2018-2019信阳市小学毕业数学总复习小升初模拟训练试卷8-9(共2套)附详细试题答案
- 格式:doc
- 大小:655.53 KB
- 文档页数:10
小升初数学综合模拟试卷3一、填空题:1.用简便方法计算下列各题:(2)1997×19961996-1996×19971997=______;(3)100+99-98-97+…+4+3-2-1=______.2.右面算式中A代表______,B代表______,C代表______,D代表______(A、B、C、D各代表一个数字,且互不相同).3.今年弟弟6岁,哥哥15岁,当两人的年龄和为65时,弟弟______岁.4.在某校周长400米的环形跑道上,每隔8米插一面红旗,然后在相邻两面红旗之间每隔2米插一面黄旗,应准备红旗______面,黄旗______面.5.在乘积1×2×3×…×98×99×100中,末尾有______个零.6.如图中,能看到的方砖有______块,看不到的方砖有______块.7.右图是一个矩形,长为10厘米,宽为5厘米,则阴影部分面积为______平方厘米.8.在已考的4次考试中,张明的平均成绩为90分(每次考试的满分是100分),为了使平均成绩尽快达到95分以上,他至少还要连考______次满分.9.现有一叠纸币,分别是贰元和伍元的纸币.把它分成钱数相等的两堆.第一堆中伍元纸币张数与贰元张数相等;第二堆中伍元与贰元的钱数相等.则这叠纸币至少有______元.10.甲、乙两人同时从相距30千米的两地出发,相向而行.甲每小时走3.5千米,乙每小时走2.5千米.与甲同时、同地、同向出发的还有一只狗,每小时跑5千米,狗碰到乙后就回头向甲跑去,碰到甲后又回头向乙跑去,……这只狗就这样往返于甲、乙之间直到二人相遇而止,则相遇时这只狗共跑了______千米.二、解答题:1.右图是某一个浅湖泊的平面图,图中曲线都是湖岸(1)若P点在岸上,则A点在岸上还是水中?(2)某人过这湖泊,他下水时脱鞋,上岸时穿鞋.若有一点B,他脱鞋的次数与穿鞋的次数和是奇数,那么B点在岸上还是水中?说明理由.2.将1~3000的整数按照下表的方式排列.用一长方形框出九个数,要使九个数的和等于(1)1997(2)2160(3)2142能否办到?若办不到,简单说明理由.若办得到,写出正方框里的最大数和最小数.3.甲、乙、丙、丁四个人比赛乒乓球,每两人要赛一场,结果甲胜了丁,并且甲、乙、丙三人胜的场数相同,问丁胜了几场?4.有四条弧线都是半径为3厘米的圆的一部分,它们成一个花瓶(如图).请你把这个花瓶切成几块,再重新组成一个正方形,并求这个正方形的面积.答案一、填空题:1.(1)(24)(2)(0)原式=1997×(19960000+1996)-1996×(19970000+1997)=1997×19960000+1997×1996-1996×19970000-1996×1997=0(3)(100)原式=(100-98)+(99-97)+…+(4-2)+(3-1)=2×50=1002.(1、0、9、8)由于被减数的千位是A,而减数与差的千位是0,所以A=1,“ABCD”至少是“ABC”的10倍,所以“CDC”至少是ABC的9倍.于是C=9.再从个位数字看出D=8,十位数字B=0.3.(28)(65-9)÷2=284.(50、150)40O÷8=50,8÷2-1=33×50=1505.(24)由2×5=10,所以要计算末尾的零只需数清前100个自然数中含质因数2和5的个数,而其中2的个数远远大于5的个数,所以含5的因数个数等于末尾零的个数.6.(36,55)由图观察发现:第一层能看到:1块,第二层能看到:2×2-1=3块,第三层:3×2-1=5块.上面六层共能看到方砖:1+3+5+7+9+11=36块.而上面六层共有:1+4+9+16+25+36=91块,所以看不到的方砖有91-36=55块.7.(25)8.(5)考虑已失分情况。
2019年信阳市小升初数学模拟试题(共4套)详细答案小升初数学综合模拟试卷一、填空。
(16分,每空1分)1、南水北调中线一期工程通水后,北京、天津、河北、河南四个省市沿线约60000000人将直接喝上水质优良的汉江水(横线上的数读作)。
其中河北省年均调水量配额为三十四亿七千万立方米(横线上的数写作,省略亿位后面的尾数,约是亿),2、直线上A 点表示的数是( ),B 点表示的数写成小数是( ), C 点表示的数写成分数是( )。
3、分数a8的分数单位是( ),当a 等于( )时,它是最小的假分数。
4、如下图,把一个平行四边形剪成一个三角形和一个梯形。
如果平行四边形的高是0.5厘米,那么三角形的面积是( )平方厘米,梯形的面积是( )平方厘米。
5、寒暑表中通常有两个刻度——摄氏度和华氏度,他们之间的换算关系是:摄氏度×59+32=华氏度。
当5摄氏度时,华氏度的值是();当摄氏度的值是()时,华氏度的值等于50。
6、赵明每天从家到学校上课,如果步行需要15分钟,如果骑自行车则只需要9分钟,他骑自行车的速度和步行的速度比是( )。
7、把一个高6.28厘米的圆柱的侧面展开得到一个正方形,这个圆柱的底面积是( )平方厘米。
8、按照下面图形与数的排列规律,下一个数应是( ),第n 个数是( )。
二、选择。
(把正确答案的序号填在括号里)(16分、每题2分)1、一根铁丝截成了两段,第一段长37米,第二段占全长的37。
两端铁丝的长度比较( ) A 、第一段长 B 、第二段长 C 、一样长 D 、无法比较2、数a 大于0而小于1,那么把a 、a 2、a1从小到大排列正确的是( )。
A 、a <a 2<a 1 B 、 a <a 1<a 2 C 、a 1<a <a 2 D 、a 2<a <a13、用同样大小的正方体摆成的物体,从正面看到,从上面看到,从左面看到( )。
A 、B 、C 、D 、无法确定4、一次小测验,甲的成绩是85分,比乙的成绩低9分,比丙的成绩高3分。
小升初数学试卷64一、判断题1、甲数比乙数少,乙数比甲数多.________(判断对错)2、分针转180°时,时针转30°________(判断对错)3、一个圆的周长小,它的面积就一定小.________(判断对错)4、495克盐水,有5克盐,含盐率为95%.________.(判断对错)5、一根木棒截成3段需要6分钟,则截成6段需要12分钟________(判断对错)6、要剪一个面积是9.42cm2的圆形纸片,至少要11cm2的正方形纸片.()(判断对错)二、选择题加填空题加简答题7、定义前运算:○与?已知A○B=A+B﹣1,A?B=A×B﹣1.x○(x?4)=30,求x.()A、B、C、8、一共有几个三角形________.9、一款东西120元,先涨价30%,再打8折,原来(120元),利润率为50%.则现在变为________%.10、水流增加对船的行驶时间()A、增加B、减小C、不增不减D、都有可能11、教室里有红黄蓝三盏灯,只有一个拉环,拉一次红灯亮,拉两次亮红灯和黄灯,拉三次三灯全亮,拉四次全部灭,现有编号1到100的同学,每个同学拉开关拉自己编号次灯.比如第一个同学拉一次,第二个同学拉两次,照此规律一百个同学拉完灯的状态是________.12、跳蚤市场琳琳卖书,两本每本60元,一本赚20%,一本亏20%,共()A、不亏不赚B、赚5元C、亏2元D、亏5元13、一张地图比例尺为1:30000000,甲、乙两地图上距离为6.5cm,实际距离为________千米.14、一个长方形的长和宽都为整数厘米,面积160有几种可能?15、环形跑道400米,小百、小合背向而行,小百速度是6米/秒,小合速度是4米/秒,当小百碰上小合时立即转向跑,小合不改变方向,小百追上小合时也立即转向跑,小合仍不改变方向,问两人第11次相遇时离起点多少米?(按较短距离算,追上和迎面都算相遇)16、甲、乙、丙合作一项工程,4天干了整个工程的,这4天内,除丙外,甲又休息了2天,乙休息了3天,之后三人合作完成,甲的效率是丙的3倍,乙的效率是丙的2倍.问工程前后一共用了多少天?17、以BD为边时,高20cm,以CD为边时,高14cm,▱ABCD周长为102厘米,求面积?18、100名学生去离学校33公里的地方,只有一辆载25人的车,车每小时行驶55公里,学生步行速度5km/h,求最快要多久到目的地?19、A、B、C、D四个数,每次计算三个数的平均值,这样计算四次,得出的平均数分别为29、28、32、36(未确定),求四个数的平均值.20、一根竹竿,一头伸进水里,有1.2米湿了,另一头伸进去,现没湿部分是全长的一半少0.4米,求没湿部分的长度.21、货车每小时40km,客车每小时60km,A、B两地相距360km,同时同向从甲地开往乙地,客车到乙地休息了半小时后立即返回甲地,问从甲地出发后几小时两车相遇?22、欢欢与乐乐月工资相同,欢欢每月存30%,乐乐月开支比欢欢多10%,剩下的存入银行1年(12个月)后,欢欢比乐乐多存了5880元,求欢欢、乐乐月工资为多少?23、小明周末去爬山,他上山4千米/时,下上5千米/时,问他上下山的平均速度是多少?24、一个棱长为1的正方体,按水平向任意尺寸切成3段,再竖着按任意尺寸切成4段,求表面积.25、一个圆柱和一个圆锥底面积比为2:3,体积比为5:6,求高的比.