高三数学(文)一轮总复习(江苏专用)课时跟踪检测(十五)导数与函数的极值、最值Word版含解析
- 格式:doc
- 大小:572.50 KB
- 文档页数:7
课时作业15导数与函数的极值、最值一、选择题1.已知函数f(x)在R上可导,其导函数为f′(x),且函数y=(1-x)f′(x)的图象如图所示,则下列结论中一定成立的是(D)A.函数f(x)有极大值f(2)和极小值f(1)B.函数f(x)有极大值f(-2)和极小值f(1)C.函数f(x)有极大值f(2)和极小值f(-2)D.函数f(x)有极大值f(-2)和极小值f(2)解析:由题图可知,当x<-2时,f′(x)>0;当-2<x<1时,f′(x)<0;当1<x<2时,f′(x)<0;当x>2时,f′(x)>0.由此可以得到函数f(x)在x=-2处取得极大值,在x=2处取得极小值.2.已知a为函数f(x)=x3-12x的极小值点,则a=(D)A.-4 B.-2C.4 D.2解析:由题意得f′(x)=3x2-12,令f′(x)=0,得x1=-2,x2=2.当x∈(-∞,-2),(2,+∞)时,f′(x)>0,则f(x)单调递增;当x∈(-2,2)时,f′(x)<0,则f(x)单调递减,∴f(x)的极小值点为a=2.3.已知函数f(x)=x3+ax2+bx+a2在x=1处有极值10,则f(2)等于(C)A.11或18 B.11C .18D .17或18解析:∵函数f (x )=x 3+ax 2+bx +a 2在x =1处有极值10,∴f (1)=10,且f ′(1)=0,又f ′(x )=3x 2+2ax +b ,∴⎩⎪⎨⎪⎧ 1+a +b +a 2=10,3+2a +b =0,解得⎩⎪⎨⎪⎧ a =-3,b =3或⎩⎪⎨⎪⎧a =4,b =-11.而当⎩⎪⎨⎪⎧a =-3,b =3时,函数在x =1处无极值,故舍去.∴f (x )=x 3+4x 2-11x +16,∴f (2)=18.4.函数f (x )=3x 2+ln x -2x 的极值点的个数是( A ) A .0 B .1 C .2 D .无数解析:函数定义域为(0,+∞), 且f ′(x )=6x +1x -2=6x 2-2x +1x , 由于x >0,g (x )=6x 2-2x +1的Δ=-20<0, 所以g (x )>0恒成立, 故f ′(x )>0恒成立,即f (x )在定义域上单调递增,无极值点.5.函数f (x )=sin x -x 在区间[0,1]上的最小值为( D ) A .0 B .sin1 C .1 D .sin1-1解析:由题得f ′(x )=cos x -1,因为x ∈[0,1],所以f ′(x )≤0,所以函数f (x )在[0,1]上单调递减,所以f (x )min =f (1)=sin1-1,故选D.6.(2020·齐齐哈尔一模)若x =1是函数f (x )=ax 2+ln x 的一个极值点,则当x ∈⎣⎢⎡⎦⎥⎤1e ,e 时,f (x )的最小值为( A )A .1-e 22 B .-e +1e C .-12e 2-1D .e 2-1解析:由题意得f ′(1)=0,∵f ′(x )=2ax +1x ,∴f ′(1)=2a +1=0,∴a =-12,∴f ′(x )=-x +1x =1-x 2x .∴当x ∈⎣⎢⎡⎦⎥⎤1e ,1时,f ′(x )≥0,当x ∈[1,e]时,f ′(x )≤0,∴f (x )min =min ⎩⎨⎧⎭⎬⎫f ⎝ ⎛⎭⎪⎫1e ,f (e )=-12e 2+1,故选A.7.(2020·昆明模拟)已知函数f (x )=ax 2+bx +c ln x (a >0)在x =1和x =2处取得极值,且极大值为-52,则函数f (x )在区间(0,4]上的最大值为( D )A .0B .-52C .2ln2-4D .4ln2-4解析:f ′(x )=2ax +b +c x =2ax 2+bx +cx (x >0,a >0).因为函数f (x )在x =1和x =2处取得极值,所以f ′(1)=2a +b +c =0 ①,f ′(2)=4a +b +c2=0 ②.又a >0,所以当0<x <1或x >2时,f ′(x )>0,f (x )是增函数;当1<x <2时,f ′(x )<0,f (x )是减函数.所以当x =1时,f (x )极大值=f (1)=a +b =-52 ③.联立①②③,解得a =12,b =-3,c =2.f (4)=12×16-3×4+2ln4=4ln2-4,经比较函数f (x )在区间(0,4]上的最大值是f (4)=4ln2-4.故选D.8.已知函数f (x )=a x +x 2-x ln a ,对任意的x 1,x 2∈[0,1],不等式|f (x 1)-f (x 2)|≤a -2恒成立,则a 的取值范围为( A )A .[e 2,+∞)B .[e ,+∞)C .[2,e]D .[e ,e 2]解析:由题意可得|f (x 1)-f (x 2)|max =f (x )max -f (x )min ≤a -2,且a >2.由于f ′(x )=a x ln a +2x -ln a =(a x -1)ln a +2x ,所以当x >0时,f ′(x )>0,所以函数f (x )在[0,1]上单调递增,则f (x )max =f (1)=a +1-ln a ,f (x )min =f (0)=1,所以f (x )max -f (x )min =a -ln a ,故a -2≥a -ln a ,即ln a ≥2,解得a ≥e 2.9.(2020·昆明质检)已知函数f (x )=e xx +k (ln x -x ),若x =1是函数f (x )的唯一极值点,则实数k 的取值范围是( A )A .(-∞,e]B .(-∞,e)C .(-e ,+∞)D .[-e ,+∞)解析:由函数f (x )=e xx +k (ln x -x ),可得f ′(x )=e x x -e x x 2+k ⎝ ⎛⎭⎪⎫1x -1=(x -1)(e x -kx )x2.令g (x )=e x-kx , ∵f (x )有唯一极值点x =1,∴g (x )=e x -kx 在(0,+∞)上无零点或无变号零点.g ′(x )=e x -k ,当k ≤0时,g ′(x )>0在(0,+∞)上恒成立,∴g (x )在(0,+∞)上单调递增,∴g (x )>g (0)=1,即g (x )在(0,+∞)上无零点,符合题意.当k >0时,g ′(x )=0的解为x =ln k .易知当0<x <ln k 时,g ′(x )<0,g (x )单调递减;当x >ln k 时,g ′(x )>0,g (x )单调递增.∴g (x )min =g (ln k )=k -k ln k .由题意知需满足k -k ln k ≥0,可得0<k ≤e.综上可得,实数k 的取值范围是(-∞,e],故选A.10.(2020·广东肇庆一模)已知x =1是f (x )=[x 2-(a +3)x +2a +3]e x 的极小值点,则实数a 的取值范围是( D )A .(1,+∞)B .(-1,+∞)C .(-∞,-1)D .(-∞,1)解析:函数f (x )=[x 2-(a +3)x +2a +3]e x ,则f ′(x )=[x 2-(a +1)x +a ]e x , 令f ′(x )=0,得x 2-(a +1)x +a =0, 设g (x )=x 2-(a +1)x +a ,x ∈R .①当a =1时,g (x )=(x -1)2≥0恒成立,∴f ′(x )≥0恒成立,f (x )是R 上的单调增函数,没有极值点,不合题意.②当a >1时,g (x )有两个零点1和a ,且x <1或x >a 时,g (x )>0,则f ′(x )>0;1<x <a 时,g (x )<0,则f ′(x )<0,所以x =1是f (x )的极大值点,不满足题意.③当a <1时,g (x )有两个零点1和a ,且x <a 或x >1时,g (x )>0,则f ′(x )>0;a <x <1时,g (x )<0,则f ′(x )<0,所以x =1是f (x )的极小值点,满足题意.综上所述,实数a 的取值范围是(-∞,1).故选D. 二、填空题11.函数f (x )=a ln x x 的图象在点(e 2,f (e 2))处的切线与直线y =-1e 4x 平行,则f (x )的极值点是x =e.解析:f ′(x )=a (1-ln x )x 2,故f ′(e 2)=-a e 4=-1e 4, 解得a =1,故f (x )=ln xx ,f ′(x )=1-ln x x 2. 令f ′(x )=0,解得x =e , 因为当0<x <e 时,f ′(x )>0, 当x >e 时,f ′(x )<0,所以x =e 是函数f (x )的极大值点.12.已知函数f (x )=-x 3+ax 2-4在x =2处取得极值,若m ∈[-1,1],则f (m )的最小值是-4.解析:f ′(x )=-3x 2+2ax ,由f (x )在x =2处取得极值知f ′(2)=0,即-3×4+2a ×2=0,故a =3.由此可得f (x )=-x 3+3x 2-4.f ′(x )=-3x 2+6x ,由此可得f (x )在(-1,0)上单调递减,在(0,1)上单调递增,∴当m ∈[-1,1]时,f (m )min =f (0)=-4.13.若函数f (x )=x 33-a 2x 2+x +1在区间⎝ ⎛⎭⎪⎫12,3上有极值点,则实数a 的取值范围是⎝ ⎛⎭⎪⎫2,103.解析:函数f (x )在区间⎝ ⎛⎭⎪⎫12,3上有极值点等价于f ′(x )=0有2个不相等的实根且在⎝ ⎛⎭⎪⎫12,3内有根,由f ′(x )=0有2个不相等的实根,得a <-2或a >2.由f ′(x )=0在⎝ ⎛⎭⎪⎫12,3内有根,得a =x +1x 在⎝ ⎛⎭⎪⎫12,3内有解,又x +1x ∈⎣⎢⎡⎭⎪⎫2,103,所以2≤a <103.综上,a 的取值范围是⎝ ⎛⎭⎪⎫2,103.三、解答题14.设函数f (x )=a ln x -bx 2(x >0),若函数f (x )在x =1处与直线y =-12相切.(1)求实数a ,b 的值;(2)求函数f (x )在⎣⎢⎡⎦⎥⎤1e ,e 上的最大值.解:(1)由f (x )=a ln x -bx 2(x >0),得f ′(x )=ax -2bx , ∵函数f (x )在x =1处与直线y =-12相切,∴⎩⎨⎧f ′(1)=a -2b =0,f (1)=-b =-12,解得⎩⎨⎧a =1,b =12.(2)由(1)知,f (x )=ln x -12x 2,则f ′(x )=1x -x =1-x 2x , 当1e ≤x ≤e 时,令f ′(x )>0,得1e ≤x <1, 令f ′(x )<0,得1<x ≤e ,∴f (x )在⎣⎢⎡⎭⎪⎫1e ,1上单调递增,在(1,e]上单调递减,∴f (x )max =f (1)=-12.15.已知函数f (x )=e x (x -a e x ).(1)当a =0时,求f (x )的极值;(2)若f (x )有两个不同的极值点x 1,x 2(x 1<x 2),求a 的取值范围. 解:(1)当a =0时,f (x )=x e x ,f ′(x )=(x +1)e x .令f ′(x )>0,可得x >-1,故f (x )在(-1,+∞)上单调递增.同理可得f (x )在(-∞,-1)上单调递减.故f (x )在x =-1处有极小值,极小值为f (-1)=-1e .(2)依题意可得f ′(x )=(x +1-2a e x )e x =0有两个不同的实根. 设g (x )=x +1-2a e x ,则g (x )=0有两个不同的实根x 1,x 2,g ′(x )=1-2a e x .若a ≤0,则g ′(x )≥1,此时g (x )为增函数,故g (x )=0至多有1个实根,不符合要求.若a >0,则当x <ln 12a 时,g ′(x )>0,当x >ln 12a 时,g ′(x )<0,故g (x )在⎝ ⎛⎭⎪⎫-∞,ln 12a 上单调递增,在⎝ ⎛⎭⎪⎫ln 12a ,+∞上单调递减,g (x )的最大值为g ⎝ ⎛⎭⎪⎫ln 12a =ln 12a -1+1=ln 12a ,又当x →-∞时,g (x )→-∞,当x →+∞时,g (x )→-∞,故要使g (x )=0有两个实根,则g ⎝ ⎛⎭⎪⎫ln 12a =ln 12a >0,得0<a <12.因为g (x )=0的两个根分别为x 1,x 2(x 1<x 2),所以当x <x 1时,g (x )<0,此时f ′(x )<0;当x 1<x <x 2时,g (x )>0,此时f ′(x )>0;当x >x 2时,g (x )<0,此时f ′(x )<0.故x 1为f (x )的极小值点,x 2为f (x )的极大值点,0<a <12符合要求. 综上所述,a 的取值范围为0<a <12.16.(2020·昆明质检)已知函数f (x )=(x -3)e x +a (2ln x -x +1)在(1,+∞)上有两个极值点,且f (x )在(1,2)上单调递增,则实数a 的取值范围是( C )A .(e ,+∞)B .(e,2e 2)C .(2e 2,+∞)D .(e,2e 2)∪(2e 2,+∞)解析:由题意知方程f ′(x )=(x -2)e x +a (2x -1)=(x -2)e x +a ×2-x x =(x -2)(e x -a x )=0在(1,+∞)上有两个根,所以e x=a x 在(1,+∞)上有不为2的根,即函数y 1=e x ,y 2=ax 的图象在(1,+∞)上有交点(异于(2,e 2)),所以⎩⎨⎧a >0,e 1<a1,且a ≠2e 2,所以a >e ,且a ≠2e 2.又易知(x -2)(e x-a x )≥0在x ∈(1,2)上恒成立,即e x≤a x 在x ∈(1,2)上恒成立,即当x ∈(1,2)时,y 2=ax 的图象在y 1=e x 图象的上方,所以⎩⎨⎧a >0,e 2≤a 2,所以a ≥2e 2.所以实数a 的取值范围为(2e 2,+∞).17.(2019·北京卷)已知函数f (x )=14x 3-x 2+x . (1)求曲线y =f (x )的斜率为1的切线方程; (2)当x ∈[-2,4]时,求证:x -6≤f (x )≤x ;(3)设F (x )=|f (x )-(x +a )|(a ∈R ),记F (x )在区间[-2,4]上的最大值为M (a ).当M (a )最小时,求a 的值.解:(1)由f (x )=14x 3-x 2+x 得f ′(x )=34x 2-2x +1.令f ′(x )=1,即34x 2-2x +1=1, 得x =0或x =83.又f (0)=0,f (83)=827,所以曲线y =f (x )的斜率为1的切线方程是 y =x 与y -827=x -83,即y =x 与y =x -6427. (2)令g (x )=f (x )-x ,x ∈[-2,4]. 由g (x )=14x 3-x 2得g ′(x )=34x 2-2x . 令g ′(x )=0得x =0或x =83. g ′(x ),g (x )的情况如下:故-6≤g (x )≤0,即x -6≤f (x )≤x . (3)由(2)知,当a <-3时,M (a )≥F (0)=|g (0)-a |=-a >3; 当a >-3时,M (a )≥F (-2)=|g (-2)-a |=6+a >3; 当a =-3时,M (a )=3. 综上,当M (a )最小时,a =-3.快乐分享,知识无界!感谢您的下载!由Ruize收集整理!。
学校班级姓名【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
