基于PLC的变频调速恒压自动控制供水系统PPT课件
- 格式:ppt
- 大小:879.00 KB
- 文档页数:37
2.2.3 变频恒压供水系统的组成及原理图PLC控制变频恒压供水系统主要有变频器、可编程控制器、压力变送器和现场的水泵机组一起组成一个完整的闭环调节系统,该系统的控制流程图如图2-1所示:图2-1变频恒压供水系统控制流程图变频恒压供水系统的结构框图如图2-2所示:图2-2变频恒压供水系统框图恒压供水系统通过安装在用户供水管道上的压力变送器实时地测量参考点的水压,检测管网出水压力,此检测信号是实现恒压供水的关键参数。
由于电信号为模拟量,故必须通过PLC的A/D转换模块才能读入并与设定值进行比较,将比较后的偏差值进行PID运算,再将运算后的数字信号通过D/A转换模块转换成模拟信号作为变频器的输入信号,控制变频器的输出频率,从而控制电动机的转速,进而控制水泵的供水流量,最终使用户供水管道上的压力恒定,实现变频恒压供水。
2.2.4 变频恒压供水系统控制流程变频恒压供水系统控制流程如下:(l)系统通电,按照接收到有效的自控系统启动信号后,首先启动变频器拖动变频泵M1工作,根据压力变送器测得的用户管网实际压力和设定压力的偏差调节变频器的输出频率,控制Ml的转速,当输出压力达到设定值,其供水量与用水量相平衡时,转速才稳定到某一定值,这期间Ml工作在调速运行状态。
(2)当用水量增加水压减小时,压力变送器反馈的水压信号减小,偏差变大,PLC 的输出信号变大,变频器的输出频率变大,所以水泵的转速增大,供水量增大,最终水泵的转速达到另一个新的稳定值。
反之,当用水量减少水压增加时,通过压力闭环,减小水泵的转速到另一个新的稳定值。
(3)当用水量继续增加,变频器的输出频率达到上限频率50Hz时,若此时用户管网的实际压力还未达到设定压力,并且满足增加水泵的条件时,在变频循环式的控制方式下,系统将在PLC的控制下自动投入水泵M2(变速运行),同时变频泵M1做工频运行,系统恢复对水压的闭环调节,直到水压达到设定值为止。
如果用水量继续增加,满足增加水泵的条件,将继续发生如上转换,将另两台工频泵M3、M4依次投入运行,变频器输出频率达到上限频率50Hz时,压力仍未达到设定值时,控制系统就会发出水压超限报警。
基于PLC的变频调速恒压供水系统设计与实现一、本文概述随着工业自动化的发展,变频调速技术在供水系统中的应用越来越广泛。
基于PLC(可编程逻辑控制器)的变频调速恒压供水系统,以其高效、稳定、节能的特点,成为当前供水系统设计的重要趋势。
本文旨在探讨基于PLC的变频调速恒压供水系统的设计与实现方法,以期为相关领域的工程应用提供有益的参考。
文章首先介绍了供水系统的基本构成和功能需求,包括恒压供水的重要性以及变频调速技术在供水系统中的应用优势。
随后,详细阐述了基于PLC的变频调速恒压供水系统的总体设计方案,包括硬件选型、软件编程、系统控制策略等方面。
在此基础上,文章重点探讨了系统实现过程中的关键技术问题,如PLC编程实现、变频器的选择与配置、压力传感器信号的采集与处理等。
通过本文的研究,期望能够为供水系统的设计与实现提供一种有效、可靠的解决方案,同时推动变频调速技术在供水领域的应用和发展。
二、系统需求分析和设计目标随着现代工业技术的快速发展,供水系统的稳定性和效率成为了评价一个城市或企业基础设施水平的重要指标。
传统的供水系统往往存在能耗高、调节性差、压力不稳定等问题,无法满足现代供水系统的要求。
为了解决这些问题,本文提出了一种基于PLC的变频调速恒压供水系统设计方案。
稳定性需求:供水系统需要保持长时间的稳定运行,确保供水压力的稳定性,避免因压力波动对供水质量造成影响。
节能性需求:传统的供水系统往往存在能耗高的问题,新的供水系统需要采用先进的控制技术,降低能耗,提高能源利用效率。
调节性需求:供水系统需要能够根据实际需求,自动调节供水流量和压力,以满足不同时段、不同区域的供水需求。
实现供水系统的恒压供水:通过PLC控制系统,实时监测供水压力,根据压力变化自动调节变频器的输出频率,从而控制水泵的转速,实现恒压供水。