三、计算题26、计算题.0.36:8=x:2515÷[()]﹣0.591× ﹣1÷13×100+9× +11 ÷11[22.5+(3 +1.8+1.21× )]+ + + +…+答案解析部分一、<b >判断题</b>1、【答案】错误【考点】分数的意义、读写及分类【解析】【解答】解:把乙数看作5份数,甲数就是5﹣3=2份数(5﹣2)÷2= .答:乙数比甲数多.故答案为:错误.【分析】甲数比乙数少,把乙数看作5份数,那么甲数就是5﹣3=2份数;要求乙数比甲数多几分之几,需把甲数看作单位“1”,也就是求乙数比甲数多的部分占甲数的几分之几,列式计算后再判断得解.2、【答案】错误【考点】角的概念及其分类【解析】【解答】解:180÷6×0.5=30×0.5=15(度)答:分针转180°时,时针转15度.故答案为:错误.【分析】1分钟分针旋转的度数是6度,依此先求出分针转180度需要的时间,时针1分钟旋转的度数是0.5度,乘以求出的分钟数,即可得到时针旋转的度数.3、【答案】正确【考点】圆、圆环的周长,圆、圆环的面积【解析】【解答】解:半径确定圆的大小,周长小的圆,半径就小,所以面积也小.所以原题说法正确.故答案为:正确.【分析】圆的半径的大小确定圆的面积的大小;半径大的圆的面积就大;圆的周长=2πr,周长小的圆,它的半径就小.由此即可判断.4、【答案】错误【考点】百分率应用题【解析】【解答】解:5÷495×100%≈1%答:含盐率约是1%.故答案为:错误.【分析】495克盐水,有5克盐,根据分数的意义可知,用含盐量除以盐水总量即得含盐率是多少.5、【答案】错误【考点】整数四则混合运算,整数、小数复合应用题,比例的应用【解析】【解答】解:6÷(3﹣1)=6÷2=3(分钟)3×(6﹣1)=3×5=15(分钟)15>12故答案为:错误.【分析】截成3段需要需要截2次,需要6分钟,由此求出截一次需要多少分钟;截成6段,需要截5次,再乘截一次需要的时间就是截成6段需要的时间,然后与12分钟比较即可.6、【答案】错误【考点】长方形、正方形的面积,圆、圆环的面积【解析】【解答】解:小正方形的面积(半径的平方):9.42÷3.14=3(平方厘米),大正方形的面积:3×4=12(平方厘米);答:至少需要一张12平方厘米的正方形纸片.故答案为:错误.【分析】要剪一个面积是9.42平方厘米的圆形纸片,需要的正方形纸片的边长是圆的直径,知道圆的面积可以求半径的平方,把正方形用互相垂直的圆的两个直径分成4个小正方形,则每个小正方形的面积都为圆的半径的平方,进而可求大正方形的面积.二、<b >选择题加填空题加简答题</b>7、【答案】B【考点】定义新运算【解析】【解答】解:x○(x?4)=30x○(4x﹣1)=30x+4x﹣1﹣1=305x=32x= .故选:B.【分析】根据题意可知,A○B=A+B﹣1,表示两个数的和减1,A?B=A×B﹣1表示两个数的积减1;根据这种新运算进行解答即可.8、【答案】37【考点】组合图形的计数【解析】【解答】解:根据题干分析可得:顶点O在上面的三角形,一共有5+4+3+2+1=15(个)顶点O在左边的三角形一共有6+5+4+3+2+1=21(个)15+21+1=37(个)答:一共有37个三角形.故答案为:37.【分析】先看顶点O在上面的三角形,一共有5+4+3+2+1=15个三角形,再看顶点O在左边的三角形一共有6+5+4+3+2+1=21个,据此加起来,再加上大三角形即可解答问题.9、【答案】56【考点】百分数的实际应用【解析】【解答】解:120×(1+30%)×80%=120×130%×80%=124.8(元)120÷(1+50%)=120÷150%=80(元)(124.8﹣80)÷80=44.8÷80=56%答:现在利润率是56%.故答案为:56.【分析】将原价当作单位“1”,则先涨价30%后的价格是原价的1+30%,再打八折,即按涨价后价格的80%出售,则此时价格是原价的(1+30%)×80%,又原来利润是50%,则原来售价是进价的1+50%,则进价是120÷(1+50%)=80元,又现在售价是120×(1+30%)×80%=124.8元,则此时利润是124.8﹣80元,利润率是(124.8﹣80)÷80.10、【答案】D【考点】简单的行程问题【解析】【解答】解:分三种情况:1.小船船头垂直于河岸时,小船行驶时间不增不减,所以C正确;2.当小船顺水而下时,船速加快,时间减少,所以B正确;3.当小船逆水而上时,船速减慢,时间增加,所以A正确;故选:D.【分析】此题分几种情况:1.小船船头垂直于河岸时,由于船的实际运动与沿船头指向的分运动同时发生,时间相等,故水流速度对小船的渡河时间无影响,2.当小船顺水而下时,船速等于静水速度加水速,速度加快,路程不变时,时间减少,3.当小船逆水而上时,船速等于静水时速度减水速,所以船速减慢,时间增加.所以三种情况都可能出现,据此解答.11、【答案】第100个同学拉之前,灯不可能全灭.应该是总次数1+2+3+.+100=5050 5050÷4=1262.2就是第二次的状态,红灯和黄灯亮【考点】奇偶性问题【解析】【解答】解:第100个同学拉之前,灯不可能全灭.应该是总次数1+2+3+.+100=5050,5050÷4=1262(次)…2,就是第二次的状态,红灯和黄灯亮.故答案为:第100个同学拉之前,灯不可能全灭.应该是总次数1+2+3+.+100=5050 5050÷4=1262.2就是第二次的状态,红灯和黄灯亮.【分析】把按4次看成一次操作,这一次操作中按第一次第一盏灯亮,按两次第二盏灯亮,按三次两盏灯全亮,再按一次两盏灯全灭;求出100里面有几个这样的操作,还余几,然后根据余数推算.12、【答案】D【考点】百分数的实际应用【解析】【解答】解:设两本书的原价分别为x元,y元则:x(1+20%)=60y(1﹣20%)=60解得:x=50y=75所以两本书的原价和为:x+y=125元而售价为2×60=120元所以她亏了5元【分析】两本每本卖60元,一本赚20%,一本亏20%,要求出两本书的原价.13、【答案】1950【考点】比例尺【解析】【解答】解:6.5÷ =195000000(厘米),195000000厘米=1950千米;答:实际距离是19500千米.故答案为:1950.【分析】要求实际距离是多少千米,根据“图上距离÷比例尺=实际距离”,代入数值计算即可.14、【答案】解:因为160=1×160=2×80=4×40=5×32=8×20=16×10,所以这个长方形的长与宽有6种可能.答:面积是160有6种可能.【考点】长方形、正方形的面积【解析】【分析】根据长方形的面积公式S=长×宽,长×宽=160,根据160=1×160=2×80=4×40=5×32=8×20=16×10,据此即可解答问题.15、【答案】解:400÷(6+4)=400÷10=40(秒)40×4×11÷400=160×11÷400=1760÷400=4(圈)…160(米)答:第11次相遇时离起点160米.【考点】相遇问题【解析】【分析】根据题意可知小合一直是沿同一方向前进,每一次相遇用的时间根据时间=路程÷速度和可求出,再乘小合的速度信相遇次数,可知小合共行的路程,再除以环形跑道的长度,看余数可求出离起点的距离,据此解答.16、【答案】解:× ÷4 = ÷4= ,×3= ,×2= ,4+2+3+[1﹣﹣×(2+3)﹣×3﹣×2]÷(+ + )=9+[1﹣﹣﹣﹣]÷=9+5=14(天)答:完成这项工程前后需要14天【考点】工程问题【解析】【分析】由于甲的效率是丙的3倍,乙的效率是丙的2倍,将丙的工作效率当作单位“1”,则甲、乙、丙三人的效率比是3:2:1,又4天干了整个工程的,则丙完成了这4天内所做工程的= ,即完成了全部工程的× = ,所以丙每天能完成全部工作的÷4= ,则甲每天完成全部工程的×3= ,丙每天完成全部工程的×2= .