】专题3.2 利用导数研究函数的极值与最值基础巩固题组一、填空题 1.下列函数:①y =x 3;②y =ln(-x );③y =x e -x;④y =x +2x.其中,既是奇函数又存在极值的是________(填序号). 【答案】④【解析】由题意可知,②,③中的函数不是奇函数,①中,函数y =x 3单调递增(无极值),④中的函数既为奇函数又存在极值.2.(2017·海门中学适应性训练)已知函数f (x )=x 3+ax 2+3x -9,若x =-3是函数f (x )的一个极值点,则实数a =________. 【答案】53.(2016·北京卷改编)设函数f (x )=⎩⎪⎨⎪⎧x 3-3x ,x ≤0,-2x ,x >0,则f (x )的最大值为________.【答案】2【解析】当x >0时,f (x )=-2x <0;当x ≤0时,f ′(x )=3x 2-3=3(x -1)(x +1),当x <-1时,f ′(x )>0,f (x )是增函数,当-1<x <0时,f ′(x )<0,f (x )是减函数. ∴f (x )≤f (-1)=2,∴f (x )的最大值为2.4.(2017·南通调研)若a >0,b >0,且函数f (x )=4x 3-ax 2-2bx +2在x =1处有极值,若t =ab ,则t 的最大值为________. 【答案】9【解析】f ′(x )=12x 2-2ax -2b ,则f ′(1)=12-2a -2b =0,则a +b =6, 又a >0,b >0,则t =ab ≤⎝⎛⎭⎪⎫a +b 22=9,当且仅当a =b =3时取等号.5.已知y =f (x )是奇函数,当x ∈(0,2)时,f (x )=ln x -ax ⎝ ⎛⎭⎪⎫a >12,当x ∈(-2,0)时,f (x )的最小值为1,则a =________. 【答案】1【解析】由题意知,当x ∈(0,2)时,f (x )的最大值为-1. 令f ′(x )=1x -a =0,得x =1a,当0<x <1a 时,f ′(x )>0;当x >1a时,f ′(x )<0.∴f (x )max =f ⎝ ⎛⎭⎪⎫1a=-ln a -1=-1,解得a =1. 6.已知函数f (x )=x 3+ax 2+(a +6)x +1有极大值和极小值,则实数a 的取值范围是________. 【答案】(-∞,-3)∪(6,+∞)7.设函数f (x )=ax 2+bx +c (a ,b ,c ∈R ),若x =-1为函数f (x )e x的一个极值点,则下列图象不可能为y =f (x )图象的是________(填序号).【答案】④【解析】因为[f (x )e x]′=f ′(x )e x+f (x )(e x)′=[f (x )+f ′(x )]e x,且x =-1为函数f (x )ex的一个极值点,所以f (-1)+f ′(-1)=0;④中,f (-1)>0,f ′(-1)>0,不满足f ′(-1)+f (-1)=0.8.设a ∈R ,若函数y =e x+ax 有大于零的极值点,则实数a 的取值范围是________. 【答案】(-∞,-1)【解析】∵y =e x+ax ,∴y ′=e x+a . ∵函数y =e x+ax 有大于零的极值点, 则方程y ′=e x +a =0有大于零的解, ∵x >0时,-e x<-1,∴a =-e x<-1. 二、解答题9.已知函数f (x )=ax x +r2(a >0,r >0).(1)求f (x )的定义域,并讨论f (x )的单调性; (2)若a r=400,求f (x )在(0,+∞)内的极值.10.(2017·衡水中学二调)已知函数f (x )=x ln x ,g (x )=(-x 2+ax -3)e x(a 为实数). (1)当a =5时,求函数y =g (x )在x =1处的切线方程; (2)求f (x )在区间[t ,t +2](t >0)上的最小值. 解 (1)当a =5时,g (x )=(-x 2+5x -3)e x,g (1)=e. 又g ′(x )=(-x 2+3x +2)e x, 故切线的斜率为g ′(1)=4e.所以切线方程为y -e =4e(x -1),即y =4e x -3e. (2)函数f (x )的定义域为(0,+∞),f ′(x )=ln x +1, 当x 变化时,f ′(x ),f (x )的变化情况如下表:x ⎝ ⎛⎭⎪⎫0,1e 1e ⎝ ⎛⎭⎪⎫1e ,+∞ f ′(x )-+f (x )极小值①当t ≥1e 时,在区间 [t ,t +2]上f (x )为增函数,所以f (x )min =f (t )=t ln t .②当0<t <1e 时,在区间⎣⎢⎡⎭⎪⎫t ,1e 上f (x )为减函数,在区间⎝ ⎛⎦⎥⎤1e ,t +2上f (x )为增函数, 所以f (x )min =f ⎝ ⎛⎭⎪⎫1e =-1e .能力提升题组11.(2017·盐城一模)若函数f (x )=x 3+ax 2+bx (a ,b ∈R )的图象与x 轴相切于一点A (m,0)(m ≠0),且f (x )的极大值为12,则m 的值为________.【答案】3212.函数f (x )=ax 3+bx 2+cx +d 的图象如图所示,则下列结论:①a >0,b <0,c >0,d >0;②a >0,b <0,c <0,d >0; ③a <0,b <0,c >0,d >0;④a >0,b >0,c >0,d <0. 其中,结论成立的是________(填序号). 【答案】①【解析】由函数y =f (x )的图象知,a >0,f (0)=d >0. 又x 1,x 2是函数f (x )的极值点, 且f ′(x )=3ax 2+2bx +c =0,∴x 1,x 2是方程3ax 2+2bx +c =0的两根. 由图象知,x 1>0,x 2>0∴⎩⎪⎨⎪⎧x 1+x 2=-2b3a >0,x 1x 2=c3a >0.因此b <0,且c >0.13.(2017·镇江期末)若函数f (x )=-2x 3+2tx 2+1存在唯一的零点,则实数t 的取值范围为________.【答案】⎝ ⎛⎭⎪⎫-32,+∞14.(2017·苏北四市调研)如图,OA 是南北方向的一条公路,OB 是北偏东45°方向的一条公路,某风景区的一段边界为曲线C .为方便游客观光,拟过曲线C 上某点P 分别修建与公路OA ,OB 垂直的两条道路PM ,PN ,且PM ,PN 的造价分别为5万元/百米、40万元/百米.建立如图所示的平面直角坐标系xOy ,则曲线C 符合函数模型y =x +42x2(1≤x ≤9),设 PM =x ,修建两条道路PM ,PN 的总造价为f (x )万元.题中所涉及长度单位均为百米.(1)求f (x )的解析式;(2)当x 为多少时,总造价f (x )最低?并求出最低造价.解 (1)在题图所示的直角坐标系中,因为曲线C 的方程为y =x +42x2(1≤x ≤9),PM =x ,所以点P 坐标为⎝ ⎛⎭⎪⎫x ,x +42x 2,直线OB 的方程为x -y =0,则点P 到直线x -y =0的距离为⎪⎪⎪⎪⎪⎪x -⎝⎛⎭⎪⎫x +42x 22=⎪⎪⎪⎪⎪⎪42x 22=4x2,又PM 的造价为5万元/百米,PN 的造价为40万元/百米.则两条道路总造价为f (x )=5x +40·4x2=5⎝ ⎛⎭⎪⎫x +32x 2 (1≤x ≤9).(2)因为f (x )=5⎝⎛⎭⎪⎫x +32x 2,所以f ′(x )=5⎝ ⎛⎭⎪⎫1-64x 3=5x 3-64x 3,令f ′(x )=0,解得x =4,列表如下:x (1,4) 4 (4,9) f ′(x ) -0 +f (x )极小值所以当x =4时,函数f (x )有最小值,且最小值为f (4)=5⎝⎛⎭⎪⎪⎫4+3242=30,即当x =4时,总造价最低,最低造高中数学知识点三角函数 1、 以角的顶点为坐标原点,始边为 x 轴正半轴建立直角坐标系,在角的终边上任取一个异于原点的点,点 P 到原点的距离记为,则 sin=, cos = , tg = , ctg = , sec = , csc = 。
课时达标检测(十五) 导数与函数的单调性[练基础小题——强化运算能力]1.(2018·前黄中学期中考试)函数f (x )=x ln x 的单调减区间是________. 解析:函数f (x )=x ln x 的定义域为(0,+∞),f ′(x )=ln x +1,由f ′(x )=ln x +1<0得0<x <1e ,所以函数f (x )=x ln x 的单调减区间是⎝ ⎛⎭⎪⎫0,1e . 答案:⎝ ⎛⎭⎪⎫0,1e 2.已知函数f (x )=12x 3+ax +4,则“a >0”是“f (x )在R 上单调递增”的____________条件.(选填“充分不必要”“必要不充分”“充要”“既不充分又不必要”)解析:f ′(x )=32x 2+a ,当a >0时,f ′(x )>0,即a >0时,f (x )在R 上单调递增,由f (x )在R 上单调递增,可得a ≥0.故“a >0”是“f (x )在R 上单调递增”的充分不必要条件.答案:充分不必要3.(2018·阜宁中学模拟)若函数f (x )=⎪⎪⎪⎪⎪⎪e x2-a e x (a ∈R)在区间[1,2]上单调递增,则实数a 的取值范围是________.解析:设g (x )=e x 2-a e x ,则g ′(x )=e x2+ae x .①当a >0时,g ′(x )>0,g (x )在R 上单调递增,且g (ln 2a )=0,依题意知ln 2a ≤1,解得0<a ≤e22.②当a =0时,f (x )符合题意.③当a <0时,令g ′(x )=0,解得x =ln -2a .当x <ln -2a 时,g ′(x )<0,g (x )在(-∞,ln -2a )上单调递减,当x >ln -2a 时,g ′(x )>0,g (x )在(ln -2a ,+∞)上单调递增,故当x =ln -2a 时,g (x )取得最小值,又g (ln -2a )>0,所以g (x )>0恒成立,所以依题意知ln -2a ≤1,解得-e 22≤a <0.综上,所求a 的取值范围是⎣⎢⎡⎦⎥⎤-e 22,e 22. 答案:⎣⎢⎡⎦⎥⎤-e 22,e 224.已知函数f (x )的导函数为f ′(x )=5+cos x ,x ∈(-1,1),且f (0)=0,如果f (1-x )+f (1-x 2)<0,则实数x 的取值范围为________.解析:∵导函数f ′(x )是偶函数,且f (0)=0,∴原函数f (x )是奇函数,∴所求不等式变形为f (1-x )<f (x 2-1),∵导函数值恒大于0,∴原函数在定义域上单调递增,又f (x )的定义域为(-1,1),∴-1<1-x <x 2-1<1,解得1<x <2,∴实数x 的取值范围是(1,2).答案:(1,2)[练常考题点——检验高考能力]一、填空题1.(2018·南通高三期初测试)已知函数f (x )=ln x +2x,若f (x 2+2)<f (3x ),则实数x 的取值范围是________.解析:由f (x )=ln x +2x,得f ′(x )=1x+2x ln 2>0,x ∈(0,+∞),所以f (x )在(0,+∞)上单调递增.又由f (x 2+2)<f (3x ),得0<x 2+2<3x ,所以x ∈(1,2).答案:(1,2)2.若函数f (x )=x 3-tx 2+3x 在区间[]1,4上单调递减,则实数t 的取值范围是________.解析:f ′(x )=3x 2-2tx +3,由于f (x )在区间[]1,4上单调递减,则有f ′(x )≤0在[]1,4上恒成立,即3x 2-2tx +3≤0在[1,4]上恒成立,则t ≥32⎝ ⎛⎭⎪⎫x +1x 在[]1,4上恒成立,因为y =32⎝ ⎛⎭⎪⎫x +1x 在[]1,4上单调递增,所以t ≥32⎝ ⎛⎭⎪⎫4+14=518.答案:⎣⎢⎡⎭⎪⎫518,+∞3.(2018·苏州模拟)已知定义在R 上的函数f (x )满足:f (x )+f ′(x )>1,f (0)=4,则不等式e xf (x )>e x+3(其中e 为自然对数的底数)的解集为________.解析:设g (x )=e x f (x )-e x ,则g ′(x )=e x f (x )+e x f ′(x ) -e x,因为f (x )+f ′(x )>1,所以f (x )+f ′(x ) -1>0,所以g ′(x )>0,所以y =g (x )在定义域R 上单调递增.因为e xf (x )>e x+3,所以g (x )>3,又因为g (0)=e 0f (0)-e 0=3,所以g (x )>g (0),所以x >0,即x ∈(0,+∞).答案:(0,+∞)4.(2018·靖江诊断考试)函数f (x )在定义域R 内可导,若f (x )=f (2-x ),且当x ∈(-∞,1)时,(x -1)f ′(x )<0,设a =f (0),b =f ⎝ ⎛⎭⎪⎫12,c =f (3),则a ,b ,c 的大小关系是________.解析:因为当x ∈(-∞,1)时,(x -1)f ′(x )<0,所以f ′(x )>0,所以函数f (x )在(-∞,1)上是单调递增函数,所以a =f (0)<f ⎝ ⎛⎭⎪⎫12=b ,又f (x )=f (2-x ),所以c =f (3)=f (-1),所以c =f (-1)<f (0)=a ,所以c <a <b .答案:b >a >c5.若函数f (x )=x +b x(b ∈R)的导函数在区间(1,2)上有零点,则f (x )在下列区间上单调递增的是________.(填序号)①(-2,0);②(0,1);③(1,+∞);④(-∞,-2).解析:由题意知,f ′(x )=1-b x 2,∵函数f (x )=x +b x(b ∈R)的导函数在区间(1,2)上有零点,∴当1-b x2=0时,b =x 2,又x ∈(1,2),∴b ∈(1,4).令f ′(x )>0,解得x <-b 或x >b ,即f (x )的单调递增区间为(-∞,-b ),(b ,+∞),∵b ∈(1,4),∴(-∞,-2)符合题意.答案:④6.已知y =f (x )为(0,+∞)上的可导函数,且有f ′(x )+f xx>0,则对于任意的a ,b ∈(0,+∞),当a >b 时,下列不等式成立的是________.(填序号)①af (a )<bf (b );②af (a )>bf (b ); ③af (b )>bf (a );④af (b )<bf (a ). 解析:由f ′(x )+f x x>0得xf ′x +f xx>0,即[xfx ]′x>0,即[xf (x )]′x >0.∵x >0,∴[xf (x )]′>0,即函数y =xf (x )为增函数,由a ,b ∈(0,+∞)且a >b ,得af (a )>bf (b ).答案:②7.若幂函数f (x )的图象过点⎝ ⎛⎭⎪⎫22,12,则函数g (x )=e xf (x )的单调递减区间为________.解析:设幂函数为f (x )=x α,因为图象过点⎝⎛⎭⎪⎫22,12,所以12=⎝ ⎛⎭⎪⎫22α,α=2,所以f (x )=x 2,故g (x )=e x x 2,令g ′(x )=e x x 2+2e xx =e x(x 2+2x )<0,得-2<x <0,故函数g (x )的单调递减区间为(-2,0).答案:(-2,0)8.已知函数f (x )=12x 2+2ax -ln x ,若f (x )在区间⎣⎢⎡⎦⎥⎤13,2上是增函数,则实数a 的取值范围为________.解析:f ′(x )=x +2a -1x ≥0在⎣⎢⎡⎦⎥⎤13,2上恒成立,即2a ≥-x +1x 在⎣⎢⎡⎦⎥⎤13,2上恒成立,∵⎝⎛⎭⎪⎫-x +1x max =83,∴2a ≥83,即a ≥43.答案:⎣⎢⎡⎭⎪⎫43,+∞ 9.已知R 上可导函数f (x )的图象如图所示,则不等式(x 2-2x -3)·f ′(x )>0的解集为_________________________.解析:由题图可知,⎩⎪⎨⎪⎧f ′x >0,x ∈1,+∞∪-∞,-1,f ′x <0,x ∈-1,1,不等式(x 2-2x -3)f ′(x )>0等价于⎩⎪⎨⎪⎧f ′x >0,x 2-2x -3>0或⎩⎪⎨⎪⎧f ′x <0,x 2-2x -3<0,解得x ∈(-∞,-1)∪(-1,1)∪(3,+∞).答案:(-∞,-1)∪(-1,1)∪(3,+∞)10.若函数f (x )=-13x 3+12x 2+2ax 在⎣⎢⎡⎭⎪⎫23,+∞上存在单调递增区间,则a 的取值范围是________.解析:对f (x )求导,得f ′(x )=-x 2+x +2a =-⎝ ⎛⎭⎪⎫x -122+14+2a .当x ∈⎣⎢⎡⎭⎪⎫23,+∞时,f ′(x )的最大值为f ′⎝ ⎛⎭⎪⎫23=29+2a .令29+2a >0,解得a >-19.所以a 的取值范围是⎝ ⎛⎭⎪⎫-19,+∞. 答案:⎝ ⎛⎭⎪⎫-19,+∞二、解答题11.已知函数f (x )=x 3+ax 2+b (a ,b ∈R).试讨论f (x )的单调性. 解:f ′(x )=3x 2+2ax ,令f ′(x )=0,解得x 1=0,x 2=-2a 3.当a =0时,因为f ′(x )=3x 2≥0,所以函数f (x )在(-∞,+∞)上单调递增; 当a >0时,x ∈⎝ ⎛⎭⎪⎫-∞,-2a 3∪(0,+∞)时,f ′(x )>0,x ∈⎝ ⎛⎭⎪⎫-2a 3,0时,f ′(x )<0,所以函数f (x )在⎝ ⎛⎭⎪⎫-∞,-2a 3,(0,+∞)上单凋递增,在⎝ ⎛⎭⎪⎫-2a 3,0上单调递减; 当a <0时,x ∈(-∞,0)∪⎝ ⎛⎭⎪⎫-2a 3,+∞时,f ′(x )>0,x ∈⎝ ⎛⎭⎪⎫0,-2a 3时,f ′(x )<0,所以函数f (x )在(-∞,0),⎝ ⎛⎭⎪⎫-2a 3,+∞上单调递增,在⎝ ⎛⎭⎪⎫0,-2a 3上单调递减. 12.(2018·宿迁期初测试)已知函数f (x )=e x-ax -1. (1)求函数f (x )的单调增区间.(2)若f (x )在定义域R 内单调递增,求实数a 的取值范围.(3)是否存在实数a ,使得函数f (x )在区间(-∞,0]上单调递减,在[0,+∞)上单调递增?若存在,求出a 的值;若不存在,请说明理由.解:(1)易知f ′(x )=e x-a .若a ≤0,则f ′(x )=e x-a >0恒成立,即f (x )在R 上单调递增;若a >0,令e x-a >0,得e x>a ,即x >ln a ,此时f (x )的单调增区间为(ln a ,+∞).(2)要使f (x )在R 内单调递增,只要f ′(x )≥0在R 上恒成立,即e x-a ≥0⇒a ≤e x在R 上恒成立,又因为e x>0,所以a ≤0,即实数a 的取值范围是(-∞,0].(3)假设存在a 满足条件.由题意知e x-a ≤0在(-∞,0]上恒成立,所以a ≥e x在(-∞,0]上恒成立. 因为e x在(-∞,0]上为增函数,所以a ≥1.同理可知e x-a ≥0在[0,+∞)上恒成立,所以a ≤e x在[0,+∞)上恒成立,所以a ≤1. 综上,a =1.附:什么样的考试心态最好大部分学生都不敢掉以轻心,因此会出现很多过度焦虑。
