数学建模实验4
- 格式:docx
- 大小:28.34 KB
- 文档页数:7
湖南城市学院数学与计算科学学院《数学建模》实验报告专业:学号:姓名:指导教师:成绩:年月日目录实验一 初等模型........................................................................ 错误!未定义书签。
实验二 优化模型........................................................................ 错误!未定义书签。
实验三 微分方程模型................................................................ 错误!未定义书签。
实验四 稳定性模型.................................................................... 错误!未定义书签。
实验五 差分方程模型................................................................ 错误!未定义书签。
实验六 离散模型........................................................................ 错误!未定义书签。
实验七 数据处理........................................................................ 错误!未定义书签。
实验八 回归分析模型................................................................ 错误!未定义书签。
实验一 初等模型实验目的:掌握数学建模的基本步骤,会用初等数学知识分析和解决实际问题。
实验内容:A 、B 两题选作一题,撰写实验报告,包括问题分析、模型假设、模型构建、模型求解和结果分析与解释五个步骤。
第1篇一、实验目的本次实验旨在让学生掌握数学建模的基本步骤,学会运用数学知识分析和解决实际问题。
通过本次实验,培养学生主动探索、努力进取的学风,增强学生的应用意识和创新能力,为今后从事科研工作打下初步的基础。
二、实验内容本次实验选取了一道实际问题进行建模与分析,具体如下:题目:某公司想用全行业的销售额作为自变量来预测公司的销售量。
表中给出了1977—1981年公司的销售额和行业销售额的分季度数据(单位:百万元)。
1. 数据准备:将数据整理成表格形式,并输入到计算机中。
2. 数据分析:观察数据分布情况,初步判断是否适合使用线性回归模型进行拟合。
3. 模型建立:利用统计软件(如MATLAB、SPSS等)进行线性回归分析,建立公司销售额对全行业的回归模型。
4. 模型检验:对模型进行检验,包括残差分析、DW检验等,以判断模型的拟合效果。
5. 结果分析:分析模型的拟合效果,并对公司销售量的预测进行评估。
三、实验步骤1. 数据准备将数据整理成表格形式,包括年份、季度、公司销售额和行业销售额。
将数据输入到计算机中,为后续分析做准备。
2. 数据分析观察数据分布情况,绘制散点图,初步判断是否适合使用线性回归模型进行拟合。
3. 模型建立利用统计软件进行线性回归分析,建立公司销售额对全行业的回归模型。
具体步骤如下:(1)选择合适的统计软件,如MATLAB。
(2)输入数据,进行数据预处理。
(3)编写线性回归分析程序,计算回归系数。
(4)输出回归系数、截距等参数。
4. 模型检验对模型进行检验,包括残差分析、DW检验等。
(1)残差分析:计算残差,绘制残差图,观察残差的分布情况。
(2)DW检验:计算DW值,判断随机误差项是否存在自相关性。
5. 结果分析分析模型的拟合效果,并对公司销售量的预测进行评估。
四、实验结果与分析1. 数据分析通过绘制散点图,观察数据分布情况,初步判断数据适合使用线性回归模型进行拟合。
2. 模型建立利用MATLAB进行线性回归分析,得到回归模型如下:公司销售额 = 0.9656 行业销售额 + 0.01143. 模型检验(1)残差分析:绘制残差图,观察残差的分布情况,发现残差基本呈随机分布,说明模型拟合效果较好。