又然后除丙外,甲休息了2天,乙休息了3天,则这2+3=5天内,丙完成了全部工程的×5= ,甲完成了全部工程的×3= ,乙完成全部工作的×2= ,此时还剩下全部的1﹣﹣﹣﹣,三人的效率和是+ + ,所以此后三人合作还需要(1﹣﹣﹣﹣)÷(+ + )天完成,则将此工程前后共用了4+2+3+(1﹣﹣﹣﹣)÷(+ + )天.17、【答案】解:CD边上的高与BD边上的高的比是:14:20= ;平行四边形的底CD为:102÷(1 )÷2=102=102×=30(厘米);平行四边形的面积为:30×14=420(平方厘米);答:平行四边形的面积是420平方厘米【考点】组合图形的面积【解析】【分析】平行四边形的对边平行且相等,平行四边形的面积=底×高,由CD边上的高与BD边上的高的比等于CD与BD的反比,已知周长求出平行四边形的底,再利用面积公式解答.18、【答案】解:(33÷9)×3÷5+(33÷9)×6÷55 = += (小时)答:最快要小时到目的地【考点】简单的行程问题【解析】【分析】如图:AB是两地距离33公里,100个人被分成4组,每组是25人,第一组直接从A开始上车被放在P1点;汽车回到C2接到第2组放在了P2点;下面都是一样,最后一组是在C4接到的,直接送到B点;我们知道,这4组都是同时达到B点,时间才会最短;那么其4个组步行的距离都是一样的;当第一组被送到P1点时,回到C2点这段时间,另外三个组都步行到了C2,根据速度比=路程之比=55:5=11:1;我们把接到每组之间的步行距离看作单位1,那么汽车从出发到返回P2就是11个单位;那么出发点A到P1就是(11+1)÷2=6个单位;因为步行的距离相等,所以2段对称;(例如第一组:步行的距离是P1到B点3份,最后一组是A到C4也是三段距离是3份);所以以第一组为例,它步行了后面的3份,乘车行了前面的6份,可见全程被分为9份,每份是33÷9=千米,步行速度是5千米每小时,时间就是(3×)÷5=小时;乘车速度是55千米每小时,时间就是(6× )÷55= 小时;合计就是小时.19、【答案】解:A、B、C、D四个数的和的3倍:29×3+28×3+32×3+36×3=87+84+96+108=375A、B、C、D四个数的和:375÷3=125;四个数的平均数:125÷4=31.25.答:4个数的平均数是31.25【考点】平均数问题【解析】【分析】根据余下的三个数的平均数:29、28、32、36,可求出A、B、C、D四个数的和的3倍,再除以3得A、B、C、D四个数的和,再用和除以4即得4个数的平均数.20、【答案】解:设这根竹竿长x米.则有x﹣1.2×2=﹣=2,则x=4,没浸湿的部分是:4÷2﹣0.4=1.6(米);答:这根竹竿没有浸湿的部分长1.6米【考点】整数、小数复合应用题【解析】【分析】设这根竹竿长x米,则两次浸湿部分都应是1.2米,两次共浸湿了1.2×2=2.4米,没浸湿的部分是(x﹣2.4)米;再由“没有浸湿的部分比全长的一半还少0.4米”可知,没浸湿的部分是(﹣0.4)米,没浸湿的部分是相等的,据此可得等式:x﹣2.4=﹣0.4,解出此方程,问题就得解.21、【答案】解:客车从甲地出发到达乙地后再停留半小时,共用的时间:360÷60+0.5=6+0.5=6.5(小时)(360﹣40×6.5)÷(60+40)=(360﹣260)÷100=100÷100=1(小时)6.5+1=7.5(小时)答:从甲地出发后7.5小时两车相遇。
小升初数学综合模拟试卷28一、填空题:2.有一些数字卡片,上面写的数都是2的倍数或3的倍数,其中2的卡片共有______张.3.A、B、C、D、E、F六个点在同一圆周上,任取其中三点,以这三点为顶点组成一个三角形,在这样的三角形中,以A、B两点中至少一点为顶点的三角形共有______个.中点.则阴影部分的面积是______平方厘米.6.甲、乙两人分别从A、B两地同时出发,相向而行,甲的速度是乙的速度的2倍。
两个相遇后继续往前走,各自到达B、A后立即返回.已知两人第二次相遇的地点距第一次相遇地点是12千米,那么A、B两地相距______千米.7.下面是按规律排列的三角形数阵:那么第1997行的左起第三个数是______.8.分子和分母相乘的积是2100的最简真分数共有______个.9.有一块长36厘米,宽16厘米的长方形材料,要剪截成小长方形(不能接拼).现有两种方案,方案甲:都截成长10厘米,宽4厘米的小长方形;方案乙:都截成长10厘米,宽6厘米的小长方形.采用方案______可使余下材料的面积最小,余下材料的面积是______平方厘米,请画出你的剪截方案.10.用0到3可以组成许多没有重复数字的四位数,则所有这些四位数的平均数是______.二、解答题:2.三个数分别是189,456,372,请再写一个比996大的三位数,使这四个数的平均数是一个整数,则所写的三位数是多少?4.有甲、乙、丙三个足球队,两两比赛一场,共比赛了三场球,每个队的比赛结果如图所示,那么这三场球赛的具体比分是多少?答案一、填空题:1.36=38-2=362.30由于2、3的最小公倍数是6,所以2、3的倍数的卡片里都包含了6所以卡片总数是3.16以A为顶点,但不包括B为顶点的三角形共有3+2+ 1= 6个,同理,以B为顶点,但不包括A为顶点的三角形也是6个;以A、B为顶点的三角形是4个,所以以A、B两点中至少一点为顶点的三角形共有:6×2+ 4= 16(个)5.5又因为F是AD的中点,连结FC,所以(平方厘米)于是S△EFC=(S△ABF+S△AFC)-S△ABE=6-4=2(平方厘米)而S△DFC=S△AEF+S△EFC=1+2=3(平方厘米)所以S阴影=S△EFC+S△DFC=2+3=5(平方厘米)6.18设甲、乙第一次相遇地点是C,第二次相遇地点是D.由于甲的速度是乙的速度的2倍,在相同时间里,甲行的路程是乙行的路程的2倍.设AB 为x,BC+BD=2(AC+AD)即 2BC+CD=2(2AC-CD)x=187.1991010第三行左起第三个数是1第四行左起第三个数是3=1+2第五行左起第三个数是6=1+2+3第六行左起第三个数是10=1+2+3+4……所以第1997行左起第三个数是:1+ 2+ 3+ 4+ …+ 1995= 19910108.8因为2100= 22×3×52×7,所以分子和分母乘积是2100的最简真分9.方案乙,余下材料36平方厘米,剪截方案如图.采用方案乙可使余下的材料的面积最小,最小面积是:36×16-10×6×9=36(平方厘米).10.2148首位是1的四位数有6个,它们是:1023,1032,1203,1230,1302,1320;同样首位是2或3的四位数各有6个,有:2013,2031,2103,2130,2301,2310;3012,3021,3102,3120,3201,3210.所有这些四位数的平均数是:[(1+ 2+ 3)×6×1000+(1+ 2+ 3)×4×100+ (1+ 2+ 3)×4×10+(1+2+3)×4]÷18=[36000+6×444] ÷18=38664÷18=2148二、解答题:1. a=1722.所写的三位数是999.要使这四个数的平均数是一个整数,则这四个数的和必是4的倍数.因为189+456+372=1017,1017÷4=254…1.只有找出比996大且被4除余3的三位数,才能符合题目要求,由于999÷4=249 (3)这时有189+ 456+ 372+ 999= 2016,4|2016.所以所写的三位数是999.3.剩下的数是1.=1所以最后剩下的数是1.4.甲与乙,乙与丙,甲与丙都是3∶1甲队失2球,不会全失于乙队,如果是,由于乙队一共进4球,另外2个球是胜丙的,而丙队进2球,所以乙与丙成2∶2平局,与已知矛盾,甲队失2球,也不全失于丙队,如果是,乙进的4个球全是胜丙队,乙队与丙队是4∶0,这样丙队还有2个球是失甲队,甲队与丙队变成2∶2平局,与已知矛盾,所以甲队各失1球于乙、丙.乙共进4个球,另外3个球是胜丙,丙进2个球,另一球是胜乙的,所以乙与丙是3∶1.丙共失6个球,失了乙队3个,另3个失给甲队,所以甲与丙是3∶1.乙队失4个球,一球失于丙队,另三个球失于甲队,所以甲与乙是3∶1.小升初数学综合模拟试卷29一、填空题:2.3支铅笔和8支圆珠笔的价钱是11.9元,7支铅笔和6支圆珠笔的价钱是11.3元,一支铅笔和一支钢笔的价钱是______元.3.比较下面两个积的大小:A=9.5876×1.23456,B=9.5875×1.23457,则A______B.第______个分数.5.从1,2,3,4,…,1997这些自然数中,最多可以取______个数,能使这些数中任意两个数的差都不等于8.6.用1至9这九个数字每个数字各一次,组成三个能被9整除的三位数,要求这三个数的和尽可能大,这三个数分别是______.7.如图,AD=DE=EC,F是BC中点,G是FC中点,如果三角形ABC的面积是24平方厘米,则阴影部分是______平方厘米.8.某次考试,A、B、C、D、E五人的平均成绩是90分,A、B两人的平均成绩是96分,C、D两人的平均成绩是92.5分,A、D两人的平均成绩是97.5分,且C比D得分少15分,则B的分数是______.9.某年级学生人数在200至250之间,若列队4人一排余1人,5人一排余3人,6人一排余5人,则这个年级有______名学生.10.商店用相同的费用购进甲、乙两种不同的糖果.已知甲种糖果每公斤18元,乙种糖果每公斤12元,如果把这两种糖果混在一起成为什锦糖,那么这种糖每公斤的成本是______元.二、解答题:1.有一个棱长是10厘米的正方体木块,在它的上、左、前三个面中心分别穿一个3厘米见方的孔,直至对面.求穿孔后木块的体积.2.分母是964的最简真分数共有多少个?3.一个城市交通道路如图,数字表示各段路的路程(单位:千米),求出图中从A到F的最短路程.4.