1.导数的概念 (1)平均变化率一般地,函数f (x )在区间[x 1,x 2]上的平均变化率为f (x 2)-f (x 1)x 2-x 1.(2)函数y =f (x )在x =x 0处的导数 ①定义:设函数y =f (x )在区间(a ,b )上有定义,x 0∈(a ,b ),若Δx 无限趋近于0时,此值Δy Δx =f (x 0+Δx )-f (x 0)Δx 无限趋近于一个常数A ,则称f (x )在x =x 0处可导,并称该常数A 为函数f (x )在x =x 0处的导数,记作f ′(x 0).②几何意义:函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点(x 0,f (x 0))处的切线的斜率.相应地,切线方程为y -f (x 0)=f ′(x 0)(x -x 0).(3)函数f (x )的导函数若f (x )对于区间(a ,b )内任一点都可导,则f (x )在各点的导数也随着自变量x 的变化而变化,因而也是自变量x 的函数,该函数称为f (x )的导函数.2.基本初等函数的导数公式(sin x )′=cos_x ,(cos x )′=-sin_x ,(a x )′=a x ln_a , (e x )′=e x ,(log a x )=1x ln a ,(ln x )′=1x .3.导数的运算法则(1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); (3)⎣⎡⎦⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )](g (x )≠0). [小题体验]1.(教材习题改编)一次函数f (x )=kx +b 在区间[m ,n ]上的平均变化率为________. 解析:由题意得函数f (x )=kx +b 在区间[m ,n ]上的平均变化率为f (n )-f (m )n -m =k .答案:k2.(教材习题改编)如图,函数y =f (x )的图象在点P 处的切线方程是y=-x +5,则f (3)=________,f ′(3)=________.解析:由图知切点为(3,2),切线斜率为-1. 答案:2 -13.设函数f (x )在(0,+∞)内可导,且f (x )=x +ln x ,则f ′(1)=________. 解析:由f (x )=x +ln x (x >0),知f ′(x )=1+1x ,所以f ′(1)=2.答案:24.(2015·天津高考)已知函数f (x )=ax ln x ,x ∈(0,+∞),其中a 为实数,f ′(x )为f (x )的导函数.若f ′(1)=3,则a 的值为________.解析:f ′(x )=a ⎝⎛⎭⎫ln x +x ·1x =a (1+ln x ). 由于f ′(1)=a (1+ln 1)=a ,又f ′(1)=3,所以a =3. 答案:31.利用公式求导时要特别注意除法公式中分子的符号,防止与乘法公式混淆.2.求曲线切线时,要分清在点P 处的切线与过P 点的切线的区别,前者只有一条,而后者包括了前者.3.曲线的切线与曲线的交点个数不一定只有一个,这和研究直线与二次曲线相切时有差别. [小题纠偏]1.已知函数f (x )的导函数为f ′(x ),且满足f (x )=2xf ′(e)+ln x ,则f ′(e)=________. 解析:对关系式f (x )=2xf ′(e)+ln x 两边求导,得f ′(x )=2f ′(e)+1x ,令x =e ,得f ′(e)=2f ′(e)+1e ,所以f ′(e)=-1e. 答案:-1e2.已知f (x )=x 2+3xf ′(2),则f (2)=________.解析:因为f ′(x )=2x +3f ′(2),所以f ′(2)=4+3f ′(2),所以f ′(2)=-2,所以f (x )=x 2-6x ,所以f (2)=22-6×2=-8.答案:-83.已知定义在R 上的函数f (x )=e x +x 2-x +sin x ,则曲线y =f (x )在点(0,f (0))处的切线方程是________.解析:令x =0,得f (0)=1.对f (x )求导,得f ′(x )=e x +2x -1+cos x ,所以f ′(0)=1,故曲线y =f (x )在点(0,f (0))处的切线方程为y =x +1.答案:y =x +1考点一 导数的运算(基础送分型考点——自主练透)[题组练透]求下列函数的导数. (1)y =x 2sin x ; (2)y =ln x +1x ;(3)y =cos x e x ;(4)y =11-x +11+x.解:(1)y ′=(x 2)′sin x +x 2(sin x )′ =2x sin x +x 2cos x . (2)y ′=⎝⎛⎭⎫ln x +1x ′ =(ln x )′+⎝⎛⎭⎫1x ′ =1x -1x 2. (3)y ′=⎝⎛⎭⎫cos x e x ′ =(cos x )′e x -cos x (e x )′(e x )2=-sin x +cos x e x.(4)∵y =11-x +11+x =21-x,∴y ′=⎝ ⎛⎭⎪⎫21-x ′=-2(1-x )′(1-x )2=2(1-x )2.[谨记通法] 求函数导数的3种原则考点二 导数的几何意义(常考常新型考点——多角探明)[命题分析]导数的几何意义是每年高考的必考内容,考查题型既有填空题,也常出现在解答题的第(1)问中,难度偏小,属中低档题.常见的命题角度有: (1)求切线方程; (2)求切点坐标; (3)求参数的值.[题点全练]角度一:求切线方程1.(2016·南通调研)已知f (x )=x 3-2x 2+x +6,则f (x )在点P (-1,2)处的切线与坐标轴围成的三角形的面积等于________.解析:∵f (x )=x 3-2x 2+x +6, ∴f ′(x )=3x 2-4x +1, ∴f ′(-1)=8,故切线方程为y -2=8(x +1), 即8x -y +10=0,令x =0,得y =10,令y =0,得x =-54,∴所求面积S =12×54×10=254.答案:254角度二:求切点坐标2.若曲线y =x ln x 上点P 处的切线平行于直线 2x -y +1=0,则点P 的坐标是________. 解析:由题意得y ′=ln x +x ·1x =1+ln x ,直线2x -y +1=0的斜率为2. 设P (m ,n ),则1+ln m =2, 解得m =e , 所以n =eln e =e , 即点P 的坐标为(e ,e). 答案:(e ,e)角度三:求参数的值3.(2016·南京外国语学校检测)已知函数f (x )=x 4+ax 2-bx ,且f ′(0)=-13,f ′(-1)=-27,则a +b =________.解析:∵f ′(x )=4x 3+2ax -b ,由⎩⎪⎨⎪⎧ f ′(0)=-13,f ′(-1)=-27⇒⎩⎪⎨⎪⎧-b =-13-4-2a -b =-27, ∴⎩⎪⎨⎪⎧a =5,b =13, ∴a +b =18. 答案:18[方法归纳]导数几何意义的应用的2个注意点(1)当曲线y =f (x )在点(x 0,f (x 0))处的切线垂直于x 轴时,函数在该点处的导数不存在,切线方程是x =x 0;(2)注意区分曲线在某点处的切线和曲线过某点的切线.曲线y =f (x )在点P (x 0,f (x 0))处的切线方程是y -f (x 0)=f ′(x 0)(x -x 0);求过某点的切线方程,需先设出切点坐标,再依据已知点在切线上求解.一抓基础,多练小题做到眼疾手快1.函数f (x )=(x +2a )(x -a )2的导数为________. 解析:∵f (x )=(x +2a )(x -a )2=x 3-3a 2x +2a 3, ∴f ′(x )=3(x 2-a 2). 答案:3(x 2-a 2)2.已知函数f (x )的导函数为f ′(x ),且满足f (x )=2xf ′(1)+ln x ,则f ′(1)=________. 解析:由f (x )=2xf ′(1)+ln x ,得f ′(x )=2f ′(1)+1x .∴f ′(1)=2f ′(1)+1,则f ′(1)=-1. 答案:-13.(2016·徐州一中检测)曲线y =f (x )=x (x -1)(x -2)·…·(x -6)在原点处的切线方程为________. 解析:y ′=(x -1)(x -2)·…·(x -6)+x [(x -1)·(x -2)·…·(x -6)]′,所以f ′(0)=(-1)×(-2)×(-3)×(-4)×(-5)×(-6)+0=720.故切线方程为y =720x .答案:y =720x4.(2015·全国卷Ⅰ)已知函数f (x )=ax 3+x +1的图象在点(1,f (1))处的切线过点(2,7),则a =________.解析:∵f ′(x )=3ax 2+1, ∴f ′(1)=3a +1. 又f (1)=a +2,∴切线方程为y -(a +2)=(3a +1)(x -1). ∵切线过点(2,7),∴7-(a +2)=3a +1,解得a =1. 答案:15.已知曲线y =x 3+x -2在点P 0处的切线l 与直线4x -y -1=0平行,且点P 0在第三象限,则点P 0的坐标为________.解析:设P 0(x 0,y 0).由y =x 3+x -2,得y ′=3x 2+1. 由已知,得3x 20+1=4,解得x 0=±1. 当x 0=1时,y 0=0; 当x 0=-1时,y 0=-4.又点P 0在第三象限,∴切点P 0的坐标为(-1,-4). 答案:(-1,-4)二保高考,全练题型做到高考达标1.某物体做直线运动,其运动规律是s =t 2+3t (t 的单位:s ,s 的单位:m),则它在第4 s 末的瞬时速度为________ m/s.解析:∵s ′=2t -3t 2,∴在第4 s 末的瞬时速度v =s ′| t =4=8-316=12516 m/s.答案:125162.(2015·苏州二模)已知函数f (x )=(x 2+2)(ax 2+b ),且f ′(1)=2,则f ′(-1)=________. 解析:f (x )=(x 2+2)(ax 2+b )=ax 4+(2a +b )x 2+2b ,f ′(x )=4ax 3+2(2a +b )x 为奇函数,所以f ′(-1)=-f ′(1)=-2.答案:-23.已知f (x )=x (2 015+ln x ),若f ′(x 0)=2 016,则x 0=________.解析:f ′(x )=2 015+ln x +x ·1x =2 016+ln x ,故由f ′(x 0)=2 016得2 016+ln x 0=2 016,则lnx 0=0,解得x 0=1.答案:14.(2016·金陵中学模拟)设点P 是曲线y =x 3-3x +23上的任意一点,P 点处切线倾斜角α的取值范围为________.解析:因为y ′=3x 2-3≥-3,故切线斜率k ≥-3,所以切线倾斜角α的取值范围是⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫2π3,π.答案:⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫2π3,π 5.已知f (x )=ln x ,g (x )=12x 2+mx +72(m <0),直线l 与函数f (x ),g (x )的图象都相切,且与f (x )图象的切点为(1,f (1)),则m 的值为________.解析:∵f ′(x )=1x,∴直线l 的斜率为k =f ′(1)=1, 又f (1)=0,∴切线l 的方程为y =x -1.g ′(x )=x +m ,设直线l 与g (x )的图象的切点为(x 0,y 0), 则有x 0+m =1,y 0=x 0-1,y 0=12x 20+mx 0+72,m <0, 于是解得m =-2. 答案:-26.(2016·太原一模)函数f (x )=x e x 的图象在点(1,f (1))处的切线方程是________. 解析: ∵f (x )=x e x , ∴f (1)=e ,f ′(x )=e x +x e x ,∴f ′(1)=2e ,∴f (x )的图象在点(1,f (1))处的切线方程为y -e =2e(x -1),即y =2e x -e. 答案:y =2e x -e7.(2015·无锡调研)如图,y =f (x )是可导函数,直线l :y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),其中g ′(x ) 是g (x )的导函数,则g ′(3)=________.解析:由题图可知曲线y =f (x )在x =3处切线的斜率等于-13,即f ′(3)=-13.又因为g (x )=xf (x ),所以g ′(x )=f (x )+xf ′(x ),g ′(3)=f (3)+3f ′(3), 由题图可知f (3)=1,所以g ′(3)=1+3×⎝⎛⎭⎫-13=0. 答案:08.设函数f (x )=(x -a )(x -b )(x -c )(a ,b ,c 是两两不等的常数),则a f ′(a )+b f ′(b )+cf ′(c )=________.解析:∵f (x )=x 3-(a +b +c )x 2+(ab +bc +ca )x -abc , ∴f ′(x )=3x 2-2(a +b +c )x +ab +bc +ca , f ′(a )=(a -b )(a -c ), f ′(b )=(b -a )(b -c ), f ′(c )=(c -a )(c -b ). ∴a f ′(a )+b f ′(b )+c f ′(c ) =a(a -b )(a -c )+b (b -a )(b -c )+c(c -a )(c -b )=a (b -c )-b (a -c )+c (a -b )(a -b )(a -c )(b -c )=0.答案:09.求下列函数的导数. (1)y =x ·tan x ;(2)y =(x +1)(x +2)(x +3).解:(1)y ′=(x ·tan x )′=x ′tan x +x (tan x )′ =tan x +x ·⎝⎛⎭⎫sin x cos x ′=tan x +x ·cos 2x +sin 2x cos 2x =tan x +xcos 2x. (2)y ′=(x +1)′[(x +2)(x +3)]+(x +1)[(x +2)(x +3)]′=(x +2)(x +3)+(x +1)(x +2)+(x +1)(x +3)=3x 2+12x +11.10.已知曲线y =f (x )=x 2a -1(a >0)在x =1处的切线为l ,求l 与两坐标轴所围成的三角形的面积的最小值.解:因为f (1)=1a -1,所以切点为⎝⎛⎭⎫1,1a -1. 由已知,得f ′(x )=2x a ,切线斜率k =f ′(1)=2a ,所以切线l 的方程为y -⎝⎛⎭⎫1a -1=2a (x -1), 即2x -ay -a -1=0.令y =0,得x =a +12;令x =0,得y =-a +1a.所以l 与两坐标轴所围成的三角形的面积S =12×a +12×a +1a =14⎝⎛⎭⎫a +1a +12≥14×2a ×1a +12=1,当且仅当a =1a,即a =1时取等号,所以S min =1.