初三圆难题压轴题答案解析
- 格式:doc
- 大小:481.00 KB
- 文档页数:25
专题24.5 圆(满分100)学校:___________姓名:___________班级:___________考号:___________题号一二三总分得分评卷人得分一.选择题(本大题共10小题,每小题3分,满分30分)1.(2022·重庆忠县·九年级期中)如图,点B,C,D在⊙O上,若∠BCD=130°,则∠BOD的度数是( )A.50°B.60°C.80°D.100°【思路点拨】首先圆上取一点A,连接AB,AD,根据圆的内接四边形的性质,即可得∠BAD+∠BCD=180°,即可求得∠BAD 的度数,再根据圆周角的性质,即可求得答案.【解题过程】解:在圆上取一点A,连接AB,AD,∵点A、B,C,D在⊙O上,∠BCD=130°,∴∠BAD=50°,∴∠BOD=100°.故选D.2.(2022·江苏·九年级专题练习)如图,在平面直角坐标系中,过格点A,B,C作一圆弧,点B与下列格点的连线中,能够与该圆弧相切的是( )A.点(0,3)B.点(2,3)C.点(5,1)D.点(6,1)【思路点拨】根据垂径定理的性质得出圆心所在位置,再根据切线的性质得出,∠OBD+∠EBF=90°时F点的位置即可。
【解题过程】解:∵过格点A,B,C作一圆弧,∴三点组成的圆的圆心为:O(2,0),∵只有∠OBD+∠EBF=90°时,BF与圆相切,∴当△BOD≌△FBE时,EF=BD=2,F点的坐标为:(5,1),∴点B与下列格点的连线中,能够与该圆弧相切的是:(5,1).故选C.3.(2022·全国·九年级课时练习)如图,在⊙О中,点C在弦AB上移动,连接OC,过点C作CD⊥OC交⊙О于点D.若AB=2,则CD的最大值是()A.4B.2C D.1【思路点拨】连接OD,如图,利用勾股定理得CD,利用垂线段最短得到当OC⊥AB时,OC最小,再求出CD即可.【解题过程】4.(2022·浙江丽水·模拟预测)已知⊙O的直径CD=10cm,AB是⊙O的弦,AB=8cm,且AB⊥CD,垂足为M,则AC的长为( )A.B.cm C.或D.或【思路点拨】先根据题意画出图形,由于点C的位置不能确定,故应分两种情况进行讨论.【解题过程】解:连接AC,AO,∵O的直径CD=10cm,AB⊥CD,AB=8cm,5.(2022·江苏·九年级)如图,AB是⊙O的直径,点C为圆上一点,AC=3,∠ABC的平分线交AC于点D,CD=1,则⊙O的直径为()A B.C.1D.2【思路点拨】【解题过程】解:如图:过D作DE⊥AB,垂足为E∵AB是直径∴∠ACB=90°∵∠ABC的角平分线BD∴DE=DC=1在Rt△DEB和Rt△DCB中6.(2022·全国·九年级课时练习)如图,在Rt△ABC中,∠ACB=90°,以该三角形的三条边为边向形外作正方形,正方形的顶点E,F,G,H,M,N都在同一个圆上.记该圆面积为S1,△ABC面积为S2,则S1的值是()S2A.5π2B.3πC.5πD.11π2【思路点拨】【解题过程】7.(2022·全国·九年级专题练习)如图,等边△ABC中,AB=3,点D,点E分别是边BC,CA上的动点,且BD=CE,连接AD、BE交于点F,当点D从点B运动到点C时,则点F的运动路径的长度为()A B C D.【思路点拨】如图,作过A、B、F作⊙O,AFB为点F的轨迹,然后计算出AFB的长度即可.【解题过程】解:如图:作过A、B、F作⊙O,过O作OG⊥AB∵等边ΔABC∴AB=BC,∠ABC=∠C=60°∵BD=CE∴△BCE≌△ABC∴∠BAD=∠CBE∵∠ABC=∠ABE+∠EBC=60°∴∠ABE+∠BAD=60°∴∠AFB=120°∵∠AFB是弦AB同侧的圆周角∴∠AOB=120°8.(2022·全国·九年级课时练习)如图,在⊙O中,点C在优弧AB上,将弧BC沿BC折叠后刚好经过AB的中点D.若⊙O AB=4,则BC的长是( )A.B.C D【思路点拨】【解题过程】解:连接OD、AC、DC、OB、OC,作CE⊥AB于E,OF⊥CE于F,如图,∵D为AB的中点,9.(2022·全国·九年级课时练习)如图,△ABC的内切圆⊙O与AB,BC,AC相切于点D,E,F,已知AB =6,AC=5,BC=7,则DE的长是()A B C D【思路点拨】【解题过程】10.(2022·江苏无锡·九年级期中)我们定义:两边平方和等于第三边平方的2倍的三角形叫做奇异三角形,根据定义:①等边三角形一定是奇异三角形;②在Rt△ABC中,∠C=90°,AB=c,AC=b,BC=a,且b>a,若Rt△ABC是奇异三角形,则a:b:c=12;③如图,AB是⊙O的直径,C是⊙O上一点(不与点A、B重合),D是半圆ADB的中点,C、D在直径AB的两侧,若在⊙O内存在点E,使AE=AD,CB=CE.则△ACE是奇异三角形;④在③的条件下,当△ACE是直角三角形时,∠AOC=120°,其中,说法正确的有()A.①②B.①③C.②④D.③④【答案】B【思路点拨】【解题过程】解:设等边三角形的边长为a,则a2+a2=2a2,满足奇异三角形的定义,∴等边三角形一定是奇异三角形,故①正确;在RtΔABC中,a2+b2=c2,∵c>b>a>0,∴2c2>a2+b2,2a2<b2+c2,若△ABC是奇异三角形,一定有2b2=a2+c2,∴2b2=a2+(a2+b2),∴b2=2a2,得b=.∵c2=b2+a2=3a2,∴c,∴a:b:c=1故②错误;在RtΔABC中,a2+b2=c2,∵AB是⊙O的直径,∴∠ACB=∠ADB=90°,在RtΔACB中,AC2+BC2=AB2;在RtΔADB中,AD2+BD2=AB2.∵D是半圆ADB的中点,∴AD=BD,∴AD=BD,∴AB2=AD2+BD2=2AD2,又∵CB=CE,AE=AD,∴AC2+CE2=2AE2.∴ΔACE是奇异三角形,故③正确;由③可得ΔACE是奇异三角形,∴AC2+CE2=2AE2.当ΔACE是直角三角形时,由②可得AC:AE:CE=1AC:AE:CE=1,(Ⅰ)当AC:AE:CE=1AC:CE=1AC:CB=1∵∠ACB=90∘,∴∠ABC=30°,∴∠AOC=2∠ABC=60°.(Ⅱ)当AC:AE:CE=1时,AC:CE=1,即AC:CB=1,∵∠ACB=90°,∴∠ABC=60°,∴∠AOC=2∠ABC=120°,∴∠AOC的度数为60°或120°,故④错误;故选:B.评卷人得分二.填空题(本大题共5小题,每小题3分,满分15分)11.(2022·全国·九年级课时练习)工程上常用钢珠来测量零件上小圆孔的宽口,假设钢珠的直径是10mm,测得钢珠顶端离零件表面的距离为8mm,如图所示,则这个小圆孔的宽口AB的长度为____mm.【思路点拨】先根据钢珠的直径求出其半径,再构造直角三角形,求出小圆孔的宽口AB的长度的一半,最后乘以2即为所求.【解题过程】12.(2022·全国·九年级课时练习)已知⊙O的直径为10cm,AB,CD是⊙O的两条弦,AB//CD,AB=8cm,CD=6cm,则AB与CD之间的距离为________cm.【思路点拨】分两种情况考虑:当两条弦位于圆心O同一侧时,当两条弦位于圆心O两侧时;利用垂径定理和勾股定理分别求出OE和OF的长度,即可得到答案.【解题过程】解:分两种情况考虑:当两条弦位于圆心O一侧时,如图1所示,13.(2022·山东菏泽·九年级期中)如图,正方形ABCD内接于⊙O,PA,PD分别与⊙O相切于点A和点D,PD的延长线与BC的延长线交于点E.已知AB=2,则图中阴影部分的面积为___________.【思路点拨】【解题过程】14.(2022·全国·九年级课时练习)如图,⊙O是等边△ABC的外接圆,已知D是⊙O上一动点,连接AD、CD,若圆的半径r=2,则以A、B、C、D为顶点的四边形的最大面积为_____.【思路点拨】连接BO并延长交AC于E,交AC于D,根据垂径定理得到点D到AC的距离最大,根据直角三角形的性质、三角形的面积公式计算,得到答案.【解题过程】15.(2022·全国·九年级课时练习)如图,在矩形ABCD中,AB=6,BC=8,E为AD上一点,且AE=2,F为BC边上的动点,以为EF直径作⊙O,当⊙O与矩形的边相切时,BF的长为______.【思路点拨】⊙O与矩形的边相切,但没有具体说与哪个边相切,所以该题有三种情况:第一种情况是圆与边AD、BC 相切,此时BF=AE;第二种情况是圆与边AB相切,利用中位线定理以及勾股定理可求出BF的长;第三种是圆与边CD相切,同样利用中位线定理以及勾股定理求得BF.【解题过程】解:①当圆与边AD、BC相切时,如图1所示此时∠AEO=BFO=90°所以四边形AEFB为矩形即BF=AE=2;②当圆与边AB相切时,设圆的半径为R,切点为H,圆与边AD交于E、N两点,与边BC交于M、F两点,连接EM、HO,如图2所示此时OE=OF=OH=R,点O、H分别是EF、AB的中点∴2OH=AE+BF即BF=2R-2∵BM=AE=2∴MF=2R-4在Rt△EFM中,EM2+MF2=EF2∴BF=13.2评卷人得分三.解答题(本大题共9小题,满分55分)16.(2022·全国·九年级课时练习)在《阿基米德全集》中的《引理集》中记录了古希腊数学家阿基米德提出的有关圆的一个引理.如图,已知AB,C是弦AB上一点,请你根据以下步骤完成这个引理的作图过程.(1)尺规作图(保留作图痕迹,不写作法):①作线段AC的垂直平分线DE,分别交AB于点D,AC于点E,连接AD,CD;②以点D为圆心,DA长为半径作弧,交AB于点F(F,A两点不重合),连接DF,BD,BF.(2)直接写出引理的结论:线段BC,BF的数量关系.【思路点拨】【解题过程】解:(1)作出线段AC的垂直平分线DE,连接AD,CD;以D为圆心,DA长为半径作弧,交AB于点F,连接DF,BD,BF,如图示:(2)结论:BC=BF.理由如下:由作图可得:DE是AC的垂直平分线,DA=DF,∴DA=DC=DF,∴∠DAC=∠DCA,AD=FD,∴∠DBC=∠DBF,∵四边形ABFD是圆的内接四边形,∴∠DAB+∠DFB=180°,∵∠DCA+∠DCB=180°,∴∠DFB=∠DCB,∵DB=DB,∴△DCB≌△DFB,∴BC=BF.17.(2022·江西上饶·九年级期末)如图,⊙O的直径AB的长为2,点C在圆周上,∠CAB=30°.点D是圆上一动点,DE∥AB交CA的延长线于点E,连接CD,交AB于点F.(1)如图1,当DE与⊙O相切时,求∠CFB的度数;(2)如图2,当点F是CD的中点时,求△CDE的面积.【思路点拨】(1)由题意可求∠AOD=90°,即可求∠C=45°,即可求∠CFB的度数;(2)连接OC,根据垂径定理可得AB⊥CD,利用勾股定理.以及直角三角形30度性质求出CD、DE即可.【解题过程】解:(1)如图:连接OD∵DE与⊙O相切∴∠ODE=90°∵AB∥DE18.(2022·全国·九年级专题练习)如图,AB是半圆O的直径,点D是半圆O上一点,点C是AD的中点,CE⊥AB于点E,过点D的切线交EC的延长线于点G,连接AD,分别交CE、CB于点P、Q,连接AC.(1)求证:GP=GD;(2)求证:P是线段AQ的中点;(3)连接CD,若CD=2,BC=4,求⊙O的半径和CE的长.【思路点拨】(1)结合切线的性质以及已知得出∠GPD=∠GDP,进而得出答案;(2)利用圆周角定理得出PA,PC,PQ的数量关系进而得出答案;(3)直接利用勾股定理结合三角形面积得出答案.【解题过程】(1)证明:连接OD,则OD⊥GD,∠OAD=∠ODA,∵∠ODA+∠GDP=90°,∠EAP+∠GPD=∠EPA+∠EAP=90°,∴∠GPD=∠GDP;∴GP=GD;(2)证明:∵AB为直径,∴∠ACB=90°,∵CE⊥AB于E,∴∠CEB=90°,∴∠ACE+∠ECB=∠ABC+∠ECB=90°,∴∠ACE=∠ABC=∠CAP,∴PC=PA,∵∠ACB=90°,∴∠CQA+∠CAP=∠ACE+∠PCQ=90°,∴∠PCQ=∠CQA,∴PC=PQ,∴PA=PQ,即P为Rt△ACQ斜边AQ的中点;(3)连接CD,∵弧AC=弧CD,∴CD=AC,∵CD=2,∴AC=2,19.(2022·全国·九年级课时练习)对于平面直角坐标系xOy中的图形P,Q,给出如下定义:M为图形P 上任意一点,N为图形Q上任意一点,如果M,N两点间的距离有最小值,那么称这个最小值为图形P,Q 间的“非常距离”,记作d(P,Q).已知点A(−2,2),B(2,2),连接AB.(1)d(点O,AB)=;(2)⊙O半径为r,若d(⊙O,AB)=0,直接写出r的取值范围;(3)⊙O半径为r,若将点A绕点B逆时针旋转α°(0°<α<180°),得到点A′.①当α=30°时d(⊙O,A′)=0,求出此时r的值;②对于取定的r值,若存在两个α使d(⊙O,A′)=0,直接写出r的范围.【思路点拨】(1)理解题意后直接利用垂线段最短即可求解.(2)先理解当⊙O与线段有交点时,d(⊙O,AB)=0,利用⊙O与线段相切和⊙O经过A点即可求解.(3)①先确定A′位于x轴上,再求出OA′的长即可求解;②先确定A′的轨迹,再利用存在两个α使d(⊙O,A')=0,确定并求出两个界点值,即可求解.【解题过程】∴∠A′NB=90°,由旋转知BA′=BA=2−(−2)=4,∵∠ABA′=30°,BA′=2,∴A′N=12∴A′位于x轴上,BN=42−22=23,∴A′M=23,∴A′O=23−2,∵对于取定的r值,若存在两个α使d(⊙O,A')=0,∴⊙O与以AH为直径的半圆有两个交点(A点和H点除外),此时有两个界点值,分别是⊙O与该半圆内切时和⊙O由B(2,2),得OB=22+22=22,当⊙O与该半圆内切时,r=4−22,当⊙O经过A点时,r=22,∴4−22<r<22.20.(2022·四川德阳·九年级阶段练习)如图1,四边形ABCD内接于⊙O,AD为直径,过点C作CE⊥AB于点E,连接AC.(1)求证:∠CAD=∠ECB;(2)若CE是⊙O的切线,∠CAD=30°,连接OC,如图2.①请判断四边形ABCO的形状,并说明理由;②当AB=2时,求AD,AC与CD围成阴影部分的面积.【思路点拨】【解题过程】解:(1)证明:∵四边形ABCD内接于⊙O,∴∠D+∠ABC=180°,∵∠EBC+∠ABC=180°,∴∠D=∠EBC,∵AD为⊙O直径,∴∠ACD=90°,∴∠D+∠CAD=90°,∵CE⊥AB,∴∠ECB+∠EBC=90°,∴∠CAD=∠ECB;(2)①四边形ABCO是菱形,理由如下:∵CE是⊙O的切线,∴OC⊥EC,∵AB⊥EC,∴∠OCE=∠E=90°,∴∠OCE+∠E=180°,∴OC∥AE,∴∠ACO=∠BAC,∴CF=3,21.(2022·全国·九年级专题练习)如图,以AB为直径的⊙O上有一动点C,⊙O的切线CD交AB的延长线于点D,过点B作BM∥OC交⊙O于点M,连接AM,OM,BC.(1)求证:AM∥CD(2)若OA=5,填空:①当AM=时,四边形OCBM为菱形;②连接MD,过点O作ON⊥MD于点N,若BD=,则ON=.【思路点拨】(1)首先根据圆周角定理可得∠MAB+∠ABM=90°,由切线的性质可得∠DOC+∠CDO=90°,再根据平行线的性质即可证得∠MAB=∠CDO,据此即可证得结论;(2)①根据菱形性质可得OM= OA=MB= 5,即可求得AB,再根据勾股定理即可求得;②首先可证得△ODC 是等腰直角三角形,再根据勾股定理及三角形的面积,即可求解.【解题过程】(1)证明:∵AB是⊙O的直径,∴∠AMB=90°,∴∠MAB+∠ABM=90°,∵CD是⊙O的切线,∴OC⊥CD,∴∠DOC+∠CDO=90°,又∵BM∥OC,∴∠ABM=∠DOC,∴∠MAB=∠CDO,∴AM∥CD;(2)解:①若四边形OCBM为菱形,则OM=OA=MB =5,∵AB是⊙O的直径,∴∠AMB=90°,∵BD=52−5,OB=5,∴OD=OB+BD=5+5∵CD是⊙O的切线,∴∠OCD=90°,22.(2022·全国·九年级课时练习)如图,AB是⊙O的直径,P为AB上一点,弦CD与弦EF交于点P,PB平分∠DPF,连DF交AB于点G.(1)求证:CD=EF;(2)若∠DPF=60°,PE∶PF=1∶3,AB=OG的长.【思路点拨】【解题过程】(1)证明:如图,过点O作OM⊥EF于点M,ON⊥CD于点N,连接OF、OD,则∠OMF=∠OND=90°,∵PB平分∠DPF,OM⊥EF,ON⊥CD,∴OM=ON,在Rt△OFM和Rt△ODN中,∵OF=OD OM=ON,∴Rt△OFM≌Rt△ODN(HL),∴FM=DN,∵OM⊥EF,ON⊥CD,23.(2022·全国·九年级课时练习)问题提出:(1)如图1,已知△ABC是边长为2的等边三角形,则△ABC 的面积为______.问题探究:(2)如图2,在△ABC中,已知∠BAC=120°,BC=△ABC的最大面积.问题解决:(3)如图3,某校学生礼堂的平面示意图为矩形ABCD,其宽AB=20米,长BC=24米,为了能够监控到礼堂内部情况,现需要在礼堂最尾端墙面CD上安装一台摄像头M进行观测,并且要求能观测到礼堂前端墙面AB区域,同时为了观测效果达到最佳,还需要从点M出发的观测角∠AMB=45°.请你通过所学的知识进行分析,在墙面CD区域上是否存在点M满足要求?若存在,求出MC的长度;若不存在,请说明理由.【思路点拨】(1)作AD⊥BC于D,由勾股定理求出AD的长,即可求出面积;(2)作△ABC的外接圆⊙O,可知点A在BC上运动,当A'O⊥BC时,△ABC的面积最大,求出A'H的长,从而得出答案;(3)以AB为边,在矩形ABCD的内部作一个等腰直角三角形AOB,且∠AOB=90°,过O作HG⊥AB于H,交CD于G,利用等腰直角三角形的性质求出OA,OG的长,则以O为圆心,OA为半径的圆与CD相交,从而⊙O上存在点M,满足∠AMB=45°,此时满足条件的有两个点M,过M1作M1F⊥AB于F,作EO⊥M1F 于E,连接OF,利用勾股定理求出OE的长,从而解决问题.【解题过程】24.(2022·江苏·苏州中学九年级阶段练习)在Rt△ABC中,∠BCA=90°,CA=CB,点D是△ABC外一动点(点B,点D位于AC两侧),连接CD,AD.(1)如图1,点O是AB的中点,连接OC,OD,当△AOD为等边三角形时,∠ADC的度数是;(2)如图2,连接BD,当∠ADC=135°时,探究线段BD,CD,DA之间的数量关系,并说明理由;(3)如图3,⊙O是△ABC的外接圆,点D在AC上,点E为AB上一点,连接CE,DE,当AE=1,BE=7时,直接写出△CDE面积的最大值及此时线段BD的长.【思路点拨】【解题过程】即△CDE面积的面积最大值为4,此时,BD。
圆的对称性压轴题六种模型全攻略【考点导航】目录【典型例题】1【考点一利用弧、弦、圆心角的关系求解】【考点二利用弧、弦、圆心角的关系求证】【考点三利用垂径定理求值】【考点四利用垂径定理求平行弦问题】【考点五垂径定理的推论】【考点六垂径定理的实际应用】【过关检测】15【典型例题】【考点一利用弧、弦、圆心角的关系求解】1(2023·陕西西安·西安市庆安初级中学校联考模拟预测)如图,AB是⊙O的直径,点C,D在⊙O上,AC=AD,∠AOD=70°,则∠BCO的度数是()A.30°B.35°C.40°D.55°【变式训练】1(2023·全国·九年级专题练习)如图,点A,B,C在⊙O上,∠BAC=40°,则∠BOC的度数为()A.20°B.80°C.50°D.100°2(2023春·安徽合肥·九年级校考阶段练习)下列说法:①相等的圆心角所对的弧相等;②平分弦的直径垂直于弦;③过直线上两点和直线外一点,可以确定一个圆;④圆是轴对称图形,直径是它的对称轴.其中正确的个数是()A.0B.1C.2D.3【考点二利用弧、弦、圆心角的关系求证】1(2023·全国·九年级专题练习)如图,已知⊙O 的半径OA ,OB ,C 在AB �上,CD ⊥OA 于点D ,CE ⊥OB 于点E ,且CD =CE ,求证:AC=BC.【变式训练】1(2023春·广东惠州·九年级校考开学考试)已知:如图,在⊙O 中,∠ABD =∠CDB .求证:AB =CD .2(2023秋·河北秦皇岛·九年级统考期末)如图,A 、B 是⊙O 上的两点,C 是弧AB 中点.求证:∠A =∠B .【考点三利用垂径定理求值】1(2023秋·辽宁葫芦岛·九年级统考期末)如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为E ,连接AD ,若AB =10,CD =6,则弦AD 的长为.【变式训练】1(2023秋·广东惠州·九年级校考阶段练习)已知⊙O的半径为13cm,弦AB的长为10cm,则圆心O 到AB的距离为cm.2(2023·浙江·九年级假期作业)“圆材埋壁”是我国古代数学名著《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问:径几何?”转化为现在的数学语言就是:如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,AE=1寸,CD=10寸.则直径AB的长为寸.【考点四利用垂径定理求平行弦问题】1(2023秋·天津和平·九年级校考期末)⊙O半径为5,弦AB∥CD,AB=6,CD=8,则AB与CD间的距离为()A.1B.7C.1或7D.3或4【变式训练】1(2023·全国·九年级专题练习)在半径为10的⊙O中,弦AB=12,弦CD=16,且AB∥CD,则AB 与CD之间的距离是.2(2023春·甘肃武威·九年级校联考阶段练习)⊙O的半径为13cm,AB、CD是⊙O的两条弦,AB⎳CD,AB=24cm,CD=10cm,求AB和CD之间的距离.【考点五垂径定理的推论】1(2023·新疆喀什·统考二模)某公路隧道的截面为圆弧形,设圆弧所在圆的圆心为O,测得其同一水平线上A、B两点之间的距离为12米,拱高CD为4米,则⊙O的半径为米.【变式训练】1(2023·浙江·九年级假期作业)如图是一位同学从照片上前切下来的海上日出时的画面,“图上”太阳与海平线交于A ,B 两点,他测得“图上”圆的半径为10厘米,AB =16厘米.则“图上”太阳从目前所处位置到完全跳出海平面,升起厘米.2(2023春·江苏无锡·九年级校联考期末)《九章算术》中卷九勾股篇记载:今有圆材埋于壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何?转化为数学语言:如图,OD 为⊙O 的半径,弦AB ⊥OD ,垂足为C ,CD =1寸,AB =1尺(1尺=10寸),则此圆材的直径长是寸.【考点六垂径定理的实际应用】1(2023春·安徽亳州·九年级专题练习)如图,⊙O 的直径AB 与弦CD 交于点E ,CE =DE ,则下列说法错误的是()A.CB =BDB.OE =BEC.CA =DAD.AB ⊥CD【变式训练】1(2023春·九年级单元测试)下列说法正确的是()①平分弧的直径垂直平分弧所对的弦②平分弦的直径平分弦所对的弧③垂直于弦的直线必过圆心④垂直于弦的直径平分弦所对的弧A.②③B.①③C.②④D.①④2(2023·四川攀枝花·校联考二模)下列说法中正确的说法有( )个①对角线相等的四边形是矩形②在同圆或等圆中,同一条弦所对的圆周角相等③相等的圆心角所对的弧相等④平分弦的直径垂直于弦,并且平分弦所对的弧⑤到三角形三边距离相等的点是三角形三个内角平分线的交点A.1B.2C.3D.4【过关检测】一、单选题1(2023·上海普陀·统考二模)下列关于圆的说法中,正确的是()A.过三点可以作一个圆B.相等的圆心角所对的弧相等C.平分弦的直径垂直于弦D.圆的直径所在的直线是它的对称轴2(2023·浙江·模拟预测)已知弦AB把圆周分成1:3两部分,则弦AB所对圆心角的度数为()A.90°B.270°C.90°或270°D.45°或135°3(2023·全国·九年级专题练习)如图,线段CD是⊙O的直径,CD⊥AB于点E,若AB长为16,OE 长为6,则⊙O半径是()A.5B.6C.8D.104(2023秋·浙江台州·九年级统考期末)如图,CD是⊙O的直径,弦AB垂直CD于点E,连接AC,BC,AD,BD,则下列结论不一定成立的是()A.AE=BEB.CE=OEC.AC=BCD.AD=BD5(2023·浙江衢州·统考二模)一次综合实践的主题为:只用一张矩形纸条和刻度尺,如何测量一次性纸杯杯口的直径?小聪同学所在的学习小组想到了如下方法:如图,将纸条拉直紧贴杯口上,纸条的上下边沿分别与杯口相交于A,B,C,D四点,利用刻度尺量得该纸条宽为3.5cm,AB=3cm,CD=4cm.请你帮忙计算纸杯的直径为()A.4cmB.5cmC.6cmD.7cm6(2023春·九年级单元测试)AB 为⊙O 的直径,弦CD ⊥AB 于E ,且CD =6cm ,OE =4cm ,则AB =.7(2023春·北京海淀·九年级101中学校考阶段练习)如图,AB 是⊙O 的直径,BC=CD=DE,∠AOE =78°,则∠COB 的度数是.-8(2023春·九年级单元测试)半径为5的⊙O 内有一点P ,且OP =4,则过点P 的最短的弦长是,最长的弦长是.9(2023·河南南阳·校联考二模)已知半径为5的圆O 中有一条长度为8的弦AB ,分别以A ,B 为圆心,长度大于4为半径作圆弧交于点M ,N ,连接MN ,点C 为直线MN 与圆O 的交点,点D 为直线MN 与弦AB 的交点,则CD 的长度为.10(2023·浙江·九年级专题练习)图1是小文家的木马玩具,图2是木马玩具底座水平放置的示意图,点O 是AB所在圆的圆心,OA =OB ,点A ,点B 离地高度均为15cm ,水平距离AB =90cm .则OA =cm .当半径OA 转到竖直位置时,木马就有翻倒的风险,为安全起见,点B 离地高度应小于cm .三、解答题11(2023秋·河北邢台·九年级校联考期末)如图,AB 是⊙O 的直径,BC=CD,∠COD =50°,求∠AOD 的度数.12(2023·江苏·九年级假期作业)如图,OA=OB,AB交⊙O于点C,D,OE是半径,且OE⊥AB于点F.(1)求证:AC=BD.(2)若CD=8,EF=2,求⊙O的半径.13(2023春·全国·九年级专题练习)如图,⊙O的直径AB垂直于弦CD,垂足为E,AE=2,CD=8.(1)求⊙O的半径长;(2)连接BC,作OF⊥BC于点F,求OF的长.14(2023·河北衡水·校考模拟预测)图1是某种型号圆形车载手机支架,由圆形钢轨、滑动杆、支撑杆组成.图2是它的正面示意图,滑动杆AB的两端都在圆O上,A、B两端可沿圆形钢轨滑动,支撑杆CD的底端C固定在圆O上,另一端D是滑动杆AB的中点,(即当支架水平放置时直线AB平行于水平线,支撑杆CD垂直于水平线),通过滑动A、B可以调节CD的高度.当AB经过圆心O时,它的宽度达到最大值10cm,在支架水平放置的状态下:(1)当滑动杆AB的宽度从10厘米向上升高调整到6厘米时,求此时支撑杆CD的高度.(2)如图3,当某手机被支架锁住时,锁住高度与手机宽度恰好相等(AE=AB),求该手机的宽度.15(2023春·黑龙江哈尔滨·九年级哈尔滨市第十七中学校校考阶段练习)如图1,AB 是⊙O 的弦,点C 在⊙O 外,连接AC 、BC 分别交⊙O 于D 、E ,AC =BC(1)求证:CD =CE .(2)如图2,过圆心O 作PQ ∥AB ,交⊙O 于P 、Q 两点,交AC 、BC 于M 、N 两点,求证:PM =QN .(3)如图3,在(2)的条件下,连接EO 、AO ,∠EON +∠CAO =120°,若CD =112,NQ =32,求弦BE 的长.圆的对称性压轴题六种模型全攻略【考点导航】目录【典型例题】1【考点一利用弧、弦、圆心角的关系求解】【考点二利用弧、弦、圆心角的关系求证】【考点三利用垂径定理求值】【考点四利用垂径定理求平行弦问题】【考点五垂径定理的推论】【考点六垂径定理的实际应用】【过关检测】15【典型例题】【考点一利用弧、弦、圆心角的关系求解】1(2023·陕西西安·西安市庆安初级中学校联考模拟预测)如图,AB是⊙O的直径,点C,D在⊙O上,AC=AD,∠AOD=70°,则∠BCO的度数是()A.30°B.35°C.40°D.55°【答案】B【分析】首先由AC=AD,∠AOD=70°可得∠AOC=∠AOD=70°,再由OB=OC可得出∠OBC=∠AOC=35°.∠OCB=12【详解】解:∵在⊙O中,AC=AD,∠AOD=70°∴∠AOC=∠AOD=70°,∵OB=OC,∠AOC=35°,∴∠OBC=∠OCB=12故选:B.【点睛】此题考查了弧与圆心角的关系、等腰三角形的性质及三角形外角的性质,掌握数形结合思想的应用是解题的关键.【变式训练】1(2023·全国·九年级专题练习)如图,点A,B,C在⊙O上,∠BAC=40°,则∠BOC的度数为()A.20°B.80°C.50°D.100°【答案】B【分析】根据同弧所对的圆周角等于圆心角的一半即可得出答案.【详解】解:∵∠BAC =40°,∴∠BOC =2∠BAC =2×40°=80°,故选:B .【点睛】本题考查了同弧所对的圆周角与圆心角的关系,熟知同弧所对的圆周角等于圆心角的一半是解本题的关键.2(2023春·安徽合肥·九年级校考阶段练习)下列说法:①相等的圆心角所对的弧相等;②平分弦的直径垂直于弦;③过直线上两点和直线外一点,可以确定一个圆;④圆是轴对称图形,直径是它的对称轴.其中正确的个数是()A.0 B.1 C.2 D.3【答案】B【分析】根据圆心角、弧、弦的关系定理判断①,根据垂径定理的推论判断②;根据不共线的三点共圆可判断③;根据轴对称图形的定义判断④.【详解】解:①同圆或等圆中,相等的圆心角所对的弧相等,故错误;②平分弦不是直径的直径垂直于弦,故错误;③过直线上两点和直线外一点,可以确定一个圆,正确;④圆是轴对称图形,直径所在的直线是它的对称轴,故错误,正确的只有1个,故选:B .【点睛】本题考查了圆心角、弧、弦的关系,垂径定理的推论,轴对称图形的对称轴,圆的性质,熟练掌握定义与性质是解题的关键.【考点二利用弧、弦、圆心角的关系求证】1(2023·全国·九年级专题练习)如图,已知⊙O 的半径OA ,OB ,C 在AB �上,CD ⊥OA 于点D ,CE ⊥OB 于点E ,且CD =CE ,求证:AC=BC.【答案】见解析【分析】根据角平分线的判定定理可得∠AOC =∠BOC ,然后根据弧、弦和圆心角的关系证明即可.【详解】证明:∵CD =CE ,CD ⊥OA ,CE ⊥OB ,∴∠AOC =∠BOC ,∴AC=BC.【点睛】本题主要考查了角平分线的判定定理以及弧、弦和圆心角的关系等知识,准确证明∠AOC =∠BOC 是解题关键.【变式训练】1(2023春·广东惠州·九年级校考开学考试)已知:如图,在⊙O 中,∠ABD =∠CDB .求证:AB =CD .【答案】见解析【分析】根据∠ABD =∠CDB ,可知AD =BC ,则有AD +AC =BC +AC ,由此可得AB =CD,进而可证AB =CD .【详解】证明:∵∠ABD =∠CDB ,∴AD=BC,∴AD +AC=BC +AC,∴AB=CD,∴AB =CD .【点睛】本题考查圆心角、弧、弦之间的关系,即在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等,能够熟练掌握圆心角、弧、弦之间的关系是解决本题的关键.2(2023秋·河北秦皇岛·九年级统考期末)如图,A 、B 是⊙O 上的两点,C 是弧AB 中点.求证:∠A =∠B .【答案】见解析【分析】连接OC ,通过证明△AOC ≌△BOC (SAS )即可得结论.【详解】证明:如图,连接OC ,∵C 是AB的中点,∴AC=BC ,∴∠AOC =∠BOC ,在△AOC 和△BOC 中,OA =OB∠AOC =∠BOC OC =OC,∴△AOC ≌△BOC (SAS ),∴∠A =∠B .【点睛】本题考查弧、弦、圆心角的关系,全等三角形的判定和性质等知识,解题的关键是利用全等三角形的判定和性质解决问题,属于中考常考题型.【考点三利用垂径定理求值】1(2023秋·辽宁葫芦岛·九年级统考期末)如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为E ,连接AD ,若AB =10,CD =6,则弦AD 的长为.【答案】310【分析】由题意易得DE =12CD =3,OD =5,根据勾股定理可求OE 的长,然后问题可求解.【详解】解:连接OD ,∵AB 是⊙O 的直径,AB =10,∴OD =OB =12AB =5,∵CD ⊥AB ,CD =6,∴DE =12CD =3,∠DEO =90°,∴OE=OD2-DE2=4,∴AE=OA+OE=5+4=9,∴AD=DE2+AE2=92+32=310,故答案为310.