两名运动员在长为30米的游泳池里来回游泳,甲的速度是每秒游1米,乙的速度每秒0.6米,他们同时分别从游泳池的两端出发,来回共游了10分,如果不计转身时间,那么这段时间内共相遇多少次?答案一、填空题:2.1.8由3支铅笔+8支圆珠笔=11.9元7支铅笔+ 6支圆珠笔=11.3元得21支铅笔+ 56支圆珠笔= 83.3元21支铅笔+ 18支圆珠笔=33.9元(56- 18)支圆珠笔=83.3-33.91支圆珠笔= 1.3元所以1支铅笔= (11.9- 1.3×8)÷3=0.5(元)故1支铅笔和1支钢笔的价钱是1.8元.3.>A=9.5875×1.23456+0.0001×1.23456B=9.5875×1.23456+9.5875×0.00001因为 0.0001×1.23456>9.5875×0.00001所以A>B.将分母相同的分成一组,第1组1个数,第2组3个数,第3组5个数,……,从第2组起每一组比前一组多2个数,每一组分子的规律从1开始逐项加1,和倒数第6个分数,在这串数中是5.1000每16个连续自然数中,最多可以取8个数,使得每两个数的差不等于8.1997÷16=124 (13)把1至1997的自然数分成每16个连续自然数一组,最后剩13个数为一组,共组成125组.即1,2,3,4, (16)17, 18, 19, 20,…, 32;33,34,35,36, (48)…1969,1967,1968, (1984)1985,1986, (1997)每一组中取前8个数,共取出8×125=1000(个)使得其中任意两个数的差都不等于8.6.954、873、6211+ 2+ 3+ …+ 9= 45= 9×5,有5个9,由于每个三位数的各个数位上的数字之和不会超过3个9,所以这三个三位数的每一个数位上数字之和只能分别是9、 18、 18(合起来是5个9).要使这三个三位数的和尽可能大,各个数位上的数字之和是9的最大三位数是621,另两个数只能由9、8、7、5、4、3组成,显然百位应尽可能大,得到954、873.所以这三个数分别是954、873、621.7.14因为AD= DE= EC,所以又因为BF=FC,所以由于FG=GC,所以S阴影面积=S△ABD+S△DFE+S△GCE=8+4+2=14(平方厘米)8.97E得分是:90 × 5-96 × 2-92.5 × 2=73(分);C得分是:(92.5×2-15)÷2=85(分);D得分是:85+15=100(分);A得分是:97.5×2-100=95(分);B得分是:96×2-95=97(分).9.233人被4除余1的自然数有5,9,13,17,21,25,…,其中被5除余3的自然数有13,33,53,73,…,(相邻两数后一个数比前一个多20),其中被6除余5的自然数有53,…,且53是被4除余1,被5除余3,被6除余5的最小的一个,又4、5、6的最小公倍数是60,符合上述条件的任意整数写成60n+53,n是整数,所以这个年级的人数为:n=3,60×3+53=233(人)10.14.412、18的最小公倍数是36.为了解题方便,假设分别用36元购进甲、乙两种糖果,可购进甲种糖果36÷18=2公斤,购进乙种糖果36÷12=3公斤,两种糖果混合后总价是36×2元,总重量2+3公斤,得到什锦糖的成本是:36×2÷(2+3)=14.4(元)二、解答题:1.穿孔后木块的体积是784立方厘米.穿一个孔的体积是3×3×10=90立方厘米,穿三个孔时,体积应是:90×3-3×3×3×2=216(立方厘米)所以穿孔后木块的体积是:10×10×10-216=784(立方厘米)2.分母是964的最简真分数有480个.因为964=22×241.所以分母是964的最简真分数中不能有偶数及241的倍数,小于964的偶数有964÷2-1=481个,是241的倍数有3个,其中482是偶数,分母是964的最简真分数有:963-481-3+1=480(个)3.从A到F的最短路程是13千米从A到F有许多条路,要确定一条最短的路线,可以采用排除的方法,逐步去掉比较长的道路,最后确定一条由A到F的最短路线,根据图中给出的路程的长度,有些明显较长的路可以不去考虑.从A出发到F,有三条路线相对较短,沿AIHGF路线走,它的长度是:7+1+5+2=15(千米)沿ABCEF路线走,它的长度是.5+2+5+2=14(千米)沿AJKGF路线走,它的长度是:5+4+2+2=13(千米)所以从A到F的最短路程是13千米.4.10分钟内共相遇20次甲游30米需要30÷1=30秒,乙游30米需要30÷0.6=50秒,经过150秒,甲、乙两人同时游到两端,每隔150秒他们相遇的情况重复出现.如图,实线表示甲,虚线表示乙,两线的交点就是甲、乙相遇的地点(游泳池的两端用两条线段表示),可以看出经过150秒,甲游了5个30米,乙游了3个30米,共相遇了5次.以150秒为一个周期,10分钟是600秒,600÷150=4,有4个150秒,所以在10分钟内相遇的次数是:5×4=20(次).。
小升初数学综合模拟试卷5一、填空题:1.一个学生用计算器算题,在最后一步应除以10,错误的乘以10了,因此得出的错误答数500,正确答案应是______.2.把0,1,2,…,9十个数字填入下面的小方格中,使三个算式都成立:□+□=□□-□=□□×□=□□3.两个两位自然数,它们的最大公约数是8,最小公倍数是96,这两个自然数的和是______.4.一本数学辞典售价a元,利润是成本的20%,如果把利润提高到30%,那么应提高售价______元.5.图中有______个梯形.6.小莉8点整出门,步行去12千米远的同学家,她步行速度是每小时3千米,但她每走50分钟就要休息10分钟.则她______时到达.7.一天甲、乙、丙三个同学做数学题.已知甲比乙多做了6道,丙做的是甲的2倍,比乙多22道,则他们一共做了______道数学题.8.在右图的长方形内,有四对正方形(标号相同的两个正方形为一对),每一对是相同的正方形,那么中间这个小正方形(阴影部分)的面积为______.9.有a、b两条绳,第一次剪去a的2/5,b的2/3;第二次剪去a绳剩下的2/3,b绳剩下的2/5;第三次剪去a绳剩下的2/5,b绳的剩下部分的2/3,最后a剩下的长度与b剩下的长度之比为2∶1,则原来两绳长度的比为______.10.有黑、白、黄色袜子各10只,不用眼睛看,任意地取出袜子来,使得至少有两双袜子不同色,那么至少要取出______只袜子.二、解答题:1.字母A、B、C、D、E和数字1997分别按下列方式变动其次序:A B C D E 1 9 9 7B C D E A 9 9 7 1(第一次变动)C D E A B 9 7 1 9(第二次变动)D E A B C 7 1 9 9(第三次变动)……问最少经过几次变动后ABCDE1997将重新出现?2.把下面各循环小数化成分数:3.如图所示的四个圆形跑道,每个跑道的长都是1千米,A、B、C、D 四位运动员同时从交点O出发,分别沿四个跑道跑步,他们的速度分别是每小时4千米,每小时8千米,每小时6千米,每小时12千米.问从出发到四人再次相遇,四人共跑了多少千米?4.某路公共汽车,包括起点和终点共有15个车站,有一辆车除终点外,每一站上车的乘客中,恰好有一位乘客到以后的每一站下车,为了使每位乘客都有座位,问这辆公共汽车最少要有多少个座位?答案一、填空题:1.(5)500÷10÷10=52.(1+7=8,9-3=6,4×5=20)首先考虑0只能出现在乘积式中.即分析2×5,4×5,5×6,8×5几种情况.最后得以上结论.3.(56)96÷8=12=3×4,所以两个数为8×3=24,4×8=32,和为32+24=56.5.(210)梯形的总数为:BC上线段总数×BD上线段总数,即(4+3+2+1)×(6+5+4+3+2+1)=2106.(中午12点40分)3千米/小时=0.05千米/分,0.05×50=2.5千米,即每小时她走2.5千米.12÷2.5=4.8,即4小时后她走4×2.5=10千米.(12-10)÷0.05=40(分),最后不许休息,即共用4小时40分.7.(58)画图分析可得22-6=16为甲做题数,所以可得乙10道,丙16×2=32道,一共16+10+32=58(道).8.(36)长方形的宽是“一”与“二”两个正方形的边长之和.长方形的长是“一”、“二”、“三”三个正方形的边长之和.长-宽=30-22=8是“三”正方形的边长.宽又是两个“三”正方形与中间小正方形的边长之和,因此中间小正方形边长=22-8×2=6,中间小正方形面积=6×6=36.9.(10∶9)10.(13)考虑最坏的情形,把某一种颜色的袜子全部先取出,然后,在剩下两色袜子中各取出一只,这时再任意取一只都必将有两双袜子不同色,即10+2+1=13(只).二、解答题:1.(20)由变动规律知,A、B、C、D、E经5次变动重新出现,而1997经过4次即重新出现,故要使ABCDE1997重新出现最少需20次(即4和5的最小公倍数.)3.(15千米)4.(56个)本题可列表解.