故l 与两坐标轴所围成的三角形的面积的最小值为1. 三上台阶,自主选做志在冲刺名校1.已知曲线C :f (x )=x 3-ax +a ,若过曲线C 外一点A (1,0)引曲线C 的两条切线,它们的倾斜角互补,则a 的值为________.解析:设切点坐标为(t ,t 3-at +a ).由题意知,f ′(x )=3x 2-a ,切线的斜率k =y ′| x =t =3t 2-a ①,所以切线方程为y -(t 3-at +a )=(3t 2-a )(x -t ) ②.将点A (1,0)代入②式得-(t 3-at +a )=(3t 2-a )(1-t ),解得t =0或t =32.分别将t =0和t =32代入①式,得k =-a 和k =274-a ,由题意得它们互为相反数,故a =278.答案:2782.(2016·无锡一中检测)已知函数f (x )=f ′⎝⎛⎭⎫π4cos x +sin x ,则f ⎝⎛⎭⎫π4的值为________. 解析:∵f (x )=f ′⎝⎛⎭⎫π4cos x +sin x , ∴f ′(x )=-f ′⎝⎛⎭⎫π4sin x +cos x , ∴f ′⎝⎛⎭⎫π4=-f ′⎝⎛⎭⎫π4×22+22, ∴f ′⎝⎛⎭⎫π4=2-1.故f ⎝⎛⎭⎫π4=(2-1)×22+22=1. 答案:13.(2016·苏北四市调研)设函数f (x )=ax -b x ,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y-12=0.(1)求f (x )的解析式;(2)证明:曲线y =f (x )上任意一点处的切线与直线x =0和直线y =x 所围成的三角形的面积为定值,并求此定值.解:(1)f ′(x )=a +b x2.∵点(2,f (2))在切线7x -4y -12=0上, ∴f (2)=2×7-124=12. 又曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -12=0,∴⎩⎨⎧f ′(2)=74,f (2)=12⇒⎩⎨⎧a +b 4=74,2a -b 2=12⇒⎩⎪⎨⎪⎧a =1,b =3. ∴f (x )的解析式为f (x )=x -3x.(2)设⎝⎛⎭⎫x 0,x 0-3x 0为曲线y =f (x )上任意一点, 则切线的斜率k =1+3x 20,切线方程为y -⎝⎛⎭⎫x 0-3x 0=⎝⎛⎭⎫1+3x 20(x -x 0), 令x =0,得y =-6x 0.由⎩⎪⎨⎪⎧y -⎝⎛⎭⎫x 0-3x 0=⎝⎛⎭⎫1+3x 20(x -x 0),y =x ,得⎩⎪⎨⎪⎧x =2x 0,y =2x 0.∴曲线y =f (x )上任意一点处的切线与直线x =0和直线y =x 所围成的三角形的面积S =12|2x 0|⎪⎪⎪⎪-6x 0=6,为定值.第二节 导数的应用1.函数的单调性在(a,b)内可导函数f(x),f′(x)在(a,b)任意子区间内都不恒等于0.f′(x)≥0⇔f(x)在(a,b)上为增函数.f′(x)≤0⇔f(x)在(a,b)上为减函数.2.函数的极值(1)函数的极小值:函数y=f(x)在点x=a的函数值f(a)比它在点x=a附近其他点的函数值都小,f′(a)=0;而且在点x=a附近的左侧f′(x)<0,右侧f′(x)>0,则点a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值.(2)函数的极大值:函数y=f(x)在点x=b的函数值f(b)比它在点x=b附近的其他点的函数值都大,f′(b)=0;而且在点x=b附近的左侧f′(x)>0,右侧f′(x)<0,则点b叫做函数y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值.极小值点、极大值点统称为极值点,极大值和极小值统称为极值.3.函数的最值(1)在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值.(2)若函数f(x)在[a,b]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a,b]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值.[小题体验]1.(教材习题改编)函数f(x)=x2e x的单调增区间是________.解析:函数f(x)的定义域为R,f′(x)=2x e x+x2e x=e x(2x+x2),令f′(x)>0,得x<-2或x>0,所以函数f(x)的单调增区间为(-∞,-2)和(0,+∞).答案:(-∞,-2),(0,+∞)2.(教材习题改编)函数f(x)=13x3+32x2-4x+13取得极大值时x的值是________.解析:f′(x)=x2+3x-4,令f′(x)=0,得x1=1,x2=-4,经检验知x=-4时,函数y取得极大值.答案:-43.(教材习题改编)函数f(x)=32x+sin x在区间[0,2π]上的最大值为________.解析:f′(x)=32+cos x,令f′(x)=0,x∈[0,2π],得x =5π6或x =7π6,又f (0)=0,f ⎝⎛⎭⎫5π6=53π12+12. f ⎝⎛⎭⎫7π6=73π12-12,f (2π)=3π.所以函数f (x )在区间[0,2π]上的最大值为3π. 答案:3π4.已知f (x )=x 3-ax 在[1,+∞)上是增函数,则a 的最大值是________. 答案:31.求函数单调区间与函数极值时没有列表的习惯,会造成问题不能直观且有条理的解决. 2.求函数最值时,易误认为极值点就是最值点,不通过比较就下结论.3.解题时要注意区分求单调性和已知单调性的问题,处理好f ′(x )=0时的情况;区分极值点和导数为0的点.[小题纠偏]1.已知函数f (x )=x 3+ax 2+bx -a 2-7a 在x =1处取得极大值10,则ab的值为________.解析:由题意,知f ′(x )=3x 2+2ax +b .由函数f (x )在x =1处取得极大值10,知⎩⎪⎨⎪⎧f ′(1)=0,f (1)=10,即⎩⎪⎨⎪⎧ 3+2a +b =0,1+a +b -a 2-7a =10,解得⎩⎪⎨⎪⎧ a =-2,b =1或⎩⎪⎨⎪⎧ a =-6,b =9,经检验⎩⎪⎨⎪⎧a =-6,b =9满足题意,故ab =-23. 答案:-232.若函数f (x )=2x 2-ln x 在其定义域的一个子区间(k -1,k +1)上不是单调函数,则实数k 的取值范围是________.解析:因为f ′(x )=4x -1x (x >0),所以可求得f (x )的单调递增区间为⎝⎛⎭⎫12,+∞,单调递减区间为⎝⎛⎭⎫0,12.又函数f (x )=2x 2-ln x 在其定义域的一个子区间(k -1,k +1)内不是单调函数,则⎩⎨⎧0≤k -1<12,k +1>12,解得1≤k <32.答案:⎣⎡⎭⎫1,32 3.函数y =2x 3-2x 2在区间[-1,2]上的最大值是________.解析:y ′=6x 2-4x ,令y ′=0,得x =0或x =23.∵f (-1)=-4,f (0)=0, f ⎝⎛⎭⎫23=-827,f (2)=8. ∴最大值为8. 答案:8第一课时 导数与函数的单调性考点一 判断或证明函数的单调性(重点保分型考点——师生共研)[典例引领]设a ∈[-2,0],已知函数f (x )=⎩⎪⎨⎪⎧x 3-(a +5)x ,x ≤0,x 3-a +32x 2+ax ,x >0.证明f (x )在区间(-1,1)内单调递减,在区间(1,+∞)内单调递增. 证明:设函数f 1(x )=x 3-(a +5)x (x ≤0), f 2(x )=x 3-a +32x 2+ax (x ≥0),①f 1′(x )=3x 2-(a +5),由于a ∈[-2,0],从而当-1<x ≤0时, f 1′(x )=3x 2-(a +5)<3-a -5≤0, 所以函数f 1(x )在区间(-1,0]内单调递减. ②f 2′(x )=3x 2-(a +3)x +a =(3x -a )(x -1),由于a ∈[-2,0],所以当0<x <1时,f 2′(x )<0;当x >1时,f 2′(x )>0,即函数f 2(x )在区间[0,1)内单调递减,在区间(1,+∞)内单调递增.综合①②及f 1(0)=f 2(0),可知函数f (x )在区间(-1,1)内单调递减,在区间(1,+∞)内单调递增.[由题悟法]导数法证明函数f (x )在(a ,b )内的单调性的3步骤(1)一求.求f ′(x );(2)二定.确认f ′(x )在(a ,b )内的符号;(3)三结论.作出结论:f ′(x )>0时为增函数;f ′(x )<0时为减函数.[提醒] 研究含参数函数的单调性时,需注意依据参数取值对不等式解集的影响进行分类讨论.[即时应用]已知函数f (x )=ln x -x1+2x.(1)求证:f (x )在区间(0,+∞)上单调递增; (2)若f [x (3x -2)]<-13,求实数x 的取值范围.解:(1)证明:由已知得f (x )的定义域为(0,+∞). ∵f (x )=ln x -x1+2x,∴f ′(x )=1x -1+2x -2x (1+2x )2=4x 2+3x +1x (1+2x )2. ∵x >0,∴4x 2+3x +1>0,x (1+2x )2>0. ∴当x >0时,f ′(x )>0. ∴f (x )在(0,+∞)上单调递增. (2)∵f (x )=ln x -x 1+2x ,∴f (1)=ln 1-11+2×1=-13.由f [x (3x -2)]<-13得f [x (3x -2)]<f (1).由(1)得⎩⎪⎨⎪⎧x (3x -2)>0,x (3x -2)<1,解得-13<x <0或23<x <1.∴实数x 的取值范围为⎝⎛⎭⎫-13,0∪⎝⎛⎭⎫23,1. 考点二 求函数的单调区间(重点保分型考点——师生共研)[典例引领]已知函数f (x )=mx 3+nx 2(m ,n ∈R ,m ≠0),函数y =f (x )的图象在点(2,f (2))处的切线与x 轴平行.(1)用关于m 的代数式表示n ; (2)求函数f (x )的单调增区间.解:(1)由已知条件得f ′(x )=3mx 2+2nx , 又f ′(2)=0,所以3m +n =0,故n =-3m . (2)因为n =-3m , 所以f (x )=mx 3-3mx 2, 所以f ′(x )=3mx 2-6mx . 令f ′(x )>0,即3mx 2-6mx >0, 当m >0时,解得x <0或x >2,则函数f (x )的单调增区间是(-∞,0)和(2,+∞); 当m <0时,解得0<x <2, 则函数f (x )的单调增区间是(0,2). 综上,当m >0时,函数f (x )的单调增区间是(-∞,0)和(2,+∞); 当m <0时,函数f (x )的单调增区间是(0,2).[由题悟法]确定函数单调区间4步骤(1)确定函数f (x )的定义域; (2)求f ′(x );(3)解不等式f ′(x )>0,解集在定义域内的部分为单调递增区间; (4)解不等式f ′(x )<0,解集在定义域内的部分为单调递减区间.[即时应用](2015·重庆高考改编)已知函数f (x )=ax 3+x 2(a ∈R)在x =-43处取得极值.(1)确定a 的值;(2)若g (x )=f (x )e x ,求g (x )的单调区间. 解:(1)对f (x )求导得f ′(x )=3ax 2+2x , 因为f (x )在x =-43处取得极值,所以f ′⎝⎛⎭⎫-43 =0, 即3a ·169+2·⎝⎛⎭⎫-43 =16a 3-83=0,解得a =12.(2)由(1)得g (x )=⎝⎛⎭⎫12x 3+x 2e x, 故g ′(x )=⎝⎛⎭⎫32x 2+2x e x +⎝⎛⎭⎫12x 3+x 2e x =⎝⎛⎭⎫12x 3+52x 2+2x e x =12x (x +1)(x +4)e x . 令g ′(x )=0,解得x =0或x =-1或x =-4. 当x <-4时,g ′(x )<0,故g (x )为减函数; 当-4<x <-1时,g ′(x )>0,故g (x )为增函数; 当-1<x <0时,g ′(x )<0,故g (x )为减函数; 当x >0时,g ′(x )>0,故g (x )为增函数.综上知,g (x )的减区间为(-∞,-4)和(-1,0),增区间为(-4,-1)和(0,+∞).考点三 已知函数的单调性求参数的范围(题点多变型考点——纵引横联)[典型母题]根据函数单调性求参数的一般思路(1)利用集合间的包含关系处理:y=f(x)在(a,b)上单调,则区间(a,b)是相应单调区间的子集.(2)转化为不等式的恒成立问题,即“若函数单调递增,则f′(x)≥0;若函数单调递减,则f′(x)≤0”来求解.[提醒]f(x)为增函数的充要条件是对任意的x∈(a,b)都有f′(x)≥0,且在(a,b)内的任一非空子区间上f′(x)不恒为0.应注意此时式子中的等号不能省略,否则漏解.[越变越明][变式1]函数f(x)不变,若f(x)在区间(1,+∞)上为增函数,求a的取值范围.解:因为f′(x)=3x3-a,且f(x)在区间(1,+∞)上为增函数,所以f′(x)≥0在(1,+∞)上恒成立,即3x2-a≥0在(1,+∞)上恒成立,所以a≤3x2在(1,+∞)上恒成立,所以a≤3,即a的取值范围为(-∞,3].[变式2]函数f(x)不变,若f(x)在区间(-1,1)上为减函数,试求a的取值范围.解:由f′(x)=3x2-a≤0在(-1,1)上恒成立,得a≥3x2在(-1,1)上恒成立.因为-1<x<1,所以3x2<3,所以a≥3.即当a的取值范围为[3,+∞)时,f(x)在(-1,1)上为减函数.[变式3]函数f(x)不变,若f(x)的单调递减区间为(-1,1),求a的值.解:由母题可知,f(x)的单调递减区间为⎝⎛⎭⎫-3a 3,3a 3,∴3a 3=1,即a =3.[破译玄机]函数的单调区间是指单调递增或单调递减,在求解中应列方程求解,与函数在某个区间上具有单调性是不同的.[变式4] 函数f (x )不变,若f (x )在区间(-1,1)上不单调,求a 的取值范围. 解:∵f (x )=x 3-ax -1,∴f ′(x )=3x 2-a .由f ′(x )=0,得x =±3a3(a ≥0).∵f (x )在区间(-1,1)上不单调,∴0<3a3<1,得0<a <3,即a 的取值范围为(0,3). [破译玄机]函数在其区间上不具有单调性,但可在子区间上具有单调性,如变式4中利用了3a3∈(0,1)来求解.一抓基础,多练小题做到眼疾手快1.(2015·镇江模拟)函数f (x )=(x -3)e x 的单调递增区间是________.解析:函数f (x )=(x -3)e x 的导数为f ′(x )=[(x -3)e x ]′=e x +(x -3)e x =(x -2)e x .由函数导数与函数单调性的关系,得当f ′(x )>0时,函数f (x )单调递增,此时由不等式f ′(x )=(x -2)e x >0,解得x >2.答案:(2,+∞)2.设函数f (x )=13x 3+ax 2+5x +6在区间[1,3]上是单调函数,则实数a 的取值范围是________.解析:依题意,知当x ∈[1,3]时,f ′(x )=x 2+2ax +5的值恒不小于0或恒不大于0. 若当x ∈[1,3]时,f ′(x )=x 2+2ax +5≥0,即有-2a ≤x +5x 在[1,3]上恒成立,而x +5x ≥2x ·5x=25(当且仅当x =5时取等号),故-2a ≤25,解得a ≥- 5.若当x ∈[1,3]时,f ′(x )=x 2+2ax +5≤0,即有-2a ≥x +5x 恒成立,注意到函数g (x )=x +5x 在[1,5]上是减函数,在[5,3]上是增函数,且g (1)=6>g (3)=143,因此-2a ≥6,解得a ≤-3.综上所述,实数a 的取值范围是(-∞,-3]∪[-5,+∞). 答案:(-∞,-3]∪[-5,+∞)3.函数f (x )=1+x -sin x 在(0,2π)上的单调情况是________.解析:在(0,2π)上有f ′(x )=1-cos x >0,所以f (x )在(0,2π)上单调递增. 答案:单调递增4.(2016·启东模拟)已知a ≥1,f (x )=x 3+3|x -a |,若函数f (x )在[-1,1]上的最大值和最小值分别记为M ,m ,则M -m 的值为________.解析:当x ∈[-1,1]时,f (x )=x 3+3(a -x )=x 3-3x +3a (a ≥1),∴f ′(x )=3(x -1)(x +1).