D xyz -,………………6分则(0,0,0),(2,1,0),(2,1,0),(0,1,0)D A B C -, ………………7分 ∵1,2,SD DE SE===∴SD SE ⊥,∴SD ⊥平面SAB , ∴1(2S ,1(2DS =. ………………8分 设平面SBC 的法向量为(,,)n x y z =. ∵1(,1,2SC =-,(2,0,0)BC =-, ∴20102n SC x n BC x y ⎧∙=-=⎪⎨∙=-+=⎪⎩,∴0x y =⎧⎪⎨=⎪⎩.取1z =,则3(0,,1)n =, ………………9分 设二面角A SB C --为θ,则32|cos |||7||||7DS n DS n θ∙=== ………………11分∴二面角A SB C --的正弦值sin θ. ………………12分 (20)(本小题满分12分)解:(1)∵2120AF F F ⋅=∴212AF F F ⊥, ∵A 在椭圆上,∴220221y c a b +=,解得20b y a=. ………………1分∴22222c ba ab c=⎧⎪⎪=⎨⎪=+⎪⎩,解得228,4,a b ==. ………………3分 ∴椭圆22:184x y C +=. ………………4分(2)设1122(,),(,)P x y Q x y ,将:l y kx m =+代入22:184x y C +=得 222(12)4280k x kmx m +++-=, ………………5分∵0∆>,∴22840k m -+>, ………………6分且122412km x x k +=-+,21222812m x x k -=-+,∴22221212121228()()()12m k y y kx m kx m k x x km x x m k -=++=+++=+,………………7分∵OP OQ ⊥,∴12120x x y y +=,即2222228801212m m k k k--+=++, ∴22388m k -=, ………………8分由23808m -≥和2840k m -+>,得283m ≥即可. ………………9分因为l 与圆222x y r +=相切,∴222||813m r k ==+, ………………11分 存在圆2283x y +=符合题意. ………………12分(21)(本小题满分12分) 解:(Ⅰ)依题,函数错误!未找到引用源。