【点睛】本题主要考查垂径定理,熟练掌握垂径定理是解题的关键.【变式训练】1(2023秋·广东惠州·九年级校考阶段练习)已知⊙O的半径为13cm,弦AB的长为10cm,则圆心O 到AB的距离为cm.【答案】12【分析】过点O作OH⊥AB于点H,由垂径定理得到BH=12AB=5cm,在Rt△BOH中,利用勾股定理即可得到圆心O到AB的距离.【详解】解:如图,⊙O的半径为13cm,弦AB的长为10cm,过点O作OH⊥AB于点H,则BH=12AB=5cm,∠BHO=90°,∴OH=OB2-BH2=132-52=12cm,即圆心O到AB的距离为12cm,故答案为:12【点睛】此题考查了垂径定理、勾股定理等知识,熟练掌握垂径定理的内容是解题的关键.2(2023·浙江·九年级假期作业)“圆材埋壁”是我国古代数学名著《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问:径几何?”转化为现在的数学语言就是:如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,AE=1寸,CD=10寸.则直径AB的长为寸.【答案】26【分析】连接OC构成直角三角形,先根据垂径定理,由CD⊥AB得到点E为CD的中点,由CD=10可求出CE的长,再设出圆的半径OC为x,表示出OE,根据勾股定理建立关于x的方程,求解方程可得2x的值,即为圆的直径.【详解】解:连接OC,∵AB⊥CD,且CD=10寸,∴CE=DE=5寸,设圆O的半径OC的长为x,则OC=OA=x,∵AE=1,∴OE=x-1,在Rt△COE中,根据勾股定理得:x2-(x-1)2=52,化简得:x2-x2+2x-1=25,即2x=26,∴AB=26(寸).故答案为:26.【点睛】本题考查了垂径定理和勾股定理,解题的关键是正确作出辅助线构造直角三角形.【考点四利用垂径定理求平行弦问题】1(2023秋·天津和平·九年级校考期末)⊙O半径为5,弦AB∥CD,AB=6,CD=8,则AB与CD间的距离为()A.1B.7C.1或7D.3或4【答案】C【分析】过O点作OE⊥AB,E为垂足,交CD与F,连OA,OC,由AB∥CD,得到OF⊥CD,根据垂径定理得AE=3,CF=4,再在Rt△OAE中和在Rt△OCF中分别利用勾股定理求出OE,OF,然后讨论:当圆O点在AB、CD之间,AB与CD之间的距离=OE+OF;当圆O点不在AB、CD之间,AB与CD 之间的距离=OE-OF.【详解】解:过O点作OE⊥AB,E为垂足,交CD与F,连OA,OC,如图,∵AB∥CD,∴OF⊥CD,∴AE=BE,CF=DF,而AB=6,CD=8,∴AE=3,CF=4,在Rt△OAE中,OA=5,OE=OA2-AE2=52-32=4;在Rt△OCF中,OC=5,OF=OC2-CF2=52-42=3;当圆O点在AB、CD之间,AB与CD之间的距离=OE+OF=7;当圆O点不在AB、CD之间,AB与CD之间的距离=OE-OF=1;所以AB与CD之间的距离为7或1.故选:C.【点睛】本题考查了垂径定理,即垂直于弦的直径平分弦,并且平分弦所对的弧.也考查了勾股定理以及分类讨论的思想的运用.【变式训练】1(2023·全国·九年级专题练习)在半径为10的⊙O中,弦AB=12,弦CD=16,且AB∥CD,则AB 与CD之间的距离是.【答案】2或14【分析】由于弦AB与CD的具体位置不能确定,故应分两种情况进行讨论:①弦AB与CD在圆心同侧;②弦AB与CD在圆心异侧;作出半径和弦心距,利用勾股定理和垂径定理求解即可.【详解】解:①当弦AB与CD在圆心同侧时,如图①,过点O作OF⊥AB,垂足为F,交CD于点E,连接OA,OC,∵AB∥CD,∴OE⊥CD,∵AB=12,CD=16,∴CE=8,AF=6,∵OA=OC=10,∴由勾股定理得:EO=102-82=6,OF=102-62=8,∴EF=OF-OE=2;②当弦AB与CD在圆心异侧时,如图,过点O作OE⊥CD于点E,反向延长OE交AB于点F,连接OA,OC,同理EO=102-82=6,OF=102-62=8,EF=OF+OE=14,所以AB与CD之间的距离是2或14.故答案为:2或14.【点睛】本题考查了勾股定理和垂径定理,解答此题时要注意进行分类讨论,不要漏解.2(2023春·甘肃武威·九年级校联考阶段练习)⊙O的半径为13cm,AB、CD是⊙O的两条弦,AB⎳CD,AB=24cm,CD=10cm,求AB和CD之间的距离.【答案】7cm或17cm.【分析】分两种情况进行讨论:①弦AB和CD在圆心同侧;②弦AB和CD在圆心异侧;作出半径和弦心距,利用勾股定理和垂径定理求解即可.【详解】解:①当弦AB和CD在圆心同侧时,如图1∵AB=24cm,CD=10cm,∴AE=12cm,CF=5cm,∵OA=OC=13cm,∴EO=5cm,OF=12cm,∴EF=12-5=7cm;②当弦AB和CD在圆心异侧时,如图2,∵AB=24cm,CD=10cm,∴AE=12cm,CF=5cm,∵OA=OC=13cm,∴EO=5cm,OF=12cm,∴EF=OF+OE=17cm.∴AB与CD之间的距离为7cm或17cm.【点睛】本题考查了勾股定理和垂径定理的应用,正确作出辅助线、灵活运用定理是解题的关键,注意掌握数形结合思想与分类讨论思想的应用.【考点五垂径定理的推论】1(2023·新疆喀什·统考二模)某公路隧道的截面为圆弧形,设圆弧所在圆的圆心为O,测得其同一水平线上A、B两点之间的距离为12米,拱高CD为4米,则⊙O的半径为米.【答案】6.5【分析】连接OA,设⊙O的半径为R,利用垂径定理以及勾股定理求解即可.【详解】解:连接OA,设⊙O的半径为R,则OC=R-4,由题意得,OD⊥AB,AB=6,∴AC=BC=12在Rt△AOC中,由勾股定理得R2=62+R-42,解得R=6.5,则⊙O的半径为6.5米.故答案为:6.5.【点睛】本题考查了垂径定理的应用,根据题意作出辅助线,由勾股定理得出方程是解题的关键.【变式训练】1(2023·浙江·九年级假期作业)如图是一位同学从照片上前切下来的海上日出时的画面,“图上”太阳与海平线交于A,B两点,他测得“图上”圆的半径为10厘米,AB=16厘米.则“图上”太阳从目前所处位置到完全跳出海平面,升起厘米.【答案】16【分析】连接OB,作OD⊥AB于点D,交优弧于点C,利用垂径定理求得AD=BD=8厘米.在Rt△OBD中,利用勾股定理求得OD的长,据此求解即可.【详解】解:连接OB,作OD⊥AB于点D,交优弧于点C,则AD=BD=8厘米.由题意得OB=OC=10厘米,在Rt△OBD中,OD=OB2-BD2=6厘米,∴CD=OD+OC=16厘米,则“图上”太阳从目前所处位置到完全跳出海平面,升起16厘米.故答案为:16.【点睛】本题考查了垂径定理的应用,利用垂径定理构造直角三角形是解题的关键.2(2023春·江苏无锡·九年级校联考期末)《九章算术》中卷九勾股篇记载:今有圆材埋于壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何?转化为数学语言:如图,OD为⊙O的半径,弦AB⊥OD,垂足为C,CD=1寸,AB=1尺(1尺=10寸),则此圆材的直径长是寸.【答案】26【分析】连接AO,依题意,得出AC=5,设半径为r,则AO=r,在Rt△AOC中,AO2=AC2+CO2,解方程即可求解.【详解】解:如图所示,连接AO,∵CD=1,AB=10,AB⊥OD,OD为⊙O的半径,∴AC=5,设半径为r ,则AO =r ,在Rt △AOC 中,AO 2=AC 2+CO 2,∴r 2=52+r -1 2,解得:r =13,∴直径为26,故答案为:26.【点睛】本题考查了垂径定理的应用,勾股定理,掌握垂径定理是解题的关键.【考点六垂径定理的实际应用】1(2023春·安徽亳州·九年级专题练习)如图,⊙O 的直径AB 与弦CD 交于点E ,CE =DE ,则下列说法错误的是()A.CB =BDB.OE =BEC.CA =DAD.AB ⊥CD【答案】B【分析】根据垂径定理及其推论判断即可.【详解】解:∵AB 是⊙O 的直径与弦CD 交于点E ,CE =DE ,∴根据垂径定理及其推论可得,点B 为劣弧CD的中点,点A 为优弧CD的中点,AB ⊥CD ∴CB=BD,AC=AD,∴CA =DA但不能证明OE =BE ,故B 选项说法错误,符合题意;故选:B .【点睛】本题考查的是垂径定理及其推论,解决本题的关键是熟练掌握垂径定理及其推论:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧,平分弦所对一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.【变式训练】1(2023春·九年级单元测试)下列说法正确的是()①平分弧的直径垂直平分弧所对的弦②平分弦的直径平分弦所对的弧③垂直于弦的直线必过圆心④垂直于弦的直径平分弦所对的弧A.②③ B.①③C.②④D.①④【答案】D【详解】根据垂径定理及其推论进行判断.【解答】解:根据垂径定理,①正确;②错误.平分弦(不是直径)的直径平分弦所对的弧;③错误.垂直于弦且平分弦的直线必过圆心;④正确.故选:D.【点评】注意概念性质的语言叙述,有时是专门来混淆是非的,只是一字之差,所以学生一定要养成认真仔细的习惯.2(2023·四川攀枝花·校联考二模)下列说法中正确的说法有( )个①对角线相等的四边形是矩形②在同圆或等圆中,同一条弦所对的圆周角相等③相等的圆心角所对的弧相等④平分弦的直径垂直于弦,并且平分弦所对的弧⑤到三角形三边距离相等的点是三角形三个内角平分线的交点A.1B.2C.3D.4【答案】A【分析】根据矩形的判定方法、圆的性质、垂径定理、三角形的有关性质求解即可.【详解】解:①对角线相等的平行四边形是矩形,故错误;②在同圆或等圆中,同一条弦所对的圆周角不一定相等,∵同一条弦所对的圆周角有两种情况,故不正确;③在同圆或等圆中,相等的圆心角所对的弧相等,故错误;④平分非直径的弦的直径垂直于弦,并且平分弦所对的弧,故错误;⑤到三角形三边距离相等的点是三角形的内心,而内心是角平分线的交点,故正确;故选:A.【点睛】本题是对基础概念的考查,熟记概念是解题关键.【过关检测】一、单选题1(2023·上海普陀·统考二模)下列关于圆的说法中,正确的是()A.过三点可以作一个圆B.相等的圆心角所对的弧相等C.平分弦的直径垂直于弦D.圆的直径所在的直线是它的对称轴【答案】D【分析】利用圆的有关定义及性质分别判断后即可确定正确的选项.【详解】解:A、过不在同一直线上的三个点一定能作一个圆,故错误,不符合题意;B、同圆或等圆中,相等的圆心角所对的弧相等,故错误,不符合题意;C、平分弦(不是直径)的直径垂直于弦,故错误,不符合题意;D、圆的直径所在的直线是它的对称轴,正确,符合题意.故选:D.【点睛】本题考查了确定圆的条件及圆的有关性质,解题的关键是了解有关性质及定义,难度不大.2(2023·浙江·模拟预测)已知弦AB把圆周分成1:3两部分,则弦AB所对圆心角的度数为()A.90°B.270°C.90°或270°D.45°或135°【答案】C【分析】分优弧,劣弧两种情况,求解即可.【详解】解:∵弦AB 把圆周分成1:3两部分,∴劣弧AB 的度数为:360°×14=90°,即:劣弧所对的圆心角的度数为90°,优弧AB 的度数为:360°×34=270°,即:优弧所对的圆心角的度数为270°,∴弦AB 所对圆心角的度数为90°或270°;故选C .【点睛】本题考查弦,弧,角之间的关系.注意弦分弧为优弧和劣弧两种情况.3(2023·全国·九年级专题练习)如图,线段CD 是⊙O 的直径,CD ⊥AB 于点E ,若AB 长为16,OE 长为6,则⊙O 半径是()A.5B.6C.8D.10【答案】D【分析】连接OB ,由垂径定理可得BE =AE =8,由勾股定理计算即可获得答案.【详解】解:如图,连接OB ,∵线段CD 是⊙O 的直径,CD ⊥AB 于点E ,AB =16,∴BE =AE =12AB =12×16=8,∴在Rt △OBE 中,可有OB =OE 2+BE 2=62+82=10,∴⊙O 半径是10.故选:D .【点睛】本题主要考查了垂径定理及勾股定理等知识,理解并掌握垂径定理是解题关键.4(2023秋·浙江台州·九年级统考期末)如图,CD 是⊙O 的直径,弦AB 垂直CD 于点E ,连接AC ,BC ,AD ,BD ,则下列结论不一定成立的是()A.AE =BEB.CE =OEC.AC =BCD.AD =BD【答案】B【分析】根据垂径定理对各选项进行逐一分析即可.【详解】解:∵CD 是⊙O 的直径,弦AB 垂直CD 于点E ,∴AE =BE ,AC=BC,AD=BD,∴AC =BC ,AD =BD ,而CE =OE 不一定成立,故选:B .【点睛】本题考查的是垂径定理,垂直于弦的直径平分这条弦,并且平分弦所对的两条弧是解答此题的关键.5(2023·浙江衢州·统考二模)一次综合实践的主题为:只用一张矩形纸条和刻度尺,如何测量一次性纸杯杯口的直径?小聪同学所在的学习小组想到了如下方法:如图,将纸条拉直紧贴杯口上,纸条的上下边沿分别与杯口相交于A ,B ,C ,D 四点,利用刻度尺量得该纸条宽为3.5cm ,AB =3cm ,CD =4cm .请你帮忙计算纸杯的直径为()A.4cmB.5cmC.6cmD.7cm【答案】B【分析】设圆心为O ,根据垂径定理可以得到CE =2,AF =1.5,再根据勾股定理构建方程解题即可.【详解】设圆心为O ,EF 为纸条宽,连接OC ,OA ,则EF ⊥CD ,EF ⊥AB ,∴CE =12CD =12×4=2,AF =12AB =12×3=1.5,设OE =x ,则OF =3.5-x ,又∵OC =OA ,∴CE 2+OE 2=AF 2+OF 2,即22+x 2=1.52+3.5-x 2,解得:x =1.5,∴半径OC =22+x 2=2.5,即直径为5cm ,故选B .【点睛】本题考查垂径定理,勾股定理,构建直角三角形利用勾股定理计算是解题的关键.二、填空题6(2023春·九年级单元测试)AB 为⊙O 的直径,弦CD ⊥AB 于E ,且CD =6cm ,OE =4cm ,则AB =.【答案】10cm【分析】由垂径定理可知CE =12CD =3cm ,在Rt △CEO 中由勾股定理可求得OC 即AB 的值.【详解】解:如图:依题意可知OA =OC =12AB ,∵AB 为⊙O 的直径,弦CD ⊥AB 于E ,∴CE =12CD =3cm ,在Rt △CEO 中,OC =OE 2+CE 2=42+32=5cm ,∴AB =2OC =10cm ,故答案为:10cm .【点睛】本题考查了垂径定理,勾股定理解直角三角形;解题的关键是熟练掌握相关知识.7(2023春·北京海淀·九年级101中学校考阶段练习)如图,AB 是⊙O 的直径,BC=CD=DE,∠AOE =78°,则∠COB 的度数是.-【答案】34°/34度【分析】先由平角的定义求出∠BOE 的度数,由BC=CD=DE,根据相等的弧所对的圆心角相等可得∠BOC =∠EOD =∠COD =13∠BOE ,即可求解.【详解】∵∠AOE =78°,∴∠BOE =180°-∠AOE =180°-78°=102°,∵BC=CD=DE,∴∠BOC =∠EOD =∠COD =13∠BOE =34°,故答案为:34°.【点睛】此题考查了弧与圆心角的关系.此题比较简单,注意掌握数形结合思想的应用.8(2023春·九年级单元测试)半径为5的⊙O 内有一点P ,且OP =4,则过点P 的最短的弦长是,最长的弦长是.【答案】 610【分析】过点P 的最短的弦是垂直于OP 的弦,过点P 的最长的弦是直径,利用勾股定理和垂径定理进行求解即可得到答案.【详解】解:如图,OP 在直径AB 上,AB ⊥CD 于点P ,过点P 的最短的弦是垂直于OP 的弦,即CD 的长∵OC =5,OP =4,由勾股定理得:PC =OC 2-OP 2=3,∴CD =2PC =6,∴过点P 的最短的弦长是6;过点P 的最长的弦是直径,即AB 的长,∵AB =5×2=10,.∴过点P 的最长的弦长是10,故答案为:6;10.【点睛】本题考查了垂径定理,勾股定理,解题关键是熟练掌握垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.9(2023·河南南阳·校联考二模)已知半径为5的圆O 中有一条长度为8的弦AB ,分别以A ,B 为圆心,长度大于4为半径作圆弧交于点M ,N ,连接MN ,点C 为直线MN 与圆O 的交点,点D 为直线MN 与弦AB 的交点,则CD 的长度为.【答案】2或8【分析】根据作图可知,MN 为AB 的中垂线,则MN 必过圆心O ,连接OA ,利用垂径定理求出OD 的长,分点C 在劣弧AB 上和点C 在优弧AB 上两种情况进行求解即可.【详解】解:由题意,得:MN 是弦AB 的中垂线,D 为AB 的中点,如图,连接OA ,OD ,OB ,则:OA =OB =5,AD =12AB =4,∴OD ⊥AB ,∵CD ⊥AB ,∴O ,C ,D 三点共线,∴OC =5,∴OD =OA 2-AD 2=3;①当点C 在劣弧AB 上时:CD =OC -OD =2;②当点C 在优弧AB 上时:CD =OC +OD =8;故答案为:2或8【点睛】本题考查中垂线的作图,垂径定理.根据作图方法得到MN 是AB 的中垂线,是解题的关键.注意分类讨论.10(2023·浙江·九年级专题练习)图1是小文家的木马玩具,图2是木马玩具底座水平放置的示意图,点O 是AB所在圆的圆心,OA =OB ,点A ,点B 离地高度均为15cm ,水平距离AB =90cm .则OA =cm .当半径OA 转到竖直位置时,木马就有翻倒的风险,为安全起见,点B 离地高度应小于cm .。
中考各省压轴之圆综合问题(9考点39题)一.圆周角定理(共3小题)1.如图,在⊙O中,将沿弦AB翻折,使恰好经过圆心O,C是劣弧AB上一点.已知AE=2,tan∠CBA=,则AB的长为( )A.B.6C.D.【答案】C【解答】解:连接EO并延长交⊙O于点H,连接AH,过点O作OF⊥AB于F,延长OF交⊙O于点G,连接OB,∵EH是⊙O的直径,∴∠EAH=90°,∴tan∠AHE=,∵∠AHE=∠CBA,tan∠CBA=,∴tan∠AHE=tan∠CBA=,∴=,∵AE=2,∴AH=4,∴EH==2,∴⊙O的半径为,∴OG=OB=,∵OG⊥AB于F,∴AB=2BF,根据折叠的性质得,OF=GF,∴OF=OG=,∴BF==,∴AB=,故选:C.2.如图,AB是半圆的直径,点C是弧AB的中点,点E是弧AC的中点,连接EB,CA交于点F,则=( )A.B.C.1﹣D.【答案】D【解答】解:方法1:连接AE、CE.作AD∥CE,交BE于D.∵点E是弧AC的中点,∴可设AE=CE=1,根据平行线的性质得∠ADE=∠CED=45°.∴△ADE是等腰直角三角形,则AD=,BD=AD=.所以BE=+1.再根据两角对应相等得△AEF∽△BEA,则EF==﹣1,BF=2.所以=.方法2:过点C作CO⊥AB于点O,∵AB是半圆的直径,点C是弧AB的中点,∴点O是圆心.连接OE,BC,OE与AC交于点M,∵E为弧AC的中点,易证OE⊥AC,∵∠ACB=90°,∠AOE=45°,∴OE∥BC,设OM=1,则AM=1,∴AC=BC=2,OA=,∴OE=,∴EM=﹣1,∵OE∥BC,∴==.故选:D.3.如图,MN是⊙O的直径,MN=2,点A在⊙O上,∠AMN=30°,B为弧AN的中点,P是直径MN上一动点,则P A+PB的最小值为.【答案】见试题解答内容【解答】解:作点B关于MN的对称点C,连接AC交MN于点P,连接OB,则P点就是所求作的点.此时P A+PB最小,且等于AC的长.连接OA,OC,∵∠AMN=30°,∴∠AON=60°,∵=∴∠AOB=∠BON=30°,∵MN⊥BC,∴=,∴∠CON=∠NOB=30°,则∠AOC=90°,又OA=OC=1,则AC=.二.切线的性质(共1小题)4.为了测量一个圆形铁环的半径,小华采用了如下方法:将铁环平放在水平桌面上,用一个锐角为30°的直角三角板和一个刻度尺,按如图所示的方法得到有关数据,进而求得铁环的半径,若测得AB=10cm,则铁环的半径是 .【答案】见试题解答内容【解答】解:如图所示:连接OB,OC,OA,∵AB为圆O的切线,∴OB⊥AB,即∠OBA=90°,又AC为圆O的切线,∴OC⊥AC,即∠OCA=90°,在Rt△ADE中,∠E=30°,∠ADE=90°,∴∠EAD=60°,∠BAC=120°,∵AC及AB为圆O的切线,∴OA为∠BOC的平分线,则∠BAO=∠OAC,可得∠BOA=∠COA,又∠OBA=∠OCA=90°,∴∠OAB=∠OAC=∠BAC=60°,在Rt△OBA中,∠OBA=90°,∠OAB=60°,AB=10cm,∴tan60°=,即=,则圆的半径OB=10cm.故答案为:10cm三.切线的判定与性质(共2小题)5.如图,点C在以AB为直径的半圆上,AB=4,∠CBA=30°,点D在线段AB上运动,点E与点D关于AC对称,DF⊥DE于点D,并交EC的延长线于点F.下列结论:①∠F=30°;②CE=CF;③线段EF的最小值为2;④当AD=1时,EF与半圆相切;⑤当点D从点A运动到点B时,线段EF扫过的面积是8.其中正确的结论的序号为.【答案】②③④.【解答】解:①连接CD,如图1所示.∵点E与点D关于AC对称,∴CE=CD.∴∠E=∠CDE.∵DF⊥DE,∴∠EDF=90°.∴∠E+∠F=90°,∠CDE+∠CDF=90°.∴∠F=∠CDF.只有当CD⊥AB时,∠F=∠CDF=∠CBA=30°,故①错误;②又∵∠F=∠CDF,∴CD=CF,∴CE=CD=CF.故②正确;③当CD⊥AB时,如图2所示.∵AB是半圆的直径,∴∠ACB=90°,∵AB=4,∠CBA=30°,∴∠CAB=60°,AC=2,BC=2,∵CD⊥AB,∠CBA=30°,∴CD=BC=,根据“点到直线之间,垂线段最短”可得:点D在线段AB上运动时,CD的最小值为.∵CE=CD=CF,∴EF=2CD.∴线段EF的最小值为2.故③正确;④当AD=1时,连接OC,如图3所示,∵OA=OC,∠CAB=60°,∴△OAC是等边三角形.∴CA=CO,∠ACO=60°.∵AO=2,AD=1,∴DO=1.∴AD=DO,∴∠ACD=∠OCD=30°,∵点E与点D关于AC对称,∴∠ECA=∠DCA,∴∠ECA=30°,∴∠ECO=90°,∴OC⊥EF,∵EF经过半径OC的外端,且OC⊥EF,∴EF与半圆相切.故④正确;⑤∵点D与点E关于AC对称,点D与点F关于BC对称,∴当点D从点A运动到点B时,点E的运动路径AM与AB关于AC对称,点F的运动路径NB与AB关于BC对称.∴EF扫过的图形就是图5中阴影部分.∴S阴影=2S△ABC=2וAC•BC=4.故⑤错误.故答案为②③④.6.如图,⊙O是Rt△ABC的外接圆,AB为直径,∠ABC=30°,CD⊥OC于C,ED⊥AB 于F,(1)判断△DCE的形状;(2)设⊙O的半径为1,且OF=,求证:△DCE≌△OCB.【答案】见试题解答内容【解答】解:(1)△DCE为等腰三角形,理由为:∵∠ABC=30°,圆周角∠ABC与圆心角∠AOC都对,∴∠AOC=2∠ABC=60°,又∵OA=OC,∴△OAC为等边三角形,∴∠OAC=∠OCA=60°,∵OC⊥CD,∴∠OCD=90°,∴∠DCE=180°﹣90°﹣60°=30°,又∵EF⊥AF,∴∠AFE=90°,∴∠E=180°﹣90°﹣60°=30°,∴∠DCE=∠E,∴DC=DE,则△DCE为等腰三角形;(2)∵OA=OB=1,OF=,∴AF=AO+OF=1+=,OA=AC=OC=1,在Rt△AEF中,∠E=30°,∴AE=2AF=+1,∴CE=AE﹣AC=+1﹣1=,又∵AB为圆O的直径,∴∠ACB=90°,在Rt△ABC中,∠B=30°,∴cos30°=,即BC=AB cos30°=,∴CB=CE=,在△OBC和△DCE中,∵,∴△OBC≌△DCE(ASA).四.三角形的内切圆与内心(共1小题)7.如图,Rt△ABC中,∠C=90°,AC=8,BC=6,I为Rt△ABC的内心,若M、N分别是斜边AB和直角边AC上的动点,连接IM、MN,则IM+MN的最小值为.【答案】5.2.【解答】解:分别作ID⊥BC,IE⊥AC,IF⊥AB,垂足分别为点D、E、F,延长IF到I',使I'F=IF,作I'N⊥AC于点N,交AB于点M,延长DI,交I'N于点G,连接BI,∵IF⊥AB,I'F=IF,∴IM=I'M,∴IM+MN=I'M+MN,当I'、M、N三点共线,且I'N⊥AC时,I'N最短,即IM+MN的值最小.∵I为Rt△ABC的内心,ID⊥BC,IE⊥AC,IF⊥AB,∴ID=IE=IF,设ID=IE=IF=r,又∵ID⊥BC,IE⊥AC,∠C=90°,∴四边形CEID是正方形,∴CD=IE=CE=ID=r,∵Rt△ABC中,∠C=90°,AC=8,BC=6,∴AB=10,∴BD=6﹣r,AE=8﹣r,在Rt△BID和Rt△BIF中,,∴Rt△BID≌Rt△BIF(HL),∴BD=BF,同理AE=AF,∵AB=AF+BF,∴6﹣r+(8﹣r)=10,解得r=2,∵I'F=IF,∴II'=4,∵IF⊥AB,I'N⊥AC,∠FMI'=∠NMA,∴∠I'=∠A,又∵∠C=90°,I'N⊥AC,∴BC∥I'N,∵ID⊥BC,∴IG⊥I'N,∴四边形CDGN为矩形,△II'G∽△BAC,∴GN=CD=2,,即,∴I'G=3.2,∴I'N=I'G+GN=3.2+2=5.2,∴IM+MN的最小值为5.2.故答案为:5.2.五.圆与圆的位置关系(共1小题)8.如图,⊙O1和⊙O2的半径为1和3,连接O1O2,交⊙O2于点P,O1O2=8,若将⊙O1绕点P按顺时针方向旋转360°,则⊙O1与⊙O2共相切 次.【答案】见试题解答内容【解答】解:两圆相切时,O1O2之间的距离等于4(外切)或者2(内切)时即可,当⊙O1绕P点顺时针旋转时360°时,O1O2的变化范围从8到2再到8,其中有两次外切和一次内切.可以用尺规作图的方法来做,以P为圆心做一个半径为5的圆,再以O2为圆心,做一个半径为4的圆,两者相交即为外切,然后以O2为圆心做一个半径为2的圆,两者相交即为内切.故答案为:3.六.弧长的计算(共1小题)9.一位小朋友在粗糙不打滑的“Z”字形平面轨道上滚动一个半径为10cm的圆盘,如图所示,AB与CD是水平的,BC与水平面的夹角为60°,其中AB=60cm,CD=40cm,BC =40cm,那么该小朋友将圆盘从A点滚动到D点其圆心所经过的路线长为 cm.【答案】见试题解答内容【解答】解:A点滚动到D点其圆心所经过的路线=(60+40+40)﹣+=(cm).故答案为:().七.扇形面积的计算(共1小题)10.如图,在△ABC中,AB=8cm,BC=4cm,∠ABC=30°,把△ABC以点B为中心按逆时针方向旋转,使点C旋转到AB边的延长线上的C′′处,那么AC边扫过的图形(图中阴影部分)的面积是 cm2(结果保留π).【答案】见试题解答内容【解答】解:×(64﹣16)=20πcm2.八.圆锥的计算(共3小题)11.现有30%圆周的一个扇形彩纸片,该扇形的半径为40cm,小红同学为了在“六一”儿童节联欢晚会上表演节目,她打算剪去部分扇形纸片后,利用剩下的纸片制作成一个底面半径为10cm的圆锥形纸帽(接缝处不重叠),那么剪去的扇形纸片的圆心角为 .【答案】见试题解答内容【解答】解:20π=解得:n=90°,∵扇形彩纸片是30%圆周,因而圆心角是108°∴剪去的扇形纸片的圆心角为108°﹣90°=18°.剪去的扇形纸片的圆心角为18°.故答案为18°.12.如图,有一直径为4的圆形铁皮,要从中剪出一个最大圆心角为60°的扇形ABC.用此剪下的扇形铁皮围成一个圆锥,该圆锥的侧面积为 .【答案】见试题解答内容【解答】解:连接OA,过点O作OD⊥AB,∵∠CAB=60°,∴∠OAD=30°,∵AO=2,∴DO=1,∴AD=,∴AB=2,∴S阴影==2π.故答案为:2π.13.如图,圆锥的母线长是3,底面半径是1,A是底面圆周上一点,从A点出发绕侧面一周,再回到A点的最短的路线长是.【答案】3.【解答】解:∵图扇形的弧长是2π,根据弧长公式得到2π=,∴n=120°即扇形的圆心角是120°,∴弧所对的弦长AA′=2×3sin60°=3,故答案为3.九.圆的综合题(共26小题)14.如图,半径为4的⊙O中,CD为直径,弦AB⊥CD且过半径OD的中点,点E为⊙O 上一动点,CF⊥AE于点F.当点E从点B出发顺时针运动到点D时,点F所经过的路径长为( )A.B.C.D.【答案】C【解答】解:连接AC,AO,∵AB⊥CD,∴G为AB的中点,即AG=BG=AB,∵⊙O的半径为4,弦AB⊥CD且过半径OD的中点,∴OG=2,∴在Rt△AOG中,根据勾股定理得:AG==2,又∵CG=CO+GO=4+2=6,∴在Rt△AGC中,根据勾股定理得:AC==4,∵CF⊥AE,∴△ACF始终是直角三角形,点F的运动轨迹为以AC为直径的半圆,当E位于点B时,CG⊥AE,此时F与G重合;当E位于D时,CA⊥AE,此时F与A 重合,∴当点E从点B出发顺时针运动到点D时,点F所经过的路径长,在Rt△ACG中,tan∠ACG==,∴∠ACG=30°,∴所对圆心角的度数为60°,∵直径AC=4,∴的长为=π,则当点E从点B出发顺时针运动到点D时,点F所经过的路径长为π.故选:C.15.定义:如果一个三角形中有两个内角α,β满足α+2β=90°,那我们称这个三角形为“近直角三角形”.(1)若△ABC是“近直角三角形”,∠B>90°,∠C=50°,则∠A= 度;(2)如图1,在Rt△ABC中,∠BAC=90°,AB=3,AC=4.若BD是∠ABC的平分线,①求证:△BDC是“近直角三角形”;②在边AC上是否存在点E(异于点D),使得△BCE也是“近直角三角形”?若存在,请求出CE的长;若不存在,请说明理由.(3)如图2,在Rt△ABC中,∠BAC=90°,点D为AC边上一点,以BD为直径的圆交BC于点E,连接AE交BD于点F,若△BCD为“近直角三角形”,且AB=5,AF=3,求tan∠C的值.【答案】见试题解答内容【解答】解:(1)∠B不可能是α或β,当∠A=α时,∠C=β=50°,α+2β=90°,不成立;故∠A=β,∠C=α,α+2β=90°,则β=20°,故答案为20;(2)①如图1,设∠ABD=∠DBC=β,∠C=α,则α+2β=90°,故△BDC是“近直角三角形”;②存在,理由:在边AC上是否存在点E(异于点D),使得△BCE是“近直角三角形”,AB=3,AC=4,则BC=5,则∠ABE=∠C,则△ABC∽△AEB,即,即,解得:AE=,则CE=4﹣=;(3)①如图2所示,当∠ABD=∠DBC=β时,则AE⊥BF,则AF=FE=3,则AE=6,AB=BE=5,过点A作AH⊥BC于点H,设BH=x,则HE=5﹣x,则AH2=AE2﹣HE2=AB2﹣HB2,即52﹣x2=62﹣(5﹣x)2,解得:x=;cos∠ABE===cos2β,则tan2β=,则tanα=;②如图3所示,当∠ABD=∠C=β时,过点A作AH⊥BE交BE于点H,交BD于点G,则点G是圆的圆心(BE的中垂线与直径的交点),∵∠AEB=∠DAE+∠C=α+β=∠ABC,故AE=AB=5,则EF=AE﹣AF=5﹣3=2,∵DE⊥BC,AH⊥BC,∴ED∥AH,则AF:EF=AG:DE=3:2,则DE=2k,则AG=3k=R(圆的半径)=BG,点H是BE的中点,则GH=DE=k,在△BGH中,BH==2k,在△ABH中,AB=5,BH=2k,AH=AG+HG=4k,∵∠C+∠ABC=90°,∠ABC+∠BAH=90°,∴∠C=∠BAH,∴tan C=tan∠BAH===,综上,tan C的值为或.16.四边形ABCD内接于⊙O,AC是⊙O的直径,连结BD交AC于点G,AF⊥BD,垂足为E.(1)如图1,若AF交BC于点F.①求证:∠BAF=∠CAD;②若⊙O的直径为10,,BF:CG=3:5,求AF的长.(2)如图2,若AF交CD于点F,连结OD,若OD∥AB,,DF=2CF,求⊙O 的直径.【答案】(1)①见解析;②AF=.(2)⊙O的直径为.【解答】(1)①证明:∵AC是⊙O的直径,AF⊥BD,∴∠ABC=90°=∠AEB,∴∠ABE+∠CBD=90°,∠ABE+∠BAF=90°,∴∠CBD=∠BAF,又∵,∴∠CBD=∠CAD,∴∠BAF=∠CAD.