当-1<x <1时,f ′(x )<0,所以原函数f (x )在区间[-1,1]上单调递减,所以M =f (-1)=3a +2,m =f (1)=3a -2,所以M -m =4.答案:45.(2016·苏州测试)已知函数f (x )=12x 2+2ax -ln x ,若f (x )在区间⎣⎡⎦⎤13,2上是增函数,则实数a 的取值范围为________.解析:f ′(x )=x +2a -1x ≥0在⎣⎡⎦⎤13,2上恒成立, 即2a ≥-x +1x 在⎣⎡⎦⎤13,2上恒成立, ∵⎝⎛⎭⎫-x +1x max =83, ∴2a ≥83,即a ≥43.答案:⎣⎡⎭⎫43,+∞二保高考,全练题型做到高考达标1.函数f (x )=x 3-15x 2-33x +6的单调减区间为________.解析:由f (x )=x 3-15x 2-33x +6得f ′(x )=3x 2-30x -33,令f ′(x )<0,即3(x -11)(x +1)<0,解得-1<x <11,所以函数f (x )的单调减区间为(-1,11).答案:(-1,11)2.若幂函数f (x )的图象过点⎝⎛⎭⎫22,12,则函数g (x )=e xf (x )的单调递减区间为________. 解析:设幂函数f (x )=x α,因为图象过点⎝⎛⎭⎫22,12,所以12=⎝⎛⎭⎫22α,α=2,所以f (x )=x 2,故g (x )=e x x 2,令g ′(x )=e x x 2+2e x x =e x (x 2+2x )<0,得-2<x <0,故函数g (x )的单调递减区间为(-2,0).答案:(-2,0)3.(2016·南通、扬州、淮安、连云港调研)设f (x )=4x 3+mx 2+(m -3)x +n (m ,n ∈R)是R 上的单调增函数,则实数m 的值为________.解析:因为f ′(x )=12x 2+2mx +m -3,又函数f (x )是R 上的单调增函数,所以12x 2+2mx +m -3≥0在R 上恒成立,所以(2m )2-4×12(m -3)≤0,整理得m 2-12m +36≤0,即(m -6)2≤0.又因为(m -6)2≥0,所以(m -6)2=0,所以m =6.答案:64.已知函数f (x )=x +1ax 在(-∞,-1)上单调递增,则实数a 的取值范围是________.解析:函数f (x )=x +1ax 的导数为f ′(x )=1-1ax 2,由于f (x )在(-∞,-1)上单调递增,则f ′(x )≥0在(-∞,-1)上恒成立,即1a ≤x 2在(-∞,-1)上恒成立.由于当x <-1时,x 2>1,则有1a ≤1,解得a ≥1或a <0.答案:(-∞,0)∪[1,+∞)5.(2015·南通、扬州、泰州、淮安三调)已知函数f (x )=⎩⎪⎨⎪⎧2x 3+3x 2+m ,0≤x ≤1,mx +5,x >1.若函数f (x )的图象与x 轴有且只有两个不同的交点,则实数m 的取值范围为________.解析:由f (x )=2x 3+3x 2+m ,得f ′(x )=6x 2+6x ,所以f (x )在[0,1]上单调递增,即f (x )=2x 3+3x 2+m 与x 轴至多有一个交点,要使函数f (x )的图象与x 轴有且只有两个不同的交点,即⎩⎪⎨⎪⎧m +5>0,m <0,从而可得m ∈(-5,0). 答案:(-5,0)6.若函数f (x )=ax 3-3x 在(-1,1)上为单调递减函数,则实数a 的取值范围是________. 解析:f ′(x )=3ax 2-3,∵f (x )在(-1,1)上为单调递减函数,∴f ′(x )≤0在(-1,1)上恒成立,即3ax 2-3≤0在(-1,1)上恒成立.当x =0时,a ∈R ;当x ≠0时,a ≤1x 2,∵x ∈(-1,0)∪(0,1),∴a ≤1.综上,实数a 的取值范围为(-∞,1].答案:(-∞,1]7.(2016·盐城中学模拟)已知函数f (x )(x ∈R)满足f (1)=1,且f (x )的导数f ′(x )<12,则不等式f (x 2)<x 22+12的解集为________. 解析:设F (x )=f (x )-12x ,∴F ′(x )=f ′(x )-12,∵f ′(x )<12,∴F ′(x )=f ′(x )-12<0,即函数F (x )在R 上单调递减.∵f (x 2)<x 22+12,∴f (x 2)-x 22<f (1)-12,∴F (x 2)<F (1),而函数F (x )在R 上单调递减,∴x 2>1,即x ∈(-∞,-1)∪(1,+∞).答案:(-∞,-1)∪(1,+∞)8.若函数f (x )=-13x 3+12x 2+2ax 在⎣⎡⎭⎫23,+∞上存在单调递增区间,则a 的取值范围是________.解析:对f (x )求导,得f ′(x )=-x 2+x +2a =-⎝⎛⎭⎫x -122+14+2a .当x ∈⎣⎡⎭⎫23,+∞时,f ′(x )的最大值为f ′⎝⎛⎭⎫23=29+2a .令29+2a >0,解得a >-19.所以a 的取值范围是⎝⎛⎭⎫-19,+∞. 答案:⎝⎛⎭⎫-19,+∞ 9.(2016·镇江五校联考)已知函数f (x )=ln x +ke x(k 为常数,e 是自然对数的底数),曲线y =f (x )在点(1,f (1))处的切线与x 轴平行.(1)求k 的值; (2)求f (x )的单调区间.解:(1)由题意得f ′(x )=1x-ln x -k e x ,又f ′(1)=1-ke =0,故k =1.(2)由(1)知,f ′(x )=1x-ln x -1e x.设h (x )=1x -ln x -1(x >0),则h ′(x )=-1x 2-1x <0,即h (x )在(0,+∞)上是减函数.由h (1)=0知,当0<x <1时,h (x )>0,从而f ′(x )>0; 当x >1时,h (x )<0,从而f ′(x )<0. 综上可知,f (x )的单调递增区间是(0,1), 单调递减区间是(1,+∞).10.(2016·徐州调研)已知函数f (x )=ln x ,g (x )=12ax +b .(1)若f (x )与g (x )在x =1处相切,求g (x )的表达式;(2)若φ(x )=m (x -1)x +1-f (x )在[1,+∞)上是减函数,求实数m 的取值范围.解:(1)由已知得f ′(x )=1x ,∴f ′(1)=1=12a ,a =2.又∵g (1)=0=12a +b ,∴b =-1,∴g (x )=x -1.(2)∵φ(x )=m (x -1)x +1-f (x )=m (x -1)x +1-ln x 在[1,+∞)上是减函数.∴φ′(x )=-x 2+(2m -2)x -1x (x +1)2≤0在[1,+∞)上恒成立.即x 2-(2m -2)x +1≥0在[1,+∞)上恒成立, 则2m -2≤x +1x ,x ∈[1,+∞),∵x +1x ∈[2,+∞),∴2m -2≤2,m ≤2.故实数m 的取值范围是(-∞,2]. 三上台阶,自主选做志在冲刺名校1.已知a ≥0,函数f (x )=(x 2-2ax )e x ,若f (x )在[-1,1]上是单调减函数,则a 的取值范围是________.解析:f ′(x )=(2x -2a )e x +(x 2-2ax )e x =[x 2+(2-2a )x -2a ]e x ,由题意知当x ∈[-1,1]时,f ′(x )≤0恒成立,即x 2+(2-2a )x -2a ≤0恒成立.令g (x )=x 2+(2-2a )x -2a ,则有⎩⎪⎨⎪⎧ g (-1)≤0,g (1)≤0,即⎩⎪⎨⎪⎧(-1)2+(2-2a )·(-1)-2a ≤0,12+2-2a -2a ≤0,解得a ≥34.答案:⎣⎡⎭⎫34,+∞2.(2016·泰州模拟)若函数f (x )=x 2|x -a |在区间[0,2]上单调递增,则实数a 的取值范围是________.解析:当a ≤0时,f (x )=x 3-ax 2,f ′(x )=3x 2-2ax ≥0在[0,+∞)上恒成立,所以f (x )在[0,+∞)上单调递增,则也在[0,2]上单调递增,成立;当a >0时,f (x )=⎩⎪⎨⎪⎧ax 2-x 3,0≤x ≤a ,x 3-ax 2,x >a .①当0≤x ≤a 时,f ′(x )=2ax -3x 2, 令f ′(x )=0,则x =0或x =23a ,则f (x )在⎣⎡⎭⎫0,23a 上单调递增,在⎝⎛⎭⎫23a ,a 上单调递减; ②当x >a 时,f ′(x )=3x 2-2ax =x (3x -2a )>0,所以f (x )在(a ,+∞)上单调递增,所以当a >0时,f (x )在⎣⎡⎭⎫0,23a 上单调递增,在⎝⎛⎭⎫23a ,a 上单调递减,在(a ,+∞)上单调递增.要使函数在区间[0,2]上单调递增,则必有23a ≥2,解得a ≥3.综上,实数a 的取值范围是(-∞,0]∪[3,+∞). 答案:(-∞,0]∪[3,+∞)3.已知函数f (x )=a ln x -ax -3(a ∈R). (1)求函数f (x )的单调区间;(2)若函数y =f (x )的图象在点(2,f (2))处的切线的倾斜角为45°,对于任意的t ∈[1,2],函数g (x )=x 3+x 2·⎣⎡⎦⎤f ′(x )+m 2在区间(t,3)上总不是单调函数,求m 的取值范围. 解:(1)函数f (x )的定义域为(0,+∞),且f ′(x )=a (1-x )x .当a >0时,f (x )的增区间为(0,1),减区间为(1,+∞);当a <0时,f (x )的增区间为(1,+∞),减区间为(0,1); 当a =0时,f (x )不是单调函数.(2)由(1)及题意得f ′(2)=-a2=1,即a =-2,∴f (x )=-2ln x +2x -3,f ′(x )=2x -2x .∴g (x )=x 3+⎝⎛⎭⎫m 2+2x 2-2x , ∴g ′(x )=3x 2+(m +4)x -2.∵g (x )在区间(t,3)上总不是单调函数, 即g ′(x )=0在区间(t,3)上有变号零点.由于g ′(0)=-2,∴⎩⎪⎨⎪⎧g ′(t )<0,g ′(3)>0.当g ′(t )<0,即3t 2+(m +4)t -2<0 对任意t ∈[1,2]恒成立, 由于g ′(0)<0,故只要g ′(1)<0且g ′(2)<0, 即m <-5且m <-9,即m <-9; 由g ′(3)>0,即m >-373.所以-373<m <-9.即实数m 的取值范围是⎝⎛⎭⎫-373,-9. 第二课时 导数与函数的极值、最值考点一 运用导数解决函数的极值问题(常考常新型考点——多角探明)[命题分析]函数的极值是每年高考的必考内容,题型既有填空题,也有解答题,难度适中,为中高档题. 常见的命题角度有: (1)已知函数求极值; (2)已知极值求参数; (3)由图判断极值.[题点全练]角度一:已知函数求极值1.已知函数f (x )=x -a ln x (a ∈R).(1)当a =2时,求曲线y =f (x )在点A (1,f (1))处的切线方程; (2)求函数f (x )的极值.解:由题意知函数f (x )的定义域为(0,+∞),f ′(x )=1-ax .(1)当a =2时,f (x )=x -2ln x ,f ′(x )=1-2x (x >0),因为f (1)=1,f ′(1)=-1,所以曲线y =f (x )在点A (1,f (1))处的切线方程为y -1=-(x -1),即x +y -2=0. (2)由f ′(x )=1-a x =x -ax,x >0知:①当a ≤0时,f ′(x )>0,函数f (x )为(0,+∞)上的增函数,函数f (x )无极值;②当a >0时,由f ′(x )=0,解得x =a .又当x ∈(0,a )时,f ′(x )<0;当x ∈(a ,+∞)时,f ′(x )>0,从而函数f (x )在x =a 处取得极小值,且极小值为f (a )=a -a ln a ,无极大值.综上,当a ≤0时,函数f (x )无极值;当a >0时,函数f (x )在x =a 处取得极小值a -a ln a ,无极大值.角度二:已知极值求参数2.(2016·黑龙江哈三中期末)已知x =2是函数f (x )=x 3-3ax +2 的极小值点,那么函数f (x )的极大值为________.解析:x =2是函数f (x )=x 3-3ax +2的极小值点,即x =2是f ′(x )=3x 2-3a =0的根,将x =2代入得a =4,所以函数解析式为f (x )=x 3-12x +2,则由3x 2-12=0,得x =±2,故函数在(-2,2)上是减函数,在(-∞,-2),(2,+∞)上是增函数,由此可知当x =-2时函数f (x )取得极大值f (-2)=18.答案:183.若函数f (x )=13ax 3-ax 2+(2a -3)x +1在R 上存在极值,则实数a 的取值范围是________.解析:由题意知,f ′(x )=ax 2-2ax +2a -3,因为函数f (x )=13ax 3-ax 2+(2a -3)x +1在R 上存在极值,所以f ′(x )=0有两个不等实根, 其判别式Δ=4a 2-4a (2a -3)>0, 所以0<a <3,故实数a 的取值范围为(0,3). 答案:(0,3)角度三:由图判断极值4.已知函数f (x )的定义域为R ,导函数f ′(x )的图象如图所示,则函数f (x )有________个极大值点,________个极小值点.解析:由导数与函数极值的关系,知当f ′(x 0)=0时,若在x 0的左侧f ′(x )>0,右侧f ′(x )<0,则f (x )在x =x 0处取得极大值;若在x 0的左侧f ′(x )<0,右侧f ′(x )>0,则f (x )在x =x 0处取得极小值.设函数f ′(x )的图象与x 轴的交点从左到右的横坐标依次为x 1,x 2,x 3,x 4,则f (x )在x =x 1,x =x 3处取得极大值,在x =x 2,x =x 4处取得极小值.答案:2 2[方法归纳]利用导数研究函数极值的一般流程考点二 运用导数解决函数的最值问题(重点保分型考点——师生共研)[典例引领]已知函数f (x )=xa -e x (a >0).(1)求函数f (x )的单调区间; (2)求函数f (x )在[1,2]上的最大值. 解:(1)f (x )=x a -e x (a >0),则f ′(x )=1a -e x .令1a -e x =0,则x =ln 1a. 当x 变化时,f ′(x ),f (x )的变化情况如下表:故函数f (x )的单调递增区间为⎝⎭⎫-∞,ln 1a ;单调递减区间为⎝⎭ln 1a ,+∞. (2)当ln 1a ≥2,即0<a ≤1e 2时,f (x )max =f (2)=2a-e 2;当1<ln 1a <2,即1e 2<a <1e 时,f (x )max =f ⎝⎛⎭⎫ln 1a =1a ln 1a -1a ; 当ln 1a ≤1,即a ≥1e 时,f (x )max =f (1)=1a-e.[由题悟法]求函数f (x )在[a ,b ]上的最大值和最小值3步骤(1)求函数在(a ,b )内的极值;(2)求函数在区间端点的函数值f (a ),f (b );(3)将函数f (x )的极值与f (a ),f (b )比较,其中最大的一个为最大值,最小的一个为最小值.[即时应用]设函数f (x )=a ln x -bx 2(x >0),若函数f (x )在x =1处与直线y =-12相切,(1)求实数a ,b 的值;(2)求函数f (x )在⎣⎡⎦⎤1e ,e 上的最大值. 解:(1)f ′(x )=ax-2bx ,∵函数f (x )在x =1处与直线y =-12相切,∴⎩⎪⎨⎪⎧ f ′(1)=a -2b =0,f (1)=-b =-12,解得⎩⎪⎨⎪⎧a =1,b =12.(2)由(1)得f (x )=ln x -12x 2,则f ′(x )=1x -x =1-x 2x,∵当1e ≤x ≤e 时,令f ′(x )>0得1e ≤x <1;令f ′(x )<0,得1<x ≤e ,∴f (x )在⎣⎡⎦⎤1e ,1上单调递增,在[]1,e 上单调递减,∴f (x )max =f (1)=-12.考点三 函数极值和最值的综合问题(重点保分型考点——师生共研)[典例引领]已知函数f (x )=ax -2x-3ln x ,其中a 为常数.(1)当函数f (x )的图象在点⎝⎛⎭⎫23,f ⎝⎛⎭⎫23处的切线的斜率为1时,求函数f (x )在⎣⎡⎦⎤32,3上的最小值; (2)若函数f (x )在区间(0,+∞)上既有极大值又有极小值,求a 的取值范围. 