除终点,我们将车站编号列表:共需座位:14+12+10+8+6+4+2=56(个)小升初数学综合模拟试卷6一、填空题:1.1997+199.7+19.97+1.997=______.3.如图,ABCD是长方形,长(AD)为8.4厘米,宽(AB)为5厘米,ABEF是平行四边形.如果DH长4厘米,那么图中阴影部分面积是______平方厘米.4.将一个三位数的个位数字与百位数字对调位置,得到一个新的三位数.已知这两个三位数的乘积等于52605,那么,这两个三位数的和等于______.5.如果一个整数,与l,2,3这三个数,通过加、减、乘、除运算(可以添加括号)组成算式,能使结果等于24,那么这个整数就称为可用的.在4,7,9,11,17,20,22,25,31,34这十个数中,可用的数有______个.6.将八个数从左到右列成一行,从第三个数开始,每个数都恰好等于它前面两个数之和,如果第7个数和第8个数分别是81,131,那么第一个数是______.7.用1~9这九个数码可以组成362880个没有重复数字的九位数.那么,这些数的最大公约数是______.8.在下面四个算式中,最大的得数是______.9.在右边四个算式的四个方框内,分别填上加、减、乘、除四种运算符号,使得到的四个算式的答数之和尽可能大,那么,这个6□0.3=0和等于______.10.小强从甲地到乙地,每小时走9千米,他先向乙地走1分,又调头反向走3分又调头走5分,再调头走7分,依次下去,如果甲、乙两地相距600米,小强过______.分可到达乙地.二、解答题:1.水结成冰后,体积增大它的十一分之一.问:冰化成水后,体积减少它的几分之几?辆和小卡车5辆一次恰好运完这批货物.问:只用一种卡车运这批货物,小卡车要比大卡车多用几辆?4.在一个神话故事中,有一只小兔子住在一个周长为1千米的神湖旁,A、B两点把这个神湖分成两部分(如图).已知小兔子从B点出发,沿逆休息,那么就会经过特别通道AB滑到B点,从B点继续跳.它每经过一次特别通道,神湖半径就扩大一倍.现知小兔子共休息了1000次,这时,神湖周长是多少千米?答案一、填空题:1.2218.667.2.423.3.31.平行四边形ABEF的底是长方形的宽,平行四边形的高是长方形的长,因此,平行四边形面积=长方形面积=8.4×5=42(平方厘米),三角形ABH的高是HA,它的长度是8.4—4=4.4(厘米),三角形ABH面积=5×4.4÷2=11(平方厘米),阴影部分面积=(平行四边形面积)-(三角形ABH面积)=42-11=31(平方厘米).4.606.所以,105+501=606.5.9.1×2×3×4=24;7×3+(2+1)=24;9×(2+1)-3=24;11×2+3-1=24;1+2×3+17=24;20+2+3-1=24;22+3+1-2=24;(25-1)×(3-2)=24;31-2×3-1=24;但是,1,2,3,34无法组成结果是24的算式.所以,4,7,9,11,17,20,22,25,31这九个数是可用的.由这排数的排列规则知:第8个数=第6个数+第7个数,所以,第6个数=第8个数-第7个数=131-81=50.同理,第5个数=第7个数-第6个数=81-50=31,第4个数=50—31= 19,第3个数=31—19=12,第2个数=19—12=7,第1个数=12—7=5.7.9.1+2+…+9=45,因而9是这些数的公约数,又因123456789和123456798这两个数只差9,这两个数的最大公约数是9.所以9是这些数的最大公约数.现在比较三个括号中的分数的大小.注意这些分数的特点,用同分子的要使四个算式答数尽可能大,除数和减数应取较小的数,乘数和加数应取较大的数.比较(6÷0.3)+(6—0.3)和(6—0.3)+(6÷0.3)的大小知,0.3前10.24.小强每分钟走150米,向乙地方向所走的距离(从甲地算起),依次是:第1分钟走150米;又3分钟反向,5分钟向乙地,其中3分钟向乙地与3分钟反向抵消,实际这8分钟只向乙地走了150×2=300(米),即有前9分钟向乙地走了150+300=450(米);反向走7分钟,只需再向乙地走8分钟,即再走15分钟,就可走完最后150米.二、解答题:2.9辆.3.1997.4.128千米.把周长为1千米的神湖8等分,每一等分算作一段,小兔子休息一次已跳3段,休息4次已跳12段,恰好一周半,第4次休息时正好在A点,于是经过特别通道到B点,此时神湖周长变成2千米;我们再把新的神湖分成16段,现在小兔子休息到8次,共跳了24段才在A点休息,……,如此继续下去,休息到16次,32次,64次,128次,小兔子才在A点休息.参看下表:因为:4+8+16+32+64+128+256=508<10004+8+16+32+64+128+256+512>1000所以小兔子休息1000次,有7次休息恰好在A点,此时神湖周长是128千米.所以休息1000次后,神湖周长是128千米.。
小升初数学综合模拟试卷4一、填空题:1.41.2×8.1+11×9.25+537×0.19=______.2.在下边乘法算式中,被乘数是______.3.小惠今年6岁,爸爸今年年龄是她的5倍,______年后,爸爸年龄是小惠的3倍.4.图中多边形的周长是______厘米.5.甲、乙两数的最大公约数是75,最小公倍数是450.若它们的差最小,则两个数为______和______.6.鸡与兔共有60只,鸡的脚数比兔的脚数多30只,则鸡有______只,兔有______只.7.师徒加工同一种零件,各人把产品放在自己的筐中,师傅产量是徒弟的2倍,师傅的产品放在4只筐中.徒弟产品放在2只筐中,每只筐都标明了产品数量:78,94,86,77,92,80.其中数量为______和______2只筐的产品是徒弟制造的.8.一条街上,一个骑车人与一个步行人同向而行,骑车人的速度是步行人速度的3倍,每隔10分钟有一辆公共汽车超过行人,每隔20分钟有一辆公共汽车超过骑车人.如果公共汽车从始发站每次间隔同样的时间发一辆车,那么间隔______分发一辆公共汽车.9.一本书的页码是连续的自然数,1,2,3,…,当将这些页码加起来的时候,某个页码被加了两次,得到不正确的结果1997,则这个被加了两次的页码是______.10.四个不同的真分数的分子都是1,它们的分母有两个是奇数,两个是偶数,而且两个分母是奇数的分数之和等于两个分母是偶数的分数之和.这样的两个偶数之和至少为______.二、解答题:1.把任意三角形分成三个小三角形,使它们的面积的比是2∶3∶5.2.如图,把四边形ABCD的各边延长,使得AB=BA′,BC=CB′CD=DC′,DAAD′,得到一个大的四边形A′B′C′D′,若四边形ABCD的面积是1,求四边形A′B′C′D′的面积.3.如图,甲、乙、丙三个互相咬合的齿轮,若使甲轮转5圈时,乙轮转7圈,丙轮转2圈,这三个齿轮齿数最少应分别是多少齿?4.(1)图(1)是一个表面涂满了红颜色的立方体,在它的面上等距离地横竖各切两刀,共得到27个相等的小立方块.问:在这27个小立方块中,三面红色、两面红色、一面红色,各面都没有颜色的立方块各有多少?(2)在图(2)中,要想按(1)的方式切出120块大小一样、各面都没有颜色的小立方块,至少应当在这个立方体的各面上切几刀(各面切的刀数一样)?(3)要想产生53块仅有一面涂有红色的小方块,至少应在各面上切几刀?答案一、填空题1.(537.5)原式=412×0.81+537×0.19+11×9.25=412×0.81+(412+125)×0.19+11×9.25=412×(0.81+0.19)+1.25×19+11×(1.25+8)=412+1.25×(19+11)+88=537.52.(5283)从*×9,尾数为7入手依次推进即可.3.(6年)爸爸比小惠大:6×5-6=24(岁),爸爸年龄是小惠的3倍,也就是比她多2倍,则一倍量为:24÷2=12(岁),12-6=6(年).4.(14厘米).2+2+5+5=14(厘米).5.(225,150)因450÷75=6,所以最大公约数为75,最小公倍数450的两整数有75×6,75×1和75×3,75×2两组,经比较后一种差较小,即225和150为所求.6.(45,15)假设60只全是鸡,脚总数为60×2=120.此时兔脚数为0,鸡脚比兔脚多120只,而实际只多30,因此差数比实际多了120-30=90(只).这因为把其中的兔换成了鸡.每把一只兔换成鸡.鸡的脚数将增加2只,兔的脚数减少4只,那么鸡脚与兔脚的差数增加了2+4=6(只),所以换成鸡的兔子有90÷6=15(只),鸡有60-15=45(只).7.(77,92)由师傅产量是徒弟产量的2倍,所以师傅产量数总是偶数.利用整数加法的奇偶性可知标明“77”的筐中的产品是徒弟制造的.利用“和倍问题”方法.徒弟加工零件是(78+94+86+77+92+80)÷(2+1)=169(只)∴169-77=92(只)8.(8分)紧邻两辆车间的距离不变,当一辆公共汽车超过步行人时,紧接着下一辆公汽与步行人间的距离,就是汽车间隔距离.当一辆汽车超过行人时,下一辆汽车要用10分才能追上步行人.