②解:如图,过点G作GK⊥BC于点K,在Rt△ABC中,AC=10,cos∠BCA=,∴BC=8,由勾股定理得AB===6,∴sin∠BCA==,tan∠BCA==,在Rt△GKC中,sin∠KCG=sin∠BCA==,tan∠KCG=tan∠BCA==,又∵BF:CG=3:5,∴BF=GK,在△ABF和△BKG中,,∴△ABF≌△BKG(AAS),∴AB=BK=6,∴CK=BC﹣BK=8﹣6=2,∴KG=CK•tan∠KCG=2×=,即BF=KG=,∴AF===.(3)解:如图,设AF交OD于点Q,过点O作OH⊥AF于点H,链接BO并延长交AF 于点P,延长AF交⊙O于点G,连接CG,∵AF⊥BD,OH⊥AF,∴∠OHO=∠BEG=90°,∴OH∥BD,∴∠QOH=∠ODB,∠POH=∠OBD,又∵OB=OD,∴∠ODB=∠OBD,∴∠QOH=∠POH,∴QH=PH,∵AC为⊙O的直径,∴∠AGC=90°=∠OHQ=∠AEB,∴CG∥OH∥BD,∴△AOH∽△ACG⇒⇒CG=2OH,△DEF∽△CGF⇒=⇒DE=2CG⇒DE=4OH,△DEQ∽△OHQ⇒==4⇒QE=4PH,DQ=4OQ⇒EP=6PH,DQ=,△OPH∽△BPE⇒=⇒BE=6OH,∴,∵OD∥AB,∴△ABE∽△QDE,∴⇒QE=⇒AQ==,∵,OD=OC,∴∠OCD=∠ABD=∠ODC,∴∠BAE=90°﹣∠ABD=90°﹣∠ODC=∠ODA,∵OD∥AB,OA=OD,∴∠AQD=∠BAQ=∠ODA=∠OAD,∴AD=AQ=,△DAQ∽△DOA,∴,即AD2=OD•DQ,设⊙O的半径为r,则OD=r,DQ=,∴=,∴r=,∴⊙O的直径为.17.如图,在平面直角坐标系xOy中,点S(﹣1,0),T(1,0).对于一个角α(0°<α≤180°),将一个图形先绕点S顺时针旋转α,再绕点T逆时针旋转α,称为一次“α对称旋转”.(1)点R在线段ST上,则在点A(1,﹣1),B(3,﹣2),C(2,﹣2),D(0,﹣2)中,有可能是由点R经过一次“90°对称旋转”后得到的点是;(2)x轴上的一点P经过一次“α对称旋转”得到点Q.①当α=60°时,PQ= ;②当α=30°时,若QT⊥x轴,求点P的坐标;(3)以点O为圆心作半径为1的圆.若在⊙O上存在点M,使得点M经过一次“α对称旋转”后得到的点在x轴上,直接写出α的取值范围.【答案】(1)B,C;(2)①2;②P(﹣1+,0).(3)0°<α≤30°或150°≤α≤180°.【解答】解:(1)如图,当点R与点O重合时,点R绕点S顺时针旋转90°得到点R′,点R′绕点T逆时针旋转90°得到点C;当点R与点T重合时,点R绕点S顺时针旋转90°得到点R″,点R″绕点T逆时针旋转90°得到点B;故答案为:B,C;(2)①当α=60°时,如图,∵x轴上的一点P经过一次“α对称旋转”得到点Q,∴△SPP′和△TQP′均为等边三角形,∴SP′=PP′,TP′=QP′,∠SP′P=∠TP′Q=60°,∴∠SP′T+∠TP′P=∠TP′P+∠PP′Q,∴∠SP′T=∠PP′Q,∴△P′ST≌△P′PQ(SAS),∴PQ=ST=2,故答案为:2;②当α=30°时,设点P绕点S顺时针旋转30°得到点P′,则SP′=SP,如图,将x轴作一次“α对称旋转”后得到直线y=﹣1,∵QT⊥x轴,点P经过一次“α对称旋转”得到点Q,∴点Q的坐标为Q(1,﹣1),∵点P′绕点T逆时针旋转30°得到点Q,∴P′T=QT=1,∠P′TQ=30°,∴∠STP′=90°﹣∠P′TQ=60°,∵∠TSP′=30°,∴∠SP′T=180°﹣∠STP′﹣∠TSP′=90°,∵ST=2,∴SP′==,∴SP=SP′=,∴点P的坐标为P(﹣1+,0).(3)点M在⊙O上,则M绕S顺时针旋转α度以后的M′的轨迹为O绕S顺时针旋转α度以后的⊙O′上,M′关于T逆时针旋转α度以后得到点N,则N在O′关于T逆时针旋转α度以后的⊙O″上,若满足题意,只需⊙O′与x轴有交点O″在粉弧上,且O′T=O″T,如图,⊙O″与x轴相切,则O″H=1,在x轴上取点R,连接O″R,使O″R=2,″∴HR=,∴∠O″RH=30°,TR=O′S=1,O″R=ST=2,O″T=O′T,∴△O″TR≌△TO′S(SSS),∴∠TSO′=∠O″RT=30°,故0°<α≤30°;如图,⊙O″与x轴相切,则O″H=1,在x轴上取点R,连接O″R,使O″R=2,∴∠HRO″=30°,ST=O″R,∴∠TRO″=150°,∵∠SO′T+∠STO′=∠STO′+∠RTO″,∴∠SO′T=∠RTO″,∵O′T=TO″,∴△O′ST≌△TRO″(SAS),∴∠O′ST=∠TRO″=150°,∴α=150°,∴150°≤α≤180°;综上所述,0°<α≤30°或150°≤α≤180°.18.问题提出(1)如图①,已知直线a∥b,点A,B在直线a上,点C,D在直线b上,则S△ACD S(填“>”“<”或“=”);△BCD问题探究(2)如图②,⊙O的直径为20,点A,B,C都在⊙O上,AB=12,求△ABC面积的最大值;问题解决(3)如图③,在△ABC中,∠ACB=90°,AB=20,BC=10,根据设计要求,点D为∠ABC内部一点,且∠ADB=60°,过点C作CE∥AD交BD于点E,连接AE,CD,试求满足设计要求的四边形ADCE的最大面积.【答案】(1)=;(2)△ABC面积的最大值为108;(3)四边形ADCE的最大面积是75.【解答】解:(1)如图①所示,分别过A、B两点向直线b作垂线,垂足为M、N.∵a∥b,∴∠MAB=∠AMN=90°,∴四边形AMNB是矩形,∴AM=BN,∴CD•AM=CD•BN又S△ACD=CD•AM,S△BCD=CD•BN,∴S△ACD=S△BCD;故答案为:=;(2)取优弧的中点记为C1,过C1作AB的垂线,垂足为D,由垂径定理知C1D过O 且AD=BD,如图②所示.过点C作AB的平行线a,∵当直线a向上平移时,a距AB的距离增大,即△ABC的AB边上的高增大,∴当a运动到最高点C时,△ABC的AB边上的高最大,又∵AB为常数,∴当C运动到C1时,△ABC的面积最大,下面计算△ABC1的面积:连接OB,在Rt△OBD中,∵AB=12,⊙O的直径为20,∴BD=6,BO=10,OC1=10,由勾股定理得:OD===8,∴C1D=OD+OC1=8+10=18,∴△ABC1的面积为:AB•C1D=×12×18=108,∴△ABC面积的最大值为108;(3)过点C作CF∥BD交AD的延长线于F,如图③﹣1所示,∵CF∥BD,∴∠F=∠ADB=60°,∵AD∥CE,∴四边形DECF是平行四边形,∴DF=CE,FC=DE,∵DC=CD∴△DFC≌△CED(SSS),∴S△DFC=S△CED,又由(1)的结论知S△DAC=S△DAE,∴S四边形ADCE=S△DAE+S△CED=S△DAC+S△DFC=S△AFC,所以只需求得S△AFC最大值即得S四边形ADCE的最大值.以AC为边向△ABC外作等边△AGC,再作等边△AGC的外接圆,过G作GJ⊥AC于J,如图③﹣2所示,∵∠F=60°,∴点F在△AGC的外接圆上,由第(2)问的解决知,当F运动到点G时,S△AFC最大=S△ACG;在Rt△ABC中:由勾股定理得AC===10,∴AJ=AC=5,∴GJ=×10=15,∴S△ACG=AC×GJ=×10×15=75;∴四边形ADCE的最大面积是75.19.课本再现(1)在圆周角和圆心角的学习中,因为圆内接四边形的每一个角都是圆周角,所以我们可以利用圆周角定理,来研究圆内接四边形的角之间的关系.如图1,四边形ABCD为⊙O的内接四边形,AC为直径,则∠B=∠D= 度,∠BAD+∠BCD= 度.(2)如果⊙O的内接四边形ABCD的对角线AC不是⊙O的直径,如图2、图3,请选择一个图形证明:圆内接四边形的对角互补.知识运用(3)如图4,等腰三角形ABC的腰AB是⊙O的直径,底边和另一条腰分别与⊙O交于点D,E.点F是线段CE的中点,连接DF,求证:DF是⊙O的切线.【答案】(1)90,180;(2)证明见解答;(3)证明见解答.【解答】(1)解:∵四边形ABCD为⊙O的内接四边形,AC为直径,∴∠B=∠D=90°,∴∠BAD+∠BCD=360°﹣(∠B+∠D)=360°﹣180°=180°,故答案为:90,180;(2)证明:如图2,连接OB,OD,∵=,∴∠BOD=2∠C,∠1=2∠A,∵∠BOD+∠1=360°,∴2∠C+2∠A=360°,∴∠C+∠A=180°,在四边形ABCD中,∠ABC+∠ADC=360°﹣(∠A+∠C)=180°,即圆内接四边形的对角互补;如图3,连接OA,OC,∵=,∴∠AOC=2∠B,∠1=2∠D,∵∠AOC+∠1=360°,∴2∠B+2∠D=360°,∴∠B+∠D=180°,在四边形ABCD中,∠BAD+∠DCB=360°﹣(∠B+∠D)=180°,即圆内接四边形的对角互补;(3)证明:连接OD,DE,如图4,∵OB=OD,∴∠B=∠ODB,∵AB=AC,∴∠B=∠C,∴∠ODB=∠C,∴OD∥AC,∵四边形ABDE是圆内接四边形,∴∠B+∠AED=180°,∵∠DEC+∠AED=180°,∴∠B=∠DEC,∴∠C=∠DEC,∴DC=DE,∵点F是线段CE的中点,∴DF⊥AC,∴OD∥AC,∴DF⊥OD,∵OD是⊙O的半径,∴DF是⊙O的切线.20.如图,以Rt△ABC的直角边AB为直径作⊙O,交斜边AC于点D,点E是BC的中点,连接OE、DE.(1)求证:DE是⊙O的切线;(2)若sin C=,DE=5,求AD的长;(3)求证:2DE2=CD•OE.【答案】(1)证明见解答;(2)AD的长为;(3)证明见解答.【解答】(1)证明:连接OD,BD,在Rt△ABC中,∠ABC=90°,∵AB是⊙O的直径,∴∠ADB=90°,∴∠BDC=180°﹣∠ADB=90°,∵点E是BC的中点,∴DE=BE=EC,∵OB、OD是⊙O的半径,∴OB=OD,又∵OE=OE,∴△ODE≌△OBE(SSS),∴∠ODE=∠OBE=90°,∴半径OD⊥DE,∴DE是⊙O的切线;(2)解:连接BD,如图,由(1)知:DE=BE=EC,∠ADB=∠BDC=∠ABC=90°,∵DE=5,∴BC=10,∵sin C=,∴=,∴BD=8,∵∠C+∠CBD=∠ABD+∠CBD=90°,∴∠ABD=∠C,∴sin∠ABD=sin∠C=,∴=,设AD=4x,则AB=5x,∵AD2+BD2=AB2,∴(4x)2+82=(5x)2,解得:x=(负值舍去),∴AD=4x=4×=;(3)证明:连接BD,由(1)(2)得:∠BDC=∠OBE=90°,BE=DE,∵点O是AB的中点,点E是BC的中点,∴OE∥AC,BC=2BE,∴∠C=∠OEB,∴△BCD∽△OEB,∴=,即=,∴2DE2=CD•OE.21.已知在Rt△ABC中,∠ACB=90°,BC=6,AC=8,以边AC为直径作⊙O,与AB 边交于点D,点M为边BC的中点,连接DM.(1)求证:DM是⊙O的切线;(2)点P为直线BC上任意一动点,连接AP交⊙O于点Q,连接CQ.①当tan∠BAP=时,求BP的长;②求的最大值.【答案】(1)证明见解答;(2)①BP的长为或;②的最大值为.【解答】(1)证明:如图,连接OD,CD,∵AC是⊙O的直径,∴∠ADC=90°,∴∠BDC=180°﹣∠ADC=90°,∵点M为边BC的中点,∴MC=MD,∴∠MDC=∠MCD,∵OC=OD,∴∠ODC=∠OCD,∵∠ACB=90°,即∠MCD+∠OCD=90°,∴∠MDC+ODC=∠MCD+∠OCD=90°,即∠ODM=90°,∴DM⊥OD,∵OD是⊙O的半径,∴DM是⊙O的切线;(2)①当点P在线段BC上时,如图,过点P作PT⊥AB于点T,在Rt△ABC中,AB===10,设PT=x,∵tan∠BAP=,∴=,∴AT=3PT=3x,∴BT=AB﹣AT=10﹣3x,∵tan∠ABC==,∴=,解得:x=,∴PT=,∵sin∠ABC==,即=,∴BP=;当点P在CB的延长线上时,如图,过点B作BK⊥AP于点K,∵tan∠BAP=,∴=,设BK=a,则AK=3a,在Rt△ABK中,AK2+BK2=AB2,即(3a)2+a2=102,解得:a1=,a2=﹣(舍去),∴AK=3,BK=,∵S△ABP=AP•BK=BP•AC,∴==,设BP=m,则AP=m,在Rt△ACP中,AC2+CP2=AP2,即82+(m+6)2=(m)2,解得:m1=,m2=﹣(舍去),∴BP=;综上所述,BP的长为或;②设CP=n,则AP==,如图,∵AC是⊙O的直径,∴CQ⊥AP,∵CQ•AP=AC•CP,∴CQ==,∴=,∵n>0,∴(n﹣8)2≥0,∴64+n2≥16n,∴=≤=,∴的最大值为.22.如图(1),已知在Rt△ABC中,∠ACB=90°,以AC为直径的圆O交斜边AC于点E,点D为BC中点,连接DE.(1)求证:DE是圆O的切线;(2)如图(2),EH⊥AC,垂足为H,若AC=6,BC=8,求EH的长;(3)如图(3),在⊙O上取一点P,使PE=CE,连接PE,AP,试探究AP、AH、HC 之间的数量关系,并说明理由.【答案】见试题解答内容【解答】(1)连结OE,∵AC是直径,∴∠AEC=90°∴∠CEB=90°,∵D是BC的中点,∴CD=DE,∴∠DCE=∠DEC,∵∠ACB=90°,∴∠DCE+∠OCE=90°,∵OE=OC,∴∠OCE=∠OEC,∴∠OEC+∠DEC=90°,∴OE⊥DE,∵OE是圆O的半径,∴DE是圆O的切线;(2)连结CE,∵AC=6,BC=8,∴,∵∠B=∠B,∠CEB=∠ACB=90°,∴△CEB∽△ACB,∴,∴,∵HE⊥AC,∴∠EHC=90°,∴,∴,∴;(3)在AC上取点M,使CM=AP,∵PE=CE,∠P=∠MCE∴△APE≌△MCE(SAS)∴AE=ME∵EH⊥AC∴AH=MH∴CM=CH﹣MH=CH﹣AH,∴AP=CH﹣AH.23.在平面直角坐标系xOy中,⊙O的半径为1,A为任意一点,B为⊙O上任意一点.给出如下定义:记A,B两点间的距离的最小值为p(规定:点A在⊙O上时,p=0),最大值为q,那么把的值称为点A与⊙O的“关联距离”,记作d(A,⊙O).(1)如图,点D,E,F的横、纵坐标都是整数.①d(D,⊙O)= ;②若点M在线段EF上,求d(M,⊙O)的取值范围;(2)若点N在直线y=上,直接写出d(N,⊙O)的取值范围;(3)正方形的边长为m,若点P在该正方形的边上运动时,满足d(P,⊙O)的最小值为1,最大值为,直接写出m的最小值和最大值.【答案】(1)①2;②2≤d(M,⊙O)≤3;(2)d(N,⊙O)≥;(3)m的最小值为﹣,最大值为.【解答】解:(1)①∵D(0,2)到⊙O的距离的最小值p=1,最大值q=3,∴d(D,⊙O)==2,故答案为:2;②当M在点E处,d(E,⊙O)=2,当M在点F处,d(F,⊙O)==3,∴2≤d(M,⊙O)≤3;(2)设ON=d,∴p=d﹣r=d﹣1,q=d+r=d+1,∴d(N,⊙O)===d,∵点N在直线y=上,设直线交x轴于点B,交y轴于点A,如图1,则x=0时,y=2,y=0时,x=﹣2,∴A(0,2),B(﹣2,0),∴OA=2,OB=2,∴AB==4,当ON⊥AB时,d(N,⊙O)最小,∴S△AOB=OA•OB=AB•ON,即×2×2=×4ON,∴ON=,∵ON无最大值,∴d(N,⊙O)≥;(3)如图2,∵d(P,⊙O)的最小值为1,最大值为,∴两个同心圆中,小圆的半径为1,大圆的半径为,∵KL=﹣1,∴m的最小值是=﹣,在Rt△OMH中,OM=,OH=m﹣1,MH=m,∴(m﹣1)2+(m)2=()2,解得:m=﹣2(舍去)或m=;∴m的最小值为﹣,最大值为.24.在⊙O中=,顺次连接A、B、C.(1)如图1,若点M是的中点,且MN∥AC交BC延长线于点N,求证:MN为⊙O 的切线;(2)如图2,在(1)的条件下,连接MC,过点A作AP⊥BM于点P,若BP=a,MP =b,CM=c,则a、b、c有何数量关系?(3)如图3,当∠BAC=60°时,E是BC延长线上一点,D是线段AB上一点,且BD =CE,若BE=5,△AEF的周长为9,请求出S△AEF的值?【答案】(1)证明见解答;(2)a=b+c;(3).【解答】解:(1)如图1,连接OM,∵M是的中点,∴OM⊥AC,∵MN∥AC,∴OM⊥MN,∵OM为⊙O的半径,∴MN为⊙O的切线;(2)如图2,连接OM交AC于K,连结AM,∵M是的中点,∴=,∴AM=CM=c,∵AP⊥BM,∴∠APM=∠APB=90°,∴AP2=AM2﹣PM2=c2﹣b2,∴AB2=AP2+BP2=c2﹣b2+a2,∴AC=AB=,∵M是的中点,∴OM⊥AC,∴AK=CK=AC=,∵∠APB=∠CKM=90°,∠ABP=∠MCK,∴△ABP∽△MCK,∴=,∴BP•CM=CK•AB,∴ac=•,∴2ac=c2﹣b2+a2,∴(a﹣c)2﹣b2=0,∴(a+b﹣c)(a﹣b﹣c)=0,∵a+b﹣c>0,∴a﹣b﹣c=0,∴a=b+c;(3)过点B作BH∥AC,过点D作DH∥BC,BH与DH交于点H,连接CH,则∠BDH=∠ABC=60°,∠DBH=∠ACB=60°,∴△BDH是等边三角形,∴BH=BD,∠DBH=60°,∴BH=CE,∠CBH=∠ABC+∠DBH=60°+60°=120°,∵∠ACE=180°﹣∠ACB=120°=∠CBH,AC=BC,∴△ACE≌△CBH(SAS),∴∠CAE=∠BCH,AE=CH,∵DH∥BC,DH=CE,∴四边形CEDH是平行四边形,∴CE∥ED,CH=ED,∴∠BCH=∠BED,CH=AE,∴∠BED=∠CAE,AE=ED,过点E作ET⊥AB于点T,交AC于点L,连接DL,则AT=TD=AD,AL=DL,∵∠BAC=60°,∴△ADL是等边三角形,∴∠ALD=60°=∠ACB,∴DL∥BC,即HD与DL在同一直线上,∴四边形BCLH是平行四边形,∴CL=BH=BD=CE,LH=BC,设CE=x,则CL=x,BC=AC=5﹣x,AD=DL=AL=AC﹣CL=5﹣2x,AT=,∵DF∥CH,∴=,即=,∴LF=,∴AF=AL+LF=5﹣2x+=,在Rt△BET中,ET=BE•sin60°=,∵AE2=AT2+ET2,∴AE2=()2+()2=x2﹣5x+25,延长BH,ED交于点R,则∠RHD=∠FCE,∠R=∠CFE,DH=CE,∴△HDR≌△CEF(AAS),∴DR=EF,∴ER=ED+DR=AE+EF=9﹣AF=9﹣=,∵CH∥ED,∴=,∴CH=•ER=×=,∴AE=,∴x2﹣5x+25=()2,解得:x1=5(舍去),x2=,∴AD=5﹣2×=,AF==10﹣=2,作DM⊥AL于点M,则DM=AD•sin60°=×=,∴S△AEF=S△ADE﹣S△ADF=AD•ET﹣AF•DM=××﹣×2×=.25.在平面直角坐标系xOy中,⊙O的半径为1,AB=1,且A,B两点中至少有一点在⊙O 外.给出如下定义:平移线段AB,得到线段A′B′(A′,B′分别为点A,B的对应点),若线段A′B′上所有的点都在⊙O的内部或⊙O上,则线段AA′长度的最小值称为线段AB到⊙O的“平移距离”.(1)如图1,点A1,B1的坐标分别为(﹣3,0),(﹣2,0),线段A1B1到⊙O的“平移距离”为,点A2,B2的坐标分别为(﹣,),(,),线段A2B2到⊙O的“平移距离”为;(2)若点A,B都在直线y=x+2上,记线段AB到⊙O的“平移距离”为d,求d的最小值;(3)如图2,若点A坐标为(1,),线段AB到⊙O的“平移距离”为1,画图并说明所有满足条件的点B形成的图形(不需证明).【答案】(1)2,;(2).(3)所有满足条件的点B形成的图形是以A为圆心圆心角为120°的.【解答】解:(1)根据“平移距离”的定义可得:线段A1B1到⊙O的“平移距离”为2,如图1,设A2B2与y轴交于E,线段A2B2向下平移得到⊙O的弦A′2B′2,线段A′2B′2与y轴交于点F,则A′2F=,OA′2=1,OE=,∴OF=,∴A2A′2=EF=OE﹣OF=﹣=,∴线段A2B2到⊙O的“平移距离”为,故答案为:2,;(2)如图2中,作等边△OEF,点E在x轴上,OE=EF=OF=1,设直线y=x+2交x轴于M,交y轴于N.则M(﹣2,0),N(0,2),过点E作EH⊥MN于H,∵OM=2,ON=2,∴tan∠NMO=,∴∠NMO=60°,∴EH=EM•sin60°=,观察图象可知,线段AB到⊙O的“平移距离”为d1的最小值为.(3)如图3,连接OA,交⊙O于点A′,则OA==2,∴OA到⊙O任意一点距离的最小值为OA′=OA﹣1=1,∴点A′(,),设平移后圆上另一点为B′,由题意得:A′B′=1,有三种情况:①点B′与点O重合,则点B的坐标为(,);②点B′与点(1,0)重合,则点B的坐标为(,);③点B′与点(﹣,)重合,则点B的坐标为(0,);如图可知所有满足条件的点B形成的图形是以A为圆心圆心角为120°的.26.【了解概念】定义:在平面直角坐标系xOy中,组成图形的各点中,与点P连线段最短的点叫做点P 于这个图形的短距点,这条最短线段的长度叫做点P这个图形的短距.【理解运用】(1)已知点P(﹣3,0),以原点为圆心,1半径作⊙O,则点P于⊙O的短距点的坐标是;(2)如图,点P(3,),等边三角形OAB的顶点A的坐标为(6,0),顶点B在第一象限,判断点P于△OAB的短距点的个数,并说明理由;【拓展提升】(3)已知P(p,﹣p+6),A(6,0),B(0,6),点C在第一象限内,且∠CBO=75°,∠ACB=90°,若点P到四边形OACB的短距大于2,请直接写出p的取值范围.【答案】(1)(﹣1,0);(2)3个,理由见解答过程;(3)p<﹣或2<p<4或p>6+.【解答】解:(1)如图:根据短距点定义,点P于⊙O的短距点为A,坐标是(﹣1,0),故答案为:(﹣1,0);(2)点P关于△OAB的短距点有3个,理由如下:过P作PC⊥OA于C,PE⊥AB于E,PD⊥OB于D,如图:∵P(3,),∴OC=3,PC=,∴tan∠POC=,∴∠POC=30°,∵△OAB是等边三角形,∴∠BOC=60°,OA=6,∴∠BOP=∠POC=30°,又PC⊥OA,PD⊥OB,∴PD=PC=,∵AC=OA﹣OC=3,PC=,∴tan∠P AC=,∴∠P AC=30°,同理∠P AE=∠P AC=30°,PE=PC,∴PC=PD=PE,即点P关于△OAB的短距点有C、D、E,∴点P关于△OAB的短距点有3个;(3)∵P(p,﹣p+6),∴P在直线y=﹣x+6上,直线经过A(6,0)、B(0,6),且∠ABO=∠BAO=45°,①当p<0时,过P作PD⊥x轴于D,过B作PE⊥PD于E,如图:△PBE是等腰直角三角形,若PB=2,则BE=PE=,而DE=OB=6,∴PD=6+,∴P(﹣,6+),由图可知:此时p<﹣,点P到四边形OACB的短距大于2,②当0≤p≤6时,过P作PD⊥BC于D,设PD=2,作PE⊥OB,PF⊥OA,过P'作P'G ⊥OA,设P'G=2,如图:∵∠PBD=∠OBC﹣∠ABC=30°,PD=2,∴BP=4,∵△PBE是等腰直角三角形,∴BE=PE=2,PF=OE=OB﹣BE=6﹣2,。
2022-2023学年九年级数学中考复习《圆综合压轴题》解答题专题训练(附答案)1.如图.在Rt△ABC中,∠ACB=90°,D为AB边的中点,连接CD.以CD为直径作⊙O,分别与AC,BC相交于点M,N.过点N作⊙O的切线交AB于点E.(1)求证:∠BEN=90°.(2)若AB=10,请填空:①迮接OE,ON,当NE=时,四边形OEBN是平行四边形;②连接DM,DN,当AC=时,四边形CMDN为正方形.2.如图,以AB为直径的半圆中,点O为圆心,点C在圆上,过点C作CD∥AB,且CD =OB.连接AD,分别交OC,BC于点E,F,与⊙O交于点G,若∠ABC=45°.(1)求证:①△ABF∽△DCF;②CD是⊙O的切线.(2)求的值.3.如图,△ABC内接于⊙O,AB为直径,点D为半径OA上一点,过点D作AB的垂线交AC于点E,交BC的延长线于点P,点F在线段PE上,且PF=CF.(1)求证:CF是⊙O的切线;(2)连接AP与⊙O相交于点G,若∠ABC=2∠P AC,求证:AB=BP;(3)在(2)的条件下,若AC=4,BC=3,求CF的长.4.如图,△ABC内接于⊙O,AB是⊙O的直径,⊙O的切线PC交BA的延长线于点P,OF∥BC交AC于点E,交PC于点F,连接AF.(1)判断直线AF与⊙O的位置关系并说明理由;(2)若⊙O的半径为6,AF=2,求AC的长;(3)在(2)的条件下,求阴影部分的面积.5.如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作EF⊥AC于点E,交AB的延长线于点F,连接AD.(1)求证:EF是⊙O的切线.(2)求证:△FBD∽△FDA.(3)若DF=4,BF=2,求⊙O的半径长.6.如图1,已知AB是⊙O的直径,AC是⊙O的弦,过O点作OF⊥AB交⊙O于点D,交AC于点E,交BC的延长线于点F,点G是EF的中点,连接CG.(1)判断CG与⊙O的位置关系,并说明理由;(2)求证:2OB2=BC•BF;(3)如图2,当∠DCE=2∠F,DG=2.5时,求DE的长.7.已知:△ABC内接于⊙O,连接AO并延长交BC于点D,且AD⊥BC于点D.(1)如图1,求证:∠B=∠C;(2)如图2,点E在上,连接AE,CE,∠ACE=∠ACB,求证:∠CAE=2∠ACE;(3)如图3,在(2)的条件下,过点A作AF⊥CE交CE的延长线于点F,若AE=5,AB=13,求AF的长.8.在Rt△ABC中,∠ACB=90°,AC=6,∠B=30°,点M是AB上的动点,以M为圆心,MB为半径作圆交BC于点D,(1)若圆M与AC相切,如图1,求圆的半径;(2)若AM=2MB,连接AD,如图2.①求证:AD与圆M相切;②求阴影部分的面积.9.如图,已知AB是⊙O的直径,C是⊙O上的一点,D是AB上的一点,DE⊥AB于D,DE交BC于F,且EF=EC.(1)求证:EC是⊙O的切线;(2)求证:△OAC∽△ECF;(3)若BD=4,BC=8,圆的半径OB=5,求EC的长.10.如图,已知以BC为斜边的Rt△ABC内接于⊙O,∠BAC的平分线交⊙O于点D,过点D作DE∥BC交AB的延长线于点E,连接DB,DC.(1)求证:ED为⊙O的切线;(2)求证:BC2=2ED•FC;(3)若tan∠ABC=2,AD=,求BC的长.11.已知△ABC内接于⊙O,D是弧AC上一点,连接BD、AD,BD交AC于点M,∠BMC =∠BAD.(1)如图1,求证:BD平分∠ABC;(2)如图2,过点D作⊙O的切线,交BA的延长线于点F,求证:DF∥AC;(3)如图3,在(2)的条件下,BC是⊙O的直径,连接DC,AM=1,DC=,求四边形BFDC的面积.12.如图,AB是⊙O的直径,弦CD⊥AB,垂足为H,P为弧AD上一点.(1)如图1,连接AC、PC、P A,求证:∠APC=∠ACD;(2)如图2,连接PB,PB交CD于E,过点P作⊙O的切线交CD的延长线于点F,求证:FE=PF;(3)如图3,在(2)的条件下,连接AE,且∠P AE=∠F,过点A作AG⊥PF,垂足为G,若PG=6,,求BH的长.13.如图,⊙O的半径为1,点A是⊙O的直径BD延长线上的一点,C为⊙O上的一点,AD=CD,∠A=30°.(1)求证:直线AC是⊙O的切线;(2)求△ABC的面积;(3)点E在上运动(不与B、D重合),过点C作CE的垂线,与EB的延长线交于点F.①当点E运动到与点C关于直径BD对称时,求CF的长;②当点E运动到什么位置时,CF取到最大值,并求出此时CF的长.14.如图所示,AB是⊙O的直径,点E为线段OB上一点(不与O,B重合),作CE⊥OB,交⊙O于点C,垂足为点E,作直径CD,过点C的切线交DB的延长线于点P,作AF ⊥PC于点F,连接CB.(1)求证:AC平分∠F AB.(2)求证:BC2=CE•CP.(3)当AB=4时,求劣弧BC长度(结果保留π).15.已知:如图,AB是⊙O的直径,点C为⊙O上一点,OF⊥BC于点F,交⊙O于点E,AE与BC交于点H,连接CE,BD是⊙O的切线与OE的延长线相交于点D.(1)求证:∠D=∠AEC;(2)求证:CE2=EH•EA;(3)若⊙O的半径为5,,求FH的长.16.如图,在平面直角坐标系xOy中,已知点A(0,8),点B是x轴正半轴上一点,连接AB,过点A作AC⊥AB,交x轴于点C,点D是点C关于点A的对称点,连接BD,以AD为直径作⊙Q交BD于点E,连接并延长AE交x轴于点F,连接DF.(1)求线段AE的长;(2)若∠ABE=∠FDE,求EF的值.(3)若AB﹣BO=4,求tan∠AFC的值.17.如图,在Rt△ABC中,∠B=90°,AE平分∠BAC,交BC于点E,点D在AC上,以AD为直径的⊙O经过点E,点F在⊙O上,且EF平分∠AED,交AC于点G,连接DF.(1)求证:△DEF∽GDF;(2)求证:BC是⊙O的切线;(3)若cos∠CAE=,DF=10,求线段GF的长.18.如图,⊙O是△ABC的外接圆,AC是⊙O的直径,过圆心O的直线PF⊥AB于D,交⊙O于E,F,PB是⊙O的切线,B为切点,连接AP,AF.(1)求证:直线P A为⊙O的切线;(2)求证:AC2=4OD•OP;(3)若BC=6,,求AC的长.19.如图,AB是半圆O的直径,AB=10.C是弧AB上一点,连接AC,BC,∠ACB的平分线交AB于点P,过点P分别作PE⊥AC,PF⊥BC,垂足分别为E、F.(1)求证:四边形CEPF是正方形;(2)当sin A=时,求CP的长;(3)设AP的长为x,图中阴影部分的面积为y,求y与x之间的函数关系式,并写出y 的最大值.20.问题提出(1)如图①,△ABC为等边三角形,若AB=2,则△ABC的面积为.问题探究(2)如图②,在Rt△ABC中,∠ABC=90°,AC=3,BD是△ABC的角平分线,过点D作DE⊥BD交BC边于点E.若AD=1,求图中阴影部分的面积.问题解决(3)如图③,是某公园的一个圆形施工区示意图,其中⊙O的半径是4米,公园开发部门计划在该施工区内设计一个四边形绿化区域ABCD,连接AC、BD,现准备在△ADC 区域种植花卉供游人欣赏.按设计要求,A、B、C、D四个点都在圆上,∠ADB=∠BDC =60°.设BD的长为x米,△ADC的面积为y平方米.①求y与x之间的函数关系式;②按照设计要求,为让游人有更好的观赏体验,△ADC花卉区域的面积越大越好,那么请求出花卉区域△ADC面积的最大值.参考答案1.(1)证明:如图,连接ON,DN,∵CD是⊙O的直径,∴∠CND=∠DNB=90°,∵NE是⊙O的切线,∴∠ONE=90°,∴∠BNE=∠OND,∵ON=OD,∴∠ODN=∠OND,∴∠ODN=∠BNE,∵D是斜边AB的中点,∴CD=AD=BD,∴∠B=∠BCD,∵∠BCD+∠ODN=90°,∴∠B+∠BNE=90°,∴∠NEB=90°;(2)解:①∵四边形OEBN是平行四边形,∴BE=ON=,∵E为BD的中点,∴N为BC的中点,∴NE为△BCD的中位线,∴NE∥CD,且NE=CD=.故答案为:;②∵四边形CMDN为正方形,∴∠MCD=∠MDC=45°,∠CMD=90°,∴MC=MD=CD,∵AD=DC,∴M是AC的中点,AC=2MC=CD,∴CD=AB=5,∴AC=5.故答案为:5.2.(1)证明:①∵CD∥AB,∴∠F AB=∠D,∵∠AFB=∠DFC,∴△ABF∽△DCF;②∵∠ABC=45°,∴∠AOC=2∠ABC=90°,∵CD∥AB,∴∠DCO=∠AOC=90°,∵OC是半圆的半径,∴CD是⊙O的切线;(2)解:过点F作FH∥AB交OC于H,设圆的半径为2a,∵CD=OB=OA,CD∥AB,∴CE=OE=a,AE=DE,由勾股定理得:AE==a,∴AD=2a,∵△ABF∽△DCF,∴==,∵FH∥AB,∴==,∵FH∥AB,∴==,∴EF=,∵CD是⊙O的切线,∴DC2=DG•DA,即(2a)2=DG•2a,解得:DG=,∴FG=a﹣﹣=,∴==.3.(1)证明:连接OC,∵PF=FC,OC=OB,∴∠PCF=∠CPF,∠OCB=∠OBC,∵PD⊥AB,∴∠PDB=90°,∴∠CPF+∠OBC=90°,∴∠PCF+∠OCB=90°,∴∠FCO=90°,∴OC⊥CF,∴CF是⊙O的切线.(2)证明:连接BG,∵,∴∠P AC=∠PBG,∵∠PBA=2∠P AC,∴∠PBA=2∠PBG,∵AB为⊙O的直径,∴∠AGB=∠PGB=90°,∴∠APB=∠P AB,∴AB=BP;(3)解:∵AB为⊙O的直径,∴∠ACB=90°,∵AC=4,BC=3,∴AB===5,∴AB=BP=5,∴PC=2,∵∠PDA=∠PCA=90°,P A=P A,∠APB=∠P AB,∴△APC≌△APD(AAS),∴AD=PC=2,PD=AC=4,∠P AC=∠APD,∴AE=PE,设DE=x,AE=PE=4﹣x,在Rt△AED中,AD2+DE2=AE2,即22+x2=(4﹣x)2,解得x=,∴EP=4﹣x=,∵∠PEC=90°﹣∠EPC,∠FCE=90°﹣∠PCF,即∠PEC=∠FCE,∴EF=CF=PF,∴CF=.4.