解:(1)∵f ′(x )=a +2x 2-3x,∴f ′⎝⎛⎭⎫23=a =1,故f (x )=x -2x -3ln x ,则f ′(x )=(x -1)(x -2)x 2.由f ′(x )=0得x =1或x =2.当x 变化时,f ′(x ),f (x )的变化情况如下表:从而在⎣⎡⎦⎤32,3上,f (x )有最小值, 且最小值为f (2)=1-3ln 2.(2)f ′(x )=a +2x 2-3x =ax 2-3x +2x 2(x >0),由题设可得方程ax 2-3x +2=0有两个不等的正实根, 不妨设这两个根为x 1,x 2,并令h (x )=ax 2-3x +2,则⎩⎨⎧Δ=9-8a >0,x 1+x 2=3a>0,x 1x 2=2a>0⎝⎛⎭⎪⎪⎫或⎩⎨⎧Δ=9-8a >0,--32a>0,h (0)>0,解得0<a <98. 故所求a 的取值范围为⎝⎛⎭⎫0,98. [由题悟法]求函数在无穷区间(或开区间)上的最值的方法求函数在无穷区间(或开区间)上的最值,不仅要研究其极值情况,还要研究其单调性,并通过单调性和极值情况,画出函数的大致图象,然后借助图象观察得到函数的最值.[即时应用]已知函数f (x )=x 3+ax 2+bx +c ,曲线y =f (x )在点x =1处的切线为l :3x -y +1=0,若x =23时,y =f (x )有极值.(1)求a ,b ,c 的值;(2)求y =f (x )在[-3,1]上的最大值和最小值. 解:(1)由f (x )=x 3+ax 2+bx +c , 得f ′(x )=3x 2+2ax +b .当x =1时,切线l 的斜率为3,可得2a +b =0,① 当x =23时,y =f (x )有极值,则f ′⎝⎛⎭⎫23=0, 可得4a +3b +4=0,② 由①②,解得a =2,b =-4. 由于切点的横坐标为1,所以f (1)=4. 所以1+a +b +c =4,得c =5. (2)由(1)可得f (x )=x 3+2x 2-4x +5, f ′(x )=3x 2+4x -4.令f ′(x )=0,解得x 1=-2,x 2=23.当x 变化时,f ′(x ),f (x )的取值及变化情况如下表所示:所以y =f (x )在[-3,1]上的最大值为13,最小值为9527.一抓基础,多练小题做到眼疾手快1.函数f (x )=ln x -x 在(0,e]上的最大值为________.解析:f ′(x )=1x -1=1-x x (x >0),令f ′(x )>0,得0<x <1,令f ′(x )<0,得x >1,∴f (x )在(0,1]上是增函数,在(1,e]上是减函数.∴当x =1时,f (x )在(0,e]上取得最大值f (1)=-1.答案:-12.函数f (x )=12e x (sin x +cos x )⎝⎛⎭⎫x ∈⎣⎡⎦⎤0,π2的值域为________ 解析:∵x ∈⎣⎡⎦⎤0,π2,∴f ′(x )=e x cos x ≥0, ∴f (0)≤f (x )≤f ⎝⎛⎭⎫π2,即12≤f (x )≤12e π2. 答案:⎣⎢⎡⎦⎥⎤12,12e π23.当函数y =x ·2x 取极小值时,x =________. 解析:令y ′=2x +x ·2x ln 2=0,∴x =-1ln 2.答案:-1ln 24.若函数f (x )=x 3-2cx 2+x 有极值点,则实数c 的取值范围为________.解析:若函数f (x )=x 3-2cx 2+x 有极值点,则f ′(x )=3x 2-4cx +1=0有根,故Δ=(-4c )2-12>0,从而c >32或c <-32.故实数c 的取值范围为⎝⎛⎭⎫-∞,-32∪⎝⎛⎭⎫32,+∞. 答案:⎝⎛⎭⎫-∞,-32∪⎝⎛⎭⎫32,+∞5.已知函数f (x )=2f ′(1)ln x -x ,则f (x )的极大值为________.解析:因为f ′(x )=2f ′(1)x -1,令x =1,得f ′(1)=1.所以f (x )=2ln x -x ,f ′(x )=2x -1.当0<x <2,f ′(x )>0;当x >2,f ′(x )<0.从而f (x )的极大值为f (2)=2ln 2-2.答案:2ln 2-2二保高考,全练题型做到高考达标1.函数f (x )=12x 2-ln x 的最小值为________.解析:f ′(x )=x -1x =x 2-1x,且x >0.令f ′(x )>0,得x >1;令f ′(x )<0,得0<x <1.∴f (x )在x =1处取得极小值也是最小值,且f (1)=12-ln 1=12.答案:122.若函数f (x )=x 3-3x -a 在区间[0,3]上的最大值和最小值分别为M ,N ,则M -N 的值为________.解析:f ′(x )=3x 2-3,令f ′(x )=0,得x =1(x =-1舍去).∵f (0)=-a ,f (1)=-2-a ,f (3)=18-a .∴M =18-a ,N =-2-a .∴M -N =20.答案:203.(2016·南京外国语学校)已知函数f (x )=x 3+bx 2+cx 的图象如图所示,则x 21+x 22等于________.解析:由图象可知f (x )的图象过点(1,0)与(2,0),x 1,x 2是函数f (x )的极值点,因此1+b +c =0,8+4b +2c =0,解得b =-3,c =2,所以f (x )=x 3-3x 2+2x ,所以f ′(x )=3x 2-6x +2.x 1,x 2是方程f ′(x )=3x 2-6x +2=0的两根,因此x 1+x 2=2,x 1x 2=23,所以x 21+x 22=(x 1+x 2)2-2x 1x 2=4-43=83.答案:834.函数f (x )=x 3-3ax +b (a >0)的极大值为6,极小值为2,则f (x )的单调递减区间是________. 解析:令f ′(x )=3x 2-3a =0,得x =±a , 则f (x ),f ′(x )随x 的变化情况如下表:从而⎩⎪⎨⎪⎧(-a )3-3a (-a )+b =6,(a )3-3a a +b =2,解得⎩⎪⎨⎪⎧a =1,b =4.所以f (x )的单调递减区间是(-1,1). 答案:(-1,1)5.若函数f (x )=13x 3+x 2-23在区间(a ,a +5)上存在最小值,则实数a 的取值范围是________.解析:由题意,f ′(x )=x 2+2x =x (x +2),故f (x )在(-∞,-2),(0,+∞)上是增函数,在(-2,0)上是减函数,作出其图象如图所示,令13x 3+x 2-23=-23得,x =0或x =-3,则结合图象可知,⎩⎪⎨⎪⎧-3≤a <0,a +5>0,解得a ∈[-3,0).答案:[-3,0)6.函数f (x )=13x 3+x 2-3x -4在[0,2]上的最小值是________.解析:f ′(x )=x 2+2x -3,令f ′(x )=0得x =1(x =-3舍去),又f (0)=-4,f (1)=-173,f (2)=-103,故f (x )在[0,2]上的最小值是f (1)=-173.答案:-1737.(2016·苏州模拟)已知f (x )=x 3+3ax 2+bx +a 2在x =-1 时有极值0,则a -b =________.解析:由题意得f ′(x )=3x 2+6ax +b ,则⎩⎪⎨⎪⎧ a 2+3a -b -1=0,b -6a +3=0,解得⎩⎪⎨⎪⎧ a =1,b =3或⎩⎪⎨⎪⎧a =2,b =9,经检验当a =1,b =3时,函数f (x )在x =-1处无法取得极值,而a =2,b =9满足题意,故a -b =-7.答案:-78.给出下列四个命题:①若函数f (x )在[a ,b ]上有最大值,则这个最大值一定是函数f (x )在[a ,b ]上的极大值; ②若函数f (x )在[a ,b ]上有最小值,则这个最小值一定是函数f (x )在[a ,b ]上的极小值; ③若函数f (x )在[a ,b ]上有最值,则最值一定在x =a 或x =b 处取得; ④若函数f (x )在(a ,b )内连续,则f (x )在(a ,b )内必有最大值与最小值. 其中真命题的个数为________.解析:因为函数的最值可以在区间[a ,b ]的两端点处取得,也可以在内部取得,当最值在端点处取得时,该最值就一定不是极值,故命题①与②为假命题.由于最值可以在区间内部取得,故命题③也为假命题.在(a ,b )内的单调函数,在(a ,b )内必定无最值(也无极值),因此命题④也为假命题.综上所述,四个命题均为假命题.答案:09.设f (x )=2x 3+ax 2+bx +1的导函数为f ′(x ),若函数y =f ′(x )的图象关于直线x =-12 对称,且f ′(1)=0.(1)求实数a ,b 的值; (2)求函数f (x )的极值.解:(1)因为f (x )=2x 3+ax 2+bx +1,。
课时跟踪训练(十五)[基础巩固]一、选择题1.已知函数f (x )=x 2+2cos x ,若f ′(x )是f (x )的导函数,则函数f ′(x )的图象大致是( )[解析] 设g (x )=f ′(x )=2x -2sin x ,g ′(x )=2-2cos x ≥0,所以函数f ′(x )在R 上单调递增.[答案] A2.若幂函数f (x )的图象过点⎝ ⎛⎭⎪⎫22,12,则函数g (x )=e x f (x )的单调递减区间为( )A .(-∞,0)B .(-∞,-2)C .(-2,-1)D .(-2,0) [解析] 设幂函数f (x )=x α,因为图象过点⎝ ⎛⎭⎪⎫22,12,所以12=⎝ ⎛⎭⎪⎫22α,α=2,所以f (x )=x 2,故g (x )=e x x 2,令g ′(x )=e x x 2+2e x x =e x (x 2+2x )<0,得-2<x <0,故函数g (x )的单调递减区间为(-2,0).[答案] D3.如图所示是函数f (x )的导函数f ′(x )的图象,则下列判断中正确的是( )A .函数f (x )在区间(-3,0)上是减函数B .函数f (x )在区间(-3,2)上是减函数C .函数f (x )在区间(0,2)上是减函数D .函数f (x )在区间(-3,2)上是单调函数[解析] 由图可知,当-3<x <0时,f ′(x )<0,所以f (x )在(-3,0)上是减函数.故选A.[答案] A4.函数f (x )=2ln x -ax (a >0)的单调递增区间为( )A.⎝ ⎛⎭⎪⎫0,2a B .⎝ ⎛⎭⎪⎫2a ,+∞ C.⎝ ⎛⎭⎪⎫-∞,2a D .(-∞,a )[解析] 由f ′(x )=2x -a >0,得0<x <2a .∴f (x )的单调递增区间为⎝⎛⎭⎪⎫0,2a .故选A. [答案] A5.(2018·江西临川一中期中)若函数f (x )=x +a ln x 不是单调函数,则实数a 的取值范围是( )A .[0,+∞)B .(-∞,0]C .(-∞,0)D .(0,+∞)[解析] 由题意知x >0,f ′(x )=1+a x .要使函数f (x )=x +a ln x 不是单调函数,则需方程1+a x =0在x >0上有解,所以a <0.[答案] C6.(2017·湖北襄阳模拟)函数f (x )的定义域为R .f (-1)=2,对任意x ∈R ,f ′(x )>2,则f (x )>2x +4的解集为( )A .(-1,1)B .(-1,+∞)C .(-∞,-1)D .(-∞,+∞)[解析] 由f (x )>2x +4,得f (x )-2x -4>0.设F (x )=f (x )-2x -4,则F ′(x )=f ′(x )-2.因为f ′(x )>2,所以F ′(x )>0在R 上恒成立,所以F (x )在R 上单调递增,而F (-1)=f (-1)-2×(-1)-4=2+2-4=0,故不等式f (x )-2x -4>0等价于F (x )>F (-1),所以x >-1,选B.[答案] B二、填空题7.函数f (x )=x 2-ax -3在(1,+∞)上是增函数,则实数a 的取值范围是________.[解析] f ′(x )=2x -a ,∵f (x )在(1,+∞)上是增函数,∴2x -a ≥0在(1,+∞)上恒成立.即a ≤2x ,∴a ≤2.[答案] (-∞,2]8.已知函数f (x )(x ∈R )满足f (1)=1,且f (x )的导数f ′(x )<12,则不等式f (x 2)<x 22+12的解集为________.[解析] 设F (x )=f (x )-12x ,∴F ′(x )=f ′(x )-12,∵f ′(x )<12,∴F ′(x )=f ′(x )-12<0,即函数F (x )在R 上单调递减.∵f (x 2)<x 22+12,∴f (x 2)-x 22<f (1)-12, ∴F (x 2)<F (1),而函数F (x )在R 上单调递减,∴x 2>1,即x ∈(-∞,-1)∪(1,+∞).[答案] (-∞,-1)∪(1,+∞)9.已知函数f (x )=ax -x 3,若对区间(0,1)上的任意x 1,x 2,且x 1<x 2,都有f (x 2)-f (x 1)>x 2-x 1成立,则实数a 的取值范围是________.[解析] 问题等价于函数g (x )=f (x )-x 在区间(0,1)上为增函数,即g ′(x )=a -1-3x 2≥0,即a ≥1+3x 2在(0,1)上恒成立,即a ≥4,所以实数a 的取值范围是[4,+∞).[答案] [4,+∞)三、解答题10.已知函数f (x )=x 4+a x -ln x -32,其中a ∈R ,且曲线y =f (x )在点(1,f (1))处的切线垂直于直线y =12x .(1)求a 的值;(2)求函数f (x )的单调区间.[解] (1)对f (x )求导得f ′(x )=14-a x 2-1x ,由f (x )在点(1,f (1))处的切线垂直于直线y =12x 知f ′(1)=-34-a =-2,解得a =54.(2)由(1)知f (x )=x 4+54x -ln x -32,则f ′(x )=x 2-4x -54x 2.令f ′(x )=0,解得x =-1或x =5.因为x =-1不在f (x )的定义域(0,+∞)内,故舍去.当x ∈(0,5)时,f ′(x )<0,故f (x )在(0,5)内为减函数;当x ∈(5,+∞)时,f ′(x )>0,故f (x )在(5,+∞)内为增函数.综上,f (x )的单调增区间为(5,+∞),单调减区间为(0,5).[能力提升]11.已知函数f (x )=x sin x ,x ∈R ,则f ⎝ ⎛⎭⎪⎫π5,f (1),f ⎝ ⎛⎭⎪⎫-π3的大小关系为( )A .f ⎝ ⎛⎭⎪⎫-π3>f (1)>f ⎝ ⎛⎭⎪⎫π5 B .f (1)>f ⎝ ⎛⎭⎪⎫-π3>f ⎝ ⎛⎭⎪⎫π5 C .f ⎝ ⎛⎭⎪⎫π5>f (1)>f ⎝ ⎛⎭⎪⎫-π3 D .f ⎝ ⎛⎭⎪⎫-π3>f ⎝ ⎛⎭⎪⎫π5>f (1) [解析] 由f (-x )=(-x )sin(-x )=x sin x =f (x ),知f (x )是偶函数.f ′(x )=sin x +x cos x ,当0<x <π2时,f ′(x )>0,所以f (x )在(0,π2)上为增函数.又0<π5<1<π3<π2,所以f ⎝ ⎛⎭⎪⎫π5<f (1)<f ⎝ ⎛⎭⎪⎫π3.因为f ⎝ ⎛⎭⎪⎫-π3=f ⎝ ⎛⎭⎪⎫π3, 所以f ⎝ ⎛⎭⎪⎫-π3>f (1)>f ⎝ ⎛⎭⎪⎫π5.故选A. [答案] A12.(2017·湖北华北师大附中模拟)若f (x )=e x +a e -x 为偶函数,则f (x -1)<e 2+1e 的解集为( )A .(2,+∞)B .(0,2)C .(-∞,2)D .(-∞,0)∪(2,+∞)[解析] 由f (x )=e x +a e -x 为偶函数,得f (x )-f (-x )=(1-a )(e x -e -x )=0恒成立,所以a =1,即f (x )=e x +e -x ,则f ′(x )=e x -e -x .当x ∈(-∞,0)时,f ′(x )<0;x ∈(0,+∞)时,f ′(x )>0,即f (x )在(-∞,0)上单调递减,在(0,+∞)上单调递增,且图象关于y 轴对称.由f (x-1)<e 2+1e =f (1)得|x -1|<1,解得0<x <2,即f (x -1)<e 2+1e 的解集为(0,2),故选B.[答案] B13.(2017·福建福州质检)已知函数f (x )=a ln x +x 2+(a -6)x 在(0,3)上不是单调函数,则实数a 的取值范围是________.[解析] f ′(x )=a x +2x +a -6=2x 2+(a -6)x +a x(x >0). 