即追及距离=(汽车速度-步行速度)×10.对汽车超过骑车人的情形作同样分析,再由倍速关系可得汽车间隔时间等于汽车间隔距离除以5倍的步行速度.即10×4×步行速度÷(5×步行速度)=8(分)9.(44)10.(16)满足条件的偶数和奇数的可能很多,要求的是使两个偶数之和最小的那仍为偶数,所求的这两个偶数之和一定是8的倍数.经试验,和不能是8,二、解答题:EC,则△CDE、△ACE,△ADB的面积比就是2∶3∶5.如图.2.(5)连结AC′,AC,A′C考虑△C′D′D的面积,由已知DA=D′A,所以S△C′D′D=2S△C′AD.同理S △C′D′D=2S△ACD,S△A′B′B=2S△ABC,而S四边形ABCD=S△ACD+S△ABC,所以S△C′D′D+SS△A′B′B=2S四边形ABCD.同样可得S△A′D′A+S△B′C′C=2S四边形ABCD,所以S四边形A′B′C′D′=5S 四边形ABCD.3.(14,10,35)用甲齿、乙齿、丙齿代表三个齿轮的齿数.甲乙丙三个齿轮转数比为5∶7∶2,根据齿数与转数成反比例的关系.甲齿∶乙齿=7∶5=14∶10,乙齿∶丙齿=2∶7=10∶35,所以甲齿∶乙齿∶丙齿=14∶10∶35由于14,10,35三个数互质,且齿数需是自然数,所以甲、乙、丙三个齿轮齿数最少应分别是14,10,35.4.(1)三面红色的小方块只能在立方体的角上,故共有8块.两面红色的小方块只能在立方体的棱上(除去八个角),故共有12块.一面红色的小方块只能在立方体的面内(除去靠边的那些小方格),故共有6块.(2)各面都没有颜色的小方块不可能在立方体的各面上.设大立方体被分成n3个小方块,除去位于表面上的(因而必有含红色的面)方块外,共有(n-2)3个各面均是白色的小方块.因为53=125>120,43=64<120,所以n-2=5,从而,n=7,因此,各面至少要切6刀.(3)由于一面为红色的小方块只能在表面上,且要除去边上的那些方块,设立方体被分成n3个小方块,则每一个表面含有n2个小方块,其中仅涂一面红色的小方块有(n-2)2块,6面共6×(n-2)2个仅涂一面红色的小方块.因为6×32=54>53,6×22=24<53,所以n-2=3,即n=5,故各面至少要切4刀.。
信阳市2019年小升初模拟试题及答案汇总语文——————————— 2 数学——————————— 8 英语———————————14 科学———————————20 品德与社会—————————252019年小学毕业语文模拟试题及答案(试卷满分100分,考试时间120分钟)温馨提示:请小朋友仔细审题,细心答题,相信你一定会有出色表现。
一、知识积累与运用(共35分)1. 读拼音,写汉字。
(5分)大雪z hòu()然降临,shùn()间把一切都封住了。
飞qín()也不再chěnɡ()能飞翔了,yú()树、bǎi()树仿佛穿上了银装。
万物都在zhù()存力量,áo()过这一冬,就会迎来美丽的春天,又可以ménɡ()发新芽,繁yǎn()生命了。
2. 选词填空。
(5分)平静宁静安静(1)挂着白色帐子的床上,五个孩子正在海风呼啸声中( )地睡着。
(2)西蒙的头往后仰着,冰冷发青的脸上显出死的( )。
(3)孩子们的呼吸均匀而( ),睡得正香甜。
不仅……而且……虽然……可是……(4)( )眼前这种“失衡”的图景丝毫没有美感可言,( )我却渐渐地受到了一种美的感动。
(5)陆羽( )精通茶艺,( )博学多才。
3. 下面几组词,错别字最多的是()(3分) BA. 云雾迷蒙连绵不断峰峦雄伟拨地而起B. 穿流不息盛气凌人专心志致各抒已见C. 风调雨顺平易近人一丝不苟完璧归赵D. 画蛇添足亡羊补牢粉身碎骨赏心阅目4. 排列句子。
(3分)()“谢谢您!”小白兔说完就放心地睡了。
()兔妈妈不在家。
()小黄狗跑过来说:“小白兔,让我守卫在你家的门口。
”()晚上,天上没有星星。
()小白兔胆子小,不敢睡觉。
5. 写出下列句子中省略号、破折号的作用。
(4分)(1)这是一年的最后一天——大年夜。
__________________________________________________________________ (2)谢谢上帝,总算活着回来啦……我不在,你在家里做些什么呢?__________________________________________________________________ 6. 改写句子。
小升初数学综合模拟试卷5一、填空题:1.一个学生用计算器算题,在最后一步应除以10,错误的乘以10了,因此得出的错误答数500,正确答案应是______.2.把0,1,2,…,9十个数字填入下面的小方格中,使三个算式都成立:□+□=□□-□=□□×□=□□3.两个两位自然数,它们的最大公约数是8,最小公倍数是96,这两个自然数的和是______.4.一本数学辞典售价a元,利润是成本的20%,如果把利润提高到30%,那么应提高售价______元.5.图中有______个梯形.6.小莉8点整出门,步行去12千米远的同学家,她步行速度是每小时3千米,但她每走50分钟就要休息10分钟.则她______时到达.7.一天甲、乙、丙三个同学做数学题.已知甲比乙多做了6道,丙做的是甲的2倍,比乙多22道,则他们一共做了______道数学题.8.在右图的长方形内,有四对正方形(标号相同的两个正方形为一对),每一对是相同的正方形,那么中间这个小正方形(阴影部分)的面积为______.9.有a、b两条绳,第一次剪去a的2/5,b的2/3;第二次剪去a绳剩下的2/3,b绳剩下的2/5;第三次剪去a绳剩下的2/5,b绳的剩下部分的2/3,最后a剩下的长度与b剩下的长度之比为2∶1,则原来两绳长度的比为______.10.有黑、白、黄色袜子各10只,不用眼睛看,任意地取出袜子来,使得至少有两双袜子不同色,那么至少要取出______只袜子.二、解答题:1.字母A、B、C、D、E和数字1997分别按下列方式变动其次序:A B C D E 1 9 9 7B C D E A 9 9 7 1(第一次变动)C D E A B 9 7 1 9(第二次变动)D E A B C 7 1 9 9(第三次变动)……问最少经过几次变动后ABCDE1997将重新出现?2.把下面各循环小数化成分数:3.如图所示的四个圆形跑道,每个跑道的长都是1千米,A、B、C、D 四位运动员同时从交点O出发,分别沿四个跑道跑步,他们的速度分别是每小时4千米,每小时8千米,每小时6千米,每小时12千米.问从出发到四人再次相遇,四人共跑了多少千米?4.某路公共汽车,包括起点和终点共有15个车站,有一辆车除终点外,每一站上车的乘客中,恰好有一位乘客到以后的每一站下车,为了使每位乘客都有座位,问这辆公共汽车最少要有多少个座位?答案一、填空题:1.(5)500÷10÷10=52.(1+7=8,9-3=6,4×5=20)首先考虑0只能出现在乘积式中.即分析2×5,4×5,5×6,8×5几种情况.最后得以上结论.3.(56)96÷8=12=3×4,所以两个数为8×3=24,4×8=32,和为32+24=56.5.(210)梯形的总数为:BC上线段总数×BD上线段总数,即(4+3+2+1)×(6+5+4+3+2+1)=2106.(中午12点40分)3千米/小时=0.05千米/分,0.05×50=2.5千米,即每小时她走2.5千米.12÷2.5=4.8,即4小时后她走4×2.5=10千米.(12-10)÷0.05=40(分),最后不许休息,即共用4小时40分.7.(58)画图分析可得22-6=16为甲做题数,所以可得乙10道,丙16×2=32道,一共16+10+32=58(道).8.(36)长方形的宽是“一”与“二”两个正方形的边长之和.长方形的长是“一”、“二”、“三”三个正方形的边长之和.长-宽=30-22=8是“三”正方形的边长.宽又是两个“三”正方形与中间小正方形的边长之和,因此中间小正方形边长=22-8×2=6,中间小正方形面积=6×6=36.9.(10∶9)10.(13)考虑最坏的情形,把某一种颜色的袜子全部先取出,然后,在剩下两色袜子中各取出一只,这时再任意取一只都必将有两双袜子不同色,即10+2+1=13(只).二、解答题:1.(20)由变动规律知,A、B、C、D、E经5次变动重新出现,而1997经过4次即重新出现,故要使ABCDE1997重新出现最少需20次(即4和5的最小公倍数.)3.(15千米)4.(56个)本题可列表解.除终点,我们将车站编号列表:共需座位:14+12+10+8+6+4+2=56(个)。