解:(1)直线AF与⊙O相切.理由如下:连接OC,∵PC为圆O切线,∴CP⊥OC,∴∠OCP=90°,∵OF∥BC,∴∠AOF=∠B,∠COF=∠OCB,∵OC=OB,∴∠OCB=∠B,∴∠AOF=∠COF,∵在△AOF和△COF中,,∴△AOF≌△COF(SAS),∴∠OAF=∠OCF=90°,∴AF⊥OA,又∵OA为圆O的半径,∴AF为圆O的切线;(2)∵∠AOF=∠COF,OA=OC,∴E为AC中点,即AE=CE=AC,OE⊥AC,∵∠OAF=90°,OA=6,AF=2,∴tan∠AOF=,∴∠AOF=30°,∴AE=OA=3,∴AC=2AE=6;(3)∵AC=OA=6,OC=OA,∴△AOC是等边三角形,∴∠AOC=60°,OC=6,∵∠OCP=90°,∴CP=OC=6,∴S△OCP=OC•CP==18,S扇形AOC==6π,∴阴影部分的面积为S△OCP﹣S扇形AOC=18﹣6π.5.(1)证明:连接OD,如图所示:∵AB为⊙O的直径,∴∠ADB=90°.∴AD⊥BC.∵AB=AC,∴CD=BD=BC.∵OA=OB,∴OD是△ABC的中位线,∴OD∥AC.∵EF⊥AC,∴EF⊥OD.∵OD是半径,∴EF与⊙O相切.(2)证明:∵AB为直径,∴∠ADB=90°,∴∠BAD+∠ABD=90°,∵OD⊥DE,∴∠FDB+∠ODB=90°,∵OB=OD,∴∠OBD=∠ODB,∴∠BAD=∠FDB,∵∠F=∠F,∴△FBD∽△FDA;(3)解:设⊙O的半径为r,则AB=2r,∵△FBD∽△FDA,∴,∵DF=4,BF=2,∴,∴r=3.6.解:(1)CG与⊙O相切,理由如下:如图1,连接CO,∵AB是⊙O的直径,∴∠ACB=∠ACF=90°,∵点G是EF的中点,∴GF=GE=GC,∴∠AEO=∠GEC=∠GCE,∵OA=OC,∴∠OCA=∠OAC,∵OF⊥AB,∴∠OAC+∠AEO=90°,∴∠OCA+∠GCE=90°,即OC⊥GC,∵OC是圆的半径,∴CG与⊙O相切;(2)证明:∵∠AOE=∠FCE=90°,∠AEO=∠FEC,∴∠OAE=∠F,又∵∠B=∠B,∴△ABC∽△FBO,∴,即BO•AB=BC•BF,∵AB=2BO,∴2OB2=BC•BF;(3)由(1)知GC=GE=GF,∴∠F=∠GCF,∴∠EGC=2∠F,又∵∠DCE=2∠F,∴∠EGC=∠DCE,∵∠DCE=∠AOD=45°,∴∠EGC=45°,又∵∠OCG=90°,∴△OCG为等腰直角三角形,∴GC=OC,OG=OC,∴OD+DG=OC,即OC+2.5=OC,解得OC=,∵GF=GE=GC=OC,∴DE=GE﹣DG=OC﹣DG=.7.(1)证明:∵AD⊥BC,AD过圆心O,∴BD=CD,且AD⊥BC,∴AB=AC,∴∠B=∠C;(2)证明:连接BE,设∠ACE=α,则∠ACB=3α,∴∠ABC=∠ACB=3α,∵∠ABE=∠ACE=α,∴∠CBE=∠ABC﹣∠ABE=3α﹣α=2α,∴∠CAE=∠CBE=2α=2∠ACE;(3)解:过点E作EG⊥AC于点G,在CG上截取GH=AG,连接EH,∴EH=AE=5,∴∠AHE=∠EAH=2α,∴∠CEH=∠AHE﹣∠ECH=2α﹣α=α=∠ECH,∴CH=EH=5,∵AC=AB=13,∴AH=AC﹣CH=13﹣5=8,∴AG=GH=4,∴CG=4+5=9,在Rt△AEG中,EG===3,在Rt△CEG中,CE===3,∵,∴,∴.8.解:(1)过点M作MN⊥AC于点N,∵圆M与AC相切,∴MN=MB,∵∠ACB=90°,AC=6,∠B=30°,∴AB=12,设MN=MB=R.∴AM=12﹣R,∵∠ACB=90°,MN⊥AC,∴MN∥BC,∴∠B=∠AMB=30°,∴,∴,解得R=24﹣36.(2)①连接DM,由题意可知MB=MD,∴∠B=∠MDB=30°,∴∠AMD=60°,∵AM=2MB,∴AM=2MD,∵∠ACB=90°,∠B=30°,∴AB=2AC,∠BAC=60°,∴△AMD∽△ABC,∴∠ADM=∠ACB=90°,∴AD与圆M相切;②∵AB=12,AM=2MB,∴BM=4,AM=8,∵∠ADM=90°,∴AD==4,∴S阴影部分=4.9.(1)证明:∵OC=OB,∴∠OBC=∠OCB,∵DE⊥AB,∴∠OBC+∠DFB=90°,∵EF=EC,∴∠ECF=∠EFC=∠DFB,∴∠OCB+∠ECF=90°,∴OC⊥CE,∴EC是⊙O的切线;(2)证明:∵AB是⊙O的直径,∴∠ACB=90°,∴∠ABC+∠A=90°,∠ABC+∠BFD=90°,∴∠BFD=∠A,∴∠A=∠BFD=∠ECF=∠EFC,∵OA=OC,∴∠OCA=∠A=∠BFD=∠ECF=∠EFC,∴△OAC∽△ECF;(3)解:∵AB是⊙O的直径,∴∠ACB=90°,∵OB=5,∴AB=10,∴AC===6,∵cos∠ABC=,∴,∴BF=5,∴CF=BC﹣BF=3,∵△OAC∽△ECF,∴,∴EC==.10.(1)证明:如图1,连接OD.∵BC为⊙O的直径,∴∠BAC=90°.∵AD平分∠BAC,∴.∴OD⊥BC,∵DE∥BC,∴OD⊥ED,又∵OD为半径,∴ED为⊙O的切线;(2)证明:由(1)可得△BCD为等腰直角三角形.∵DE∥BC,∴∠E=∠ABC=∠ADC,∠BDE=∠DBC=∠DCB=45°.∴△BED∽△FDC,∴,即BD2=DE•FC,又,∴BC2=2ED•FC;(3)解:如图2,过点D作DG⊥AD,交AC的延长线于点G.∴∠CDG+∠ADC=90°,∠DGC=∠DAG=45°.又∵∠ADB+∠ADC=90°,∴∠ADB=∠GDC,∵DB=DC,∠BAD=∠DGC=45°,∴△ABD≌△GCD(AAS),∴AB=CG.∵∠DAG=45°,∠ADG=90°,∴△ADG为等腰直角三角形,∴AB+AC=AG=AD==3,∵tan∠ABC=2,∴设AB=x,则AC=2x.∴3x=3,∴x=1.即AB=1,AC=2.∴BC===.11.(1)证明:∵∠BMC=∠BAD,又∵∠BMC=∠BAC+∠ABD,∠BAD=∠BAC+∠DAM,∴∠ABD=∠DAC,又∵弧DC=弧DC,∴∠DAC=∠DBC,∴∠ABD=∠CBD,∴BD平分∠ABC;(2)证明:连接OA、OB、OD,OD交AC于点N,∵FD是⊙O的切线,D为切点,OD是⊙O的半径,∴OD⊥FD,∴∠FDO=90°,又∵∠AOD=2∠ABD,∠DOC=2∠DBC,∠ABD=∠CBD,∴∠AOD=∠COD,又∵AO=CO,∴ON⊥AC,∴∠ANO=90°,∴∠ANO=∠FDO,∴AC∥FD;(3)解:连接OD,交AC于N,∵BC是⊙O的直径,∴∠BAC=∠BDC=90°,∴∠F AC=180°﹣∠BAC=90°,又∵∠ANO=∠FDN=90°,∴四边形ANDF是矩形,∴AF=DN,∠F=90°,又∵ON⊥AC,∴AN=CN,∴设MN=a,则AN=CN=MN+AM=a+1,∴CM=MN+CN=2a+1,在Rt△MDC中,cos∠ACD=,在Rt△NDC中,cos∠ACD=,∴,解得a1=﹣(舍去),a2=1,∴MN=1,CN=a+1=2,∴DN=AF==,又∵MN=AM=1,∠AMB=∠NMD,∠BAM=∠MND=90°,∴△BAM≌△DNM(AAS),∴BA=ND=,∴BF=AB+AF=2,∴AN=FD=a+1=2,∴BD==2,∴S△BFD=,S△DBC=BD•CD==3,∴S四边形BFDC=S△BFD+S△BDC=2.12.(1)证明:连接AD,∵AB是⊙O的直径,弦CD⊥AB,∴,∴∠ACD=∠DC,∵,∴∠APC=∠ADC,∴∠APC=∠ACD;(2)证明:连接OP,∵PF是⊙O的切线,∴OP⊥PF,即∠EPF+∠OPE=90°,∵OP=OB,∴∠OPB=∠OBP,∵CD⊥AB,∴∠HEB+∠HBE=90°,∵∠PEF=∠HEB,∴∠PEF=∠FPE,∴FE=PF;(3)解:过E作EM⊥PF,垂足为M,∵AG⊥PF,∴∠GAP+∠GP A=90°,∵∠APE=90°,∴∠GP A+∠EPM=90°,∵∠AGP=∠EMP=90°,∴△GP A∽△MEP,∴,∵∠P AE=∠F,∴tan∠P AE=tan∠F,则,∵,∴,∴MF=PG=6,设PM=x,∵PE2﹣PM2=EF2﹣FM2,∴,解得:x1=﹣10,x2=4,即PM=4,∴EM==8,∵,即,∴P A=3,∵CD⊥AB,AB是直径,∴∠BHE=∠APB=90°,∴∠HEB=∠BAP,∵∠MPE=∠HEB,∴tan∠P AB=,即,∴PB=6,∴BE=PB﹣PE=2,∵sin∠HEB=,即,∴BH=4.13.(1)证明:连接OC,如图1,∵AD=CD,∠A=30°,∴∠ACD=30°,∴∠CDB=60°,∵OD=OC,∴∠OCD=60°,∴∠ACO=∠ACD+∠OCD=90°,∵OC是半径,∴直线AC是⊙O的切线;(2)解:∵∠OCD=60°,OC=OD,∴△DCO是等边三角形,∴CD=AD=OD=1,作CH⊥BD于点H,则DH=,如图2,∴CH===,∵AB=AD+BD=3,∴S△ABC==.(3)①当点E运动到与点C关于直径AB对称时,CE⊥AB于点K,如图3,∵BD为⊙O的直径,CK=,∴CE=2CK=,∵CF⊥CE,∴∠ECF=90°,∵∠CDB=∠CEB=60°,∴CF=CE•tan60°==3,②∵点E在上运动过程中,∠CDB=∠CEB=60°,在Rt△ECF中,tan60°=,∴CF=CE,∴当CE最大时,CF取得最大值,∴当CE为直径,即CE=2时,CF最大,最大值为2.14.(1)证明:连接AC,BC,∵OC=OA,∴∠OCA=∠OAC,∵PF是⊙O的切线,CE⊥AB,∴∠OCP=∠F=90°,∴AF∥OC,∴∠F AC=∠OCA,∴∠F AC=∠OAC,∴CA平分∠F AB.(2)证明:∵CD是直径,∴∠CBD=90°,∴∠CBP=90°,∵CE⊥OB,∴∠CEB=∠CBP=90°,∵PC切⊙O于点C,∴∠PCB=∠CAB,∵AB是直径,∴∠ACB=90°,∴∠ABC+∠CAB=90°,∠BCE+∠ABC=90°,∵∠CAB=∠BCE,∴∠PCB=∠BCE,∴△BCE∽△PCB,∴,∴BC2=CE•CP;(3)解:,设CF=3a,CP=4a,∵BC2=CE•CP=3a•4a=12a2,∴BC=2a,在Rt△BCE中,sin∠CBE=,∴∠CBE=60°,∴∠BCE=30°,∴△COB是等边三角形,∵AB=4,∴OB=BC=2,∴劣弧BC的长==π.15.(1)证明:∵BD是⊙O的切线,∴∠OBD=90°,∠ABC+∠DBC=90°,∵BC⊥OD,∴∠D+∠DBC=90°,∴∠ABC=∠D,∵∠AEC=∠ABC,∴∠D=∠AEC;(2)证明:连接AC,如图所示:∵OF⊥BC,∴,∴∠CAE=∠ECB,∵∠CEA=∠HEC,∴△CEH∽△AEC,∴,∴CE2=EH•EA;(3)解:连接BE,过O作OG⊥BE于G,如图所示:∵AB是⊙O的直径,∴∠AEB=90°,∵⊙O的半径为5,∴AB=10,∵cos∠BCE=,∴cos∠BAE==,∴AE=8,∴BE===6,∵,∴BE=CE=6,∵CE2=EH•EA,∴EH=,在Rt△BEH中,BH=.∵OG⊥BE,OB=OE,∴BG=3,∴OG===4,∴BF•OE,∴BF=,∴HF=BH﹣BF=.16.解:(1)∵点A(0,8),∴AO=8,∵AD是⊙Q的直径,∴∠AEB=∠AED=90°,∴∠AEB=∠AOB=90°,∵BA垂直平分CD,∴BC=BD,∴∠ABO=∠ABE在△ABE和△ABO中,,∴△ABE≌△ABO(AAS),∴AE=AO=8;(2)∵∠ABE=∠FDE,∴AB∥DF,∴△CAB∽△CDF,∴,又∵∠ABE=∠FDE,∠AEB=∠FED∴△DEF∽△BEA,∴,∴EF=2AE=16;(3)设BO=x,则AB=x+4,在Rt△ABO中,由AO2+OB2=AB2得:82+x2=(x+4)2,解得:x=6,∴OB=BE=6,AB=10,∵∠EAB+∠ABE=90°,∠ACB+∠ABC=90°,∴∠EAB=∠ACB,∵∠BF A=∠AFC,∴△BF A∽△AFC,∴;设EF=m,则AF=8+m,BF=(8+m),∵在Rt△BEF中,BE2+EF2=BF2,∴62+m2=[(8+m)]2,解得:m=,即EF=,∴tan∠AFC=.17.(1)证明:如图1,∵EF平分∠AED,∴∠AEF=∠FED,∵∠AEF=∠ADF,∴∠FED=∠ADF,∵∠GFD=∠DFE,∴△GFD∽△DFE;(2)证明:如图2,∵AE平分∠BAC,∴∠BAE=∠EAO,∵OA=OE,∴∠EAO=∠OEA,∴∠BAE=∠OEA,∴AB∥OE,∴∠OEC=∠B,∵∠B=90°,∴∠OEC=90°,∵OE为半径,∴BC是⊙O的切线;(3)解:如图3,连接OF、AF,∵AD为直径,∴∠AFD=∠AED=90°,∵EF平分∠AED,∴∠AEF=∠FED=45°,∴∠AFD=∠AEF=45°,∴△AFD为等腰直角三角形,∵DF=10,OA=OD∴AD=DF=×10=20,OF⊥AD,OA=OD=OF=10,∵cos∠CAE=,∴AE=AD•cos∠CAE=20×=10,∵∠AEF=∠ADF,∠AGE=∠FGD,∴△AGE∽△FGD,∴,∴AG=GF,∵AG=AO+OG=10+OG,∴10+OG=GF,∴OG=GF﹣10,在Rt△FOG中,GF2=OF2+OG2,∴GF2=102+(GF﹣10)2,解得:GF=或(不符合题意,舍去),∴线段GF的长为.18.(1)证明:连接OB,∵PB是⊙O的切线,∴∠PBO=90°,∵OA=OB,BA⊥PO于D,∴AD=BD,∠POA=∠POB,又∵PO=PO,∴△P AO≌△PBO(SAS),∴∠P AO=∠PBO=90°,∵OA为圆的半径,∴直线P A为⊙O的切线;(2)证明:∵∠P AO=∠PDA=90°,∴∠OAD+∠AOD=90°,∠OP A+∠AOP=90°,∴∠OAD=∠OP A,∴△OAD∽△OP A,∴,∴OA2=OD•OP,又∵AC=2OA,∴AC2=4OD•OP;(3)解:∵OA=OC,AD=BD,BC=6,∴OD=BC=3,设AD=x,∵tan∠F=,∴FD=2x,OA=OF=2x﹣3,在Rt△AOD中,由勾股定理,得,(2x﹣3)2=x2+32,解之得,x1=4,x2=0(不合题意,舍去),∴AD=4,OA=2x﹣3=5,∵AC是⊙O的直径,∴AC=2OA=10.∴AC的长为10.19.(1)证明:∵∠ACB=90°,PE⊥AC,PF⊥BC,∴四边形PECF是矩形,∵CP平分∠ACB,PE⊥AC,PF⊥BC,∴PE=PF,∴四边形CEPF是正方形;(2)解:∵sin A=,AB=10,∴,∴BC=8,∴AC===6,∴tan A=,设PE=CE=m,则AE=6﹣m,∴tan A=,∴m=,∴PC=PE=;(3)解:∵四边形CEPF是正方形,∴PE=PF,∠APE+∠BPF=90°,∠PEA=∠PFB=90°,∴将△APE绕点P顺时针旋转90°,得到△A′PF,P A′=P A,如图所示:则A′、F、B三点共线,∠APE=∠A′PF,∴∠A′PF+∠BPF=90°,即∠A′PB=90°,∴S△P AE+S△PBF=S△P A′B=P A′•PB=x(10﹣x),∴y与x之间的函数关系式为y=﹣+5x,∵y=﹣+5x=﹣,∴x=5时,y有最大值为.20.解:(1)如图①,AD⊥BC,∵△ABC为等边三角形,AB=2,∴∠B=60°,BC=AB=2,∵AD⊥BC,∴∠ADB=90°,在Rt△ABD中,=sin B=sin60°,∴=,∴AD=,∴△ABC的面积=AB•AD=×2×=,故答案为:;(2)如图②,过点D作DH⊥BC于点H,∵∠ABC=90°,BD是△ABC的角平分线,∴∠DBC=∠ABD=45°,∵DE⊥BD,∴∠BDE=90°,∴∠DEB+∠DBE=90°,∴∠DEB=90°﹣∠DBE=90°﹣45°=45°,∴BD=ED,∵DH⊥BC,∴BH=EH,∴DH=BE=BH=EH,设DH=BH=EH=a,∵∠ABC=90°,∴AB⊥BC,∵DH⊥BC,∴AB∥DH,∴△CDH∽△CAB,∴==,∵AD=1,AC=3,∴CD=3﹣1=2,∴==,∴AB=a,CE=a,∴BC=CE+BE=a+2a=3a,∵AB2+BC2=AC2,∴a2+9a2=9,∴a2=1,∴S阴影=S△ABC﹣S△BDE=AB•BC﹣BE•DH=×a•3a﹣×2a•a=a2﹣a2=a2=1;(3)①设AC与BD相交于点E,连接OB,OA,OC,过点O作OH⊥AB于点H,∵∠ADB=∠BDC=60°,∴AB=BC,∠BAC=∠BDC=60°,∴△ABC是等边三角形,∴∠ACB=60°,AB=AC=BC,在△ABO和△ACO中,,∴△ABO≌△ACO(SSS),同理△ABO≌△CBO(SSS),∴S△ABO=S△ACO=S△CBO,∴S△ABC=3S△ABO,∵∠AOB=2∠ACB,∴∠AOB=120°,在Rt△OAH和Rt△OBH中,,∴Rt△OAH≌Rt△OBH(HL),∴∠AOH=∠BOH,AH=BH,在Rt△OAH中,OA=4,∠AOH=∠AOB=60°,∴cos∠AOH=cos60°==,sin∠AOH=sin60°==,∴OH=OA=2,AH=OA=2,∴AB=2AH=4,∴S△ABC=3S△ABO=3××4×2=12,∵∠ABE=∠DBA,∠BAE=∠BDA=60°,∴△ABE∽△DBA,∴===,即S△DBA=S△ABE,∵∠CBE=∠DBC,∠BCE=∠BDC=60°,∴△CBE∽△DBC,∴===,即S△DBC=S△CBE,∴S四边形ABCD=S△DBA+S△DBC=S△ABE+S△CBE,=(S△ABE+S△CBE)=S△ABC=×12=x2,∴S△ADC=S四边形ABCD﹣S△ABC=x2﹣12,即y=x2﹣12;∵BD的长度大于AB,小于等于直径,∴4<x≤8,∴y与x之间的函数关系式为y=x2﹣12(4<x≤8);②由①知,y与x之间的函数关系式为y=x2﹣12,则对称轴为y轴,∵>0,∴x>0时,y随x的增大而增大,∵4<x<8,∴当x=8时,y有最大值,即当BD为⊙O的直径时,y取最大值,即y=×82﹣12=4,∴花卉区域△ADC面积的最大值是4.。
1.如图,四边形ABCD内接于⊙O,AB是⊙O的直径,AC和BD相交于点E,且DC2=CE•CA.〔1〕求证:BC=CD;〔2〕分别延长AB,DC交于点P,过点A作AF⊥CD交CD的延长线于点F,假设PB=OB,CD =,求DF的长.2.如图,AB是⊙O的直径,弦CD⊥AB于H,过CD延长线上一点E作⊙O的切线交AB的延长线于F.切点为G,连接AG交CD于K.〔1〕求证:KE=GE;〔2〕假设=KD·GE,试判断AC与EF的位置关系,并说明理由;〔3〕在〔2〕的条件下,假设sinE=,AK=,求FG的长.3.如图,AB是⊙O的直径,点C是⊙O上一点,AD与过点C的切线垂直,垂足为点D,直线DC与AB的延长线相交于点P,弦CE平分∠ACB,交AB于点F,连接BE.(1)求证:AC 平分∠DAB ;(2)求证:△PCF 是等腰三角形; (3)假设tan ∠ABC=34,BE=72,求线段PC 的长.4.5.:如图,在半径为4的⊙O 中,AB ,CD 是两条直径,M 为OB 的中点,CM 的延长线交⊙O 于点E ,且EM >M C ,连结DE ,DE=。
(1)求证:AM·MB=EM·MC;〔2〕求EM的长;〔3〕求sin∠EOB的值。
6.如图,AE切⊙O于点E,AT交⊙O于点M,N,线段OE交AT于点C,OB⊥AT于点B,∠EAT=30°,AE=3,MN=2.〔1〕求∠COB的度数;〔2〕求⊙O的半径R;〔3〕点F在⊙O上〔是劣弧〕,且EF=5,把△OBC经过平移、旋转和相似变换后,使它的两个顶点分别与点E,F重合.在EF的同一侧,这样的三角形共有多少个?你能在其中找出另一个顶点在⊙O上的三角形吗?请在图中画出这个三角形,并求出这个三角形与△OBC的周长之比.7.如图,AB是半径O的直径,AB=2.射线AM、BN为半圆O的切线.在AM上取一点D,连接BD交半圆于点C,连接AC.过O点作BC的垂线OE,垂足为点E,与BN相交于点F.过D点作半圆O的切线DP,切点为P,与BN相交于点Q.〔1〕求证:△ABC∽△OFB;〔2〕当△ABD与△BFO的面枳相等时,求BQ的长;(3)求证:当D在AM上移动时〔A点除外〕,点Q始终是线段BF的中点8.上异于A,C的一个动点,射线AP交l于点F,连接PC与PD,PD交AB于点G.〔1〕求证:△PAC∽△PDF;〔2〕假设AB=5,,求PD的长;〔3〕在点P运动过程中,设,求与之间的函数关系式.〔不要求写出的取值范围〕1.【解答】:〔1〕证明:∵DC2=CE•CA,∴=,△CDE∽△CAD,∴∠CDB=∠DBC,∵四边形ABCD内接于⊙O,∴BC=CD;〔2〕解:如图,连接OC,∵BC=CD,∴∠DAC=∠CAB,又∵AO=CO,∴∠CAB=∠ACO,∴∠DAC=∠ACO,∴AD∥OC,∴=,∵PB=OB,CD=,∴=∴PC=4又∵PC•PD=PB•PA∴PA=4也就是半径OB=4,在RT△ACB中,AC===2,∵AB是直径,∴∠ADB=∠ACB=90°∴∠FDA+∠BDC=90°∠CBA+∠CAB=90°∵∠BDC=∠CAB∴∠FDA=∠CBA又∵∠AFD=∠ACB=90°∴△AFD∽△ACB∴在Rt△AFP中,设FD=x,那么AF =,∴在RT△APF 中有,,求得DF =.2解:〔1〕如答图1,连接OG.∵EG为切线,∴∠KGE+∠OGA=90°,∵CD⊥AB,∴∠AKH+∠OAG=90°,又OA=OG,∴∠OGA=∠OAG,∴∠KGE=∠AKH=∠GKE,∴KE=GE.〔2〕AC∥EF,理由为:连接GD,如答图2所示.∵KG2=KD GE,即=,∴=,又∠KGE=∠GKE,∴△GKD∽△EGK,∴∠E=∠AGD,又∠C=∠AGD,∴∠E=∠C,∴AC∥EF;〔3〕连接OG,OC,如答图3所示.sinE=sin∠ACH=,设AH=3t,那么AC=5t,CH=4t,∵KE=GE,AC∥EF,∴CK=AC=5t,∴HK=CK﹣CH=t.在Rt△AHK中,根据勾股定理得AH2+HK2=AK2,即〔3t〕2+t2=〔〕2,解得t=.设⊙O半径为r,在Rt△OCH中,OC=r,OH=r﹣3t,CH=4t,由勾股定理得:OH2+CH2=OC2,即〔r﹣3t〕2+〔4t〕2=r2,解得r=t=.∵EF为切线,∴△OGF为直角三角形,在Rt△OGF中,OG=r=,tan∠OFG=tan∠CAH==,∴FG===..45.6.7.8.。
一、圆的综合真题与模拟题分类汇编(难题易错题)1.在⊙O 中,点C是AB上的一个动点(不与点A,B重合),∠ACB=120°,点I是∠ABC的内心,CI的延长线交⊙O于点D,连结AD,BD.(1)求证:AD=BD.(2)猜想线段AB与DI的数量关系,并说明理由.(3)若⊙O的半径为2,点E,F是AB的三等分点,当点C从点E运动到点F时,求点I 随之运动形成的路径长.23【答案】(1)证明见解析;(2)AB=DI,理由见解析(3【解析】分析:(1)根据内心的定义可得CI平分∠ACB,可得出角相等,再根据圆周角定理,可证得结论;(2)根据∠ACB=120°,∠ACD=∠BCD,可求出∠BAD的度数,再根据AD=BD,可证得△ABD是等边三角形,再根据内心的定义及三角形的外角性质,证明∠BID=∠IBD,得出ID=BD,再根据AB=BD,即可证得结论;(3)连接DO,延长DO根据题意可知点I随之运动形成的图形式以D为圆心,DI1为半径的弧,根据已知及圆周角定理、解直角三角形,可求出AD的长,再根据点E,F是弧AB ⌢的三等分点,△ABD是等边三角形,可证得∠DAI1=∠AI1D,然后利用弧长的公式可求出点I 随之运动形成的路径长.详解:(1)证明:∵点I是∠ABC的内心∴CI平分∠ACB∴∠ACD=∠BCD∴弧AD=弧BD∴AD=BD(2)AB=DI理由:∵∠ACB=120°,∠ACD=∠BCD∴∠BCD=×120°=60°∵弧BD=弧BD∴∠DAB=∠BCD=60°∵AD=BD∴△ABD是等边三角形,∴AB=BD,∠ABD=∠C∵I是△ABC的内心∴BI平分∠ABC∴∠CBI=∠ABI∵∠BID=∠C+∠CBI,∠IBD=∠ABI+∠ABD∴∠BID=∠IBD∴ID=BD∵AB=BD∴AB=DI(3)解:如图,连接DO,延长DO根据题意可知点I随之运动形成的图形式以D为圆心,DI1为半径的弧∵∠ACB=120°,弧AD=弧BD∴∠AED=∠ACB=×120°=60°∵圆的半径为2,DE是直径∴DE=4,∠EAD=90°∴AD=sin∠AED×DE=×4=2∵点E,F是弧AB ⌢的三等分点,△ABD是等边三角形,∴∠ADB=60°∴弧AB的度数为120°,∴弧AM、弧BF的度数都为为40°∴∠ADM=20°=∠FAB∴∠DAI1=∠FAB+∠DAB=80°∴∠AI1D=180°-∠ADM-∠DAI1=180°-20°-80°=80°∴∠DAI1=∠AI1D∴AD=I1D=2∴弧I1I2的长为:点睛:此题是一道圆的综合题,有一定的难度,熟记圆的相关性质与定理,并对圆中的弦、弧、圆心角、圆周角等进行灵活转化是解题关键,注意数形结合思想的渗透.2.如图,已知AB是⊙O的直径,点C为圆上一点,点D在OC的延长线上,连接DA,交BC的延长线于点E,使得∠DAC=∠B.(1)求证:DA是⊙O切线;(2)求证:△CED∽△ACD;(3)若OA=1,sinD=13,求AE的长.【答案】(1)证明见解析;(22【解析】分析:(1)由圆周角定理和已知条件求出AD⊥AB即可证明DA是⊙O切线;(2)由∠DAC=∠DCE,∠D=∠D可知△DEC∽△DCA;(3)由题意可知AO=1,OD=3,DC=2,由勾股定理可知AD=2,故此可得到DC2=DE•AD,故此可求得DE的长,于是可求得AE的长.详解:(1)∵AB为⊙O的直径,∴∠ACB=90°,∴∠CAB+∠B=90°.∵∠DAC=∠B,∴∠CAB+∠DAC=90°,∴AD⊥AB.∵OA是⊙O半径,∴DA为⊙O的切线;(2)∵OB=OC,∴∠OCB=∠B.∵∠DCE=∠OCB,∴∠DCE=∠B.∵∠DAC=∠B,∴∠DAC=∠DCE.∵∠D=∠D,∴△CED∽△ACD;(3)在Rt△AOD中,OA=1,sin D=13,∴OD=OAsinD=3,∴CD=OD﹣OC=2.∵AD=22OD OA-=22.又∵△CED∽△ACD,∴AD CDCD DE=,∴DE=2CDAD=2,∴AE=AD﹣DE=22﹣2=2.点睛:本题主要考查的是切线的性质、圆周角定理、勾股定理的应用、相似三角形的性质和判定,证得△DEC∽△DCA是解题的关键.3.如图,已知AB为⊙O直径,D是BC的中点,DE⊥AC交AC的延长线于E,⊙O的切线交AD的延长线于F.(1)求证:直线DE与⊙O相切;(2)已知DG⊥AB且DE=4,⊙O的半径为5,求tan∠F的值.【答案】(1)证明见解析;(2)2.【解析】试题分析:(1)连接BC、OD,由D是弧BC的中点,可知:OD⊥BC;由OB为⊙O的直径,可得:BC⊥AC,根据DE⊥AC,可证OD⊥DE,从而可证DE是⊙O的切线;(2)直接利用勾股定理得出GO的长,再利用锐角三角函数关系得出tan∠F的值.试题解析:解:(1)证明:连接OD,BC,∵D是弧BC的中点,∴OD垂直平分BC,∵AB 为⊙O的直径,∴AC⊥BC,∴OD∥AE.∵DE⊥AC,∴OD⊥DE,∵OD为⊙O的半径,∴DE 是⊙O的切线;(2)解:∵D是弧BC的中点,∴DC DB=,∴∠EAD=∠BAD,∵DE⊥AC,DG⊥AB且DE=4,∴DE=DG=4,∵DO=5,∴GO=3,∴AG=8,∴tan∠ADG=84=2,∵BF是⊙O的切线,∴∠ABF=90°,∴DG∥BF,∴tan∠F=tan∠ADG=2.点睛:此题主要考查了切线的判定与性质以及勾股定理等知识,正确得出AG,DG的长是解题关键.4.如图,A是以BC为直径的⊙O上一点,AD⊥BC于点D,过点B作⊙O的切线,与CA 的延长线相交于点E,G是AD的中点,连结CG并延长与BE相交于点F,延长AF与CB的延长线相交于点P.(1)求证:BF=EF:(2)求证:PA是⊙O的切线;(3)若FG=BF,且⊙O的半径长为32,求BD的长度.【答案】(1)证明见解析;(2) 证明见解析;(3)2【解析】分析:(1)利用平行线截三角形得相似三角形,得△BFC∽△DGC且△FEC∽△GAC,得到对应线段成比例,再结合已知条件可得BF=EF;(2)利用直角三角形斜边上的中线的性质和等边对等角,得到∠FAO=∠EBO,结合BE是圆的切线,得到PA⊥OA,从而得到PA是圆O的切线;(3)点F作FH⊥AD于点H,根据前两问的结论,利用三角形的相似性质即可以求出BD 的长度.详解:证明:(1)∵BC是圆O的直径,BE是圆O的切线,∴EB⊥BC.又∵AD⊥BC,∴AD∥BE.∴△BFC∽△DGC,△FEC∽△GAC,∴BFDG=CFCG,EFAG=CFCG,∴BFDG=EFAG,∵G是AD的中点,∴BF=EF;(2)连接AO,AB.∵BC是圆O的直径,∴∠BAC=90°,由(1)得:在Rt△BAE中,F是斜边BE的中点,∴AF=FB=EF,可得∠FBA=∠FAB,又∵OA=OB,∴∠ABO=∠BAO,∵BE是圆O的切线,∴∠EBO=90°,∴∠FBA+∠ABO=90°,∴∠FAB+∠BAO=90°,即∠FAO=90°,∴PA⊥OA,∴PA是圆O的切线;(3)过点F作FH⊥AD于点H,∵BD⊥AD,FH⊥AD,∴FH∥BC,由(2),知∠FBA=∠BAF,∴BF=AF.∵BF=FG,∴AF=FG,∴△AFG是等腰三角形.∵FH⊥AD,∴AH=GH,∴DG =2HG . 即12HG DG =, ∵FH ∥BD ,BF ∥AD ,∠FBD =90°,∴四边形BDHF 是矩形,∴BD =FH ,∵FH ∥BC∴△HFG ∽△DCG ,∴12FH HG CD DG ==, 即12BD CD =, ∴23 2.153≈, ∵O 的半径长为32,∴BC =62,∴BD =13BC =22. 点睛:本题考查了切线的判定、勾股定理、圆周角定理、相似三角形的判定与性质.结合已知条件准确对图形进行分析并应用相应的图形性质是解题的关键.5.如图,正三角形ABC 内接于⊙O ,P 是BC 上的一点,且PB <PC ,PA 交BC 于E ,点F 是PC 延长线上的点,CF=PB ,AB=13,PA=4.(1)求证:△ABP ≌△ACF ;(2)求证:AC 2=PA•AE ;(3)求PB 和PC 的长.【答案】(1)证明见解析;(2)证明见解析;(3)PB=1,PC=3.【解析】试题分析:(1)先根据等边三角形的性质得到AB=AC ,再利用圆的内接四边形的性质得∠ACF=∠ABP ,于是可根据“SAS”判断△ABP ≌△ACF ;(2)先根据等边三角形的性质得到∠ABC=∠ACB=60°,再根据圆周角定理得∠APC=∠ABB=60°,加上∠CAE=∠PAC ,于是可判断△ACE ∽△APC ,然后利用相似比即可得到结论;(3)先利用AC 2=PA •AE 计算出AE=134 ,则PE=AP-AE=34,再证△APF 为等边三角形,得到PF=PA=4,则有PC+PB=4,接着证明△ABP ∽△CEP ,得到PB•PC=PE•A=3,然后根据根与系数的关系,可把PB 和PC 看作方程x 2-4x+3=0的两实数解,再解此方程即可得到PB 和PC 的长.试题解析:(1)∵∠ACP+∠ABP=180°,又∠ACP+∠ACF=180°,∴∠ABP=∠ACF在ABP ∆和ACF ∆中,∵AB=AC ,∠ABP=∠ACF , CF PB =∴ABP ∆≌ACF ∆.(2)在AEC ∆和ACP ∆中,∵∠APC=∠ABC ,而ABC ∆是等边三角形,故∠ACB=∠ABC=60º,∴∠ACE =∠APC .又∠CAE =∠PAC ,∴AEC ∆∽ACP ∆ ∴AC AE AP AC=,即2AC PA AE =⋅. 由(1)知ABP ∆≌ACF ∆,∴∠BAP=∠CAF , CF PB =∴∠BAP+∠PAC=∠CAF+∠PAC∴∠PAF=∠BAC=60°,又∠APC =∠ABC =60°.∴APF ∆是等边三角形∴AP=PF∴4PB PC PC CF PF PA +=+===在PAB ∆与CEP ∆中,∵∠BAP=∠ECP ,又∠APB=∠EPC=60°,∴PAB ∆∽CEP ∆ ∴PB PA PE PC=,即PB PC PA PE ⋅=⋅ 由(2)2AC PA AE =⋅, ∴()22AC PB PC PA AE PA PE PA AE PE PA +⋅=⋅+⋅=+= ∴()22AC PB PC PA AE PA PE PA AE PE PA +⋅=⋅+⋅=+=∴22222243PB PC PA AC PA AB ⋅=-=-=-=因此PB 和PC 的长是方程2430x x --=的解.解这个方程,得11x =, 23x =.∵PB<PB ,∴PB=11x =,PC=23x =,∴PB 和PC 的长分别是1和3。