提高供水系统的稳定性:采用先进的控制算法,确保供水系统在各种工况下都能保持稳定的运行状态,避免因压力波动对供水质量造成影响。
摘要智能大厦是写字楼等公共建筑发展的一个趋势,是科技高度发展的结晶。
它由三个子系统组成:楼宇自动化系统、通讯自动化系统和办公自动化系统。
智能建筑是建筑技术与计算机信息技术相结合的产物,是信息社会与经济国际化的需要。
本章主要是对楼宇自动化控制系统作有关的论述。
智能建筑往往是从楼宇自动化控制系统开始。
智能建筑内部有大量的电气设备,如:环境舒适所需要的空调设备、照明设备及会排水系统设备等,这些设备多而散:多,即数量多被控制、监视、测量的对象多,多达上百到上万点;散,即这些设备分散在各层和角落。
如果采用分散管理,就地控制,监视和测量难以想象。
为了合理利用设备,节省能源,节省人力,确保设备的安全运行,自然地提出了如何加强设备的管理问题。
自动控制技术经过简单的机械控制器控制、常规仪表控制,进入一个崭新的阶段——计算机控制。
关键词:楼宇自动化恒压供水计算机控制目录第1章恒压供水系统概述 11.1变频恒压供水系统11.2传统定压方式的弊病 11.3变频恒压供水系统的优点 11.4变频恒压供水系统主要特点21.5恒压供水的控制目的 31.6恒压供水设备的主要应用场合 31.7恒压供水技术实现3第2章楼宇自动化恒压供水系统方案 4 2.1变频恒压供水系统及控制参数选择 4 2.1.1.变频恒压供水系统组成 42.1.2.变频恒压供水系统的参数选取 4 2.2设备的选取 62.3运行特征72.4系统方案72.4.1"一拖 N"多泵系统的一般控制要求 7 2.4.2常用的"一拖 N"多泵系统控制方式8 2.5系统功能92.6保护功能92.7恒压供水过程9第3章现实设计案例 113.1 控制对象113.2 选用设备113.2.1 PLC的选用113.2.2 变频器硬件设计113.3 控制原理123.4 电器元件表123.5 系统线路134.6 变频控制柜技术参数及性能特点17 4.7 变频器的主要调试参数184.8 优势和效益19致谢: 21。
基于PLC的变频调速恒压自动控制供水系统1、恒速泵供水此方式是一种传统的水系统供给方式,对于离心式机泵,过去常采用手动或自动调节控制阀、调节阀的开度来改变和调节流量,即用人为增减阻力的办法来实现调节。
运转经济性较差、维修工作量大的缺点。
恒速泵由于耗能不合理,控制方法的不足,适应性差将逐渐被淘汰。
2、高位水箱供水采用楼顶设高位水箱供水的方式,虽较为安全可靠,设备、技术等方面也较成熟。
然而,在后期给水系统的运行、维护和管理过程中,此供水方式存在一些问题。
例如,由于屋顶水箱的材质及表面防腐物质的有机成分不同,造成水质严重的二次污染;目前对水箱内存水的消毒问题并未得到较好的解决,水箱内经常还发现有死老鼠的情况;加之屋顶高位水箱的有效容积受建筑负荷限制。
虽然高位水箱供水由于运行较为经济合理、适应性强而被广泛采用,目前国内大部分高层建筑均采用此方式供水,但此方式存在着投资大、占用面积大二次污染等缺点。
3、气压罐供水气压罐给水设备用于消防供水系统,在工程实践中已屡见不鲜。
气压供水由于体积小、技术简单、不受高度限制等特点,近几年来己在高层建筑中采用,但由于此方式存在着调节量小、水泵启动频繁、对电器设备要求较高等缺点,因而使这种供水系统的发展受到限制。
4、变频恒压供水变频调速恒压供水系统是由压力传感器将压力信号转变为一定的电流或电压信号,在某压力下,当用水量增大时,管路压力下降,产生偏差,该信号被送入控制器进行处理,控制器产生一定的电信号控制变频器升频,水泵转速升高,供水增加,压力恢复。
反之,用水量减少,工作机理同上所述。
由于整个过程压力偏差较小,调节时间短,系统表现为恒压。
此系统随着变频器与PLC应用技术的不断推广,已经成为一种新型的供水系统。
它在节能、保持水质、水压平稳性及操作的方便性和稳定的可靠性等方面大大优于传统的供水方式。