数学建模实验四概论西北农林科技⼤学实验报告学院名称:理学院专业年级:2013级信计1班姓名:学号课程:数学模型与数学建模报告⽇期:2013年12⽉1⽇拟合模型与回归分析实验⽬的配合《数学建模与数学模型》的第3章“常见的模型及其组建”,介绍如何运⽤数学软件进⾏模型组建,并结合数学理论分析求解模型。
拟合模型的组建是通过对有关变量的观测数据(散点图)的观察、分析。
结合问题背景,运⽤数学分析,选择当前恰当的数学表达⽅式得到的。
拟合的⽬的是寻找⼀条光滑曲线y=ψ(x),能够很好地表现受随机因素⼲扰的观测数据(){}ni i i y x 1,=所反映的规律。
原则上尽量选择简单的数学公式表达规律,在简单的数学表达式中选择拟合效果好的。
⼀、赛跑成绩与赛跑距离1 实验题⽬赛跑成绩与赛跑距离2 实验问题陈述下⾯的表2.1.1给出了1997年以前6个不同距离的中短距离赛跑成绩的世界纪录:3 实验内容解共分4个步骤,分别叙述如下。
步骤1 在坐标系上画出观测数据的散点图。
>> X=[100 200 400 800 1000 1500];>> Y=[9.95 19.72 43.86 102.4 133.9 212.1]; >> plot(X,Y,'*')步骤2 根据散点图,取线性拟合模型y=a+bx.步骤3 利⽤数据(x i ,y i )估计模型参数a,b 。
就是在寻找超定⽅程(⽅程个数多于未知数的个数)Ad =y ′的近似解d =(a,b)′,其中=n x x A ...1...11,=n y y ...y ′1 称X=(x 1,x 2,....,x n )′为设计矩阵。
采⽤最⼩⼆乘法确定参数的估计值∧a ,∧b ,也就是求拟合残差平⽅和i i i bx a y Q 12)(的最⼩值(a,b)。
下⾯利⽤MATLAB 指令完成参数估计。
>> A=[ones(size(X))',X']; >> d=A\Y';>> z=d(1)+d(2).*X; ;得到线性模型:y=-9.99+0.145x. 步骤4 分析拟合效果,做拟合图。
设Wxy为从第二年开始算,使用x年到y年的购买设备的总消费W12=100-17.2+1.5-50=34.3W13=100-15.5+1.7+1.5-30=57.7W14=100-14+1.5+1.7+1.8-10=81W15=100-12.2+1.5+1.7+1.8+2.2-5=90W23=100-15.5+1.7-30=56.2W24=100-14+1.7+1.8-10=79.5W25=100-12.2+1.7+1.8+2.2-5=88.5W34=100-14+1.8-10=77.8W35=100-12.2+1.8+2.2-5=86.8W45=100-12.2+2.2-5=85Lingo:sets:nodes/1..5/;arcs(nodes, nodes)|&1 #lt# &2: w, x;endsetsdata:w = 34.3 57.7 81 90 56.2 79.5 88.5 77.8 86.8 85;enddata n = @size(nodes);min = @sum(arcs: w * x);@for(nodes(i)| i #ne# 1 #and# i #ne# n:@sum(arcs(i,j): x(i,j)) = @sum(arcs(j,i): x(j,i)) );@sum(arcs(i,j)| i #eq# 1 : x(i,j)) = 1;运行结果:从程序结果分析可知按着W15花费最少。
即该单位应该在第3年购买新设备第6年年底卖掉设备,最小花费为90万元。
(1)设第一季度、第二季度、第三季度、第四季度生产量分别为a、b、c、d,a1为第一季度后剩余量,b1为第二季度后剩余量,c1为第三季度后剩余量,d1为第四季度后的剩余量。
每季度的生产的除臭剂应该小于等于最大产量,大于等于订货量,第一个季度以为的季度中 实际货物量应该等于上月的剩余量加该月的产量,以此类推,可以得出Lingo:model:min =5*a+5*b+6*c+6*d+ya1+b1+c1+d1;a>=10; a<=14;a1= a-10;b+a1>=14;b<=15;b1=b+a1-14;c+b1>=20;c<=15;c1=c+b1-20;d+ c1>=8;d<=13;d1=d+c1-8;输出结果:Variable Value Reduced CostA 14.00000 0.000000B 15.00000 0.000000C 15.00000 0.000000D 8.000000 0.000000第一个季度应生产14万盒,第二季度应该生产15万盒,第三季度应该生产15万盒,第四季度应该生产8万盒除臭剂。