中考数学圆的综合-经典压轴题及详细答案一、圆的综合1.如图,⊙O是△ABC的外接圆,点E为△ABC内切圆的圆心,连接AE的延长线交BC于点F,交⊙O于点D;连接BD,过点D作直线DM,使∠BDM=∠DAC.(1)求证:直线DM是⊙O的切线;(2)若DF=2,且AF=4,求BD和DE的长.【答案】(1)证明见解析(2)23【解析】【分析】(1)根据垂径定理的推论即可得到OD⊥BC,再根据∠BDM=∠DBC,即可判定BC∥DM,进而得到OD⊥DM,据此可得直线DM是⊙O的切线;(2)根据三角形内心的定义以及圆周角定理,得到∠BED=∠EBD,即可得出DB=DE,再判定△DBF∽△DAB,即可得到DB2=DF•DA,据此解答即可.【详解】(1)如图所示,连接OD.∵点E是△ABC的内心,∴∠BAD=∠CAD,∴¶¶BD CD=,∴OD⊥BC.又∵∠BDM=∠DAC,∠DAC=∠DBC,∴∠BDM=∠DBC,∴BC∥DM,∴OD⊥DM.又∵OD为⊙O半径,∴直线DM是⊙O的切线.(2)连接BE.∵E为内心,∴∠ABE=∠CBE.∵∠BAD=∠CAD,∠DBC=∠CAD,∴∠BAD=∠DBC,∴∠BAE+∠ABE=∠CBE+∠DBC,即∠BED=∠DBE,∴BD=DE.又∵∠BDF=∠ADB(公共角),∴△DBF∽△DAB,∴DF DBDB DA=,即DB2=DF•DA.∵DF=2,AF=4,∴DA=DF+AF=6,∴DB2=DF•DA=12,∴DB=DE=23.【点睛】本题主要考查了三角形的内心与外心,圆周角定理以及垂径定理的综合应用,解题时注意:平分弦所对一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧;三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.2.如图,已知△ABC内接于⊙O,BC交直径AD于点E,过点C作AD的垂线交AB的延长线于点G,垂足为F.连接OC.(1)若∠G=48°,求∠ACB的度数;(2)若AB=AE,求证:∠BAD=∠COF;(3)在(2)的条件下,连接OB,设△AOB的面积为S1,△ACF的面积为S2.若tan∠CAF=12,求12SS的值.【答案】(1)48°(2)证明见解析(3)3 4【解析】【分析】(1)连接CD,根据圆周角定理和垂直的定义可得结论;(2)先根据等腰三角形的性质得:∠ABE=∠AEB,再证明∠BCG=∠DAC,可得»»»CD PB PD==,则所对的圆周角相等,根据同弧所对的圆周角和圆心角的关系可得结论;(3)过O作OG⊥AB于G,证明△COF≌△OAG,则OG=CF=x,AG=OF,设OF=a,则OA=OC=2x-a,根据勾股定理列方程得:(2x-a)2=x2+a2,则a=34x,代入面积公式可得结论.【详解】(1)连接CD,∵AD是⊙O的直径,∴∠ACD=90°,∴∠ACB+∠BCD=90°,∵AD⊥CG,∴∠AFG=∠G+∠BAD=90°,∵∠BAD=∠BCD,∴∠ACB=∠G=48°;(2)∵AB=AE,∴∠ABE=∠AEB,∵∠ABC=∠G+∠BCG,∠AEB=∠ACB+∠DAC,由(1)得:∠G=∠ACB,∴∠BCG=∠DAC,∴»»CD PB=,∵AD是⊙O的直径,AD⊥PC,∴»»CD PD=,∴»»»CD PB PD==,∴∠BAD=2∠DAC,∵∠COF=2∠DAC,∴∠BAD=∠COF;(3)过O作OG⊥AB于G,设CF=x,∵tan∠CAF=12=CF AF,∴AF=2x,∵OC=OA,由(2)得:∠COF=∠OAG,∵∠OFC=∠AGO=90°,∴△COF≌△OAG,∴OG=CF=x,AG=OF,设OF=a,则OA=OC=2x﹣a,Rt△COF中,CO2=CF2+OF2,∴(2x﹣a)2=x2+a2,a=34 x,∴OF=AG=34 x,∵OA=OB,OG⊥AB,∴AB=2AG=32x,∴1213··3 22 1·24·2AB OG x xSS x xCF AF===.【点睛】圆的综合题,考查了三角形的面积、垂径定理、角平分线的性质、三角形全等的性质和判定以及解直角三角形,解题的关键是:(1)根据圆周角定理找出∠ACB+∠BCD=90°;(2)根据外角的性质和圆的性质得:»»»==;(3)利用三角函数设未知数,根CD PB PD据勾股定理列方程解决问题.3.如图,在平面直角坐标系xoy中,E(8,0),F(0 , 6).(1)当G(4,8)时,则∠FGE= °(2)在图中的网格区域内找一点P,使∠FPE=90°且四边形OEPF被过P点的一条直线分割成两部分后,可以拼成一个正方形.要求:写出点P点坐标,画出过P点的分割线并指出分割线(不必说明理由,不写画法).【答案】(1)90;(2)作图见解析,P(7,7),PH是分割线.【解析】试题分析:(1)根据勾股定理求出△FEG的三边长,根据勾股定理逆定理可判定△FEG是直角三角形,且∠FGE="90" °.(2)一方面,由于∠FPE=90°,从而根据直径所对圆周角直角的性质,点P在以EF为直径的圆上;另一方面,由于四边形OEPF被过P点的一条直线分割成两部分后,可以拼成一个正方形,从而OP是正方形的对角线,即点P在∠FOE的角平分线上,因此可得P(7,7),PH是分割线.试题解析:(1)连接FE,∵E(8,0),F(0 , 6),G(4,8),∴根据勾股定理,得FG=,EG=,FE=10.∵,即.∴△FEG是直角三角形,且∠FGE=90 °.(2)作图如下:P(7,7),PH是分割线.考点:1.网格问题;2.勾股定理和逆定理;3.作图(设计);4.圆周角定理.4.如图,已知在△ABC中,AB=15,AC=20,tanA=12,点P在AB边上,⊙P的半径为定长.当点P与点B重合时,⊙P恰好与AC边相切;当点P与点B不重合时,⊙P与AC边相交于点M和点N.(1)求⊙P的半径;(2)当AP=5△APM与△PCN是否相似,并说明理由.【答案】(1)半径为52)相似,理由见解析.【解析】【分析】(1)如图,作BD⊥AC,垂足为点D,⊙P与边AC相切,则BD就是⊙P的半径,利用解直角三角形得出BD与AD的关系,再利用勾股定理可求得BD的长;(2)如图,过点P作PH⊥AC于点H,作BD⊥AC,垂足为点D,根据垂径定理得出MN=2MH,PM=PN,再利用勾股定理求出PH、AH、MH、MN的长,从而求出AM、NC的长,然后求出AMMP、PNNC的值,得出AMMP=PNNC,利用两边对应成比例且夹角相等的两三角形相似即可证明.【详解】(1)如图,作BD ⊥AC ,垂足为点D ,∵⊙P 与边AC 相切,∴BD 就是⊙P 的半径,在Rt △ABD 中,tanA=1BD 2AD =, 设BD=x ,则AD=2x ,∴x 2+(2x)2=152,解得:5∴半径为5(2)相似,理由见解析,如图,过点P 作PH ⊥AC 于点H ,作BD ⊥AC ,垂足为点D ,∴PH 垂直平分MN ,∴PM=PN ,在Rt △AHP 中,tanA=12PH AH =, 设PH=y ,AH=2y ,y 2+(2y )2=(52解得:y=6(取正数),∴PH=6,AH=12,在Rt △MPH 中, ()22356-,∴MN=2MH=6,∴AM=AH-MH=12-3=9,NC=AC-MN-AM=20-6-9=5, ∴3535AM MP ==,35PN NC =, ∴AM MP =PN NC, 又∵PM=PN ,∴∠PMN=∠PNM ,∴∠AMP=∠PNC ,∴△AMP ∽△PNC.【点睛】本题考查了解直角三角形、垂径定理、相似三角形的判定与性质等,综合性较强,有一定的难度,正确添加辅助线、灵活应用相关的性质与定理是解题的关键. 5.在⊙O 中,点C 是AB u u u r 上的一个动点(不与点A ,B 重合),∠ACB=120°,点I 是∠ABC 的内心,CI 的延长线交⊙O 于点D ,连结AD,BD .(1)求证:AD=BD .(2)猜想线段AB 与DI 的数量关系,并说明理由.(3)若⊙O 的半径为2,点E ,F 是»AB 的三等分点,当点C 从点E 运动到点F 时,求点I 随之运动形成的路径长.【答案】(1)证明见解析;(2)AB=DI ,理由见解析(323 【解析】分析:(1)根据内心的定义可得CI 平分∠ACB ,可得出角相等,再根据圆周角定理,可证得结论;(2)根据∠ACB=120°,∠ACD=∠BCD ,可求出∠BAD 的度数,再根据AD=BD ,可证得△ABD 是等边三角形,再根据内心的定义及三角形的外角性质,证明∠BID=∠IBD ,得出ID=BD ,再根据AB=BD ,即可证得结论;(3)连接DO ,延长DO 根据题意可知点I 随之运动形成的图形式以D 为圆心,DI 1为半径的弧,根据已知及圆周角定理、解直角三角形,可求出AD 的长,再根据点E ,F 是 弧AB ⌢的三等分点,△ABD 是等边三角形,可证得∠DAI 1=∠AI 1D ,然后利用弧长的公式可求出点I 随之运动形成的路径长.详解:(1)证明:∵点I 是∠ABC 的内心∴CI 平分∠ACB∴∠ACD=∠BCD∴弧AD=弧BD∴AD=BD(2)AB=DI理由:∵∠ACB=120°,∠ACD=∠BCD∴∠BCD=×120°=60°∵弧BD=弧BD∴∠DAB=∠BCD=60°∵AD=BD∴△ABD是等边三角形,∴AB=BD,∠ABD=∠C∵I是△ABC的内心∴BI平分∠ABC∴∠CBI=∠ABI∵∠BID=∠C+∠CBI,∠IBD=∠ABI+∠ABD∴∠BID=∠IBD∴ID=BD∵AB=BD∴AB=DI(3)解:如图,连接DO,延长DO根据题意可知点I随之运动形成的图形式以D为圆心,DI1为半径的弧∵∠ACB=120°,弧AD=弧BD∴∠AED=∠ACB=×120°=60°∵圆的半径为2,DE是直径∴DE=4,∠EAD=90°∴AD=sin∠AED×DE=×4=2∵点E,F是弧AB ⌢的三等分点,△ABD是等边三角形,∴∠ADB=60°∴弧AB的度数为120°,∴弧AM、弧BF的度数都为为40°∴∠ADM=20°=∠FAB∴∠DAI1=∠FAB+∠DAB=80°∴∠AI1D=180°-∠ADM-∠DAI1=180°-20°-80°=80°∴∠DAI1=∠AI1D∴AD=I1D=2∴弧I1I2的长为:点睛:此题是一道圆的综合题,有一定的难度,熟记圆的相关性质与定理,并对圆中的弦、弧、圆心角、圆周角等进行灵活转化是解题关键,注意数形结合思想的渗透.6.如图1,在Rt△ABC中,AC=8cm,BC=6cm,D、E分别为边AB、BC的中点,连结DE,点P从点A出发,沿折线AD﹣DE运动,到点E停止,点P在AD上以5cm/s的速度运动,在DE上以1cm/s的速度运动,过点P作PQ⊥AC于点Q,以PQ为边作正方形PQMN.设点P的运动时间为t(s).(1)当点P在线段DE上运动时,线段DP的长为_____cm.(用含t的代数式表示)(2)当正方形PQMN与△ABC重叠部分图形为五边形时,设五边形的面积为S(cm2),求S与t的函数关系式,并写出t的取值范围.(3)如图2,若点O在线段BC上,且CO=1,以点O为圆心,1cm长为半径作圆,当点P 开始运动时,⊙O的半径以0.2cm/s的速度开始不断增大,当⊙O与正方形PQMN的边所在直线相切时,求此时的t值.【答案】(1)t﹣1;(2)S=﹣38t2+3t+3(1<t<4);(3)t=103s.【解析】分析:(1)根据勾股定理求出AB,根据D为AB中点,求出AD,根据点P在AD上的速度,即可求出点P在AD段的运动时间,再求出点P在DP段的运动时间,最后根据DE段运动速度为1c m/s ,即可求出DP ;(2)由正方形PQMN 与△ABC 重叠部分图形为五边形,可知点P 在DE 上,求出DP =t ﹣1,PQ =3,根据MN ∥BC ,求出FN 的长,从而得到FM 的长,再根据S =S 梯形FMHD +S 矩形DHQP ,列出S 与t 的函数关系式即可;(3)当圆与边PQ 相切时,可求得r =PE =5﹣t ,然后由r 以0.2c m/s 的速度不断增大,r =1+0.2t ,然后列方程求解即可;当圆与MN 相切时,r =CM =8﹣t =1+0.2t ,从而可求得t 的值.详解:(1)由勾股定理可知:AB =22AC BC +=10. ∵D 、E 分别为AB 和BC 的中点,∴DE =12AC =4,AD =12AB =5, ∴点P 在AD 上的运动时间=55=1s ,当点P 在线段DE 上运动时,DP 段的运动时间为(t ﹣1)s . ∵DE 段运动速度为1c m/s ,∴DP =(t ﹣1)cm .故答案为t ﹣1.(2)当正方形PQMN 与△ABC 重叠部分图形为五边形时,有一种情况,如下图所示.当正方形的边长大于DP 时,重叠部分为五边形,∴3>t ﹣1,t <4,DP >0,∴t ﹣1>0,解得:t >1,∴1<t <4.∵△DFN ∽△ABC ,∴DN FN =AC BC =86=43. ∵DN =PN ﹣PD ,∴DN =3﹣(t ﹣1)=4﹣t , ∴4t FN -=43,∴FN =344t -(), ∴FM =3﹣344t -()=34t , S =S 梯形FMHD +S 矩形DHQP , ∴S =12×(34t +3)×(4﹣t )+3(t ﹣1)=﹣38t 2+3t +3(1<t <4). (3)①当圆与边PQ 相切时,如图:当圆与PQ相切时,r=PE,由(1)可知,PD=(t﹣1)cm,∴PE=DE﹣DP=4﹣(t﹣1)=(5﹣t)cm.∵r以0.2c m/s的速度不断增大,∴r=1+0.2t,∴1+0.2t=5﹣t,解得:t=103s.②当圆与MN相切时,r=CM.由(1)可知,DP=(t﹣1)cm,则PE=CQ=(5﹣t)cm,MQ=3cm,∴MC=MQ+CQ=5﹣t+3=(8﹣t)cm,∴1+0.2t=8﹣t,解得:t=356s.∵P到E点停止,∴t﹣1≤4,即t≤5,∴t=356s(舍).综上所述:当t=103s时,⊙O与正方形PQMN的边所在直线相切.点睛:本题主要考查的是圆的综合应用,解答本题主要应用了勾股定理、相似三角形的性质和判定、正方形的性质,直线和圆的位置关系,依据题意列出方程是解题的关键.7.如图,AB是⊙O的直径,弦BC=OB,点D是»AC上一动点,点E是CD中点,连接BD 分别交OC,OE于点F,G.(1)求∠DGE的度数;(2)若CFOF=12,求BFGF的值;(3)记△CFB ,△DGO 的面积分别为S 1,S 2,若CFOF =k ,求12S S 的值.(用含k 的式子表示)【答案】(1)∠DGE =60°;(2)72;(3)12S S =211k k k +++. 【解析】【分析】(1)根据等边三角形的性质,同弧所对的圆心角和圆周角的关系,可以求得∠DGE 的度数;(2)过点F 作FH ⊥AB 于点H 设CF =1,则OF =2,OC =OB =3,根据勾股定理求出BF 的长度,再证得△FGO ∽△FCB ,进而求得BF GF的值; (3)根据题意,作出合适的辅助线,然后根据三角形相似、勾股定理可以用含k 的式子表示出12S S 的值. 【详解】解:(1)∵BC =OB =OC ,∴∠COB =60°,∴∠CDB =12∠COB =30°, ∵OC =OD ,点E 为CD 中点,∴OE ⊥CD ,∴∠GED =90°,∴∠DGE =60°;(2)过点F 作FH ⊥AB 于点H设CF =1,则OF =2,OC =OB =3∵∠COB =60°∴OH =12OF =1, ∴HF 33HB =OB ﹣OH =2,在Rt △BHF 中,BF 22HB HF 7=+=由OC =OB ,∠COB =60°得:∠OCB =60°,又∵∠OGB =∠DGE =60°,∴∠OGB =∠OCB ,∵∠OFG =∠CFB ,∴△FGO ∽△FCB , ∴OF GF BF CF=, ∴, ∴BF GF =72. (3)过点F 作FH ⊥AB 于点H ,设OF =1,则CF =k ,OB =OC =k+1,∵∠COB =60°,∴OH =12OF=12, ∴HF=,HB =OB ﹣OH =k+12, 在Rt △BHF 中, BF=由(2)得:△FGO ∽△FCB , ∴GO OF CB BF =,即1GO k =+,∴GO =过点C 作CP ⊥BD 于点P∵∠CDB =30°∴PC =12CD , ∵点E 是CD 中点,∴DE =12CD , ∴PC =DE ,∵DE ⊥OE , ∴12S S =BF GO=1k +=211k k k +++【点睛】圆的综合题,解答本题的关键是明确题意,找出所求问题需要的条件,利用三角形相似和勾股定理、数形结合的思想解答.8.如图1,等边△ABC的边长为3,分别以顶点B、A、C为圆心,BA长为半径作¶AC、¶CB、¶BA,我们把这三条弧所组成的图形称作莱洛三角形,显然莱洛三角形仍然是轴对称图形,设点l为对称轴的交点.(1)如图2,将这个图形的顶点A与线段MN作无滑动的滚动,当它滚动一周后点A与端点N重合,则线段MN的长为;(2)如图3,将这个图形的顶点A与等边△DEF的顶点D重合,且AB⊥DE,DE=2π,将它沿等边△DEF的边作无滑动的滚动当它第一次回到起始位置时,求这个图形在运动过程中所扫过的区域的面积;(3)如图4,将这个图形的顶点B与⊙O的圆心O重合,⊙O的半径为3,将它沿⊙O的圆周作无滑动的滚动,当它第n次回到起始位置时,点I所经过的路径长为(请用含n的式子表示)【答案】(1)3π;(2)27π;(3)3.【解析】试题分析:(1)先求出¶AC的弧长,继而得出莱洛三角形的周长为3π,即可得出结论;(2)先判断出莱洛三角形等边△DEF绕一周扫过的面积如图所示,利用矩形的面积和扇形的面积之和即可;(3)先判断出莱洛三角形的一个顶点和O重合旋转一周点I的路径,再用圆的周长公式即可得出.试题解析:解:(1)∵等边△ABC 的边长为3,∴∠ABC =∠ACB =∠BAC =60°,¶¶¶AC BC AB ==,∴¶¶AC BC l l ==¶AB l =603180π⨯=π,∴线段MN 的长为¶¶¶AC BC ABl l l ++=3π.故答案为3π; (2)如图1.∵等边△DEF 的边长为2π,等边△ABC 的边长为3,∴S 矩形AGHF =2π×3=6π,由题意知,AB ⊥DE ,AG ⊥AF ,∴∠BAG =120°,∴S 扇形BAG =21203360π⨯=3π,∴图形在运动过程中所扫过的区域的面积为3(S 矩形AGHF +S 扇形BAG )=3(6π+3π)=27π;(3)如图2,连接BI 并延长交AC 于D .∵I 是△ABC 的重心也是内心,∴∠DAI =30°,AD =12AC =32,∴OI =AI =3230AD cos DAI cos ∠=︒=3,∴当它第1次回到起始位置时,点I 所经过的路径是以O 为圆心,OI 为半径的圆周,∴当它第n 次回到起始位置时,点I 所经过的路径长为n •2π•3=23n π.故答案为23n π.点睛:本题是圆的综合题,主要考查了弧长公式,莱洛三角形的周长,矩形,扇形面积公式,解(1)的关键是求出¶AC 的弧长,解(2)的关键是判断出莱洛三角形绕等边△DEF 扫过的图形,解(3)的关键是得出点I 第一次回到起点时,I 的路径,是一道中等难度的题目.9.如图,在直角坐标系中,⊙M 经过原点O(0,0),点A(6,0)与点B(0,-2),点D在劣弧»OA上,连结BD 交x 轴于点C ,且∠COD =∠CBO. (1)求⊙M 的半径;(2)求证:BD 平分∠ABO ;(3)在线段BD 的延长线上找一点E ,使得直线AE 恰为⊙M 的切线,求此时点E 的坐标.【答案】(1)M 的半径r 2;(2)证明见解析;(3)点E 的坐标为262).【解析】试题分析:根据点A 和点B 的坐标得出OA 和OB 的长度,根据Rt △AOB 的勾股定理得出AB 的长度,然后得出半径;根据同弧所对的圆周角得出∠ABD=∠COD ,然后结合已知条件得出角平分线;根据角平分线得出△ABE ≌△HBE ,从而得出BH=BA=22,从而求出OH 的长度,即点E 的纵坐标,根据Rt △AOB 的三角函数得出∠ABO 的度数,从而得出∠CBO 的度数,然后根据Rt △HBE 得出HE 的长度,即点E 的横坐标.试题解析:(1)∵点A 为(6,0),点B 为(0,-2) ∴OA=6OB=2 ∴根据Rt △AOB 的勾股定理可得:AB=22∴e M 的半径r=12AB=2. (2)根据同弧所对的圆周角相等可得:∠ABD=∠COD ∵∠COD=∠CBO ∴∠ABD=∠CBO ∴BD 平分∠ABO(3)如图,由(2)中的角平分线可得△ABE ≌△HBE ∴BH=BA=22∴OH=22-2=2在Rt △AOB 中,3OA OB=∴∠ABO=60° ∴∠CBO=30° 在Rt △HBE 中,HE=263=∴点E 的坐标为(26,2)考点:勾股定理、角平分线的性质、圆的基本性质、三角函数.10.如图1,是用量角器一个角的操作示意图,量角器的读数从M 点开始(即M 点的读数为0),如图2,把这个量角器与一块30°(∠CAB =30°)角的三角板拼在一起,三角板的斜边AB 与量角器所在圆的直径MN 重合,现有射线C 绕点C 从CA 开始沿顺时针方向以每秒2°的速度旋转到与CB ,在旋转过程中,射线CP 与量角器的半圆弧交于E .连接BE . (1)当射线CP 经过AB 的中点时,点E 处的读数是 ,此时△BCE 的形状是 ; (2)设旋转x 秒后,点E 处的读数为y ,求y 与x 的函数关系式;(3)当CP 旋转多少秒时,△BCE 是等腰三角形?【答案】(1)60°,直角三角形;(2)y=4x(0≤x≤45);(3)7.5秒或30秒【解析】【分析】(1)根据圆周角定理即可解决问题;(2)如图2﹣2中,由题意∠ACE=2x,∠AOE=y,根据圆周角定理可知∠AOE=2∠ACE,可得y=2x(0≤x≤45);(3)分两种情形分别讨论求解即可;【详解】解:(1)如图2﹣1中,∵∠ACB=90°,OA=OB,∴OA=OB=OC,∴∠OCA=∠OAC=30°,∴∠AOE=60°,∴点E处的读数是60°,∵∠E=∠BAC=30°,OE=OB,∴∠OBE=∠E=30°,∴∠EBC=∠OBE+∠ABC=90°,∴△EBC是直角三角形;故答案为60°,直角三角形;(2)如图2﹣2中,∵∠ACE=2x,∠AOE=y,∵∠AOE=2∠ACE,∴y=4x(0≤x≤45).(3)①如图2﹣3中,当EB=EC时,EO垂直平分线段BC,∵AC⊥BC,∵EO∥AC,∴∠AOE=∠BAC=30°,∠AOE=15°,∴∠ECA=12∴x=7.5.②若2﹣4中,当BE=BC时,易知∠BEC=∠BAC=∠BCE=30°,∴∠OBE=∠OBC=60°,∵OE=OB,∴△OBE是等边三角形,∴∠BOE=60°,∴∠AOB=120°,∠ACB=60°,∴∠ACE=12∴x=30,综上所述,当CP旋转7.5秒或30秒时,△BCE是等腰三角形;【点睛】本题考查几何变换综合题、创新题目、圆周角定理、等腰三角形的判定和性质等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题,属于中考压轴题.11.如图,已知:AB是⊙O的直径,点C在⊙O上,CD是⊙O的切线,AD⊥CD于点D,E是AB延长线上一点,CE交⊙O于点F,连接OC、AC.(1)求证:AC平分∠DAO.(2)若∠DAO=105°,∠E=30°①求∠OCE的度数;②若⊙O的半径为22,求线段EF的长.【答案】(1)证明见解析;(2)①∠OCE=45°;②EF =23【解析】【试题分析】(1)根据直线与⊙O相切的性质,得OC⊥CD.又因为AD⊥CD,根据同一平面内,垂直于同一条直线的两条直线也平行,得:AD//OC. ∠DAC=∠OCA.又因为OC=OA,根据等边对等角,得∠OAC=∠OCA.等量代换得:∠DAC=∠OAC.根据角平分线的定义得:AC平分∠DAO.(2)①因为 AD//OC,∠DAO=105°,根据两直线平行,同位角相等得,中,∠E=30°,利用内角和定理,得:∠OCE=45°.∠EOC=∠DAO=105°,在OCE②作OG⊥CE于点G,根据垂径定理可得FG=CG,因为OC=2,∠OCE=45°.等腰直角三2倍,得CG=OG=2. FG=2.在Rt△OGE中,∠E=30°,得GE=23则EF=GE-FG=23【试题解析】(1)∵直线与⊙O相切,∴OC⊥CD.又∵AD⊥CD,∴AD//OC.∴∠DAC=∠OCA.又∵OC=OA,∴∠OAC=∠OCA.∴∠DAC=∠OAC.∴AC平分∠DAO.(2)解:①∵AD//OC,∠DAO=105°,∴∠EOC=∠DAO=105°∵∠E=30°,∴∠OCE=45°.②作OG⊥CE于点G,可得FG=CG∵OC=22,∠OCE=45°.∴CG=OG=2.∴FG=2.∵在Rt△OGE中,∠E=30°,∴GE=23.∴EF=GE-FG=23-2.【方法点睛】本题目是一道圆的综合题目,涉及到圆的切线的性质,平行线的性质及判定,三角形内角和,垂径定理,难度为中等.12.如图,已知AB为⊙O的直径,AB=8,点C和点D是⊙O上关于直线AB对称的两个点,连接OC、AC,且∠BOC<90°,直线BC和直线AD相交于点E,过点C作直线CG与线段AB的延长线相交于点F,与直线AD相交于点G,且∠GAF=∠GCE(1)求证:直线CG为⊙O的切线;(2)若点H为线段OB上一点,连接CH,满足CB=CH,①△CBH∽△OBC②求OH+HC的最大值【答案】(1)证明见解析;(2)①证明见解析;②5.【解析】分析:(1)由题意可知:∠CAB=∠GAF,由圆的性质可知:∠CAB=∠OCA,所以∠OCA=∠GCE,从而可证明直线CG是⊙O的切线;(2)①由于CB=CH,所以∠CBH=∠CHB,易证∠CBH=∠OCB,从而可证明△CBH∽△OBC;②由△CBH∽△OBC可知:BC HBOC BC=,所以HB=24BC,由于BC=HC,所以OH+HC=4−24BC+BC,利用二次函数的性质即可求出OH+HC的最大值.详解:(1)由题意可知:∠CAB=∠GAF,∵AB是⊙O的直径,∴∠ACB=90°∵OA=OC,∴∠CAB=∠OCA,∴∠OCA+∠OCB=90°,∵∠GAF=∠GCE,∴∠GCE+∠OCB=∠OCA+∠OCB=90°,∵OC是⊙O的半径,∴直线CG是⊙O的切线;(2)①∵CB=CH,∴∠CBH=∠CHB,∵OB=OC,∴∠CBH=∠OCB,∴△CBH∽△OBC②由△CBH∽△OBC可知:BC HB OC BC=∵AB=8,∴BC2=HB•OC=4HB,∴HB=24 BC,∴OH=OB-HB=4-2 4 BC∵CB=CH,∴OH+HC=4−24BC+BC,当∠BOC=90°,此时∵∠BOC<90°,∴0<BC<,令BC=x 则CH=x ,BH=24x ()221142544OH HC x x x ∴+=-++=--+ 当x=2时,∴OH+HC 可取得最大值,最大值为5点睛:本题考查圆的综合问题,涉及二次函数的性质,相似三角形的性质与判定,切线的判定等知识,综合程度较高,需要学生灵活运用所知识.13.在中,,,,分别是边,的中点,若等腰绕点逆时针旋转,得到等腰,设旋转角为,记直线与的交点为. (1)问题发现 如图1,当时,线段的长等于_________,线段的长等于_________. (2)探究证明 如图2,当时,求证:,且. (3)问题解决求点到所在直线的距离的最大值.(直接写出结果)【答案】(1);;(2)详见解析;(3)【解析】【分析】 (1)利用等腰直角三角形的性质结合勾股定理分别得出BD 1的长和CE 1的长; (2)根据旋转的性质得出,∠D 1AB=∠E 1AC=135°,进而求出△D 1AB ≌△E 1AC (SAS ),即可得出答案;(3)首先作PG ⊥AB ,交AB 所在直线于点G ,则D 1,E 1在以A 为圆心,AD 为半径的圆上,当BD 1所在直线与⊙A 相切时,直线BD 1与CE 1的交点P 到直线AB 的距离最大,此时四边形AD 1PE 1是正方形,进而求出PG 的长.【详解】(1)解:∵∠A=90°,AC=AB=4,D ,E 分别是边AB ,AC 的中点,∴AE=AD=2,∵等腰Rt △ADE 绕点A 逆时针旋转,得到等腰Rt △AD 1E 1,设旋转角为α(0<α≤180°),∴当α=90°时,AE1=2,∠E1AE=90°,∴BD1=;故答案为:;;(2)证明:由题意可知,,,∵是由绕点逆时针旋转得到,∴,,在和中,,∴,∴,.∵,∴,∴,∴,且.(3)点的运动轨迹是在的上半圆周,点的运动轨迹是在的弧段.即当与相切时,有最大值.点到所在直线的距离的最大值为.【点睛】此题主要考查了几何变换以及等腰腰直角三角形的性质和勾股定理以及切线的性质等知识,根据题意得出PG的最长时P点的位置是解题关键.14.设C为线段AB的中点,四边形BCDE是以BC为一边的正方形,以B为圆心,BD长为半径的⊙B与AB相交于F点,延长EB交⊙B于G点,连接DG交于AB于Q点,连接AD.求证:(1)AD是⊙B的切线;(2)AD=AQ;(3)BC2=CF×EG.【答案】(1)证明见解析;(2)证明见解析;(3)证明见解析.【解析】【分析】()1连接BD ,由DC AB ⊥,C 为AB 的中点,由线段垂直平分线的性质,可得AD BD =,再根据正方形的性质,可得90ADB ∠=o ;()2由BD BG =与//CD BE ,利用等边对等角与平行线的性质,即可求得122.52G CDG BDG BCD ∠=∠=∠=∠=o ,继而求得67.5ADQ AQD ∠=∠=o ,由等角对等边,可证得AD AQ =; ()3易求得67.5GDE GDB BDE DFE ∠=∠+∠==∠o ,90DCF E ∠=∠=o ,即可证得Rt DCF V ∽Rt GED V ,根据相似三角形的对应边成比例,即可证得结论.【详解】证明:()1连接BD ,Q 四边形BCDE 是正方形,45DBA ∴∠=o ,90DCB ∠=o ,即DC AB ⊥,C Q 为AB 的中点,CD ∴是线段AB 的垂直平分线,AD BD ∴=,45DAB DBA ∴∠=∠=o ,90ADB ∴∠=o ,即BD AD ⊥,BD Q 为半径,AD ∴是B e 的切线;()2BD BG =Q ,BDG G ∴∠=∠,//CD BE Q ,CDG G ∴∠=∠, 122.52G CDG BDG BCD ∴∠=∠=∠=∠=o , 9067.5ADQ BDG ∴∠=-∠=o o ,9067.5AQB BQG G ∠=∠=-∠=o o , ADQ AQD ∴∠=∠,AD AQ ∴=;()3连接DF ,在BDF V 中,BD BF =,BFD BDF ∴∠=∠,又45DBF ∠=o Q ,67.5BFD BDF ∴∠=∠=o ,22.5GDB ∠=o Q ,在Rt DEF V 与Rt GCD V 中,67.5GDE GDB BDE DFE ∠=∠+∠==∠o Q ,90DCF E ∠=∠=o ,Rt DCF ∴V ∽Rt GED V ,CF CD ED EG∴=, 又CD DE BC ==Q ,2BC CF EG ∴=⋅.【点睛】本题考查了相似三角形的判定与性质、切线的判定与性质、正方形的性质以及等腰三角形的判定与性质.解题的关键是注意掌握数形结合思想的应用,注意辅助线的作法.15.已知AB 是半圆O 的直径,点C 在半圆O 上.(1)如图1,若AC =3,∠CAB =30°,求半圆O 的半径;(2)如图2,M 是»BC的中点,E 是直径AB 上一点,AM 分别交CE ,BC 于点F ,D . 过点F 作FG ∥AB 交边BC 于点G ,若△ACE 与△CEB 相似,请探究以点D 为圆心,GB 长为半径的⊙D 与直线AC 的位置关系,并说明理由.【答案】(1)半圆O的半径为3;(2)⊙D与直线AC相切,理由见解析【解析】试题分析:(1)依据直径所对的圆周角是直角可得∠C=90°,2再依据三角函数即可求解;(2) 依据△ACE与△CEB相似证出∠AEC=∠CEB=90°, 再依据M是»BC的中点,证明CF=CD, 过点F作FP∥GB交于AB于点P, 证出△ACF≌△APF,得出CF=FP,再证四边形FPBG是平行四边形,得到 FP=GB从而CD=GB,点D到直线AC的距离为线段CD的长.试题解析:(1)∵ AB是半圆O的直径,∴∠C=90°.在Rt△ACB中,AB=cos AC CAB ∠=3 cos30︒=23.∴ OA=3(2)⊙D与直线AC相切.理由如下:由(1)得∠ACB=90°.∵∠AEC=∠ECB+∠6,∴∠AEC>∠ECB,∠AEC>∠6.∵△ACE与△CEB相似,∴∠AEC=∠CEB=90°.在Rt△ACD,Rt△AEF中分别有∠1+∠3=90°,∠2+∠4=90°.∵ M是»BC的中点,∴∠COM=∠BOM.∴∠1=∠2,∴∠3=∠4.∵∠4=∠5,∴∠3=∠5.∴ CF=CD.过点F作FP∥GB交于AB于点P,则∠FPE=∠6.在Rt△AEC,Rt△ACB中分别有∠CAE+∠ACE=90°,∠CAE+∠6=90°.∴∠ACE=∠6=∠FPE.又∵∠1=∠2,AF=AF,∴△ACF≌△APF.∴ CF=FP.∵ FP∥GB,FG∥AB,∴四边形FPBG是平行四边形.∴ FP=GB.∴ CD=GB.∵ CD⊥AC,∴点D到直线AC的距离为线段CD的长∴⊙D与直线AC相切.。