设g (x )=2x 2+(a -6)x +a (x >0),因为函数f (x )在(0,3)上不是单调函数,等价于函数g (x )=2x 2+(a -6)x +a (x >0)在(0,3)上不会恒大于零或恒小于零.又g (0)=a ,g (3)=4a ,所以⎩⎪⎨⎪⎧ g (0)=a >0,0<-a -64<3,Δ=(a -6)2-8a >0,解得0<a <2,所以实数a 的取值范围为(0,2).[答案] (0,2)14.(2017·山东卷)若函数e x f (x )(e =2.71828…是自然对数的底数)在f (x )的定义域上单调递增,则称函数f (x )具有M 性质.下列函数中所有具有M 性质的函数的序号为________.①f (x )=2-x ;②f (x )=3-x ;③f (x )=x 3;④f (x )=x 2+2.[解析] ①因为f (x )=2-x 的定义域为R ,又e x f (x )=e x ·2-x=⎝ ⎛⎭⎪⎫e 2x 在R 上单调递增,故f (x )=2-x 具有M 性质.②因为f (x )=3-x 的定义域为R ,又e x f (x )=e x ·3-x=⎝ ⎛⎭⎪⎫e 3x 在R 上单调递减,故f (x )=3-x 不具有M 性质.③因为f (x )=x 3的定义域为R ,又e x f (x )=e x ·x 3,构造函数g (x )=e x ·x 3,则g ′(x )=e x ·x 3+e x ·3x 2=x 2e x (x +3),当x >-3时,g ′(x )>0,当x <-3时,g ′(x )<0,所以e x f (x )=e x ·x 3在(-∞,-3)上单调递减,在(-3,+∞)上单调递增,故f (x )=x 3不具有M 性质.④因为f (x )=x 2+2的定义域为R ,又e x f (x )=e x (x 2+2),构造函数h (x )=e x (x 2+2),则h ′(x )=e x (x 2+2)+e x ·2x =e x [(x +1)2+1]>0,所以e x f (x )=e x (x 2+2)在R 上单调递增,故f (x )=x 2+2具有M 性质.故填①④.[答案] ①④15.(2015·全国卷Ⅱ改编)已知函数f (x )=ln x +a (1-x ).(1)讨论f (x )的单调性;(2)若f (x )在(2,+∞)上为单调函数,求实数a 的取值范围.[解] (1)f (x )的定义域为(0,+∞),f ′(x )=1x -a .若a ≤0,则f ′(x )>0,f (x )在(0,+∞)上单调递增;若a >0,则当x ∈⎝⎛⎭⎪⎫0,1a 时,f ′(x )>0;当x ∈⎝ ⎛⎭⎪⎫1a ,+∞时,f ′(x )<0,所以f (x )在⎝ ⎛⎭⎪⎫0,1a 上单调递增,在⎝ ⎛⎭⎪⎫1a ,+∞上单调递减. ∴综上当a ≤0时f (x )在(0,+∞)单调递增.当a >0时f (x )在⎝ ⎛⎭⎪⎫0,1a 单调递增,在⎝ ⎛⎭⎪⎫1a ,+∞单调递减. (2)由(1)知,当a ≤0时,f (x )在(0,+∞)上单调递增,符合要求;当a >0时,f (x )在⎝ ⎛⎭⎪⎫1a ,+∞上单调递减,则2≥1a ,即a ≥12.∴实数a 的取值范围是(-∞,0]∪⎣⎢⎡⎭⎪⎫12,+∞. 16.(2016·全国卷Ⅰ)已知函数f (x )=(x -2)e x +a (x -1)2.讨论f (x )的单调性.[解] f ′(x )=(x -1)e x +2a (x -1)=(x -1)(e x +2a ).(ⅰ)设a ≥0,则当x ∈(-∞,1)时,f ′(x )<0;当x ∈(1,+∞)时,f ′(x )>0,所以f (x )在(-∞,1)上单调递减,在(1,+∞)上单调递增.(ⅱ)设a <0,由f ′(x )=0得x =1或x =ln(-2a ).①若a =-e 2,则f ′(x )=(x -1)(e x -e),所以f (x )在(-∞,+∞)单调递增.②若a >-e 2,则ln(-2a )<1,故当x ∈(-∞,ln(-2a ))∪(1,+∞)时,f ′(x )>0;当x ∈(ln(-2a ),1)时,f ′(x )<0,所以f (x )在(-∞,ln(-2a )),(1,+∞)上单调递增,在(ln(-2a ),1)上单调递减.③若a <-e 2,则ln(-2a )>1,故当x ∈(-∞,1)∪(ln(-2a ),+∞)时,f ′(x )>0;当x ∈(1,ln(-2a ))时,f ′(x )<0,所以f (x )在(-∞,1),(ln(-2a ),+∞)上单调递增,在(1,ln(-2a ))上单调递减.[延伸拓展]已知函数f (x )=3x a -2x 2+ln x (a >0).若函数f (x )在[1,2]上为单调函数,则a 的取值范围是________.[解析] f ′(x )=3a -4x +1x ,若函数f (x )在[1,2]上为单调函数,即f ′(x )=3a -4x +1x ≥0或f ′(x )=3a -4x +1x ≤0在[1,2]上恒成立即3a ≥4x -1x 或3a ≤4x -1x 在[1,2]上恒成立.令h (x )=4x -1x ,则h (x )在[1,2]上单调递增,所以3a ≥h (2)或3a ≤h (1),即3a ≥152或3a ≤3,又a >0,所以0<a ≤25或a ≥1.[答案] ⎝ ⎛⎦⎥⎤0,25∪[1,+∞)。
课时跟踪检测(十五)导数与函数的极值、最值一抓基础,多练小题做到眼疾手快.函数()=-在(,]上的最大值为.解析:′()=-=(>),令′()>,得<<,令′()<,得>,∴()在(]上是增函数,在(,]上是减函数.∴当=时,()在(,]上取得最大值()=-.答案:-.函数()=( + )的值域为解析:∵∈,∴′()=≥,∴()≤()≤,即≤()≤.答案:)).当函数=·取极小值时,=.解析:令′=+·=,∴=-).答案:-).若函数()=-+有极值点,则实数的取值范围为.解析:若函数()=-+有极值点,则′()=-+=有根,故Δ=(-)->,从而>或<-.故实数的取值范围为∪.答案:∪.已知函数()=′() -,则()的极大值为.解析:因为′()=-,令=,得′()=.所以()=-,′()=-.当<<,′()>;当>,′()<.从而()的极大值为()=-.答案:-二保高考,全练题型做到高考达标.函数()=-的最小值为.解析:′()=-=,且>.令′()>,得>;令′()<,得<<.∴()在=处取得极小值也是最小值,且()=-=.答案:.若函数()=--在区间[]上的最大值和最小值分别为,,则-的值为.解析:′()=-,令′()=,得=(=-舍去).∵()=-,()=--,()=-.∴=-,=--.∴-=.答案:.(·南京外国语学校)已知函数()=++的图象如图所示,则+等于.解析:由图象可知()的图象过点()与(),,是函数()的极值点,因此++=++=,解得=-,=,所以()=-+,所以′()=-+,是方程′()=-+=的两根,因此+=,=,所以+=(+)-=-=.答案:.函数()=-+(>)的极大值为,极小值为,则()的单调递减区间是.解析:令′()=-=,得=±,则(),′()随的变化情况如下表:((-()(-(-()(+=,,(()(-()+=,))解得(\\(=,=.))所以()的单调递减区间是(-).答案:(-).若函数()=+-在区间(,+)上存在最小值,则实数的取值范围是.解析:由题意,′()=+=(+),故()在(-∞,-),(,+∞)上是增函数,在(-)上是减函数,作出其图象如图所示,令+-=-得,=或=-,则结合图象可知,(\\(-≤<,+>,))解得∈[-).答案:[-).函数()=+--在[]上的最小值是.解析:′()=+-,令′()=得=(=-舍去),又()=-,()=-,()=-,故()在[]上的最小值是()=-.答案:-.(·苏州模拟)已知()=+++在=-时有极值,则-=.。
课时作业(十五) [第15讲 用导数研究函数的最值及其应用][时间:45分钟 分值:100分]基础热身1.函数f (x )=ln x -x 在区间(0,e]上的最大值为________.2.函数f (x )=12x -x 3在区间[-3,3]上的最小值是________.3.已知a ≤1-x x +ln x 对于x ∈⎣⎢⎡⎦⎥⎤12,2恒成立,则a 的最大值为________. 4.用长为18 m 的钢条围成一个长方体形状的框架,要求长方体的长与宽之比为2∶1,则该长方体的最大体积是________m 3.能力提升5.函数y =2x 3-2x 2在区间[-1,2]上的最大值是________.6.函数f (x )=12x 2-ln x 的最小值为________.7.[2012·泰安模拟] 已知某生产厂家的年利润y (单位:万元)与年产量x (单位:万件)的函数关系式为y =-13x 3+81x -234,则使该生产厂家获得最大年利润的年产量为________万件.8.[2011·盐城模拟] 若函数f (x )=x x 2+a (a >0)在[1,+∞)上的最大值为33,则a的值为________.9.[2012·盐城模拟] 已知函数f (x )=x 3+ax 2+bx +c ,x ∈[-2,2]表示过原点的曲线,且在x =±1处的切线的倾斜角均为34π,则以下命题:①f (x )的解析式为f (x )=x 3-4x ,x ∈[-2,2]; ②f (x )的极值点有且只有一个;③f (x )的最大值与最小值之和等于零. 其中正确命题的序号为________.10.已知函数f (x )=12x 4-2x 3+3m ,x ∈R ,若f (x )+9≥0恒成立,则实数m 的取值范围是________.11.[2012·泰州调研] 若函数f (x )=log a (x 3-ax )(a >0,a ≠1)在区间⎝ ⎛⎭⎪⎫-12,0内单调递增,则a 的取值范围是________.12.设函数f (x )=ax 3-3x +1(x ∈R ),若对于任意的x ∈[-1,1]都有f (x )≥0成立,则实数a 的值为________.13.(8分)求函数f (x )=13x 3+12x 2-2x +83在区间[-3,3]上的最大值与最小值.14.(8分)已知函数f(x)的导数f′(x)=3x2-3ax,f(0)=b,a,b为实数,1<a<2.(1)若f(x)在区间[-1,1]上的最小值、最大值分别为-2、1,求a、b的值;(2)在(1)的条件下,求经过点P(2,1)且与曲线f(x)相切的直线l的方程.15.(12分)[2011·苏北四县一模] 据环保部门测定,某处的污染指数与附近污染源的强度成正比,与到污染源距离的平方成反比,比例系数为k(k>0).现已知相距18 km的A,B两家化工厂(污染源)的污染强度分别为a,b,它们连线上任意一点C处的污染指数y等于两化工厂对该处的污染指数之和.设AC=x(km).(1)试将y表示为x的函数;(2)若a=1,且x=6时,y取得最小值,试求b的值.16.(12分)[2011·北京海淀区一模] 已知函数f(x)=x+a ln x,其中a为常数,且a≤-1.若f(x)≤e-1对任意x∈[e,e2]恒成立,求实数a的取值范围.课时作业(十五)【基础热身】1.-1 [解析] f ′(x )=1x -1=1-xx,故f (x )在(0,1)上递增,在(1,e]上递减,所以最大值为f (1)=-1.2.-16 [解析] 令f ′(x )=12-3x 2=0,得x =±2.∵f (2)=16,f (-3)=-9,f (-2)=-16,f (3)=9,∴f (x )min =f (-2)=-16.3.0 [解析] 设f (x )=1-x x +ln x ,则f ′(x )=-x +x -1x 2+1x =x -1x 2,当x ∈⎣⎢⎡⎭⎪⎫12,1时,f ′(x )<0,故函数f (x )在⎣⎢⎡⎭⎪⎫12,1上单调递减;当x ∈(1,2]时,f ′(x )>0,故函数f (x )在(1,2]上单调递增,∴f (x )min =f (1)=0,∴a ≤0,即a 的最大值为0.4.3 [解析] 设长方体的宽为x ,则长为2x ,高为h =18-12x 4=4.5-3x ⎝⎛⎭⎪⎫0<x <32, 故长方体的体积为V (x )=2x 2(4.5-3x )=9x 2-6x 3⎝⎛⎭⎪⎫0<x <32. 从而V ′(x )=18x -18x 2=18x (1-x ). 令V ′(x )=0,解得x =0(舍去)或x =1,当0<x <1时,V ′(x )>0;当1<x <32时,V ′(x )<0,故在x =1处V (x )取得极大值,并且这个极大值就是V (x )的最大值.从而最大体积V =V (1)=9×12-6×13=3(m 3),此时长方体的长为2 m ,宽为1 m ,高为1.5 m.【能力提升】5.8 [解析] y ′=6x 2-4x ,令y ′=0,∴x =0或x =23.∵f (-1)=-4,f (0)=0,f ⎝ ⎛⎭⎪⎫23=-827,f (2)=8, ∴最大值为8.6.12[解析] 由⎩⎪⎨⎪⎧f ′x =x -1x >0,x >0,得x >1;由⎩⎪⎨⎪⎧f ′x =x -1x <0,x >0,得0<x <1.∴f (x )在x =1时取得最小值f (1)=12-ln1=12.7.9 [解析] 令y ′=-x 2+81>0,解得-9<x <9;令y ′=-x 2+81<0,解得x <-9或x >9,所以函数y =-13x 3+81x -234在区间(0,9)上是增函数,在区间(9,+∞)上是减函数,所以在x =9处取极大值,也是最大值.8.3-1 [解析] f ′(x )=x 2+a -2x 2x 2+a 2=a -x 2x 2+a 2,当x >a 时,f ′(x )<0,f (x )单调递减;当-a <x <a 时,f ′(x )>0,f (x )单调递增.当a >1,即a >1时,f (x )的最大值为f (a )=a 2a =33,a =32<1,矛盾,当a ≤1,即0<a ≤1时,f (x )的最大值为f (1)=11+a=33,a =3-1,经检验符合题意. 9.①③ [解析] ∵函数f (x )过原点,∴c =0.由题意得f ′(x )=3x 2+2ax +b ,且f ′(1)=-1,f ′(-1)=-1. ∴⎩⎪⎨⎪⎧3+2a +b =-1,3-2a +b =-1, ∴a =0,b =-4.∴f (x )=x 3-4x ,故①正确.f ′(x )=3x 2-4,f (x )有两个极值点,故②错误. 又f (x )是奇函数,∴f (x )max +f (x )min =0. 故③正确.10.m ≥32 [解析] 因为函数f (x )=12x 4-2x 3+3m ,所以f ′(x )=2x 3-6x 2,令f ′(x )=0,得x =0或x =3,经检验知x =3是函数的一个最小值点,所以函数的最小值为f (3)=3m -272,不等式f (x )+9≥0恒成立,即f (x )≥-9恒成立,所以3m -272≥-9,解得m ≥32.11.⎣⎢⎡⎭⎪⎫34,1 [解析] 当0<a <1时,函数g (x )=x 3-ax 在区间⎝ ⎛⎭⎪⎫-12,0内单调递减且恒为正,有g ′(x )=3x 2-a ≤0对∀x ∈⎝ ⎛⎭⎪⎫-12,0恒成立,且满足g (0)≥0,得a ∈⎣⎢⎡⎭⎪⎫34,1;当a >1时,由函数g (x )=x 3-ax 在区间⎝ ⎛⎭⎪⎫-12,0内单调递增,得g ′(x )=3x 2-a ≥0对∀x ∈⎝ ⎛⎭⎪⎫-12,0恒成立,有a ≤0,显然不符.综上,a ∈⎣⎢⎡⎭⎪⎫34,1. 12.4 [解析] 由函数f (x )=ax 3-3x +1,得f ′(x )=3ax 2-3.(1)若a =0,则f (x )=-3x +1,显然x ∈[-1,1]时f (x )≥0不恒成立,所以a ≠0;(2)若a <0,f ′(x )=3ax 2-3<0,所以此时f (x )在[-1,1]上单调递减,所以x ∈[-1,1]时,f (x )min =f (1)=a -2,从而只需a -2≥0,所以a ≥2,与前提a <0矛盾;(3)若0<a ≤1,同理,也不符合要求;(4)若a >1,令f ′(x )=3ax 2-3=0,得x =±1a∈[-1,1],x -1⎝⎛⎭⎪⎫-1,-1a -1af ′(x ) +0 f (x ) f (-1)极大值x ⎝⎛⎭⎪⎫-1a,1a 1a ⎝⎛⎭⎪⎫1a,11 f ′(x ) -0 +f (x )极小值f (1)所以只需⎩⎪⎨⎪⎧f -1≥0,f ⎝ ⎛⎭⎪⎫1a ≥0即可,即⎩⎪⎨⎪⎧-a +3+1≥0,a ⎝ ⎛⎭⎪⎫1a 3-31a +1≥0⇒⎩⎪⎨⎪⎧a ≤4,a ≥4⇒a =4.13.[解答] ∵f (x )=13x 3+12x 2-2x +83,∴f ′(x )=x 2+x -2.