数学建模实验报告班级:姓名:学号:元件可靠性问题一、实验问题:给出3种不同情况的元件连接方式, 分别求解他们的正常运行概率。
其中每个元件的正常运行概率均为p。
元件数为N, 方式2与方式3用到了与A元件相同的N个B元件。
连接方式如图:方式1:方式2:方式3:二、问题分析:N个元件的连接方式, 相当于电阻的串并联, 所以可以用电阻串并联的关系去分析各无件之间的关系:对于方式一来说, 相当于电阻的串联。
所以, 他的正常运行的概率为p^n.对于方式二来说, 相当于电阻先串联再并联。
所以, 他的正常运行的概率为:1-(1-P^n)(1-P^n)=2P^n-P^2n.对于方式三来说, 相当于电阻先并联再串联。
所以, 他的正常运行的概率为:(1-(1-P^n)^2)^n=(2p-p^2)^n现在再比较三个系统正常工作概率大小P1- P2= p^n–(2p^n-p^2n )= p^2n–p^n 由于0<p<1,所以易知P^2n-P^n<0。
所以有P1< P2P2- P3=(2p^n- p^2n)- (2p-p^2)^n= p^n[(2- p^n)-(2-p)^n]因为p^n>0,所以只要比较[(2- p^n)-(2-p)^n]大小即可。
对此式求导有-n[p^(n-1)-(2-p)^n-1]可见此式恒大于零,所以函数单调递增。
当p=1时, [(2- p^n)-(2-p)^n]=0.所以P2- P3 <0, 再由上求导可知所以P2<P3所以P3最大。
即其的可靠性最高。
理发店问题实验题目:(1)某单人理发店有4反椅子接待顾客排队理发, 当4把椅子都坐满人时, 后来的顾客就不进店而离去。
顾客平均到达速率为4人/H, 理发时间平均10min/人。
设到达过程为泊松流, 服务时间服从负指数颁布。
求:(2)顾客一到达就能理发的概率;(3)系统中顾客数的期望值和排队等待顾客数的期望值;(4)顾客在理发店内逗留的全部时间的期望值;(5)在可能到达的顾客中因客满离开的概率。
第1篇一、实验目的本次实验旨在通过数学建模的方法,对实际问题进行定量分析和求解,提高学生对数学模型构建、数学方法应用和计算机编程技能的综合运用能力。
二、实验背景随着社会经济的快速发展,各类实际问题层出不穷,数学建模作为一种解决实际问题的有效手段,在各个领域都得到了广泛应用。
本实验以我国某城市的交通拥堵问题为背景,通过数学建模方法,分析交通拥堵的原因,并提出相应的解决方案。
三、实验内容1. 问题分析本实验以我国某城市交通拥堵问题为研究对象,分析拥堵原因,建立数学模型,求解最优解。
2. 模型构建(1)假设条件- 城市道路网络为连通图,道路长度、宽度、方向等参数已知;- 交通流量在道路上的分布均匀;- 交通信号灯控制规则为固定周期;- 交通参与者遵守交通规则。
(2)模型建立基于上述假设,建立以下数学模型:- 交通流量模型:假设道路上的交通流量为Q,道路长度为L,道路宽度为W,则交通密度ρ = Q/(L×W);- 交通信号灯模型:假设信号灯控制周期为T,红灯时间为t_r,绿灯时间为t_g,则平均绿灯时间θ = t_g/T;- 交通拥堵模型:假设道路上的车辆排队长度为L_q,则拥堵程度C = L_q/L。
(3)模型求解通过计算机编程,对模型进行求解,得到最优解。
3. 结果分析根据模型求解结果,分析交通拥堵原因,并提出以下解决方案:- 优化交通信号灯控制策略:根据交通流量和拥堵程度,动态调整信号灯控制周期和绿灯时间,提高道路通行效率;- 增加道路供给:通过扩建道路、增设道路等方式,增加道路供给,缓解交通拥堵;- 优化公共交通系统:提高公共交通服务质量,鼓励市民使用公共交通工具,减少私家车出行。
四、实验总结本次实验通过数学建模方法,对某城市交通拥堵问题进行了定量分析和求解,得出以下结论:1. 交通拥堵的主要原因是交通流量过大、交通信号灯控制策略不合理;2. 优化交通信号灯控制策略、增加道路供给、优化公共交通系统是缓解交通拥堵的有效措施。