圆的压轴题(1)1、如图,BF 为⊙O 的直径,直线AC 交⊙O 于A ,B 两点,点D 在⊙O 上,BD 平分∠OBC ,DE ⊥AC 于点E 。
(1)求证:直线DE 是⊙O 的切线;(2)若 BF=10,sin ∠BDE=,求DE 的长。
2、如图,AN 是M ⊙的直径,NB x ∥轴,AB 交M ⊙于点C .(1)若点()0,6A ,()0,2N ,30ABN =∠°,求点B 的坐标;(2)若D 为线段NB 的中点,求证:直线CD 是M ⊙的切线.x y C D M O B NA3、如图,△ABD是⊙O的内接三角形,E是弦BD的中点,点C是⊙O外一点且∠DBC=∠A,连接OE延长与圆相交于点F,与BC相交于点C.(1)求证:BC是⊙O的切线;(2)若⊙O的半径为6,BC=8,求弦BD的长.4、已知△ABC的内切圆⊙O与AB、BC、AC分别相切于点D、E、F,若=,如图1,.(1)判断△ABC的形状,并证明你的结论;(2)设AE与DF相交于点M,如图2,AF=2FC=4,求AM的长.5、如图,AB是⊙O的直径,AC是上半圆的弦,过点C作⊙O的切线DE交AB的延长线于点E,过点A作切线DE的垂线,垂足为D,且与⊙O交于点F,设∠DAC,∠CEA的度数分别是α,β.(1)用含α的代数式表示β,并直接写出α的取值范围;(2)连接OF与AC交于点O′,当点O′是AC的中点时,求α,β的值.6、如图,在菱形ABCD中,点P在对角线AC上,且PA=PD,⊙O是△PAD的外接圆.(1)求证:AB是⊙O的切线;(2)若AC=8,tan∠BAC=,求⊙O的半径.7、如图,AB为⊙O的直径,CB,CD分别切⊙O于点B,D,CD交BA的延长线于点E,CO的延长线交⊙O于点G,EF⊥OG于点F.(1)求证:∠FEB=∠ECF;(2)若BC=6,DE=4,求EF的长.8、如图,AB是⊙O的直径,C是⊙O上一点,OD⊥BC于点D,过点C作⊙O的切线,交OD的延长线于点E,连接BE.(1)求证:BE与⊙O相切;(2)设OE交⊙O于点F,若DF=1,BC=2 ,求阴影部分的面积.9、如图,已知⊙O的直径CD=6,A,B为圆周上两点,且四边形OABC是平行四边形,过A点作直线EF∥BD,分别交CD,CB的延长线于点E,F,AO与BD交于G点.(1)求证:EF是⊙O的切线;(2)求AE的长.10、如图,C、D是半圆O上的三等分点,直径AB=4,连接AD、AC,DE⊥AB,垂足为E,DE交AC于点F.(1)求∠AFE的度数;(2)求阴影部分的面积(结果保留π和根号).11、如图,MN是⊙O的直径,MN=4,点A在⊙O上,∠AMN=30°,B为的中点,P是直径MN上一动点.(1)利用尺规作图,确定当PA+PB最小时P点的位置(不写作法,但要保留作图痕迹).(2)求PA+PB的最小值.12、如图,已知直线PT与⊙O相切于点T,直线PO与⊙O相交于A,B两点.(1)求证:PT2=PA•PB;(2)若PT=TB=,求图中阴影部分的面积.13、如图,PA、PB是⊙O的切线,A、B为切点,∠APB=60°,连接PO并延长与⊙O交于C点,连接AC,BC.(1)求证:四边形ACBP是菱形;(2)若⊙O半径为1,求菱形ACBP的面积.14、如图,在△ABC中,AB=AC,以AB为直径的⊙O交AC边于点D,过点C作CF ∥AB,与过点B的切线交于点F,连接BD.(1)求证:BD=BF;(2)若AB=10,CD=4,求BC的长.15、如图,梯形ABCD中,AD∥BC,AE⊥BC于E,∠ADC的平分线交AE于点O,以点O为圆心,OA为半径的圆经过点B,交BC于另一点F.(1)求证:CD与⊙O相切;(2)若BF=24,OE=5,求tan∠ABC的值.16、已知:如图,MN为⊙O的直径,ME是⊙O的弦,MD垂直于过点E的直线DE,垂足为点D,且ME平分∠DMN.求证:(1)DE是⊙O的切线;(2)ME2=MD•MN.参考答案1、【解答】解:(1)如图所示,连接OD,∵OD=OB,∴∠ODB=∠OBD,∵BD平分∠OBC,∴∠OBD=∠DBE,∴∠ODB=∠DBE,∴OD∥AC,∵DE⊥AC,∴OD⊥DE,∵OD是⊙O的半径,∴直线DE是⊙O的切线;(2)如图,连接DF,∵BF是⊙O的直径,∴∠FDB=90°,∴∠F+∠OBD=90°,∵∠OBD=∠DBE,∠BDE+∠DBE=90°,∴∠F=∠BDE,在Rt△BDF中,=sinF=sin∠BDE=,∴BD=10×=2,∴在Rt△BDE中,sin∠BDE==,∴BE=2×=2,∴在Rt△BDE中,DE===4。
圆中的新定义问题1(2023•淮安模拟)在平面直角坐标系xOy 中,对于点P 和线段AB ,若线段PA 或PB 的垂直平分线与线段AB 有公共点,则称点P 为线段AB 的融合点.(1)已知A (3,0),B (5,0),①在点P 1(6,0),P 2(1,-2),P 3(3,2)中,线段AB 的融合点是 P 1,P 3 ;②若直线y =t 上存在线段AB 的融合点,求t 的取值范围;(2)已知⊙O 的半径为4,A (a ,0),B (a +1,0),直线l 过点T (0,-1),记线段AB 关于l 的对称线段为A B .若对于实数a ,存在直线l ,使得⊙O 上有A B 的融合点,直接写出a 的取值范围.【解答】解:(1)①∵P 1(6,0),A (3,0),∴P 1A 的线段垂直平分线与x 轴的交点为92,0,∴P 1是线段AB 的融合点;∵P 2(1,-2),B (5,0),设直线P 2B 的垂直平分线与x 轴的交点为(a ,0),∴(a -1)2+4=(5-a )2,解得a =52,∴直线P 2B 的垂直平分线与x 轴的交点为52,0,∴P 2不是线段AB 的融合点;∵P 3(3,2),B (5,0),设直线P 3B 的垂直平分线与x 轴的交点为(b ,0),∴(b -3)2+4=(5-b )2,解得b =3,∴直线P 3B 的垂直平分线与x 轴的交点为(3,0),∴P 3是线段AB 的融合点;故答案为:P 1,P 3;②线段AB 的融合点在以A 、B 为圆心,AB 为半径的圆及内部,∵A (3,0),B (5,0),∴AB =2,当y =t 与圆相切时,t =2或t =-2,∴-2≤t ≤2时,直线y =t 上存在线段AB 的融合点;(2)由(1)可知,A B 的融合点在以A 、B 为圆心,A B 为圆心的圆及内部,∵A (a ,0),B (a +1,0),∴AB =A B =1,∵⊙O 上有A B 的融合点,∴圆O 与圆A 、B 有交点,∴圆O 与圆A 、圆B 的公共区域为以O 为圆心2为半径,以O 为圆心6为半径的圆环及内部区域,当a >0时,a 的最大值为62-12=35,最小值为22-12-1=3-1,∴3-1≤a ≤35;当a <0时,a 的最大值为-22-12=-3,最小值为-62-12-1=-35-1,∴-35-1≤a ≤-3;综上所述:a 的取值范围为3-1≤a ≤35或-35-1≤a ≤-3.2(2023•西城区校级模拟)在平面内,C 为线段AB 外的一点,若以点A ,B ,C 为顶点的三角形为直角三角形,则称C 为线段AB 的直角点.特别地,当该三角形为等腰直角三角形时,称C 为线段AB 的等腰直角点.(1)如图1,在平面直角坐标系xOy 中,点M 的坐标为(-1,0),点N 的坐标为(1,0),在点P 1(2,1),P 2(-1,2),P 332,12 中,线段MN 的直角点是 P 2、P 3 ;(2)在平面直角坐标系xOy 中,点A ,B 的坐标分别为(t ,0),(0,4).①若t =4,如图2所示,若C 是线段AB 的直角点,且点C 在直线y =-x +8上,求点C 的坐标;②如图3,点D 的坐标为(m ,-2),⊙D 的半径为1,若⊙D 上存在线段AB 的等腰直角点,求出m 的取值范围.【解答】解:(1)∵P 2(-1,2),M (-1,0),∴P 2M ⊥MN ,∴P 2是线段MN 的直角点;∵M (-1,0),N (1,0),∴MN =2,∵P 332,12,∴P 3O =1,∴P 3在以O 为圆心,MN 为直径的圆上,∴∠MP 3N =90°,∴P 3是线段MN 的直角点;故答案为:P 2、P 3;(2)①∵A (4,0),B (0,4),∴OA =OB =4,∴∠OAB =∠OBA =45°.根据题意,若点C 为线段AB 的直角点,则需要分三种情况:当点B 为直角顶点,过点B 作BC 1⊥AB 于点C 1,过点C 1作C 1M ⊥y 轴于点M ,∴∠C 1BM =45°,∴C 1M =BM ,设C 1M =BM =a ,∴C 1(a ,a +4),∴-a +8=a +4,解得a =2,∴C 1(2,6);当点A 为直角顶点,过点A 作AC 2⊥AB 于点C 2,过点C 2作C 2N ⊥x 轴于点N ,∴∠C 2AN =45°,∴C 2N =AN ,设C 2N =AN =b ,∴C 2(b +4,b ),∴-(b +4)+8=b ,解得b =2,∴C 2(6,2);当点C 为直角顶点,取AB 的中点P ,则P (2,2),设C 3的横坐标为t ,则C 3(t ,-t +8),由直角三角形的性质可知,C 3P =BP =AP =22,∴(t -2)2+(-t +6)2=(22)2,解得t =4,∴C3(4,4),综上,点C的坐标为(2,6)或(6,2)或(4,4).②如图,以AB为边向下作正方形ABC1C2,连接AC1,BC2交于点C3,则C1,C2,C3是线段AB的等腰直角点.根据点A的运动可知,点C1在直线l1:x=-4上运动,C2在直线l2:y=-x-4上运动,C3在直线l3:y=-x上运动.设l2与y=-2相交于点K,l3与y=-2相交于点L,∴K(2,-2),L(2,-2).由此可得出临界情况如图:如图3(1)中,当⊙D与l1相切时,m=-5;如图3(2)中,当⊙D与l2相切时,点F为切点,连接DF,则ΔDFK为等腰直角三角形,且DF=1,∴DK=2;∴D(-2+2,-2),即m=-2+2;如图3(3)中,当⊙D与l3相切时,点G为切点,连接DG,则ΔDGL为等腰直角三角形,且DG=1,∴DL=2;∴D(2-2,-2),即m=2-2;如图3(4)中,当⊙D与l3相切时,点H为切点,连接DH,则ΔDHL为等腰直角三角形,且DH=1,∴DL=2;∴D(2+2,-2),即m=2+2;综上,符合题意的m的取值范围:-5≤m≤-2+2或2-2≤m≤2+2.3(2023•秀洲区校级二模)婆罗摩芨多是公元7世纪古印度伟大的数学家,他在三角形、四边形、零和负数的运算规则,二次方程等方面均有建树,他也研究过对角线互相垂直的圆内接四边形,我们把这类对角线互相垂直的圆内接四边形称为“婆氏四边形”;(1)若平行四边形ABCD是“婆氏四边形”,则四边形ABCD是③.(填序号)①矩形②菱形③正方形(2)如图1,RtΔABC中,∠BAC=90°,以AB为弦的⊙O交AC于D,交BC于E,连接DE、AE、BD,AB=6,sin C=35,若四边形ABED是“婆氏四边形”,求DE的长;(3)如图2,四边形ABCD为⊙O的内接四边形,连接AC,BD,OA,OB,OC,OD,已知∠BOC+∠AOD= 180°,①求证:四边形ABCD是“婆氏四边形”;②当AD+BC=4时,求⊙O半径的最小值.【解答】(1)解:∵平行四边形ABCD为⊙O的内接四边形,∴∠ABC=∠ADC,∠ABC+∠ADC=180°,∴∠ABC=∠ADC=90°,∴平行四边形ABCD是矩形,∵四边形ABCD是“婆氏四边形”,∴AC⊥BD,∴矩形ABCD是正方形,故答案为:③;(2)解:∵∠BAC=90°,AB=6,sin C=35,∴BC=10,AC=8,∴BD为直径,∴∠BED =∠DEC =90°,∵四边形ABED 是“婆氏四边形”,∴AE ⊥BD ,∴AD =DE ,AB =BE =6,设AD =DE =m ,则CD =8-m ,EC =4,在Rt ΔEDC 中,m 2+42=(8-m )2,解得m =3,∴DE =3;(3)①证明:如图2,设AC ,BD 相交于点E ,∵∠DCA =12∠AOD ,∠BDC =12∠BOC ,∠BOC +∠AOD =180°,∴∠DCA +∠BDC =12(∠AOD +∠BOC )=12×180°=90°,∴∠CED =90°,∴AC ⊥BD ,∵四边形ABCD 是⊙O 的内接四边形,∴四边形ABCD 是“婆氏四边形”;②解:过点O 作OM ⊥AD 交于M ,过O 作ON ⊥BC 交于N ,∴AM =12AD ,BN =12BC ,∠AMO =∠BNO =90°,∴∠AOM +∠OAM =90°,∵OA =BO =CO =DO ,∴∠AOM =12∠AOD ,∠BON =12∠BOC ,∵∠BOC +∠AOD =180°,∴∠AOM =∠OBN ,∴ΔOAM ≅ΔBON (AAS ),∴ON =AM =12AD ,∵AD +BC =4,设ON =AM =n ,则AD =2n ,BC =4-2n ,BN =2-n ,在Rt ΔBON 中,BO =n 2+(2-n )2=2(n -1)2+2,当n =1时,BO 有最小值2,∴⊙O 半径的最小值为2.4(2022秋•西城区期末)给定图形W 和点P ,Q ,若图形W 上存在两个不重合的点M ,N ,使得点P 关于点M 的对称点与点Q 关于点N 的对称点重合,则称点P 与点Q 关于图形W 双对合.在平面直角坐标系xOy 中,已知点A (-1,-2),B (5,-2),C (-1,4).(1)在点D (-4,0),E (2,2),F (6,0)中,与点O 关于线段AB 双对合的点是 D ,F ;(2)点K 是x 轴上一动点,⊙K 的直径为1,①若点A 与点T (0,t )关于⊙K 双对合,求t 的取值范围;②当点K 运动时,若ΔABC 上存在一点与⊙K 上任意一点关于⊙K 双对合,直接写出点K 的横坐标k 的取值范围.【解答】解:(1)当A 点是D 点的中点时,对应点为(2,-4);当B 点是D 点的中点时,对应点为(14,-4);当A 点是E 点的中点时,对应点为(-4,-6);当B 点是E 点的中点时,对应点为(8,-6);当A 点是F 点的中点时,对应点为(-8,-4);当B 点是F 点的中点时,对应点为(4,-4);当A 点是O 点的中点时,对应点为(-2,-4);当B 点是O 点的中点时,对应点为(10,-4);∴D 、F 与点O 关于线段AB 双对合,故答案为:D 、F ;(2)①设K(k,0),∵A(-1,-2),T(0,t),∴A点关于K点对称点G为(2k+1,2),T点关于K点对称点H为(2k,-t),∵点A与点T(0,t)关于⊙K双对合,∴A点关于点K的对称点在以G为圆心,∵⊙K的直径为1,∴点A关于点K的对称点在以G点为圆心,1为半径的圆上,点T关于点K的对称点在以H为圆心,1为半径的圆上,如图所示,∵点A与点T(0,t)关于⊙K双对合,∴当圆G与圆H有交点,∵GH=1+(t+2)2,∴1+(t+2)2≤2,解得-2-3≤t≤-2+3;②∵A(-1,-2),B(5,-2),C(-1,4),K(k,0),∴A点关于K点的对称点F(2k+1,2),B点关于K点的对称点E(2k-5,2),C点关于K点的对称点G(2k+1, -4),∴ΔABC上任意一点关于K点对称点在阴影区域,∵ΔABC上存在一点与⊙K上任意一点关于⊙K双对合,∴阴影区域与圆K有公共交点,∵阴影部分是由ΔEGF边上任意一点为圆心,1为半径的圆构成的区域,如图1时,k-(2k+1)=12+1,解得k=-52;如图2时,2k+1-k=12+1,解得k=12;∴-52≤k≤12时,ΔABC上存在一点与⊙K上任意一点关于⊙K双对合;过点K作KN⊥EG交于N,直线EG交x轴于点M,设直线EG的解析式为y=k x+b,∴(2k-5)k +b=2 (2k+1)k +b=-4 ,解得k =-1b=2k-3 ,∴y=-x+2k-3,∴M(2k-3,0),∵直线y=-x与y=-x+2k-3平行,∴∠KMN=45°,∴KM=2KN=322,如图3时,k-(2k-3)=322,解得k=3-322,如图4时,2k-3-k=322,解得k=3+322,∴3-322≤k≤3+322时,ΔABC上存在一点与⊙K上任意一点关于⊙K双对合;综上所述:-52≤k≤12或3-322≤k≤3+322时,ΔABC上存在一点与⊙K上任意一点关于⊙K双对合.5(2022•钟楼区模拟)概念认识:平面内,M为图形T上任意一点,N为⊙O上任意一点,将M、N两点间距离的最小值称为图形T到⊙O的“最近距离”,记作d(T-⊙O).例:如图1,在直线l上有A、C、O三点,以AC为对角线作正方形ABCD,以点O为圆心作圆,与l交于E、F两点,若将正方形ABCD记为图形T,则C、E两点间的距离称为图形T到⊙的“最近距离”.数学理解:(1)在平面内有A、B两点,以点A为圆心,5为半径作⊙A,将点B记为图形T,若d(T-⊙A)=2,则AB= 3或7.(2)如图2,在平面直角坐标系中,以O(0,0)为圆心,半径为2作圆.①将点C(4,3)记为图形T,则d(T-⊙O)=.②将一次函数y=kx+22的图记为图形T,若d(T-⊙)>0,求k的取值范围.推广运用:(3)在平面直角坐标系中,P的坐标为(t,0),⊙P的半径为2,D、E两点的坐标分别为(5,5)、(5,-5),将ΔDOE记为图形T,若d(T-⊙P)=1,则t=.【解答】解:(1)如图1中,∵d(T-⊙A)=2,∴CB=CB′=2,∵AC=5,∴AB′=5-2=3,AB=5+2=7.故答案为:3或7.(2)①如图2中,连接OC交⊙O于E.∵C(4,3),∴OC=42+32=5,∵OE=2,∴EC=3,∴d(T-⊙O)=3.故答案为:3.②如图,设直线y=kx+22与⊙O相切于E,K.连接OK,OE.∵OE⊥DE,OK⊥DK,OD=22,OE=OK=2,∴DK=OD2?OK2=(22)2-22=2,DE=OD2?OE2=(22)2-22=2,∴DE=OE=DK=OK,∴四边形DEOK是菱形,∵∠DKO=∠DEO=90°,∴四边形DEOK是正方形,∴∠ODE=∠ODK=45°,∴直线DE的解析式为y=-x+22,直线DK的解析式为y=x+22,∵d(T-⊙O)>0,∴观察图象可知满足条件的k的值为-1<k<1且k≠0.(3)如图3-1中,当点P在DE的右边时.∵D(5,5),∴∠DOP=45°,∵d(T-⊙P)=1,∴OP=5+1+2=8∴t=8.如图3-2中,当点P在∠DOE的外侧时,由题意可知OM=1,OP=1+2=3,t=-3.综上所述,满足条件的t的值为8或-3.6(2022秋•昌平区期末)已知:对于平面直角坐标系xOy中的点P和⊙O,⊙O的半径为4,交x轴于点A,B,对于点P给出如下定义:过点C的直线与⊙O交于点M,N,点P为线段MN的中点,我们把这样的点P叫做关于MN的“折弦点”.(1)若C(-2,0).①点P1(0,0),P2(-1,1),P3(2,2)中是关于MN的“折弦点”的是 P1,P2 ;②若直线y=kx+3(k≠0).上只存在一个关于MN的“折弦点”,求k的值;(2)点C在线段AB上,直线y=x+b上存在关于MN的“折弦点”,直接写出b的取值范围.【解答】解:(1)①连接OP,∵P点是弦MN的中点,∴OP⊥MN,∴∠CPO=90°,∴P点在以CO为直径的圆上,∵C(-2,0),∴P点在以(-1,0)为圆心,1为半径的圆上,∵点P1(0,0),P2(-1,1)在该圆上,∴点P1(0,0),P2(-1,1)是关于MN的“折弦点”,故答案为:P1,P2;②由①可知,P点在以(-1,0)为圆心,1为半径的圆上,设圆心D(-1,0),∵直线y=kx+3(k≠0)上只存在一个关于MN的“折弦点”,∴直线y=kx+3(k≠0)与圆D相切,过点D作DF垂直直线y=kx+3交于点F,∵直线y=kx+3与x轴交于点E-3k,0,与y轴交于点G(0,3),∴DE=-1+3k,OF=3k,OG=3,∵∠DFE=∠EOG=90°,∴ΔEGO∽ΔEFD,∴DF GO =ED EG,∴13=3k-13+3k2,解得k=3 3;(2)由(1)可知,P点在以OC为直径的圆上,∵直线y=x+b上存在关于MN的“折弦点”,∴直线y=x+b与圆D相交或相切,过D点作DF垂直直线y=x+b交于点F,∵直线y=x+b与x轴交于点(-b,0),与y轴交于点(0,b),当C点与A点重合时,b有最大值,此时D(-2,0),∴(-2+b)2=8,解得b=22+2或b=22+2(舍);当C点与B点重合时,b有最小值,此时D(2,0),∴(-b-2)2=8,解得b=22-2(舍)或b=-22-2;∴-22-2≤b≤22+2时,直线y=x+b上存在关于MN的“折弦点”.7(2022秋•东城区校级月考)如图,在平面直角坐标系xOy中,过⊙T外一点P引它的两条切线,切点分别为M,N,若60°<∠MPN<180°,则称P为⊙T的环绕点.(1)当⊙O半径为1时,①在P1(2,2),P2(2,0),P3(2,1)中,⊙O的环绕点是 P1 ;②直线y=3x+b与x轴交于点A,y轴交于点B,若线段AB上存在⊙O的环绕点,求b的取值范围;(2)⊙T的半径为2,圆心为(0,t),以-m,33m(m>0)为圆心,33m为半径的所有圆构成图形H,若在图形H上存在⊙T的环绕点,直接写出t的取值范围.【解答】解:(1)①如图,PM,PN是⊙T的两条切线,M,N为切点,连接TM,TN,当∠MPN=60°时,∵PT平分∠MPN,∴∠TPN=∠MPT=30°,∵TM⊥PM,TN⊥PN,∴∠TNP=∠PMT=90°,∴TP =2TM =2,以T 为圆心,TP 为半径作⊙T .观察图象可知:当60°<∠MPN <180°时,⊙T 的环绕点在图中的圆环内部(包括大圆上的点不包括小圆上的点),故答案为:P 1;②如图中,设小圆交y 轴的正半轴于F ,当直线y =3x +b 经过点F 时,b =1,当直线y =3x +b 与大圆相切于K (在第二象限)时,连接OK ,由题意B (0,b ),A -b 3,0,所以OB =b ,OA =b 3,AB =103b ,∵OK =2,12×AB ×OK =12×OA ×OB ,∴b =210,观察图象可知,当1<b <210时,线段AB 上存在⊙的环绕点,根据对称怀可知:当-210<b <-1时,线段AB 上存在⊙的环绕点,综上所述,满足条件的b 的值为1<b <210或-210<b <-1;(2)如图中,不妨设E -m ,33m (m >0),则点E 直线y =-33x 上,∵m >0,∴点E 在射线OE 上运动,作EM ⊥x 轴;∵E -m ,33m (m >0),∴OM =m ,EM =33m ,以E -m ,33m (m >0)为圆心,33m 为半径的⊙E 与x 轴相切,作⊙E 的切线ON ,观察图象可知:以E -m ,33m (m >0)为圆心,33m 为半径的所有圆构成图形H ,图形H 即为∠MON 的内部,包括射线OM ,ON 上,当⊙T 的圆心在y 轴的正半轴上时,假设以T 为圆心,4为半径的圆与射线ON 相切于D ,连接TD ,∵tan ∠EOM =EM OM=33,∴∠EOM =30°,∵OM ,ON 是⊙E 的切线,∴∠EON =∠EOM =30°.∴∠TOD =30°,∴OT =2DT =8,∴T (0,8),当⊙T 的圆心在y 轴的负半轴上时,且经过点O (0.0)时,T (0,-4),观察图象可知,当-4<t <8时,在图象上存在⊙T 的环绕点.8(2022秋•海淀区校级月考)对于平面直角坐标系中的线段AB 和点P (点P 不在线段AB 上),给出如下定义:当PA =PB 时,过点A (或点B )向直线PB (或PA )作垂线段,则称此垂线段为点P 关于线段AB 的“测度线段”,垂足称为点P 关于线段AB 的“测度点”.如图所示,线段AD 和BC 为点P 关于线段AB 的“测度线段”,点C 与点D为点P关于线段AB的“测度点”.(1)如图,点M(0,4)、N(2,0),①点P的坐标为(5,4),直接写出点P关于线段MN的“测度线段”的长度4;②点H为平面直角坐标系中的一点,且HM=HN,则下列四个点:Q1(0,0),Q2(3,3),Q3(1,0),Q4(0,4)中,是点H 关于线段MN的“测度点”的是;(2)直线y=-34x+6与x轴、y轴分别交于点A与点B,①点G为平面直角坐标系中一点,且GA=GB,若一次函数y=kx-14k+3上存在点G关于线段AB的“测度点”,直接写出k的取值范围为;②⊙O的半径为r,点C与点D均在⊙O上,且线段CD=65r.点K与点O位于线段CD的异侧,且KC=KD,若在线段AB上存在点K关于线段CD的“测度点”,直接写出r的取值范围为.【解答】解:(1)①∵M(0,4)、P(5,4),∴MP⎳x轴,∴点P关于线段MN的“测度线段”的长度为4,故答案为:4;②∵过点N作NF⊥MH交于F点,过点M作MG⊥NH交于点G,∵∠MFN=∠MGN=90°,∴F、G点在以MN为直径的圆上,设MN的中点为E,∵点M(0,4)、N(2,0),∴E(1,2),MN=25,∴点H关于线段MN的“测度点”在以E为圆心,5为半径的圆上,且不与M、N重合,∵Q1(0,0),Q2(3,3),Q3(1,0),Q4(0,4)中,Q1E=5,Q2E=5,Q3E=2,Q4E=5,∴Q1,Q2是点H关于线段MN的“测度点”,故答案为:Q1,Q2;(2)①当x=0时,y=6,∴B(0,6),当y=0时,x=8,∴A(8,0),∴AB的中点F(4,3),AB=10,由(1)可知,点G关于线段AB的“测度点”在以F为圆心,5为半径的圆上,且不与A、B点重合,∵一次函数y=kx-14k+3上存在点G关于线段AB的“测度点”,∴直线y=kx-14k+3与圆F相切或相交,过点F作FK垂直直线y=kx-14k+3交于点K,直线与y轴的交点为T,过点F作FL⎳KT交于交y轴于点L,过点L作SL⊥KT交于点S,∴LS =FK =5,∴LF 的直线解析式为y =kx -4k +3,∴L (0,-4k +3),T (0,-14k +3),∴TL =-10k ,∵sin ∠LTS =5-10k =11+k 2,∴k =±33,∴-33≤k ≤33时,一次函数y =kx -14k +3上存在点G 关于线段AB 的“测度点”,故答案为:-33≤k ≤33;②由(1)可知,K 点关于线段CD 的“测度点”在以CD 为直角的半圆上,且不与C 、D 重合,当CD ⎳AB ,且AB 与圆P 相切时,r 有最小值,由①可得,45=35r 6-r ,解得r =247,当CD 在AB 上时,r 有最大值,r =6,∴247≤r <6时,线段AB 上存在点K 关于线段CD 的“测度点”,故答案为:247≤r <6.9(2022•盐城一模)对于平面内的两点K 、L ,作出如下定义:若点Q 是点L 绕点K 旋转所得到的点,则称点Q 是点L 关于点K 的旋转点;若旋转角小于90°,则称点Q 是点L 关于点K 的锐角旋转点.如图1,点Q 是点L 关于点K 的锐角旋转点.(1)已知点A (4,0),在点Q 1(0,4),Q 2(2,23),Q 3(-2,23),Q 4(22,-22)中,是点A 关于点O 的锐角旋转点的是 Q 2,Q 4 .(2)已知点B (5,0),点C 在直线y =2x +b 上,若点C 是点B 关于点O 的锐角旋转点,求实数b 的取值范围.(3)点D 是x 轴上的动点,D (t ,0),E (t -3,0),点F (m ,n )是以D 为圆心,3为半径的圆上一个动点,且满足n ≥0.若直线y =2x +6上存在点F 关于点E 的锐角旋转点,请直接写出t 的取值范围.【解答】解:(1)如图,∵A (4,0),Q 1(0,4),∴OA =OQ 1=4,∠AOQ 1=90°,∴点Q 1不是点A 关于点O 的锐角旋转点;∵Q 2(2,23),作Q 2F ⊥x 轴于点F ,∴OQ 2=OF 2+Q 2F 2=22+(23)2=4=OA ,∵tan ∠Q 2OF =232=3,∴∠Q 2OF =60°,∴点Q 2是点A 关于点O 的锐角旋转点;∵Q 3(-2,23),作Q 3G ⊥x 轴于点G ,则tan ∠Q 3OG =Q 3G OG=232=3,∴∠Q3OG =60°,∴OQ 3=OG cos ∠Q 3OG =2cos60°=4=OA ,∵∠AOQ 3=180°-60°=120°,∴Q 3不是点A 关于点O 的锐角旋转点;∵Q 4(22,-22),作Q 4H ⊥x 轴于点H ,则tan ∠Q 4OH =Q 4H OH =2222=1,∴∠Q 4OH =45°,∵OQ 4=OH cos ∠Q 4OH =22cos45°=4=OA ,∴Q 4是点A 关于点O 的锐角旋转点;综上所述,在点Q 1,Q 2,Q 3,Q 4中,是点A 关于点O 的锐角旋转点的是Q 2,Q 4,故答案为:Q 2,Q 4.(2)在y 轴上取点P (0,5),当直线y =2x +b 经过点P 时,可得b =5,当直线y =2x +b 经过点B 时,则2×5+b =0,解得:b =-10,∴当-10<b <5时,OB 绕点O 逆时针旋转锐角时,点C 一定可以落在某条直线y =2x +b 上,过点O 作OG ⊥直线y =2x +b ,垂足G 在第四象限时,如图,则OT =-b ,OS =-12b ,∴ST =OS 2+OT 2=-12b 2+(-b )2=-52b ,当OG =5时,b 取得最小值,∵5×-52b =-b ×-12b ,∴b =-55,∴-55≤b <5.(3)根据题意,点F 关于点E 的锐角旋转点在半圆E 上,设点P 在半圆S 上,点Q 在半圆T 上(将半圆D 绕点E 旋转),如图3(1),半圆扫过的区域为图3(1)中阴影部分,如图3(2)中,阴影部分与直线y =2x +6相切于点G ,tan ∠EMG =2,SG =3,过点G 作GI ⊥x 轴于点I ,过点S 作SJ ⊥GI 于点J ,∴∠SGJ =∠EMG ,∴tan ∠SGJ =tan ∠EMG =2,∴GJ =355,SJ =655,∴GI =GJ +JI =3+355,∴MI =12GI =32+3510,∴OE =IE +MI -OM =352-32,即x E =t -3=352-32,解得t =352+32,如图3(3)中,阴影部分与HK 相切于点G ,tan ∠OMK =tan ∠EMH =2,EH =6,则MH =3,EM =35,∴x E =t -3=-3-35,解得t =-35,观察图象可知,-35≤t <3+352+32.10(2022秋•姜堰区期中)如图1,在平面内,过⊙T 外一点P 画它的两条切线,切点分别为M 、N ,若∠MPN ≥90°,则称点P 为⊙T 的“限角点”.(1)在平面直角坐标系xOy 中,当⊙O 半径为1时,在①P 1(1,0),②P 2-1,12,③P 3(-1,-1),④P 4(2,-1)中,⊙O 的“限角点”是②④;(填写序号)(2)如图2,⊙A 的半径为2,圆心为(0,2),直线l :y =-34x +b 交坐标轴于点B 、C ,若直线l 上有且只有一个⊙A 的“限角点”,求b 的值.(3)如图3,E (2,3)、F (1,2)、G (3,2),⊙D 的半径为2,圆心D 从原点O 出发,以2个单位/s 的速度沿直线l :y =x 向上运动,若ΔEFG 三边上存在⊙D 的“限角点”,请直接写出运动的时间t (s )的取值范围.