令f ′(x )=0得x =-2或x =1.则x ,f ′(x ),f (x )的变化情况如下: x -3 (-3,-2) -2 (-2,1) 1 (1,3) 3 f ′(x ) + 0 - 0 +f (x ) 256 ↗ 6 ↘ 32 ↗ 616由上表知,在区间[-3,3]上,当x =3时,f (x )max =616,当x =1时,f (x )min =32.14.[解答] (1)由已知得,f (x )=x 3-32ax 2+b ,由f ′(x )=0,得x 1=0,x 2=a . ∵x ∈[-1,1],1<a <2,∴当x ∈[-1,0)时,f ′(x )>0,f (x )递增; 当x ∈(0,1]时,f ′(x )<0,f (x )递减.∴f (x )在区间[-1,1]上的最大值为f (0)=b ,∴b =1.又f (1)=1-32a +1=2-32a ,f (-1)=-1-32a +1=-32a ,∴f (-1)<f (1).由题意得f (-1)=-2,即-32a =-2,得a =43.故a =43,b =1为所求.(2)由(1)得f (x )=x 3-2x 2+1,f ′(x )=3x 2-4x ,点P (2,1)在曲线f (x )上. ①当切点为P (2,1)时,切线l 的斜率k =f ′(2)=4, ∴l 的方程为y -1=4(x -2),即4x -y -7=0.②当点P 不是切点时,设切点为Q (x 0,y 0)(x 0≠2),切线l 的斜率k =f ′(x 0)=3x 20-4x 0,∴l 的方程为y -y 0=(3x 20-4x 0)(x -x 0).又点P (2,1)在l 上,∴1-y 0=(3x 20-4x 0)(2-x 0),∴1-(x 30-2x 20+1)=(3x 20-4x 0)(2-x 0), ∴x 20(2-x 0)=(3x 20-4x 0)(2-x 0), ∴x 20=3x 20-4x 0,即2x 0(x 0-2)=0,∴x 0=0. ∴切线l 的方程为y =1.故所求切线l 的方程为4x -y -7=0或y =1. 15.[解答] (1)设点C 受A 污染源污染程度为kax2,点C 受B 污染源污染程度为kb18-x2,其中k 为比例系数,且k >0.从而点C 处的污染指数y =ka x2+kb18-x2.(2)因为a =1,所以y =k x2+kb18-x2,y ′=k ⎣⎢⎡⎦⎥⎤-2x3+2b 18-x 3,令y ′=0,得x =181+3b,经检验x =181+3b 时,y 取得最小值,故181+3b=6,解得b =8,经验证符合题意.所以,污染源B 的污染强度b 的值为8.16.[解答] f ′(x )=1+a x ,令f ′(x )=0,得1+a x=0,即x =-a .当x ∈(0,-a )时,f ′(x )<0,函数f (x )在(0,-a )上单调递减;当x ∈(-a ,+∞)时,f ′(x )>0,函数f (x )在(-a ,+∞)上单调递增.(1)若1≤-a ≤e,即-e≤a ≤-1,易得函数f (x )在[e ,e 2]上为增函数,此时,f (x )max =f (e 2),要使f (x )≤e-1对x ∈[e ,e 2]恒成立,只需f (e 2)≤e-1即可,所以有e 2+2a ≤e-1,即a ≤-e 2+e -12,而-e 2+e -12-(-e)=-e 2-3e +12<0,即-e 2+e -12<-e ,所以此时无解.(2)若e<-a <e 2,即-e>a >-e 2,易知函数f (x )在[e ,-a ]上为减函数,在[-a ,e 2]上为增函数,要使f (x )≤e -1对x ∈[e ,e 2]恒成立,只需⎩⎪⎨⎪⎧f e ≤e-1,f e 2≤e-1,即⎩⎪⎨⎪⎧a ≤-1,a ≤-e 2+e -12,由-e 2+e -12-(-1)=-e 2+e +12<0和-e 2+e -12-(-e 2)=e 2+e -12>0,得-e 2<a ≤-e 2+e -12.(3)若-a ≥e 2,即a ≤-e 2,易得函数f (x )在[e ,e 2]上为减函数,此时,f (x )max =f (e),要使f (x )≤e-1对x ∈[e ,e 2]恒成立,只需f (e)≤e-1即可,所以有e +a ≤e-1,即a ≤-1,又因为a ≤-e 2,所以a ≤-e 2.综上所述,实数a 的取值范围是⎝ ⎛⎦⎥⎤-∞,-e 2+e -12.。
一抓基础,多练小题做到眼疾手快1.函数f (x )=ln x -x 在(0,e]上的最大值为________.解析:f ′(x )=1x -1=1-x x (x >0),令f ′(x )>0,得0<x <1,令f ′(x )<0,得x >1,∴f (x )在(0,1]上是增函数,在(1,e]上是减函数.∴当x =1时,f (x )在(0,e]上取得最大值f (1)=-1.答案:-12.函数f (x )=12e x (sin x +cos x )⎝⎛⎭⎫x ∈⎣⎡⎦⎤0,π2的值域为________ 解析:∵x ∈⎣⎡⎦⎤0,π2,∴f ′(x )=e x cos x ≥0, ∴f (0)≤f (x )≤f ⎝⎛⎭⎫π2,即12≤f (x )≤12e π2. 答案:⎣⎢⎡⎦⎥⎤12,12e π23.当函数y =x ·2x 取极小值时,x =________. 解析:令y ′=2x +x ·2x ln 2=0,∴x =-1ln 2.答案:-1ln 24.若函数f (x )=x 3-2cx 2+x 有极值点,则实数c 的取值范围为________.解析:若函数f (x )=x 3-2cx 2+x 有极值点,则f ′(x )=3x 2-4cx +1=0有根,故Δ=(-4c )2-12>0,从而c >32或c <-32.故实数c 的取值范围为⎝⎛⎭⎫-∞,-32∪⎝⎛⎭⎫32,+∞. 答案:⎝⎛⎭⎫-∞,-32∪⎝⎛⎭⎫32,+∞5.已知函数f (x )=2f ′(1)ln x -x ,则f (x )的极大值为________.解析:因为f ′(x )=2f ′(1)x -1,令x =1,得f ′(1)=1.所以f (x )=2ln x -x ,f ′(x )=2x -1.当0<x <2,f ′(x )>0;当x >2,f ′(x )<0.从而f (x )的极大值为f (2)=2ln 2-2.答案:2ln 2-2二保高考,全练题型做到高考达标1.函数f (x )=12x 2-ln x 的最小值为________.解析:f ′(x )=x -1x =x 2-1x,且x >0.令f ′(x )>0,得x >1;令f ′(x )<0,得0<x <1.∴f (x )在x =1处取得极小值也是最小值,且f (1)=12-ln 1=12.答案:122.若函数f (x )=x 3-3x -a 在区间[0,3]上的最大值和最小值分别为M ,N ,则M -N 的值为________.解析:f ′(x )=3x 2-3,令f ′(x )=0,得x =1(x =-1舍去).∵f (0)=-a ,f (1)=-2-a ,f (3)=18-a .∴M =18-a ,N =-2-a .∴M -N =20.答案:203.(2016·南京外国语学校)已知函数f (x )=x 3+bx 2+cx 的图象如图所示,则x 21+x 22等于________.解析:由图象可知f (x )的图象过点(1,0)与(2,0),x 1,x 2是函数f (x )的极值点,因此1+b +c =0,8+4b +2c =0,解得b =-3,c =2,所以f (x )=x 3-3x 2+2x ,所以f ′(x )=3x 2-6x +2.x 1,x 2是方程f ′(x )=3x 2-6x +2=0的两根,因此x 1+x 2=2,x 1x 2=23,所以x 21+x 22=(x 1+x 2)2-2x 1x 2=4-43=83.答案:834.函数f (x )=x 3-3ax +b (a >0)的极大值为6,极小值为2,则f (x )的单调递减区间是________. 解析:令f ′(x )=3x 2-3a =0,得x =±a , 则f (x ),f ′(x )随x 的变化情况如下表:从而⎩⎪⎨⎪⎧(-a )3-3a (-a )+b =6,(a )3-3a a +b =2,解得⎩⎪⎨⎪⎧a =1,b =4.所以f (x )的单调递减区间是(-1,1). 答案:(-1,1)5.若函数f (x )=13x 3+x 2-23在区间(a ,a +5)上存在最小值,则实数a 的取值范围是________.解析:由题意,f ′(x )=x 2+2x =x (x +2),故f (x )在(-∞,-2),(0,+∞)上是增函数,在(-2,0)上是减函数,作出其图象如图所示,令13x 3+x 2-23=-23得,x =0或x =-3,则结合图象可知,错误!解得a ∈[-3,0).答案:[-3,0)6.函数f (x )=13x 3+x 2-3x -4在[0,2]上的最小值是________.解析:f ′(x )=x 2+2x -3,令f ′(x )=0得x =1(x =-3舍去),又f (0)=-4,f (1)=-173,f (2)=-103,故f (x )在[0,2]上的最小值是f (1)=-173.答案:-1737.(2016·苏州模拟)已知f (x )=x 3+3ax 2+bx +a 2在x =-1 时有极值0,则a -b =________.解析:由题意得f ′(x )=3x 2+6ax +b ,则⎩⎪⎨⎪⎧ a 2+3a -b -1=0,b -6a +3=0,解得⎩⎪⎨⎪⎧ a =1,b =3或⎩⎪⎨⎪⎧a =2,b =9,经检验当a =1,b =3时,函数f (x )在x =-1处无法取得极值,而a =2,b =9满足题意,故a -b =-7.答案:-78.给出下列四个命题:①若函数f (x )在[a ,b ]上有最大值,则这个最大值一定是函数f (x )在[a ,b ]上的极大值; ②若函数f (x )在[a ,b ]上有最小值,则这个最小值一定是函数f (x )在[a ,b ]上的极小值; ③若函数f (x )在[a ,b ]上有最值,则最值一定在x =a 或x =b 处取得; ④若函数f (x )在(a ,b )内连续,则f (x )在(a ,b )内必有最大值与最小值. 其中真命题的个数为________.解析:因为函数的最值可以在区间[a ,b ]的两端点处取得,也可以在内部取得,当最值在端点处取得时,该最值就一定不是极值,故命题①与②为假命题.由于最值可以在区间内部取得,故命题③也为假命题.在(a ,b )内的单调函数,在(a ,b )内必定无最值(也无极值),因此命题④也为假命题.综上所述,四个命题均为假命题.答案:09.设f (x )=2x 3+ax 2+bx +1的导函数为f ′(x ),若函数y =f ′(x )的图象关于直线x =-12 对称,且f ′(1)=0.(1)求实数a ,b 的值; (2)求函数f (x )的极值.解:(1)因为f (x )=2x 3+ax 2+bx +1, 故f ′(x )=6x 2+2ax +b , 从而f ′(x )=6⎝⎛⎭⎫x +a 62+b -a 26, 即y =f ′(x )的图象关于直线x =-a6对称.所以-a 6=-12,即a =3.由f ′(1)=0,即6+2a +b =0,得b =-12. 所以a =3,b =-12.(2)由(1),知f (x )=2x 3+3x 2-12x +1, f ′(x )=6x 2+6x -12=6(x -1)(x +2).令f ′(x )=0,即6(x -1)(x +2)=0,解得x =-2或x =1.当x ∈(-∞,-2)时,f ′(x )>0,即f (x )在(-∞,-2)上单调递增; 当x ∈(-2,1)时,f ′(x )<0,即f (x )在(-2,1)上单调递减; 当x ∈(1,+∞) 时,f ′(x )>0,即f (x )在(1,+∞)上单调递增.从而函数f (x )在x =-2处取得极大值f (-2)=21,在x =1处取得极小值f (1)=-6. 10.已知函数f (x )=x -1+ae x (a ∈R ,e 为自然对数的底数).(1)若曲线y =f (x )在点(1,f (1))处的切线平行于x 轴,求a 的值; (2)求函数f (x )的极值.解:(1)由f (x )=x -1+a e x ,得f ′(x )=1-ae x .又曲线y =f (x )在点(1,f (1))处的切线平行于x 轴,得f ′(1)=0,即1-ae =0,解得a =e.(2)f ′(x )=1-aex ,①当a ≤0时,f ′(x )>0,f (x )为(-∞,+∞)上的增函数,所以函数f (x )无极值.②当a >0时,令f ′(x )=0,得e x =a ,即x =ln a .x ∈(-∞,ln a )时,f ′(x )<0;x ∈(ln a ,+∞)时,f ′(x )>0,所以f (x )在(-∞,ln a )上单调递减,在(ln a ,+∞)上单调递增,故f (x )在x =ln a 处取得极小值,且极小值为f (ln a )=ln a ,无极大值.综上,当a ≤0时,函数f (x )无极值;当a >0时,f (x )在x =ln a 处取得极小值ln a ,无极大值. 三上台阶,自主选做志在冲刺名校1.已知f (x )=x 3-6x 2+9x -abc ,a <b <c ,且f (a )=f (b )=f (c )=0.现给出如下结论: ①f (0)f (1)>0;②f (0)f (1)<0; ③f (0)f (3)>0;④f (0)f (3)<0. 其中正确结论的序号是________.解析:∵f ′(x )=3x 2-12x +9=3(x -1)(x -3),由f ′(x )<0,得1<x <3,由f ′(x )>0,得x <1或x >3,∴f (x )在区间(1,3)上是减函数,在区间(-∞,1),(3,+∞)上是增函数.又a <b <c ,f (a )=f (b )=f (c )=0, ∴f (x )极大值=f (1)=4-abc >0, f (x )极小值=f (3)=-abc <0. ∴0<abc <4.∴a ,b ,c 均大于零,或者a <0,b <0,c >0.又x =1,x =3为函数f (x )的极值点,后一种情况不可能成立,如图.∴f (0)<0.∴f (0)f (1)<0,f (0)f (3)>0.∴正确结论的序号是②③. 答案:②③2.已知函数f (x )=mx 3+nx 2的图象在点(-1,2)处的切线与直线3x +y =0平行,若f (x )在区间[t ,t +1]上单调递减,则实数t 的取值范围是________.解析:因为f ′(x )=3mx 2+2nx ,由题意得⎩⎪⎨⎪⎧ f ′(-1)=3m -2n =-3,f (-1)=-m +n =2,解得⎩⎪⎨⎪⎧m =1,n =3,所以f ′(x )=3x 2+6x .又f (x )在区间[t ,t +1]上单调递减,所以f ′(x )=3x 2+6x ≤0在区间[t ,t +1]上恒成立.即⎩⎪⎨⎪⎧f ′(t )=3t 2+6t ≤0,f ′(t +1)=3(t +1)2+6(t +1)≤0,解得t ∈[-2,-1].答案:[-2,-1]3.(2016·苏北四市调研)已知函数f (x )=ax 2+bx -ln x (a >0,b ∈R). (1)设a =1,b =-1,求f (x )的单调区间;(2)若对任意的x >0,f (x )≥f (1),试比较ln a 与-2b 的大小. 解:(1)由f (x )=ax 2+bx -ln x ,x ∈(0,+∞), 得f ′(x )=2ax 2+bx -1x .∵a =1,b =-1,∴f ′(x )=2x 2-x -1x =(2x +1)(x -1)x (x >0).令f ′(x )=0,得x =1.当0<x <1时,f ′(x )<0,f (x )单调递减; 当x >1时,f ′(x )>0,f (x )单调递增. ∴f (x )的单调递减区间是(0,1), f (x )的单调递增区间是(1,+∞).(2)由题意可知,f (x )在x =1处取得最小值, 即x =1是f (x )的极值点, ∴f ′(1)=0,∴2a +b =1,即b =1-2a . 令g (x )=2-4x +ln x (x >0), 则g ′(x )=1-4xx .令g ′(x )=0,得x =14.当0<x <14时,g ′(x )>0,g (x )单调递增,当x >14时,g ′(x )<0,g (x )单调递减,∴g (x )≤g ⎝⎛⎭⎫14=1+ln 14=1-ln 4<0, ∴g (a )<0,即2-4a +ln a =2b +ln a <0, 故ln a <-2b .。