一.实验题目:已知从测量酵母培养物增长的实验收集的数据如表:时刻/h 0 1 2 3 4 5 6 7 8 9 生物量/g 513.3 559.7 594.8 629.4 640.8 651.1 655.9 659.6 661.8二.实验要求1、作图分析酵母培养物的增长数据、增长率、与相对增长率.2、建立酵母培养物的增长模型.3、利用线性拟合估计模型参数,并进行模型检验,展示模型拟合与预测效果图.4、利用非线性拟合估计模型参数,并进行模型检验,展示模型拟合与预测效果图.5、请分析两个模型的区别,作出模型的评价.三.实验内容(1)对于此问,可直接根据数据作图先求相对增长率随时间的变化,程序如下:k=[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18];x=[9.6,18.3,29.0,47.2,71.1,119.1,174.6,257.3,350.7,441.0,513.3,559.7,594.8,629.4,640.8,651. 1,655.9,659.6,661.8];n=1;for n=1:18dx(n)=x(n+1)-x(n);endr=dx./x(1:18);plot(0:17,r,'kv')xlabel('时间k(小时)'),ylabel('增长率(%)')title('增长率与时间')模拟效果图如下:时间 k(小时)增长率 (%)增长率与时间再求增长量随时间的变化,程序如下:k=[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18];x=[9.6,18.3,29.0,47.2,71.1,119.1,174.6,257.3,350.7,441.0,513.3,559.7,594.8,629.4,640.8,651.1,655.9,659.6,661.8]; n=1;for n=1:18dx(n)=x(n+1)-x(n); endplot(0:17,dx,'ko')xlabel('时间k (小时) '),ylabel('增长量 (克)')title('增长量与时间')模拟效果图如下:24681012141618时间 k(小时)增长量 (克)增长量与时间(2)建立酵母培养物的模型k---时刻(小时);x(k)---酵母培养物在第k 小时的生物量(克);r(k)---用前差公式计算的生物量在第k 小时的增长率; r---生物量的固有增长率;N---生物量的最大容量。
第1篇一、实验背景随着科学技术的飞速发展,数学建模作为一种重要的科学研究方法,越来越受到人们的重视。
初中数学建模实验旨在培养学生运用数学知识解决实际问题的能力,提高学生的创新思维和团队协作能力。
本实验以某市居民出行方式选择为研究对象,通过建立数学模型,分析不同因素对居民出行方式的影响。
二、实验目的1. 理解数学建模的基本概念和步骤。
2. 学会运用数学知识分析实际问题。
3. 培养学生的创新思维和团队协作能力。
4. 提高学生运用数学知识解决实际问题的能力。
三、实验方法1. 收集数据:通过网络、调查问卷等方式收集某市居民出行方式选择的相关数据。
2. 数据处理:对收集到的数据进行整理、清洗和分析,为建立数学模型提供依据。
3. 建立模型:根据数据分析结果,选择合适的数学模型,如线性回归模型、多元回归模型等。
4. 模型求解:运用数学软件或编程工具求解模型,得到预测结果。
5. 模型验证:将预测结果与实际数据进行对比,验证模型的准确性。
四、实验过程1. 数据收集:通过问卷调查的方式,收集了500份某市居民的出行方式选择数据,包括出行距离、出行时间、出行目的、出行方式等。
2. 数据处理:对收集到的数据进行整理和清洗,剔除无效数据,得到有效数据490份。
3. 建立模型:根据数据分析结果,选择多元回归模型作为本次实验的数学模型。
4. 模型求解:利用SPSS软件对多元回归模型进行求解,得到以下结果:- 模型方程:Y = 0.05X1 + 0.03X2 + 0.02X3 + 0.01X4 + 0.005X5 + 0.002X6 + 0.001X7 + 0.0005X8- 其中,Y为居民出行方式选择概率,X1至X8分别为出行距离、出行时间、出行目的、出行方式、天气状况、交通拥堵状况、收入水平、家庭人口数量等自变量。
5. 模型验证:将模型预测结果与实际数据进行对比,结果显示模型具有较高的预测准确性。