【解答】解:(1)∵⊙O 半径为1,∴当P 为圆O 的“限角点”时,1<OP ≤2,∵OP 1=1,OP 2=52,OP 3=2,OP 4=5,∴⊙O 的“限角点”是P 2,P 3,故答案为:②③;(2)∵⊙A 的半径为2,∴当P 为圆A 的“限角点”时,2<AP ≤2,设直线l 上有且只有一个⊙O 的“限角点”P m ,-34m +b ,∴PA =2,此时AP ⊥BC ,令x =0,则y =b ,∴C (0,b ),令y =0,则x =43b ,∴B 43b ,0 ,∴tan ∠OCB =OB OC =43=AP CP ,∴CP =32,∴AC =52,∴|b -2|=52,∴b =92或b =-12;(3)∵圆心D 从原点O 出发,以2个单位/s 的速度沿直线l 移动,∴圆沿x 轴正方向移动t 个单位,沿y 轴正方向移动t 个单位,∴移动后D 点坐标为(t ,t ),设ΔEFG 边上的点P 是圆D 的“限角点”,则2<PD ≤2,在圆D 移动的过程中,当DF =2时,(t -1)2+(t -2)2=4,解得t =3-72或t =3+72,当t =3-72时,ΔEFG 边上开始出现⊙D 的“限角点”,当圆D 移动到E 点在圆上时,DE =2,(t -2)2+(t -3)2=2,解得t =5+32或t =5-32,∴3-72≤t <5-32时,ΔEFG 边上存在⊙D 的“限角点”,当圆D 再次移动到点F 在圆上时,DF =2,(t -2)2+(t -1)2=2,解得t =3+32或t 3-32,当t =3+32时,ΔEFG 三边上开始又要出现⊙D 的“限角点”;设直线EG 的解析式为y =kx +b ,直线y =x 与直线EG 的交点设为点H ,∴2k +b =33k +b=2 ,解得k =-1b =5 ,解得y =-x +5,联立方程组y =-x +5y =x,解得x =52y =52,∴H 52,52,当DH =2时,2t -52 2=4,解得t =2+52或t =-2+52,∴当t =2+52,ΔEFG 边上存在⊙D 的“限角点”,∴3+32<t ≤2+52时,ΔEFG 边上存在⊙D 的“限角点”;综上所述:3-72≤t <5-32或3+32<t ≤2+52时,ΔEFG 边上存在⊙D 的“限角点”.11(2022秋•西城区校级期中)在平面直角坐标系xOy中,已知点M(a,b),N.对于点P给出如下定义:将点P绕点M逆时针旋转90°,得到点P ,点P 关于点N的对称点为Q,称点Q为点P的“对应点”.(1)如图1,若点M在坐标原点,点N(1,1),①点P(-2,0)的“对应点”Q的坐标为 (2,0) ;②若点P的“对应点”Q的坐标为(-1,3),则点P的坐标为;(2)如图2,已知⊙O的半径为1,M是⊙O上一点,点N(0,2),若P(m,0)(m>1)为⊙O外一点,点Q为点P的“对应点”,连接PQ.①当点M(a,b)在第一象限时,求点Q的坐标(用含a,b,m的式子表示);②当点M在⊙O 上运动时,直接写出PQ长的最大值与最小值的积为.(用含m的式子表示)【解答】解:(1)①∵P(-2,0),∴P点绕点M逆时针旋转90°得到点P (0,-2),∵点P 关于点N的对称点为Q,∴Q(2,0);故答案为:(2,0);②∵Q的坐标为(-1,3),∴Q点关于N(1,1)的对称点为P (3,-1),将P 绕M点顺时针旋转90°得到点P,过P 作P F⊥x轴于点F,过点P作PE⊥x轴于点E,∵∠P OP=90°,∴∠POE+∠FOP =90°,∵∠EPO+∠EOP=90°,∴∠FOP =∠EPO,∵OP=OP ,∴ΔPOE≅△OP F(AAS),∴EO=P F=1,PE=OF=3,∴P(-1.-3),故答案为:(-1,-3);(2)①过点M作EF⊥x轴于点F,过点P 作P E⊥EF交于点E,由(1)可得ΔMPF≅△P ME(AAS),∴MF=EP ,FP=ME,∵M(a,b),P(m,0),∴EF=b+m-a,EP =b,∴P (a+b,b+m-a),∵点N(0,2),∴Q(-a-b,4-b-m+a);②P点绕O点逆时针旋转90°后得到点G,∴G(0,m),∵P (a+b,b+m-a),∴GP =2(a 2+b 2),∵M (a ,b )在圆O 上,∴a 2+b 2=1,∴GP =2,∴P 在以G 为圆心,2为半径的圆上,设G 点关于N 点的对称点为H ,则H (0,4-m ),∴QH =2(a 2+b 2)=2,∴Q 点在以H 为圆心2为半径的圆上,∴PQ 的最大值为PH +2,PQ 的最小值为PH -2,∴PQ 长的最大值与最小值的积为(PH +2)(PH -2)=2m 2-8m +14,故答案为:2m 2-8m +14.12(2022•秦淮区二模)【概念认识】与矩形一边相切(切点不是顶点)且经过矩形的两个顶点的圆叫做矩形的第Ⅰ类圆;与矩形两边相切(切点都不是顶点)且经过矩形的一个顶点的圆叫做矩形的第Ⅱ类圆.【初步理解】(1)如图①~③,四边形ABCD 是矩形,⊙O 1和⊙O 2都与边AD 相切,⊙O 2与边AB 相切,⊙O 1和⊙O 3都经过点B ,⊙O 3经过点D ,3个圆都经过点C .在这3个圆中,是矩形ABCD 的第Ⅰ类圆的是①,是矩形ABCD 的第Ⅱ类圆的是.【计算求解】(2)已知一个矩形的相邻两边的长分别为4和6,直接写出它的第Ⅰ类圆和第Ⅱ类圆的半径长.【深入研究】(3)如图④,已知矩形ABCD ,用直尺和圆规作图.(保留作图痕迹,并写出必要的文字说明)①作它的1个第Ⅰ类圆;②作它的1个第Ⅱ类圆.【解答】解:(1)由定义可得,①的矩形有一条边AD 与⊙O 1相切,点B 、C 在圆上,∴①是第Ⅰ类圆;②的矩形有两条边AD 、AB 与⊙O 2相切,点C 在圆上,∴②是第Ⅱ类圆;故答案为:①,②;(2)如图1,设AD =6,AB =4,切点为E ,过点O 作EF ⊥BC 交BC 于F ,交AD 于E ,连接BO ,设BO =r ,则OE =r ,OF =4-r ,由垂径定理可得,BF =CF =3,在Rt ΔBOF 中,r 2=(4-r )2+32,解得r =258;如图2,设AD =4,BC =6,切点为E ,过点O 作EF ⊥BC 交BC 于F ,交AD 于E ,连接BO ,设BO =r ,则OE =r ,OF =6-r ,由垂径定理可得,BF =CF =2,在Rt ΔBOF 中,r 2=(6-r )2+22,解得r =103;综上所述:第Ⅰ类圆的半径是258或103;如图3,AD =6,AB =4,过点O 作MN ⊥AD 交于点M ,交BC 于点N ,连接OC ,设AB 边与⊙O 的切点为G ,连接OG ,∴GO ⊥AB ,设OM =r ,则OC =r ,则ON =4-r ,∵OG =r ,∴BN =r ,∴NC =6-r ,在Rt ΔOCN 中,r 2=(4-r )2+(6-r )2,解得r =10-43,∴第Ⅱ类圆的半径是10-43;(3)①如图4,第一步,作线段AD 的垂直平分线交AD 于点E ,第二步,连接EC ,第三步,作EC 的垂直平分线交EF 于点O ,第四步,以O 为圆心,EO 为半径作圆,∴⊙O 即为所求第Ⅰ类圆;②如图5,第一步:作∠BAD 的平分线;第二步:在角平分线上任取点E ,过点E 作EF ⊥AD ,垂足为点F ;第三步:以点E 为圆心,EF 为半径作圆E ,交AC 于点G ,连接FG ;第四步:过点C 作CH ⎳FG ,CH 交AD 于点H ;第五步:过点H 作AD 的垂线,交∠BAD 的平分线于点O ;第六步:以点O 为圆心,OH 为半径的圆,⊙O 即为所求第Ⅱ类圆.13(2021秋•海淀区校级期末)新定义:在平面直角坐标系xOy 中,若几何图形G 与⊙A 有公共点,则称几何图形G 的叫⊙A 的关联图形,特别地,若⊙A 的关联图形G 为直线,则称该直线为⊙A 的关联直线.如图,∠M 为⊙A 的关联图形,直线l 为⊙A 的关联直线.(1)已知⊙O 是以原点为圆心,2为半径的圆,下列图形:①直线y =2x +2;②直线y =-x +3;③双曲线y =2x,是⊙O 的关联图形的是①③(请直接写出正确的序号).(2)如图1,⊙T 的圆心为T (1,0),半径为1,直线l :y =-x +b 与x 轴交于点N ,若直线l 是⊙T 的关联直线,求点N 的横坐标的取值范围.(3)如图2,已知点B (0,2),C (2,0),D (0,-2),⊙I 经过点C ,⊙I 的关联直线HB 经过点B ,与⊙I 的一个交点为P ;⊙I 的关联直线HD 经过点D ,与⊙I 的一个交点为Q ;直线HB ,HD 交于点H ,若线段PQ 在直线x =6上且恰为⊙I 的直径,请直接写出点H 横坐标h 的取值范围.【解答】解:(1)由题意①③是⊙O的关联图形,故答案为①③.(2)如图1中,∵直线l1y=-x+b是⊙T的关联直线,∴直线l的临界状态是和⊙T相切的两条直线l1和l2,当临界状态为l1时,连接TM(M为切点),∴TM=1,TM⊥MB,且∠MNO=45°,∴ΔTMN是等腰直角三角形,∴TN=2,OT=1,∴N(1+2,0),把N(1+2,0)代入y=-x+b中,得到b=1+2,同法可得当直线l2是临界状态时,b=-2+1,∴点N的横坐标的取值范围为-2+1≤N x≤2+1.(3)如图3-1中,当点Q在点P是上方时,连接BQ,PD交于点H,当圆心I在x轴上时,点H与点C重合,此时H(2,0),得到h的最大值为2,如图3-2中,当点P在点Q是上方时,直线PB,QD交于点H,当圆心I在x轴上时,点H(-6,0)得到h的最小值为-6,综上所述,-6≤h<0,0<h≤2.14(2022春•海淀区校级月考)定义:P、Q分别是两条线段a和b上任意一点,线段PQ长度的最小值叫做线段a与线段b的“冰雪距离”.已知O(0,0),A(1,1),B(m,n),C(m,n+2)是平面直角坐标系中四点.(1)根据上述定义,完成下面的问题:①当m=2,n=1时,如图1,线段BC与线段OA的“冰雪距离”是1.②当m=2时,线段BC与线段OA的“冰雪距离”是1,则n的取值范围是.(2)如图2,若点B落在圆心为A,半径为1的圆上,当n≥1时,线段BC与线段OA的“冰雪距离”记为d,结合图象,求d的最小值;(3)当m的值变化时,动线段BC与线段OA的“冰雪距离”始终为1,线段BC的中点为M.求点M随线段BC运动所走过的路径长.【解答】解:(1)①当m=2,n=1时,B(2,1),C(2,3).线段BC与线段OA的冰雪距离为AB=1.故答案为:1.②当m=2时,点A到直线BC的距离为1.若线段BC与线段OA的冰雪距离是1,则点A到BC的垂线的垂足在线段BC上,∴n≤1≤n+2,即-1≤n≤1.故答案为:-1≤n ≤1.(2)如图,B 2(0,1)为圆A 与y 轴的切点,B 11-22,1+22满足∠B 1AO =90°.当B 在B 1右侧时,冰雪距离d ≥B 1A =22.当B 在弧B 1B 2上时,冰雪距离d 为点B 到OA 的距离,结合图象可知,当且仅当B 处在点B 2时,d 取最小值22.(3)如图,当点B 位于图中弧DI 、线段IH 、弧HG 时,线段BC 与线段OA 的“冰雪距离”始终为1.当点C 位于图中弧DE 、线段EF 、弧FG 时,线段BC 与线段OA 的“冰雪距离”始终为1.当线段BC 由图中B 1D 向上平移到DC 3时,或由B 2G 向上平移到GC 4时,线段BC 与线段OA 的“冰雪距离”始终为1.对应中点M 所走过的路线长为:2π+4+22.15(2022•东城区校级开学)对于⊙C 和⊙C 上的一点A ,若平面内的点P 满足:射线AP 与⊙C 交于点Q (点Q 可以与点P 重合),且1≤PAQA ≤2,则点P 称为点A 关于⊙C 的“生长点”.已知点O 为坐标原点,⊙O 的半径为1,点A (-1,0).(1)若点P 是点A 关于⊙O 的“生长点”,且点P 在x 轴上,请写出一个符合条件的点P 的坐标 (2,0)(答案不唯一);(2)若点B 是点A 关于⊙O 的“生长点”,且满足∠BAO =30°,求点B 的纵坐标t 的取值范围;(3)直线y =3x +b 与x 轴交于点M ,且与y 轴交于点N ,若线段MN 上存在点A 关于⊙O 的“生长点”,直接写出b 的取值范围是.【解答】解:(1)根据“生长点”定义,点P 的坐标可以是(2,0),故答案为:(2,0)(答案不唯一);(2)如图,在x 轴上方作射线AM ,与⊙O 交于M ,使得∠OAM =30°,并在射线AM 上取点N ,使AM =MN ,并由对称性,将MN 关于x 轴对称,得M N ,则由题意,线段MN 和M N 上的点是满足条件的点B .作MH ⊥x 轴于H ,连接MC ,∴∠MHA =90°,即∠OAM +∠AMH =90°.∵AC 是⊙O 的直径,∴∠AMC =90°,即∠AMH +∠HMC =90°.∴∠OAM =∠HMC =30°.∴tan30°=MH AH=HC MH =33,设MH=y,则AH=3y,CH=33y,∴AC=AH+CH=433y=2,解得y=32,即点M的纵坐标为32.又由AN=2AM,A为(-1,0),可得点N的纵坐标为3,故在线段MN上,点B的纵坐标t满足:32≤t≤3,由对称性,在线段M N 上,点B的纵坐标t满足:?3≤t≤?3 2,∴点B的纵坐标t的取值范围是:32≤t≤3或?3≤t≤?32.(3)如图,Q是⊙O上异于点A的任意一点,延长AQ到P,使得PA=2AQ,∵Q的轨迹是以O为圆心,1为半径的圆,∴点P的运动轨迹是以K(1,0)为圆心,2为半径的圆,当直线MN与⊙K相切于点R时,连接KR,在RtΔKMR中,∠KRM=90°,∵直线y=3x+b与x轴夹角为60°,∴∠KMR=60°,KR=2,∴KM=2÷sin60°=433,∴OM=1+433,∴ON=3OM=4+3,∴b=-4-3,当直线MN经过G(0,-1)时,满足条件,此时b=-1,观察图象可知:当-4-3≤b≤-1时,线段MN上存在点A关于⊙O的“生长点”,根据对称性,同法可得当1≤b≤4-3时,也满足条件.故答案为:-4-3≤b≤-1或1≤b≤4-3.16(2022•东城区校级开学)在平面直角坐标系xOy中,给出如下定义:若点P在图形M上,点Q在图形N 上,称线段PQ长度的最小值为图形M,N的“近距离”,记为d(M,N).特别地,若图形M,N有公共点,规定d(M,N)=0,如图,点A(-23,0),B(0,2).(1)如果⊙O的半径为2,那么d(A,⊙O)= 23-2 ,d(B,⊙O)=;(2)如果⊙O的半径为r,且d(⊙O,AB)>0,求r的取值范围;(3)如果C(0,m)是y轴上的动点,⊙C的半径为1,使d(⊙C,AB)<1,直接写出m的取值范围为.【解答】解:(1)∵⊙O的半径为2,A(-23,0),B(0,2),∴OB=2,OA=23>2,∴点A在⊙O外,点B在⊙O上,∴d(A,⊙O)=23-2,d(B,⊙O)=0,故答案为:23-2;0;(2)如图1,过点O 作OD ⊥AB 于点D ,在Rt ΔAOB 中,∵tan ∠BAO =OB OA =223=33,∴∠BAO =30°.在Rt ΔADO 中,sin ∠BAO =DO OA =12=DO23,∴DO =3,∵d (⊙O ,AB )=0,∴r 的取值范围是0<r <3或r >23;(3)如图2,过点C 作CN ⊥AB 于点N ,由(2)知,∠BAO =30°.∵C (m ,0),当点C 在点B 的上边时,m >2,此时,d (⊙C ,AB )=BC ,∴BC ≤1,即m -2≤1,解得m ≤3;当点C 与点B 重合时,m =2,此时d (⊙C ,AB )=0,当点C 在点B 的下边时,m <2,∴BC =2-m ,∴CN =BC ⋅sin ∠OBA =32(2-m ).∵d (⊙C ,AB )<1,⊙C 的半径为1,∴0<32(2-m )<1.∴2-233<m <2.综上所述:2-233<m ≤3.故答案为:2-233<m ≤3.17(2021秋•润州区校级月考)在平面直角坐标系xOy 中,⊙C 的半径为r ,P 是与圆心C 不重合的点,点P 关于⊙C 的反称点的定义如下:若在射线CP 上存在一点P ′,满足CP +CP ′=2r ,则称P ′为点P 关于⊙C 的反称点,如图为点P 及其关于⊙C 的反称点P ′的示意图.(1)当⊙O 的半径为1时,①分别判断点M (3,1),N 32,0,T (-1,3)关于⊙O 的反称点是否存在?若存在,直接求其坐标;②将⊙O 沿x 轴水平向右平移1个单位为⊙O ′,点P 在直线y =-x +1上,若点P 关于⊙O ′的反称点P ′存在,且点P ′不在坐标轴上,则点P 的横坐标的取值范围 1-2≤x ≤1+2且x ≠2-2 ;(2)⊙C 的圆心在x 轴上,半径为1,直线y =-x +12与x 轴,y 轴分别交于点A 、B ,点E 与点D 分别在点A 与点B 的右侧2个单位,线段AE 、线段BD 都是水平的,若四边形ABDE 四边上存在点P ,使得点P 关于⊙C 的反称点P ′在⊙C 的内部,直接写出圆心C 的横坐标的取值范围.。
一、圆的综合真题与模拟题分类汇编(难题易错题)1.如图,AB是⊙O的直径,弦CD⊥AB,垂足为H,连结AC,过BD上一点E作EG∥AC 交CD的延长线于点G,连结AE交CD于点F,且EG=FG,连结CE.(1)求证:∠G=∠CEF;(2)求证:EG是⊙O的切线;(3)延长AB交GE的延长线于点M,若tanG =34,AH=33,求EM的值.【答案】(1)证明见解析;(2)证明见解析;(3)253.【解析】试题分析:(1)由AC∥EG,推出∠G=∠ACG,由AB⊥CD推出AD AC=,推出∠CEF=∠ACD,推出∠G=∠CEF,由此即可证明;(2)欲证明EG是⊙O的切线只要证明EG⊥OE即可;(3)连接OC.设⊙O的半径为r.在Rt△OCH中,利用勾股定理求出r,证明△AHC∽△MEO,可得AH HCEM OE=,由此即可解决问题;试题解析:(1)证明:如图1.∵AC∥EG,∴∠G=∠ACG,∵AB⊥CD,∴AD AC=,∴∠CEF=∠ACD,∴∠G=∠CEF,∵∠ECF=∠ECG,∴△ECF∽△GCE.(2)证明:如图2中,连接OE.∵GF=GE,∴∠GFE=∠GEF=∠AFH,∵OA=OE,∴∠OAE=∠OEA,∵∠AFH+∠FAH=90°,∴∠GEF+∠AEO=90°,∴∠GEO=90°,∴GE⊥OE,∴EG是⊙O的切线.(3)解:如图3中,连接OC.设⊙O的半径为r.在Rt△AHC中,tan∠ACH=tan∠G=AHHC=34,∵AH=33∴HC=3Rt△HOC中,∵OC=r,OH=r﹣33HC=43∴222(33)(43)r r-+=,∴r=2536,∵GM∥AC,∴∠CAH=∠M,∵∠OEM=∠AHC,∴△AHC∽△MEO,∴AH HCEM OE=,∴33432536=,∴EM253.点睛:本题考查圆综合题、垂径定理、相似三角形的判定和性质、锐角三角函数、勾股定理等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题,正确寻找相似三角形,构建方程解决问题吗,属于中考压轴题.2.图 1 和图 2 中,优弧AB纸片所在⊙O 的半径为 2,AB=3,点P为优弧AB上一点(点P 不与A,B 重合),将图形沿BP 折叠,得到点A 的对称点A′.发现:(1)点O 到弦AB 的距离是,当BP 经过点O 时,∠ABA′=;(2)当BA′与⊙O 相切时,如图 2,求折痕的长.拓展:把上图中的优弧纸片沿直径MN 剪裁,得到半圆形纸片,点P(不与点M, N 重合)为半圆上一点,将圆形沿NP 折叠,分别得到点M,O 的对称点A′, O′,设∠MNP=α.(1)当α=15°时,过点A′作A′C∥MN,如图 3,判断A′C 与半圆O 的位置关系,并说明理由;(2)如图 4,当α= °时,NA′与半圆O 相切,当α= °时,点O′落在NP上.(3)当线段NO′与半圆O 只有一个公共点N 时,直接写出β的取值范围.【答案】发现:(1)1,60°;(2)3;拓展:(1)相切,理由详见解析;(2)45°;30°;(3)0°<α<30°或45°≤α<90°.【解析】【分析】发现:(1)利用垂径定理和勾股定理即可求出点O到AB的距离;利用锐角三角函数的定义及轴对称性就可求出∠ABA′.(2)根据切线的性质得到∠OBA′=90°,从而得到∠ABA′=120°,就可求出∠ABP,进而求出∠OBP=30°.过点O作OG⊥BP,垂足为G,容易求出OG、BG的长,根据垂径定理就可求出折痕的长.拓展:(1)过A'、O作A'H⊥MN于点H,OD⊥A'C于点D.用含30°角的直角三角形的性质可得OD=A'H=12A'N=12MN=2可判定A′C与半圆相切;(2)当NA′与半圆相切时,可知ON⊥A′N,则可知α=45°,当O′在PB时,连接MO′,则可知NO′=12MN,可求得∠MN O′=60°,可求得α=30°;(3)根据点A′的位置不同得到线段NO′与半圆O只有一个公共点N时α的取值范围是0°<α<30°或45°≤α<90°.【详解】发现:(1)过点O作OH⊥AB,垂足为H,如图1所示,∵⊙O的半径为2,AB=23,∴OH=22OB HB-=222(3)1-=在△BOH中,OH=1,BO=2∴∠ABO=30°∵图形沿BP折叠,得到点A的对称点A′.∴∠OBA′=∠ABO=30°∴∠ABA′=60°(2)过点O作OG⊥BP,垂足为G,如图2所示.∵BA′与⊙O相切,∴OB⊥A′B.∴∠OBA′=90°.∵∠OBH=30°,∴∠ABA′=120°.∴∠A′BP=∠ABP=60°.∴∠OBP=30°.∴OG=12OB=1.∴3.∵OG⊥BP,∴3.∴3.∴折痕的长为3拓展:(1)相切.分别过A'、O作A'H⊥MN于点H,OD⊥A'C于点D.如图3所示,∵A'C∥MN∴四边形A'HOD是矩形∴A'H=O∵α=15°∴∠A'NH=30∴OD=A'H=12A'N=12MN=2∴A'C与半圆(2)当NA′与半圆O相切时,则ON⊥NA′,∴∠ONA′=2α=90°,∴α=45当O′在PB上时,连接MO′,则可知NO′=12 MN,∴∠O′MN=0°∴∠MNO′=60°,∴α=30°,故答案为:45°;30°.(3)∵点P,M不重合,∴α>0,由(2)可知当α增大到30°时,点O′在半圆上,∴当0°<α<30°时点O′在半圆内,线段NO′与半圆只有一个公共点B;当α增大到45°时NA′与半圆相切,即线段NO′与半圆只有一个公共点B.当α继续增大时,点P逐渐靠近点N,但是点P,N不重合,∴α<90°,∴当45°≤α<90°线段BO′与半圆只有一个公共点B.综上所述0°<α<30°或45°≤α<90°.【点睛】本题考查了切线的性质、垂径定理、勾股定理、三角函数的定义、30°角所对的直角边等于斜边的一半、翻折问题等知识,正确的作出辅助线是解题的关键.3.如图1,以边长为4的正方形纸片ABCD的边AB为直径作⊙O,交对角线AC于点E.(1)图1中,线段AE=;(2)如图2,在图1的基础上,以点A为端点作∠DAM=30°,交CD于点M,沿AM将四边形ABCM剪掉,使Rt△ADM绕点A逆时针旋转(如图3),设旋转角为α(0°<α<150°),在旋转过程中AD与⊙O交于点F.①当α=30°时,请求出线段AF的长;②当α=60°时,求出线段AF的长;判断此时DM与⊙O的位置关系,并说明理由;③当α=°时,DM与⊙O相切.【答案】(1)2(2)①2②2,相离③当α=90°时,DM与⊙O相切【解析】(1)连接BE,∵AC是正方形ABCD的对角线,∴∠BAC=45°,∴△AEB是等腰直角三角形,又∵AB=8,∴AE=4;(2)①连接OA、OF,由题意得,∠NAD=30°,∠DAM=30°,故可得∠OAM=30°,∠DAM=30°,则∠OAF=60°,又∵OA=OF,∴△OAF是等边三角形,∵OA=4,∴AF=OA=4;②连接B'F,此时∠NAD=60°,∵AB'=8,∠DAM=30°,∴AF=AB'cos∠DAM=8×=4;此时DM与⊙O的位置关系是相离;③∵AD=8,直径的长度相等,∴当DM与⊙O相切时,点D在⊙O上,故此时可得α=∠NAD=90°.点睛:此题属于圆的综合题,主要是仔细观察每一次旋转后的图形,根据含30°角的直角三角形进行计算,另外在解答最后一问时,关键是判断出点D的位置,有一定难度.4.如图,已知AB是⊙O的直径,点C,D在⊙O上,BC=6cm,AC=8cm,∠BAD=45°.点E在⊙O外,做直线AE,且∠EAC=∠D.(1)求证:直线AE是⊙O的切线.(2)求图中阴影部分的面积.【答案】(1)见解析;(2) 25-504.【解析】分析:(1)根据圆周角定理及推论证得∠BAE=90°,即可得到AE是⊙O的切线;(2)连接OD,用扇形ODA的面积减去△AOD的面积即可.详解:证明:(1)∵AB是⊙O的直径,∴∠ACB=90°,即∠BAC+∠ABC=90°,∵∠EAC=∠ADC,∠ADC=∠ABC,∴∠EAC=∠ABC∴∠BAC+∠EAC =90°,即∠BAE= 90°∴直线AE 是⊙O 的切线;(2)连接OD∵ BC=6 AC=8∴ 226810AB =+=∴ OA = 5又∵ OD = OA∴∠ADO =∠BAD = 45°∴∠AOD = 90°∴AOD ODA S S S ∆-阴影扇形==90155553602π⨯⨯-⨯⨯ 25504π-= (2cm )点睛:此题主要考查了圆周角定理和圆的切线的判定与性质,关键是利用圆周角定理和切线的判定与性质,结合勾股定理的和弓形的面积的求法求解,注意数形结合思想的应用.5.已知:AB 是⊙0直径,C 是⊙0外一点,连接BC 交⊙0于点D ,BD=CD,连接AD 、AC .(1)如图1,求证:∠BAD=∠CAD(2)如图2,过点C 作CF ⊥AB 于点F,交⊙0于点E,延长CF 交⊙0于点G.过点作EH ⊥AG 于点H ,交AB 于点K,求证AK=2OF ;(3)如图3,在(2)的条件下,EH 交AD 于点L,若0K=1,AC=CG,求线段AL 的长.图1 图2 图3【答案】(1)见解析(2)见解析12105【解析】试题分析:(1)由直径所对的圆周角等于90°,得到∠ADB =90°,再证明△ABD ≌△ACD 即可得到结论;(2)连接BE .由同弧所对的圆周角相等,得到∠GAB =∠BEG .再证△KFE ≌△BFE ,得到BF =KF =BK .由OF =OB -BF ,AK =AB -BK ,即可得到结论.(3)连接CO 并延长交AG 于点M ,连接BG .设∠GAB =α.先证CM 垂直平分AG ,得到AM =GM ,∠AGC +∠GCM =90°.再证∠GAF =∠GCM =α.通过证明△AGB ≌△CMG ,得到BG =GM =12AG .再证明∠BGC =∠MCG =α.设BF =KF =a , 可得GF =2a ,AF =4a . 由OK =1,得到OF =a +1,AK =2(a +1),AF = 3a +2,得到3a +2=4a ,解出a 的值,得到AF ,AB ,GF ,FC 的值.由tanα=tan ∠HAK =12HK AH =, AK =6,可以求出 AH 的长.再由1tan tan 3BAD BCF ∠=∠= ,利用公式tan ∠GAD =tan tan 1tan tan GAF BAD GAF BAD∠+∠-∠⋅∠,得到∠GAD =45°,则AL =2AH ,即可得到结论.试题解析:解:(1)∵AB 为⊙O 的直径,∴∠ADB =90°,∴∠ADC =90°.∵BD =CD ,∠BDA =∠CDA ,AD =AD ,∴△ABD ≌△ACD ,∴∠BAD =∠CAD .(2)连接BE .∵BG =BG ,∴∠GAB =∠BEG .∵CF ⊥AB ,∴∠KFE =90°.∵EH ⊥AG ,∴∠AHE =∠KFE =90°,∠AKH =∠EKF ,∴∠HAK =∠KEF =∠BEF .∵FE =FE ,∠KFE =∠BFE =90°,∴△KFE ≌△BFE ,∴BF =KF =BK .∵ OF =OB -BF ,AK =AB -BK ,∴AK =2OF .(3)连接CO 并延长交AG 于点M ,连接BG .设∠GAB =α.∵AC =CG , ∴点C 在AG 的垂直平分线上.∵ OA =OG ,∴点O 在AG 的垂直平分线上, ∴CM 垂直平分AG ,∴AM =GM ,∠AGC +∠GCM =90°.∵AF ⊥CG ,∴∠AGC +∠GAF =90°,∴∠GAF =∠GCM =α.∵AB 为⊙O 的直径,∴∠AGB = 90°,∴∠AGB =∠CMG =90°.∵AB =AC =CG ,∴△AGB ≌△CMG ,∴BG =GM =12AG .在Rt △AGB 中, 1tan tan 2GB GAB AG α∠=== . ∵∠AMC =∠AGB = 90°,∴BG ∥CM , ∴∠BGC =∠MCG =α.设BF =KF =a , 1tan tan 2BF BGF GF α∠===,∴GF =2a ,1tan tan 2GF GAF AF α∠=== ,AF =4a .∵OK =1,∴OF =a +1,AK =2OF =2(a +1),∴AF =AK +KF =a +2(a +1)=3a +2,∴3a +2=4a ,∴a =2, AK =6,∴AF =4a =8,AB =AC =CG =10,GF =2a =4,FC =CG -GF =6. ∵tanα=tan ∠HAK =12HK AH =,设KH =m ,则AH =2m ,∴AK =22(2)m m +=6,解得:m =655,∴AH =2m =1255.在Rt △BFC 中,1tan 3BF BCF FC ∠== .∵∠BAD +∠ABD =90°, ∠FBC +∠BCF =90°,∴∠BCF =∠BAD ,1tan tan 3BAD BCF ∠=∠= ,∴tan ∠GAD =tan tan 1tan tan GAF BAD GAF BAD ∠+∠-∠⋅∠=1123111123+=-⨯,∴∠GAD =45°,∴HL=AH ,AL =2AH = 1210.6.已知A (2,0),B (6,0),CB ⊥x 轴于点B ,连接AC画图操作:(1)在y正半轴上求作点P,使得∠APB=∠ACB(尺规作图,保留作图痕迹)理解应用:(2)在(1)的条件下,①若tan∠APB12=,求点P的坐标②当点P的坐标为时,∠APB最大拓展延伸:(3)若在直线y43=x+4上存在点P,使得∠APB最大,求点P的坐标【答案】(1)图形见解析(2)(0,2),(0,4)(0,33)(953 5-,1255)【解析】试题分析:(1)以AC为直径画圆交y轴于P,连接PA、PB,∠PAB即为所求;(2)①由题意AC的中点K(4,4),以K为圆心AK为半径画圆,交y轴于P和P′,易知P(0,2),P′(0,6);②当⊙K与y轴相切时,∠APB的值最大,(3)如图3中,当经过AB的园与直线相切时,∠APB最大.想办法求出点P坐标即可解决问题;试题解析:解:(1)∠APB如图所示;(2)①如图2中,∵∠APB=∠ACB,∴tan∠ACB=tan∠APB=12=ABBC.∵A(2,0),B(6,0),∴AB=4,BC=8,∴C(6,8),∴AC的中点K(4,4),以K为圆心AK为半径画圆,交y轴于P和P′,易知P(0,2),P′(0,6).②当⊙K与y轴相切时,∠APB的值最大,此时AK=PK=4,AC=8,∴BC=22AC AB=43,∴C(6,43),∴K(4,22),∴P(0,23).故答案为:(0,23).(3)如图3中,当经过AB的园与直线相切时,∠APB最大.∵直线y=43x+4交x轴于M(﹣3,0),交y轴于N(0,4).∵MP是切线,∴MP2=MA•MB,∴MP=35,作PK⊥OA于K.∵ON∥PK,∴ONPK=OMMK=NMMP,∴4PK=3MK=35,∴PK=125,MK=95,∴OK=95﹣3,∴P(95﹣3,125).点睛:本题考查了一次函数综合题、直线与圆的位置关系、平行线的性质、切线的判定和性质、勾股定理、锐角三角函数等知识,解题的关键是学会添加常用辅助线解决问题,学会构造辅助圆解决最大角问题,属于中考压轴题.7.如图1,延长⊙O的直径AB至点C,使得BC=12AB,点P是⊙O上半部分的一个动点(点P不与A、B重合),连结OP,CP.(1)∠C的最大度数为;(2)当⊙O的半径为3时,△OPC的面积有没有最大值?若有,说明原因并求出最大值;若没有,请说明理由;(3)如图2,延长PO交⊙O于点D,连结DB,当CP=DB时,求证:CP是⊙O的切线.【答案】(1)30°;(2)有最大值为9,理由见解析;(3)证明见解析.【解析】试题分析:(1)当PC与⊙O相切时,∠OCP的度数最大,根据切线的性质即可求得;(2)由△OPC的边OC是定值,得到当OC边上的高为最大值时,△OPC的面积最大,当PO⊥OC时,取得最大值,即此时OC边上的高最大,于是得到结论;(3)根据全等三角形的性质得到AP=DB,根据等腰三角形的性质得到∠A=∠C,得到CO=OB+OB=AB,推出△APB≌△CPO,根据全等三角形的性质得到∠CPO=∠APB,根据圆周角定理得到∠APB=90°,即可得到结论.试题解析:(1)当PC与⊙O相切时,∠OCP最大.如图1,所示:∵sin∠OCP=OPOC =24=12,∴∠OCP=30°∴∠OCP的最大度数为30°,故答案为:30°;(2)有最大值,理由:∵△OPC的边OC是定值,∴当OC边上的高为最大值时,△OPC的面积最大,而点P在⊙O上半圆上运动,当PO⊥OC时,取得最大值,即此时OC边上的高最大,也就是高为半径长,∴最大值S△OPC=12OC•OP=12×6×3=9;(3)连结AP,BP,如图2,在△OAP与△OBD中,OA ODAOP BODOP OB=⎧⎪∠=∠⎨⎪=⎩,∴△OAP≌△OBD,∴AP=DB,∵PC=DB,∴AP=PC,∵PA=PC,∴∠A=∠C,∵BC=12AB=OB,∴CO=OB+OB=AB,在△APB和△CPO中,AP CPA CAB CO=⎧⎪∠=∠⎨⎪=⎩,∴△APB≌△CPO,∴∠CPO=∠APB,∵AB为直径,∴∠APB=90°,∴∠CPO=90°,∴PC切⊙O于点P,即CP是⊙O的切线.8.