目录摘要 (1)一、引言 (1)二、系统组成及实现原理 (1)三、控制系统硬件设计 (2)四、系统软件设计 (5)五、变频恒压供水系统的构成及原理 (6)六、设备选型说明 (6)七、系统简介 (7)八、系统方案 (7)九、系统实现功能 (9)十、系统构成及其参数 (10)十一、系统工作原理 (10)十二、功能预置及保护功能 (11)十三、系统主要性能与特点 (12)十四、实施效果 (12)总结 (13)致谢 (14)参考文献 (15)PLC与变频器控制的自动恒压供水系统摘要:介绍了一种恒压供水系统的构成及设计原理,系统采用变频器和智能供水控制器,无级调节水泵的转速,并能根据设定的水压确定循环软启动水泵的数量,从而使水压维持恒定。
运行结果表明,循环软启动的平稳切换能有效地减小系统的机械、电气冲击,切换时压力波动很小,而且丰富的功能指令和自动报警保护措施显著延长了水泵机组等和元器件的寿命。
水泵作为供水工程中的通用机械,消耗着大量的能源,电耗往往占制水成本的60%以上,在我国,每年水泵的电能消耗占电能总消耗的21%。
为了节约降耗,必须采取调节措施使泵站适应负荷变化的运行。
关键词:自动控制技术;变频调速;恒压供水;循环软启动;P I D自整定一、引言随着变频器技术的日益成熟,变频调速技术在各个领域得到了广泛的应用。
变频调速恒压供水设备以其节能、安全、高品质的供水质量等优点,在小区供水和工厂供水控制中发挥了很大的作用。
根据某洗衣机进水电磁阀生产厂家的需要,为了给该厂电磁阀性能测试生产线提供基准恒压水源,本文利用PLC控制技术和变频调速技术设计的全自动恒压供水系统,能较好地满足生产需求,水压精度较高。
为了不浪费水资源,系统还具有自动水循环功能。
二、系统组成及实现原理恒压供水的基本控制策略是:采用可编程控制器(plc)与变频调速装置构成控制系统,进行优化控制泵组的调速运行,并自动调整泵组的运行台数,完成供水压力的闭环控制,即根据实际设定水压自动调节水泵电机的转速和水泵的数量,自动补偿用水量的变化,以保证供水管网的压力保持在设定值,既可以满足生产供水要求,还可节约电能,使系统处于可靠工作状态,实现恒压供水。
基于PLC的变频恒压供水系统的设计基于PLC的变频恒压供水系统的设计一、引言随着社会经济的发展和人民生活水平的提高,人们对供水系统的稳定性和高效性要求越来越高。
传统的水泵控制系统往往存在运行不稳定、能耗大、操作复杂等问题。
为了解决这些问题,本文将介绍一种基于可编程逻辑控制器(Programmable Logic Controller, PLC)的变频恒压供水系统的设计。
二、系统架构变频恒压供水系统是一种利用变频器(Variable Frequency Drive, VFD)控制水泵运行的系统,能实现根据水压需求自动调整水泵的转速,以保持恒定的供水压力。
该系统的基本架构如图1所示:[插入图1的系统架构图]图1 变频恒压供水系统的基本架构系统包含以下组成部分:1. PLC控制器:负责监测供水系统的状态和参数,并控制变频器的工作状态。
2. 变频器:通过调整水泵的转速,实现供水压力的恒定。
3. 传感器:用于测量供水系统中的压力、流量等参数,并将数据反馈给PLC控制器。
4. 水泵:根据PLC控制器的指令,通过变频器控制实现供水。
三、系统设计1. PLC程序设计PLC程序是整个系统的核心,它通过读取传感器的数据,计算供水压力的误差,并根据误差值控制变频器的输出频率,从而调整水泵的转速。
具体步骤如下:(1)读取传感器数据:PLC定时读取各传感器的数据,包括供水管道的压力、流量等参数。
(2)计算误差值:将实际压力值与设定的理想压力值进行比较,得到压力的误差。
根据误差的大小和方向,判断应增大或减小水泵的转速。
(3)控制变频器输出频率:PLC发送控制信号给变频器,调整输出频率,控制水泵的运行速度。
(4)循环控制:通过不断地监测和调整水泵运行的频率和转速,实现供水压力的恒定。
2. 变频器参数设置根据供水系统的实际需求,需要合理设置变频器的参数,以确保系统的稳定性和高效性。
主要包括以下参数:(1)负载类型:选择合适的负载类型,通常为泵类。