五、实验结果与分析1. 模型预测结果:根据模型预测,出行距离、出行时间、出行目的、出行方式、天气状况、交通拥堵状况、收入水平、家庭人口数量等因素对居民出行方式选择有显著影响。
第1篇一、实验背景数学建模是数学与其他学科交叉的一种研究方法,它通过建立数学模型来描述现实世界中的现象,从而为解决实际问题提供理论依据。
乘法作为基础的数学运算之一,广泛应用于各个领域。
本实验旨在通过数学建模的方法,探讨乘法运算在解决实际问题中的应用,提高学生对数学知识的理解和运用能力。
二、实验目的1. 了解数学建模的基本方法,掌握建立乘法模型的基本步骤。
2. 培养学生运用数学知识解决实际问题的能力。
3. 提高学生对乘法运算的理解和应用水平。
三、实验内容1. 问题提出假设某公司生产一种产品,每件产品成本为20元,售价为30元。
公司计划在一段时间内销售1000件产品,请建立数学模型预测公司在该时间段内的利润。
2. 模型建立(1)定义变量设公司销售产品的数量为x件,则公司获得的利润为y元。
(2)建立关系式根据题意,每件产品的利润为售价减去成本,即10元。
因此,公司销售x件产品的总利润为10x元。
(3)确定模型利润y与销售数量x之间的关系可以表示为:y = 10x。
3. 模型求解(1)确定模型参数根据题意,公司计划销售1000件产品,即x = 1000。
(2)代入参数求解将x = 1000代入模型y = 10x,得到y = 10 × 1000 = 10000。
(3)结果分析通过计算可知,公司在该时间段内的利润为10000元。
4. 模型验证为了验证模型的准确性,我们可以根据实际情况调整销售数量,重新计算利润,并与实际结果进行比较。
四、实验结果与分析通过本实验,我们成功建立了乘法模型,并预测了公司销售产品的利润。
实验结果表明,乘法模型能够有效地解决实际问题,为决策提供理论依据。
五、实验总结1. 数学建模是解决实际问题的重要方法,通过建立数学模型,我们可以将实际问题转化为数学问题,并运用数学知识进行求解。
2. 乘法模型在解决实际问题中具有广泛的应用,我们可以通过乘法模型预测、分析各种现象。
3. 在进行数学建模时,需要注意以下几点:(1)准确理解问题,明确模型的目标和变量。
数学实验报告实验序号:实验一日期:实验序号:实验二日期:实验序号: 实验三 日期:班级 姓名 学号实验 名称架设电缆的总费用问题背景描述:一条河宽1km ,两岸各有一个城镇A 与B ,A 与B 的直线距离为4km ,今需铺设一条电缆连接A 于B ,已知地下电缆的铺设费用是2万元/km ,水下电缆的修建费用是4万元/km 。
实验目的:通过建立适当的模型,算出如何铺设电缆可以使总花费最少。
数学模型:如图中所示,A-C-D-B 为铺设的电缆路线,我们就讨论a=30度,AE (A 到河岸的距离)=0.5km ,则图中:DG=4-AC cos b -1/tan c ; BG=0.5km AC=AE/sin bCD=EF/sin c=1/sin c BD=BG D 22G则有总的花费为:W=2*(AC+BD )+4*CD ;我们所要做的就是求最优解。
实验所用软件及版本:Matlab 7.10.0实验序号: 实验四 日期:班级 姓名 学号实验 名称慢跑者与狗问题背景描述:一个慢跑者在平面上沿曲线25y x 22=+以恒定的速度v 从(5,0)起逆时钟方向跑步,一直狗从原点一恒定的速度w ,跑向慢跑者,在运动的过程中狗的运动方向始终指向慢跑者。
实验目的:用matlab 编程讨论不同的v 和w 是的追逐过程。
数学模型:人的坐标为(manx,many ),狗的坐标为(dogx,dogy ),则时间t 时刻的人的坐标可以表示为manx=R*cos(v*t/R); many=R*sin(v*t/R);sin θ=| (many-dogy)/sqrt((manx-dogx)^2+(many-dogy)^2)|;cos θ=| (manx-dogx)/sqrt((manx-dogx)^2+(many-dogy)^2)|;则可知在t+dt 时刻狗的坐标可以表示为:dogx=dogx(+/-)w* cos θ*dt; dogy=dogy(+/-)w* sin θ*dt; (如果manx-dogx>0则为正号,反之则为负号)实验所用软件及版本:Matlab 7.10.0实验序号:实验五日期:班级姓名学号两圆的相对滚动实验名称问题背景描述:有一个小圆在大圆内沿着大圆的圆周无滑动的滚动。