小升初数学综合模拟试卷20一、填空题:1.13×99+135×999+1357×9999=______.2.一个两位数除以13,商是A,余数是B,A+B的最大值是_______.3.12345678987654321除本身之外的最大约数是______.4.有甲、乙两桶油,甲桶油比乙桶油多174千克,如果从两桶中各取5.图中有两个正方形,这两个正方形的面积值恰好由2、3、4、5、6、7这六个数字组成,那么小正方形的面积是______,大正方形的面积是______.6.如图,E、F分别是平行四边形ABCD两边上的中点,三角形DEF的面积是7.2平方厘米,平行四边形ABCD的面积是_______平方厘米.7.一辆公共汽车由起点到终点站共有10个车站,已知前8个车站共上车93人,除终点外前面各站共计下车76人.从前8个车站上车且在终点站下车的共有______人.9.某人以分期付款的方式买一台电视机,买时第一个月付款750元,以后每月付150元;或者前一半时间每月付300元,后一半时间每月付100元.两种付款方式的付款总数及时间都相同,这台电视机的价格是______元.10.一辆长12米的汽车以每小时36千米的速度由甲站开往乙站,上午9点40分,在距乙站2000米处遇到一行人,1秒后汽车经过这个行人,汽车到达乙站休息10分后返回甲站,汽车追上那位行人的时间是______.二、解答题:2.小明拿一些钱到商店买练习本,如果买大练习本可以买8本而无剩余;如果买小练习本可以买12本而无剩余,已知每个大练习本比小练习本贵0.32元,小明有多少元钱?3.某工厂的一只走时不够准确的计时钟需要69分(标准时间)时针与分钟才能重合一次,工人每天的正常工作时间是8小时,在此期间内,每工作1小时付给工资4元,而若超出规定时间加班,则每小时付给工资6元,如果一个工人照此钟工作8小时,那么他实际上应得到工资多少元?4.某次比赛中,试题共六题,均为是非题.正确的画“+ ”,错误的画“-”,记分方法是:每题答对的得2分,不答的得1分,答错的得0分,已知赵、钱、孙、李、周、吴、郑七人的答案及前六个人的得分记录如下表所示,请计算姓郑的得分.答案一、填空题:1.13704795原式=1300-13+135000-135+13570000-1357=13706300-1505=137047952.18因为余数最大是12,且99÷13=7…8,所以90÷13=6…12,A+B=6+12=18.3.4115226329218107因为12345678987654321除去1以外的最小约数是3,则12345678987654321的最大约数为12345678987654321÷3=4115226329218107174×3+4=526(千克)因此两桶油共重526+(526-174)=878(千克)5.273,546根据图形可以看出,大正方形面积是小正方形面积的2倍.经试验可知:273×2=546,所以小正方形面积为273,大正方形的面积为546.6.19.27.17因为在第9个车站上车的人,决不会在第9站下车,因此除终点外前面各站下车的76人都是在前8个车站上车的,所以从前8个车站上车且在终点下车的共有93-76=17(人)8.153因为总人数应是18,7,4的公倍数,而18,7,4的最小公倍数是252,所以参加考试的人数为252人.9.2400750+150x-150=200x50x=600x=12所以电视机的价格是根据题意可知,汽车的速度是每秒10米.行人的速度是每秒(12÷1-10=)2米.汽车到达乙站,休息10分后,行人又走了2×(2000÷10+60×10)=1600(米)汽车追上行人共需时间2000÷10+60×10+(2000+1600)÷(10-2)=1250(秒)=20分5秒9点40分+20分5秒=10点05秒.二、解答题:1.12.7.68元根据题意可知,如果买8个小练习本会剩下(0.32×8=)2.56元,而这2.56元正好可以再买4个小练习本,所以小明共有2.56×(12÷4)=7.68(元)正常钟表的时针和分针重合一次需要不准确的钟表走8小时,实际上是走应得工资为=32+2.6=34.6(元)4.8分从周做5题得9分可以看出,周做对了4道题,下面分别讨论:(1)假设第一题错,则第二、三、四、六题对,此时赵无法得到7分.(2)假设第二题错,则第一、三、四、六题对,此时赵无法得到7分.(3)假设第三题错,则第一、二、四、六题对,此时吴无法得到7分.(4)假设第四题错,则第一、二、三、六题对.此时第5题若填“十”,则赵、吴都可得到7分,钱、孙、李可得5分,由此推出郑得8分.(5)假设第六题错,则第一、二、三、四题对,则赵、吴无法同时得到7分.所以只有(4)满足条件.。
小升初数学试卷57一、填空.(每空1分,共22分)1、一个九位数,最高位亿位上是最小的奇数,十万位上是最小的质数,万位上是最大的一位数,千位上是最小的合数,其余各位都是0,这个数写作________,改写成用“万”作单位的数是________.2、0.4=2:________=________ 5________%=________折3、如果3a=6b,那么a:b=________。
4、明年二月有________天.5、丽丽比亮亮多a张画片,丽丽给亮亮________张,两人画片张数相等.6、一个直角三角形的两个锐角的度数比是3:2.这两个锐角分别是________度和________度.7、红、黄、蓝三种颜色的球各8个,放到一个袋子里,至少摸________个球,才可以保证有两个颜色相同的球,若任意摸一个球,摸到黄色球的可能性是________.8、一个长为6cm,宽为4cm的长方形,以长为轴旋转一周,将会得到一个底面直径是________cm,高________cm的圆柱体.9、一个面积是________平方米的半圆的周长是15.42米.10、保定市某天中午的温度是零上5℃;记作+5℃;到了晚上气温比中午下降了7℃,这天晚上的气温记作________.11、假设你的计算器的一个键“4”坏了,你怎样计算49×76,用算式表示计算过程________.12、琳琳2014年把500元存入银行,年利率2.25%,2016年到期时可以从银行取出________元.13、甲数=2×2×2×3,乙数=2×2×3,这两个数的最小公倍数是________.14、小明每天上午8时到校,11时30分放学,下午2时到校,4时30分放学,她在校的时间占1天的________.15、如图,正方形的面积是20平方厘米,则圆的面积是________平方厘米.二、判断正误.16、两条永不相交的直线叫做平行线.________(判断对错)17、互为倒数的两个分数中,如果其中一个是真分数,那么另一个一定是假分数.________(判断对错)18、两个分数中,分数值大的那个分数单位也大.()19、平行四边形都可以画出对称轴________.20、一个不为0的数除以真分数,所得的商大于被除数.________三、认真选择.(将正确答案的序号填在括号内)21、两个数是互质数,那么它们的最大公因数是()A、较大数B、较小数C、1D、它们的乘积22、3.1与3. 相比()A、3.1 大B、3. 大C、一样大23、男生与女生的人数比是6:5,男生比女生多()A、B、C、24、给分数的分母乘以3,要使原分数大小不变,分子应加上()A、3B、7C、14D、2125、车轮的直径一定,所行驶的路程和车轮的转数()A、成正比例B、反比例C、不成比例四、仔细计算.(5+12+12+4=33分)26、直接写出得数=________ 7÷0.01=________﹣=________ 27、脱式计算(能简算的要简算)÷9+ ×12.69﹣4.12﹣5.880.6×3.3+ ×7.7﹣0.6(+ )×24× .28、解方程(比例)2x+3×0.9=24.73:(x+1)=4:7x+ x= .29、列式计算(1)一个数的是60的,求这个数?(2)乘的倒数,所得的积再减去3个,差是多少?五、操作题:(第2题的第(3)小题2分,其余的每题1分,共6分)30、利用﹣= ,﹣= ,﹣= ,﹣= ,这些规律,计算:1﹣+ ++ + =________.31、按要求答题:(1)三角形的一个顶点A的位置在________ .(2)三角形的另一个顶点B在顶点A正东方3厘米处,在图中标出B点的位置。
小升初数学综合模拟试卷8一、填空题:2.在下列的数字上加上循环点,使不等式能够变正确:0.9195<0.9195<0.9195<0.9195<0.91953.如图,O为△A1A6A12的边A1A12上的一点,分别连结OA2,OA3,…,OA11,图中共有______个三角形.4.今年小宇15岁,小亮12岁,______年前,小宇和小亮的年龄和是15.5.在前三场击球游戏中,王新同学得分分别为139,143,144,为使前4场的平均得分为145,第四场她应得______分.6.有这样的自然数:它加1是2的倍数,加2是3的倍数,加3是4的倍数,加4是5的倍数,加5是6的倍数,加6是7的倍数,在这种自然数中除了1以外最小的是______.7.如图,半圆S1的面积是14.13cm2圆S2的面积是19.625cm2那么长方形(阴影部分)的面积是______cm2.8.直角三角形ABC的三边分别为AC=3,AB=1.8,BC=2.4,ED垂直于AC,且ED=1,正方形的BFEG边长是______.9.有两个容器,一个容器中的水是另一个容器中水的2倍,如果从每个容器中都倒出8升水,那么一个容器中的水是另一个容器中水的3倍.有较少水的容器原有水______升.10.100名学生要到离校33千米处的少年宫活动.只有一辆能载25人的汽车,为了使全体学生尽快地到达目的地,他们决定采取步行与乘车相结合的办法.已知学生步行速度为每小时5千米,汽车速度为每小时55千米.要保证全体学生都尽快到达目的地,所需时间是______(上、下车所用的时间不计).二、解答题:1.一个四边形的广场,它的四边长分别是60米,72米,96米,84米.现在要在四边上植树,如果四边上每两树的间隔距离都相等,那么至少要种多少棵树?2.一列火车通过一条长1140米的桥梁(车头上桥直至车尾离开桥)用了50秒,火车穿越长1980米的隧道用了80秒,问这列火车的车速和车身长?3.能否把1,1,2,2,3,3,…,50,50这100个数排成一行,使得两个1之间夹着这100个数中的一个数,两个2之间夹着这100个数中的两个数,……两个50之间夹着这100个数中的50个数?并证明你的结论.4.两辆汽车运送每包价值相同的货物通过收税处.押送人没有带足够的税款,就用部分货物充当税款.第一辆车载货120包,交出了10包货物另加240元作为税金;第二辆车载货40包,交给收税处5包货,收到退还款80元,这样也正好付清税金.问每包货物销售价是多少元?答案一、填空题:3.(37)将△A1A6A12分解成以OA6为公共边的两个三角形.△OA1A6共有(5+4+3+2+1=)15个三角形,△OA6A12共有(6+5+4+3+2+1=)21个,所以图中共有(15+21+1=)37个三角形.4.(6年)今年年龄和15+12=27岁,比15岁多27-15=12,两人一年增长的年龄和是2岁,故12÷2=6年.5.(154)145×4-(139+143+144)=154.6.(421)这个数比2,3,4,5,6,7的最小公倍数大1,又2,3,4,5,6,7的最小公倍数为420,所以这个数为421.7.(5)由图示阴影部分的长是圆S2的直径,宽是半圆S1的直径与圆S2的直径9.(16升)由甲容器中的水是乙容器的2倍和它们均倒出8升水后变成3倍关系,设原甲容器中的水量为4份,则因2容器中的水量为2份,按题意画图如下:故较少容器原有水量8×2=16(升).把100名学生分成四组,每组25人.只有每组队员乘车和步行的时间都分别相等,他们才能同时到达目的地,用的时间才最少.如图,设AB=x千米,在第二组队员走完AB的同时,汽车走了由A到E,又由E返回B的路程,这一段路程为11x千米(因为汽车与步行速度比为55∶二、解答题:1.(26棵)要使四边上每两棵树间隔距离都相等,这个间隔距离必须能整除每一边长.要种的树尽可能少(间隔距离尽可能大),就应先求出四边长的最大公约数.60,72,96,84四数的最大公约数是12,种的棵数:(60+72+96+84)÷12=262.(28米/秒,260米)(1980-1140)÷(80-50)=28(米/秒)28×50-1140=260(米)3.不可能.反证法,假设存在某种排列,满足条件.我们把这100个数从左向右按1,2,3,…,99,100编号,则任何两个相等的偶数之间要插入偶数个数,则这两个偶数的序号的奇偶性是不同的;而任何两个相等的奇数之间要插入奇数个数,则这两个奇数的序号的奇偶性相同.由此,这100个数中有25对偶数(每对是两个相等的偶数),它们占去25个奇序号和25个偶序号;另外25对相等的奇数,它们中奇序号的个数一定是偶数.而在100个数中奇序号和偶序号各有50个,所以这25对相等的奇数中,奇序号个数只能是25个(因为25对偶数已占去了奇序号).25是奇数,由于奇数≠偶数,所以无法实现.4.(106元)(元).小升初数学综合模拟试卷9一、填空题:1.在下面的四个算式中,最大的得数是______:(1)1994×1999+1999,(2)1995×1998+1998,(3)1996×1997+1997,(4)1997×1996+1996.2.今有1000千克苹果,刚入库时测得含水量为96%;一个月后,测得含水量为95%,则这批苹果的总重量损失了______.3.填写下面的等式:4.任意调换五位数54321的各个数位上的数字位置,所得的五位数中的质数共有______.5.下面式子中每一个中文字代表1~9中的一个数码,不同的文字代表不同的数码:则被乘数为______.6.如图,每个小方格的面积是1cm2,那么△ABC的面积是______cm2.7.如图,A1,A2,A3,A4是线段AA5上的分点,则图中以A,A1,A2,A3,A4,A5这六个点为端点的线段共有______条.8.10点15分时,时针和分针的夹角是______.9.一房间中有红、黄、蓝三种灯,当房间中所有灯都关闭时,拉一次开关,红灯亮;第二次拉开关,红黄灯都亮;第三次拉开关,红黄蓝三灯都亮;第四次拉开关,三灯全关闭,现在从1~100编号的同学走过该房间,并将开关拉若干次,他们拉开关的方式为:编号为奇数者,他拉的次数就是他的号数;编号为偶数者,其编号可以写成2r·p(其中p为正奇数,r为正整数),就拉p次,当100人都走过房间后,房间中灯的情况为______.10.老师带99名同学种树100棵,老师先种一棵,然后对同学们说:“男生每人种两棵,女生每两人合种一棵。
”说完把99棵树苗分给了大家,正好按要求把树苗分完,则99名学生中男生为______名.二、解答题:1.如图,某公园的外轮廓是四边形ABCD,被对角线AC、BD分成四个部分.△AOB的面积是2平方千米,△COD的面积是3平方千米,公园陆地面积为6.92平方千米,那么人工湖的面积是______平方千米.2.汽车往返于甲、乙两地之间,上行速度为每小时30千米,下行速度为每小时60千米,求往返的平均速度.3.已知一个数是1个2,2个3,3个5,2个7的连乘积,试求这个数的最大的两位数因数.4.某轮船公司较长时间以来,每天中午有一只轮船从哈佛开往纽约,并且在每天的同一时间也有一只轮船从纽约开往哈佛,轮船在途中所花的时间,来去都是七昼夜,问今天中午从哈佛开出的轮船,在整个航运途中,将会遇到几只同一公司的轮船从对面开来?答案一、填空题:1.(3988009)由乘法分配律,四个算式分别简化成:1995×1999,1996×1998,1997×1997,1996×1998,由“和相等的两个数,相差越小积越大”,所以1997×1997最大,为3988009.2.(200千克)苹果含水96%.所以苹果肉重1000×(1-96%)=40千克,一个月后,测得含水量为95%,即肉重占1-95%=5%,所以苹果重为40÷(1-95%)3.(1)26,26或14,182.(2)46、46.4.(0个)因为5+4+3+2+1=15,是3的倍数.所以任意调换54321各位数字所得的五位数均能被3整除,为合数,因此共有0个质数.5.142857或285714易知“数”只能是1或2或3,经过分析试证可知排除3,并得到两个答案.6.(8.5)2.5-6=8.5(cm2)7.(15条)以A为左端点的线段共5条,以A1为端点的线段共4条;以A2为左端点的线段共3条;以A3为左端点的线段共2条;以A4为左端点的线段共1条,总计5+4+3+2+1=15(条).8.(142°30′)10点15′时,时针从0点开始转过的角度是30°×10.25=307.5°,从而时针与钟表盘12所在的位置之间的夹角为360°-307.5°=52°30′,此时时针与分针之间的夹角为90°+52°30′=142°30′.9.(都不亮)奇数和为1+3+5+…+99=2500,编号为2P者有2×1,2×3,2×5,…,2×49,他们拉开关次数为1+3+5+…+49=625;编号为22p者有22×1,22×3,22×5,…,22×25,拉开关次数为1+3+5+……+25=169;同理可得编号23·p者拉36次;24·p者9次,25·p与26·p分别有25·1,25·3,26拉开关次数1+3+1=5次.总计2500+625+169+36+9+5=3344=4×836.所以最后三灯全关闭.10.(33)把问题简化:3人种3棵(指1男生2个女生),则99名分成33组,每组1男2女,所以共有男生:99÷(2+1)=33(名).二、解答题:1.(0.58)由△BOC与△DO C等高h1,△BOA与△DOA等高h2,利用面积公式:2.(40千米/小时)设两地距离为a,则总距离为2a.3.(98)由已知数=2×3×3×5×5×5×7×7.所以它的两位数的因数有很多个.因此我们可从两位数中最大数找起.99=9×11=3×3×11,而11不是原数因数,所以99不符合;98=2×49=2×7×7,因为2、7都是原数的因数,所以98符合要求.4.(15只)利用图解法代表今天中午从哈佛开往纽约的轮船的带箭头的线段.与另一簇代表从纽约开往哈佛的轮船行驶路线的15条平行线相交.其中一只是在出发时遇到,一只到达时遇到,剩下的13只则在海上相遇.。