四边形ABCD内接于⊙O,点E为AD上一点,连接AC,CB,∠B=∠AEC.(1)如图1,求证:CE=CD;(2)如图2,若∠B+∠CAE=120°,∠ACD=2∠BAC,求∠BAD的度数;(3)如图3,在(2)的条件下,延长CE交⊙O于点G,若tan∠BAC= 53,EG=2,求AE的长.【答案】(1)见解析;(2)60°;(3)7.【解析】试题分析:(1)利用圆的内接四边形定理得到∠CED=∠CDE.(2) 作CH⊥DE于H, 设∠ECH=α,由(1)CE=CD,用α表示∠CAE,∠BAC,而∠BAD=∠BAC+∠CAE.(3)连接AG,作GN⊥AC,AM⊥EG,先证明∠CAG=∠BAC,设NG=53m,可得AN=11m,利用直角AGM,AEM,勾股定理可以算出m的值并求出AE长.试题解析:(1)解:证明:∵四边形ABCD内接于⊙O.∴∠B+∠D=180°,∵∠B=∠AEC,∴∠AEC+∠D=180°,∵∠AEC+∠CED=180°,∴∠D=∠CED,∴CE=CD.(2)解:作CH⊥DE于H.设∠ECH=α,由(1)CE=CD,∴∠ECD=2α,∵∠B=∠AEC,∠B+∠CAE=120°,∴∠CAE+∠AEC=120°,∴∠ACE=180°﹣∠AEC﹣∠ACE=60°,∴∠CAE=90°﹣∠ACH=90°﹣(60°+α)=30°﹣α,∠ACD=∠ACH+∠HCD=60°+2α,∵∠ACD=2∠BAC,∴∠BAC=30°+α,∴∠BAD=∠BAC+∠CAE=30°+α+30°﹣α=60°.(3)解:连接AG,作GN⊥AC,AM⊥EG,∵∠CED=∠AEG,∠CDE=∠AGE,∠CED=∠CDE,∴∠AEG =∠AGE , ∴AE =AG , ∴EM=MG =12EG =1, ∴∠EAG =∠ECD =2α,∴∠CAG =∠CAD +∠DAG =30°﹣α+2α=∠BAC , ∵tan ∠BAC =53, ∴设NG=53m ,可得AN =11m ,AG =22AG AM -=14m ,∵∠ACG =60°,∴CN=5m ,AM =83m ,MG =22AG AM -=2m =1,∴m =12, ∴CE=CD =CG ﹣EG =10m ﹣2=3, ∴AE =22AM EM +=221+43()=7.9.如图,△ABC 中,AC =BC =10,cosC =35,点P 是AC 边上一动点(不与点A 、C 重合),以PA 长为半径的⊙P 与边AB 的另一个交点为D ,过点D 作DE ⊥CB 于点E . (1)当⊙P 与边BC 相切时,求⊙P 的半径.(2)连接BP 交DE 于点F ,设AP 的长为x ,PF 的长为y ,求y 关于x 的函数解析式,并直接写出x 的取值范围.(3)在(2)的条件下,当以PE 长为直径的⊙Q 与⊙P 相交于AC 边上的点G 时,求相交所得的公共弦的长.【答案】(1)409R =;(2)25880320xy x x x =-++(3)505- 【解析】【分析】(1)设⊙P与边BC相切的切点为H,圆的半径为R,连接HP,则HP⊥BC,cosC=35,则sinC=45,sinC=HPCP=10RR-=45,即可求解;(2)首先证明PD∥BE,则EB BFPD PF=,即:2024588x yxxxy-+--=,即可求解;(3)证明四边形PDBE为平行四边形,则AG=EP=BD,即:AB=DB+AD=AG+AD=45,即可求解.【详解】(1)设⊙P与边BC相切的切点为H,圆的半径为R,连接HP,则HP⊥BC,cosC=35,则sinC=45,sinC=HPCP=10RR-=45,解得:R=409;(2)在△ABC中,AC=BC=10,cosC=35,设AP=PD=x,∠A=∠ABC=β,过点B作BH⊥AC,则BH=ACsinC=8,同理可得:CH=6,HA=4,AB=5tan∠CAB=2,BP228+(4)x-2880x x-+DA =255x ,则BD =45﹣255x , 如下图所示,PA =PD ,∴∠PAD =∠CAB =∠CBA =β,tanβ=2,则cosβ=5,sinβ=5, EB =BDcosβ=(45﹣25x )×5=4﹣25x ,∴PD ∥BE ,∴EB BFPD PF=,即:2024588x y x xx y-+--=,整理得:y =25xx 8x 803x 20-++;(3)以EP 为直径作圆Q 如下图所示,两个圆交于点G ,则PG =PQ ,即两个圆的半径相等,则两圆另外一个交点为D , GD 为相交所得的公共弦, ∵点Q 是弧GD 的中点, ∴DG ⊥EP , ∵AG 是圆P 的直径, ∴∠GDA =90°, ∴EP ∥BD ,由(2)知,PD ∥BC ,∴四边形PDBE 为平行四边形, ∴AG =EP =BD ,∴AB=DB+AD=AG+AD=45,设圆的半径为r,在△ADG中,AD=2rcosβ=5,DG=5,AG=2r,5+2r=45,解得:2r=51+,则:DG=5=50﹣105,相交所得的公共弦的长为50﹣105.【点睛】本题考查的是圆知识的综合运用,涉及到解直角三角形、勾股定理等知识,其中(3),要关键是根据题意正确画图,此题用大量的解直角三角形的内容,综合难度很大.10.如图,在△ABC中,AB=AC,以AC为直径作⊙O交BC于点D,过点D作FE⊥AB于点E,交AC的延长线于点F.(1)求证:EF与⊙O相切;(2)若AE=6,sin∠CFD=35,求EB的长.【答案】(1)见解析(2)3 2【解析】【分析】()1如图,欲证明EF与O相切,只需证得OD EF⊥.()2通过解直角AEF可以求得AF10.=设O的半径为r,由已知可得△FOD∽△FAE,继而得到OF ODAF AE=,即10r r106-=,则易求15AB AC2r2===,所以153EB AB AE622 =-=-=.【详解】(1)如图,连接OD,OC OD =,OCD ODC ∠∠∴=. AB AC =, ACB B ∠∠∴=, ODC B ∠∠∴=, OD //AB ∴,ODF AEF ∠∠∴=, EF AB ⊥,ODF AEF 90∠∠∴==,OD EF ∴⊥,OD 是O 的半径,EF ∴与O 相切;()2由()1知,OD//AB ,OD EF ⊥.在Rt AEF 中,AE 3sin CFD AF 5∠==,AE 6=, 则AF 10=,OD //AB ,∴△FOD ∽△FAE ,OF ODAF AE∴=, 设O 的半径为r , 10r r106-∴=, 解得,15r 4=, 15AB AC 2r 2∴===, 153EB AB AE 622∴=-=-=. 【点睛】本题考查了切线的判定、相似三角形的判定与性质、解直角三角形的应用等,正确添加辅助线、灵活应用相关知识是解题的关键.。
圆难题压轴题答案解析1. 解:(1)如图1,设⊙O的半径为r,当点A在⊙C上时,点E和点A重合,过点A作AH⊥BC于H,∴BH=AB?cosB=4,∴AH=3,CH=4,∴AC==5,∴此时CP=r=5;(2)如图2,若AP∥CE,APCE为平行四边形,∵CE=CP,∴四边形APCE是菱形,连接AC、EP,则AC⊥EP,∴AM=CM=,由(1)知,AB=AC,则∠ACB=∠B,∴CP=CE==,∴EF=2=;(3)如图3:过点C作CN⊥AD于点N,∵cosB=45,∴∠B<45°,∵∠BCG<90°,∴∠BGC>45°,∵∠AEG=∠BCG≥∠ACB=∠B,∴当∠AEG=∠B时,A、E、G重合,∴只能∠AGE=∠AEG,∵AD∥BC,∴△GAE∽△GBC,∴=,即=,解得:AE=3,EN=AN﹣AE=1,∴CE===.2. 解:(1)①若圆P与直线l和l2都相切,当点P在第四象限时,过点P作PH⊥x轴,垂足为H,连接OP,如图1所示.设y=x的图象与x轴的夹角为α.当x=1时,y=.∴tanα=.∴α=60°.∴由切线长定理得:∠POH=(180°﹣60°)=60°.∵PH=1,∴tan∠POH===.∴OH=.∴点P的坐标为(,﹣1).同理可得:当点P在第二象限时,点P的坐标为(﹣,1);当点P在第三象限时,点P的坐标为(﹣,﹣1);②若圆P与直线l和l1都相切,如图2所示.同理可得:当点P在第一象限时,点P的坐标为(,1);当点P在第二象限时,点P的坐标为(﹣,1);当点P在第三象限时,点P的坐标为(﹣,﹣1);当点P在第四象限时,点P的坐标为(,﹣1).③若圆P与直线l1和l2都相切,如图3所示.同理可得:当点P在x轴的正半轴上时,点P的坐标为(,0);当点P在x轴的负半轴上时,点P的坐标为(﹣,0);当点P在y轴的正半轴上时,点P的坐标为(0,2);当点P在y轴的负半轴上时,点P的坐标为(0,﹣2).综上所述:其余满足条件的圆P的圆心坐标有:(,﹣1)、(﹣,1)、(﹣,﹣1)、(,1)、(﹣,1)、(﹣,﹣1)、(,﹣1)、(,0)、(﹣,0)、(0,2)、(0,﹣2).(2)用线段依次连接各圆心,所得几何图形,如图4所示.由图可知:该几何图形既轴对称图形,又是中心对称图形,由对称性可得:该几何图形的所有的边都相等.∴该图形的周长=12×(﹣)=8.3. (1)解:连接OB,OD,∵∠DAB=120°,∴所对圆心角的度数为240°,∴∠BOD=120°,∵⊙O的半径为3,∴劣弧的长为:×π×3=2π;(2)证明:连接AC,∵AB=BE,∴点B为AE的中点,∵F是EC的中点,∴BF为△EAC的中位线,∴BF=AC,∵=,∴+=+,∴=,∴BD=AC,∴BF=BD;(3)解:过点B作AE的垂线,与⊙O的交点即为所求的点P,∵BF为△EAC的中位线,∴BF∥AC,∴∠FBE=∠CAE,∵=,∴∠CAB=∠DBA,∵由作法可知BP⊥AE,∴∠GBP=∠FBP,∵G为BD的中点,∴BG=BD,∴BG=BF,在△PBG和△PBF中,,∴△PBG≌△PBF(SAS),∴PG=PF.4. 解:(1)∵l1⊥l2,⊙O与l1,l2都相切,∴∠OAD=45°,∵AB=4cm,AD=4cm,∴CD=4cm,AD=4cm,∴tan∠DAC===,∴∠DAC=60°,∴∠OAC的度数为:∠OAD+∠DAC=105°,故答案为:105;(2)如图位置二,当O1,A1,C1恰好在同一直线上时,设⊙O1与l1的切点为E,连接O1E,可得O1E=2,O1E⊥l1,在Rt△A1D1C1中,∵A1D1=4,C1D1=4,∴tan∠C1A1D1=,∴∠C1A1D1=60°,在Rt△A1O1E中,∠O1A1E=∠C1A1D1=60°,∴A1E==,∵A1E=AA1﹣OO1﹣2=t﹣2,∴t﹣2=,∴t=+2,∴OO1=3t=2+6;(3)①当直线AC与⊙O第一次相切时,设移动时间为t1,如图,此时⊙O移动到⊙O2的位置,矩形ABCD移动到A2B2C2D2的位置,设⊙O2与直线l1,A2C2分别相切于点F,G,连接O2F,O2G,O2A2,∴O2F⊥l1,O2G⊥A2G2,由(2)得,∠C2A2D2=60°,∴∠GA2F=120°,∴∠O2A2F=60°,在Rt△A2O2F中,O2F=2,∴A2F=,∵OO2=3t,AF=AA2+A2F=4t1+,∴4t1+﹣3t1=2,∴t1=2﹣,②当直线AC与⊙O第二次相切时,设移动时间为t2,记第一次相切时为位置一,点O1,A1,C1共线时位置二,第二次相切时为位置三,由题意知,从位置一到位置二所用时间与位置二到位置三所用时间相等,∴+2﹣(2﹣)=t2﹣(+2),解得:t2=2+2,综上所述,当d<2时,t的取值范围是:2﹣<t<2+2.5.解:(1)证明:如图1,∵CE为⊙O的直径,∴∠CFE=∠CGE=90∵EG⊥EF,∴∠FEG=90°.∴∠CFE=∠CGE=∠FEG=90°.∴四边形EFCG是矩形.(2)①存在.连接OD,如图2①,∵四边形ABCD是矩形,∴∠A=∠ADC=90°.∵点O是CE的中点,∴OD=OC.∴点D在⊙O上.∵∠FCE=∠FDE,∠A=∠CFE=90°,∴△CFE∽△DAB.∴=()2.∵AD=4,AB=3,∴BD=5,S△CFE=()2?S△DAB=××3×4=.∴S矩形ABCD=2S△CFE=.∵四边形EFCG是矩形,∴FC∥EG.∴∠FCE=∠CEG.∵∠GDC=∠CEG,∠FCE=∠FDE,∴∠GDC=∠FDE.∵∠FDE+∠CDB=90°,∴∠GDC+∠CDB=90°.∴∠GDB=90°Ⅰ.当点E在点A(E′)处时,点F在点B(F′)处,点G在点D(G′处,如图2①所示.此时,CF=CB=4.Ⅱ.当点F在点D(F″)处时,直径F″G″⊥BD,如图2②所示,此时⊙O与射线BD相切,CF=CD=3.Ⅲ.当CF⊥BD时,CF最小,此时点F到达F″′,如图2③所示.S△BCD=BC?CD=BD?CF″′.∴4×3=5×CF″′∴CF″′=.∴≤CF≤4.∵S矩形ABCD=,∴×()2≤S矩形ABCD≤×42.∴≤S矩形ABCD≤12.∴矩形EFCG的面积最大值为12,最小值为.②∵∠GDC=∠FDE=定值,点G的起点为D,终点为G″,∴点G的移动路线是线段DG″.∵∠GDC=∠FDE,∠DCG″=∠A=90°,∴△DCG″∽△DAB.∴=.∴=.∴DG″=.∴点G移动路线的长为.6.解:(1)以AB为边,在第一象限内作等边三角形ABC,以点C为圆心,AC为半径作⊙C,交y轴于点P1、P2.在优弧AP1B上任取一点P,如图1,则∠APB=∠ACB=×60°=30°.∴使∠APB=30°的点P有无数个.故答案为:无数.(2)①当点P在y轴的正半轴上时,过点C作CG⊥AB,垂足为G,如图1.∵点A(1,0),点B(5,0),∴OA=1,OB=5.∴AB=4.∵点C为圆心,CG⊥AB,∴AG=BG=AB=2.∴OG=OA+AG=3.∵△ABC是等边三角形,∴AC=BC=AB=4.∴CG===2.∴点C的坐标为(3,2).过点C作CD⊥y轴,垂足为D,连接CP2,如图1,∵点C的坐标为(3,2),∴CD=3,OD=2.∵P1、P2是⊙C与y轴的交点,∴∠AP1B=∠AP2B=30°.∵CP2=CA=4,CD=3,∴DP2==.∵点C为圆心,CD⊥P1P2,∴P1D=P2D=.∴P2(0,2﹣).P1(0,2+).②当点P在y轴的负半轴上时,同理可得:P3(0,﹣2﹣).P4(0,﹣2+).综上所述:满足条件的点P的坐标有:(0,2﹣)、(0,2+)、(0,﹣2﹣)、(0,﹣2+).(3)当过点A、B的⊙E与y轴相切于点P时,∠APB最大.①当点P在y轴的正半轴上时,连接EA,作EH⊥x轴,垂足为H,如图2.∵⊙E与y轴相切于点P,∴PE⊥OP∵EH⊥AB,OP⊥OH,∴∠EPO=∠POH=∠EHO=90°.∴四边形OPEH是矩形.∴OP=EH,PE=OH=3∴EA=3.∵∠EHA=90°,AH=2,EA=3,∴EH===∴OP=∴P(0,).②当点P在y轴的负半轴上时,同理可得:P(0,﹣).理由:①若点P在y轴的正半轴上,在y轴的正半轴上任取一点M(不与点P重合),连接MA,MB,交⊙E于点N,连接NA,如图2所示.∵∠ANB是△AMN的外角,∴∠ANB>∠AMB.∵∠APB=∠ANB,∴∠APB>∠AMB.②若点P在y轴的负半轴上,同理可证得:∠APB>∠AMB.综上所述:当点P在y轴上移动时,∠APB有最大值,此时点P的坐标为(0,)和(0,﹣).7.解答:证明:(1)如图,连接PM,PN,∵⊙P与x轴,y轴分别相切于点M和点N,∴PM⊥MF,PN⊥ON且PM=PN,∴∠PMF=∠PNE=90°且∠NPM=90°,∵PE⊥PF,∠NPE=∠MPF=90°﹣∠MPE,在△PMF和△PNE中,,∴△PMF≌△PNE(ASA),∴PE=PF,(2)解:①当t>1时,点E在y轴的负半轴上,如图,由(1)得△PMF≌△PNE,∴NE=MF=t,PM=PN=1,∴b=OF=OM+MF=1+t,a=NE﹣ON=t﹣1,∴b﹣a=1+t﹣(t﹣1)=2,∴b=2+a,②0<t≤1时,如图2,点E在y轴的正半轴或原点上,同理可证△PMF≌△PNE,∴b=OF=OM+MF=1+t,a=ON﹣NE=1﹣t,∴b+a=1+t+1﹣t=2,∴b=2﹣a,(3)如图3,(Ⅰ)当1<t<2时,∵F(1+t,0),F和F′关于点M对称,∴F′(1﹣t,0)∵经过M、E和F′三点的抛物线的对称轴交x轴于点Q,∴Q(1﹣t,0)∴OQ=1﹣t,由(1)得△PMF≌△PNE∴NE=MF=t,∴OE=t﹣1当△OEQ∽△MPF∴=∴=,解得,t=,当△OEQ∽△MFP时,∴=,=,解得,t=,(Ⅱ)如图4,当t>2时,∵F(1+t,0),F和F′关于点M对称,∴F′(1﹣t,0)∵经过M、E和F′三点的抛物线的对称轴交x轴于点Q,∴Q(1﹣t,0)∴OQ=t﹣1,由(1)得△PMF≌△PNE∴NE=MF=t,∴OE=t﹣1当△OEQ∽△MPF∴=∴=,无解,当△OEQ∽△MFP时,∴=,=,解得,t=2±,所以当t=,t=,t=2±时,使得以点Q、O、E为顶点的三角形与以点P、M、F 为顶点的三角形相似.8.答::(1)∵DF⊥AB,EF⊥AC,∴∠BDF=∠CEF=90°.∵△ABC为等边三角形,∴∠B=∠C=60°.∵∠BDF=∠CEF,∠B=∠C,∴△BDF∽△CEF.(2)∵∠BDF=90°,∠B=60°,∴sin60°==,cos60°==.∵BF=m,∴DF=m,BD=.∵AB=4,∴AD=4﹣.∴S△ADF=AD?DF=×(4﹣)×m=﹣m2+m.同理:S△AEF=AE?EF=×(4﹣)×(4﹣m)=﹣m2+2.∴S=S△ADF+S△AEF=﹣m2+m+2=﹣(m2﹣4m﹣8)=﹣(m﹣2)2+3.其中0<m<4.∵﹣<0,0<2<4,∴当m=2时,S取最大值,最大值为3.∴S与m之间的函数关系为:S═﹣(m﹣2)2+3(其中0<m<4).当m=2时,S取到最大值,最大值为3.(3)如图2,∵A、D、F、E四点共圆,∴∠EDF=∠EAF.∵∠ADF=∠AEF=90°,∴AF是此圆的直径.∵tan∠EDF=,∴tan∠EAF=.∴=.∵∠C=60°,∴=tan60°=.设EC=x,则EF=x,EA=2x.∵AC=a,∴2x+x=A.∴x=.∴EF=,AE=.∵∠AEF=90°,∴AF==.∴此圆直径长为.9.解答:解:(1)连接OA,过点B作BH⊥AC,垂足为H,如图1所示.∵AB与⊙O相切于点A,∴OA⊥AB.∴∠OAB=90°.∵OQ=QB=1,∴OA=1.∴AB===.∵△ABC是等边三角形,∴AC=AB=,∠CAB=60°.∵sin∠HAB=,∴HB=AB?sin∠HAB=×=.∴S△ABC=AC?BH=××=.∴△ABC的面积为.(2)①当点A与点Q重合时,线段AB与圆O只有一个公共点,此时α=0°;②当线段A1B所在的直线与圆O相切时,如图2所示,线段A1B与圆O只有一个公共点,此时OA1⊥BA1,OA1=1,OB=2,∴cos∠A1OB==.∴∠A1OB=60°.∴当线段AB与圆O只有一个公共点(即A点)时,α的范围为:0°≤α≤60°.(3)连接MQ,如图3所示.∵PQ是⊙O的直径,∴∠PMQ=90°.∵OA⊥PM,∴∠PDO=90°.∴∠PDO=∠PMQ.∴△PDO∽△PMQ.∴==∵PO=OQ=PQ.∴PD=PM,OD=MQ.同理:MQ=AO,BM=AB.∵AO=1,∴MQ=.∴OD=.∵∠PDO=90°,PO=1,OD=,∴PD=.∴PM=.∴DM=.∵∠ADM=90°,AD=A0﹣OD=,∴AM===.∵△ABC是等边三角形,∴AC=AB=BC,∠CAB=60°.∵BM=AB,∴AM=BM.∴CM⊥AB.∵AM=,∴BM=,AB=.∴AC=.∴CM===.∴CM的长度为.10.解答:(1)证明:∵CD是⊙O的直径,∴∠DFC=90°,∵四边形ABCD是平行四边形,∴∠A=∠C,AD∥BC,∴∠ADF=∠DFC=90°,∵DE为⊙O的切线,∴DE⊥DC,∴∠EDC=90°,∴∠ADF=∠EDC=90°,∴∠ADE=∠CDF,∵∠A=∠C,∴△ADE∽△CDE;(2)解:∵CF:FB=1:2,∴设CF=x,FB=2x,则BC=3x,∵AE=3EB,∴设EB=y,则AE=3y,AB=4y,∵四边形ABCD是平行四边形,∴AD=BC=3x,AB=DC=4y,∵△ADE∽△CDF,∴=,∴=,∵x、y均为正数,∴x=2y,∴BC=6y,CF=2y,在Rt△DFC中,∠DFC=90°,由勾股定理得:DF===2y,∴⊙O的面积为π?(DC)2=π?DC2=π(4y)2=4πy2,四边形ABCD的面积为BC?DF=6y?2y=12y2,∴⊙O与四边形ABCD的面积之比为4πy2:12y2=π:3.11.(1)证明:∵,∴∠DPF=180°﹣∠APD=180°﹣所对的圆周角=180°﹣所对的圆周角=所对的圆周角=∠APC.在△PAC和△PDF中,,∴△PAC∽△PDF.(2)解:如图1,连接PO,则由,有PO⊥AB,且∠PAB=45°,△APO、△AEF 都为等腰直角三角形.在Rt△ABC中,∵AC=2BC,∴AB2=BC2+AC2=5BC2,∵AB=5,∴BC=,∴AC=2,∴CE=AC?sin∠BAC=AC?=2?=2,AE=AC?cos∠BAC=AC?=2?=4,∵△AEF为等腰直角三角形,∴EF=AE=4,∴FD=FC+CD=(EF﹣CE)+2CE=EF+CE=4+2=6.∵△APO为等腰直角三角形,AO=?AB=,∴AP=.∵△PDF∽△PAC,∴,∴,∴PD=.(3)解:如图2,过点G作GH⊥AB,交AC于H,连接HB,以HB为直径作圆,连接CG并延长交⊙O于Q,∵HC⊥CB,GH⊥GB,∴C、G都在以HB为直径的圆上,∴∠HBG=∠ACQ,∵C、D关于AB对称,G在AB上,∴Q、P关于AB对称,∴,∴∠PCA=∠ACQ,∴∠HBG=∠PCA.∵△PAC∽△PDF,∴∠PCA=∠PFD=∠AFD,∴y=tan∠AFD=tan∠PCA=tan∠HBG=.∵HG=tan∠HAG?AG=tan∠BAC?AG==,∴y==x.12. 解答:解:(1)证明:连接OH,如图①所示.∵四边形ABCD是矩形,∴∠ADC=∠BAD=90°,BC=AD,AB=CD.∵HP∥AB,∴∠ANH+∠BAD=180°.∴∠ANH=90°.∴HN=PN=HP=.∵OH=OA=,∴sin∠HON==.∴∠HON=60°∵BD与⊙O相切于点H,∴OH⊥BD.∴∠HDO=30°.∴OD=2.∴AD=3.∴BC=3.∵∠BAD=90°,∠BDA=30°.∴tan∠BDA===.∴AB=3.∵HP=3,∴AB=HP.∵AB∥HP,∴四边形ABHP是平行四边形.∵∠BAD=90°,AM是⊙O的直径,∴BA与⊙O相切于点A.∵BD与⊙O相切于点H,∴BA=BH.∴平行四边形ABHP是菱形.(2)△EFG的直角顶点G能落在⊙O上.如图②所示,点G落到AD上.∵EF∥BD,∴∠FEC=∠CDB.∵∠CDB=90°﹣30°=60°,∴∠CEF=60°.由折叠可得:∠GEF=∠CEF=60°.∴∠GED=60°.∵CE=x,∴GE=CE=x.ED=DC﹣CE=3﹣x.∴cos∠GED===.∴x=2.∴GE=2,ED=1.∴GD=.∴OG=AD﹣AO﹣GD=3﹣﹣=.∴OG=OM.∴点G与点M重合.此时△EFG的直角顶点G落在⊙O上,对应的x的值为2.∴当△EFG的直角顶点G落在⊙O上时,对应的x的值为2.(3)①如图①,在Rt△EGF中,tan∠FEG===.∴FG=x.∴S=GE?FG=x?x=x2.②如图③,ED=3﹣x,RE=2ED=6﹣2x,GR=GE﹣ER=x﹣(6﹣2x)=3x﹣6.∵tan∠SRG===,∴SG=(x﹣2).∴S△SGR=SG?RG=?(x﹣2)?(3x﹣6).=(x﹣2)2.∵S△GEF=x2,∴S=S△GEF﹣S△SGR=x2﹣(x﹣2)2.=﹣x2+6x﹣6.综上所述:当0≤x≤2时,S=x2;当2<x≤3时,S=﹣x2+6x﹣6.当FG与⊙O相切于点T时,延长FG交AD于点Q,过点F作FK⊥AD,垂足为K,如图④所示.∵四边形ABCD是矩形,∴BC∥AD,∠ABC=∠BAD=90°∴∠AQF=∠CFG=60°.∵OT=,∴OQ=2.∴AQ=+2.∵∠FKA=∠ABC=∠BAD=90°,∴四边形ABFK是矩形.∴FK=AB=3,AK=BF=3﹣x.∴KQ=AQ﹣AK=(+2)﹣(3﹣x)=2﹣2+x.在Rt△FKQ中,tan∠FQK==.∴FK=QK.∴3=(2﹣2+x).解得:x=3﹣.∵0≤3﹣≤2,∴S=x2=×(3﹣)2=﹣6.∴FG与⊙O相切时,S的值为﹣6.13解答:(1)证明:连结OC、OE,OE交AB于H,如图1,∵E是弧AB的中点,∴OE⊥AB,∴∠EHF=90°,∴∠HEF+∠HFE=90°,而∠HFE=∠CFD,∴∠HEF+∠CFD=90°,∵DC=DF,∴∠CFD=∠DCF,而OC=OE,∴∠OCE=∠OEC,∴∠OCE+∠DCE=∠HEF+∠CFD=90°,∴OC⊥CD,∴直线DC与⊙O相切;(2)解:连结BC,∵E是弧AB的中点,∴弧AE=弧BE,∴∠ABE=∠BCE,而∠FEB=∠BEC,∴△EBF∽△ECB,∴EF:BE=BE:EC,∴EF?EC=BE2=(r)2=r2;(3)解:如图2,连结OA,∵弧AE=弧BE,∴AE=BE=r,设OH=x,则HE=r﹣x,在Rt△OAH中,AH2+OH2=OA2,即AH2+x2=r2,在Rt△EAH中,AH2+EH2=EA2,即AH2+(r﹣x)2=(r)2,∴x2﹣(r﹣x)2=r2﹣(r)2,即得x=r,∴HE=r﹣r=r,在Rt△OAH中,AH===,∵OE⊥AB,∴AH=BH,而F是AB的四等分点,∴HF=AH=,在Rt△EFH中,EF===r,∵EF?EC=r2,∴r?EC=r2,∴EC=r.14. 解:(1)连结O1A、O2B,如图,设⊙O1的半径为r,⊙O2的半径为R,∵⊙O1与⊙O2外切与点D,∴直线O1O2过点D,∴MO2=MD+O2D=4+R,∵直线l与两圆分别相切于点A、B,∴O1A⊥AB,O2B⊥AB,∵tan∠AM01=,∴∠AM01=30°,在Rt△MBO2中,MO2=O2B=2R,∴4+R=2R,解得R=4,即⊙O2的半径为4;(2)∵∠AM02=30°,∴∠MO2B=60°,而O2B=O2D,∴△O2BD为等边三角形,∴BD=O2B=4,∠DBO2=60°,∴∠ABD=30°,∵∠AM01=30°,∴∠MO1A=60°,而O1A=O1D,∴∠O1AD=∠O1DA,∴∠O1AD=∠MO1A=30°,∴∠DAB=60°,∴∠ADB=180°﹣30°﹣60°=90°,在Rt△ABD中,AD=BD=4,AB=2AD=8,∴△ADB内切圆的半径===2﹣2,∴△ADB内切圆的面积=π?(2﹣2)2=(16﹣8)π;(3)存在.在Rt△MBO2中,MB=O2B=×4=12,当△MO2P∽△MDB时,=,即=,解得O2P=8;当△MO2P∽△MBD时,=,即=,解得O2P=8,综上所述,满足条件的O2P的长为8或8.15. 解:(1)连接PA,如图1所示.∵PO⊥AD,∴AO=DO.∵AD=2,∴OA=.∵点P坐标为(﹣1,0),∴OP=1.∴PA==2.∴BP=CP=2.∴B(﹣3,0),C(1,0).(2)连接AP,延长AP交⊙P于点M,连接MB、MC.如图2所示,线段MB、MC即为所求作.四边形ACMB是矩形.理由如下:∵△MCB由△ABC绕点P旋转180°所得,∴四边形ACMB是平行四边形.∵BC是⊙P的直径,∴∠CAB=90°.∴平行四边形ACMB是矩形.过点M作MH⊥BC,垂足为H,如图2所示.在△MHP和△AOP中,∵∠MHP=∠AOP,∠HPM=∠OPA,MP=AP,∴△MHP≌△AOP.∴MH=OA=,PH=PO=1.∴OH=2.∴点M的坐标为(﹣2,).(3)在旋转过程中∠MQG的大小不变.∵四边形ACMB是矩形,∴∠BMC=90°.∵EG⊥BO,∴∠BGE=90°.∴∠BMC=∠BGE=90°.∵点Q是BE的中点,∴QM=QE=QB=QG.∴点E、M、B、G在以点Q为圆心,QB为半径的圆上,如图3所示.∴∠MQG=2∠MBG.∵∠COA=90°,OC=1,OA=,∴tan∠OCA==.∴∠OCA=60°.∴∠MBC=∠BCA=60°.∴∠MQG=120°.∴在旋转过程中∠MQG的大小不变,始终等于120°.16.解:(1)如图1,∵AB是⊙O的直径,∴∠AEB=90°.∴AE⊥BC.(2)如图1,∵BF与⊙O相切,∴∠ABF=90°.∴∠CBF=90°﹣∠ABE=∠BAE.∵∠BAF=2∠CBF.∴∠BAF=2∠BAE.∴∠BAE=∠CAE.∴∠CBF=∠CAE.∵CG⊥BF,AE⊥BC,∴∠CGB=∠AEC=90°.∵∠CBF=∠CAE,∠CGB=∠AEC,∴△BCG∽△ACE.(3)连接BD,如图2所示.∵∠DAE=∠DBE,∠DAE=∠CBF,∴∠DBE=∠CBF.∵AB是⊙O的直径,∴∠ADB=90°.∴BD⊥AF.∵∠DBC=∠CBF,BD⊥AF,CG⊥BF,∴CD=CG.∵∠F=60°,GF=1,∠CGF=90°,∴tan∠F==CG=tan60°=∵CG=,∴CD=.∵∠AFB=60°,∠ABF=90°,∴∠BAF=30°.∵∠ADB=90°,∠BAF=30°,∴AB=2BD.∵∠BAE=∠CAE,∠AEB=∠AEC,∴∠ABE=∠ACE.∴AB=AC.设⊙O的半径为r,则AC=AB=2r,BD=r.∵∠ADB=90°,∴AD=r.∴DC=AC﹣AD=2r﹣r=(2﹣)r=.∴r=2+3.∴⊙O的半径长为2+3.17.解答:解:(1)当k=1时,抛物线解析式为y=x2﹣1,直线解析式为y=x+1.联立两个解析式,得:x2﹣1=x+1,解得:x=﹣1或x=2,当x=﹣1时,y=x+1=0;当x=2时,y=x+1=3,∴A(﹣1,0),B(2,3).(2)设P(x,x2﹣1).如答图2所示,过点P作PF∥y轴,交直线AB于点F,则F(x,x+1).∴PF=y F﹣y P=(x+1)﹣(x2﹣1)=﹣x2+x+2.S△ABP=S△PFA+S△PFB=PF(xF﹣xA)+PF(xB﹣xF)=PF(xB﹣xA)=PF∴S△ABP=(﹣x2+x+2)=﹣(x﹣)2+当x=时,yP=x2﹣1=﹣.∴△ABP面积最大值为,此时点P坐标为(,﹣).(3)设直线AB:y=kx+1与x轴、y轴分别交于点E、F,则E(﹣,0),F(0,1),OE=,OF=1.在Rt△EOF中,由勾股定理得:EF==.令y=x2+(k﹣1)x﹣k=0,即(x+k)(x﹣1)=0,解得:x=﹣k或x=1.∴C(﹣k,0),OC=k.假设存在唯一一点Q,使得∠OQC=90°,如答图3所示,则以OC为直径的圆与直线AB相切于点Q,根据圆周角定理,此时∠OQC=90°.设点N为OC中点,连接NQ,则NQ⊥EF,NQ=CN=ON=.∴EN=OE﹣ON=﹣.∵∠NEQ=∠FEO,∠EQN=∠EOF=90°,∴△EQN∽△EOF,∴,即:,解得:k=±,∵k>0,∴k=.∴存在唯一一点Q,使得∠OQC=90°,此时k=.18.解:(1)设抛物线为y=a(x﹣4)2﹣1,∵抛物线经过点A(0,3),∴3=a(0﹣4)2﹣1,;∴抛物线为;(3分)(2)相交.证明:连接CE,则CE⊥BD,当时,x1=2,x2=6.A(0,3),B(2,0),C(6,0),对称轴x=4,∴OB=2,AB==,BC=4,∵AB⊥BD,∴∠OAB+∠OBA=90°,∠OBA+∠EBC=90°,∴△AOB∽△BEC,∴=,即=,解得CE=,∵>2,∴抛物线的对称轴l与⊙C相交.(7分)(3)如图,过点P作平行于y轴的直线交AC于点Q;可求出AC的解析式为;(8分)设P点的坐标为(m,),则Q点的坐标为(m,);∴PQ=﹣m+3﹣(m2﹣2m+3)=﹣m2+m.∵S△PAC=S△PAQ+S△PCQ=×(﹣m2+m)×6=﹣(m﹣3)2+;∴当m=3时,△PAC的面积最大为;此时,P点的坐标为(3,).(10分)19、【解】:(1)如图1,设⊙O与AB、BC、CA的切点分别为D、E、F,连接OD、OE、OF,则AD=AF,BD=BE,CE=CF.∵⊙O为△ABC的内切圆,∴OF⊥AC,OE⊥BC,即∠OFC=∠OEC=90°.∵∠C=90°,∴四边形CEOF是矩形,∵OE=OF,∴四边形CEOF是正方形.设⊙O的半径为rcm,则FC=EC=OE=rcm,在Rt△ABC中,∠ACB=90°,AC=4cm,BC=3cm,∴AB==5cm.∵AD=AF=AC﹣FC=4﹣r,BD=BE=BC﹣EC=3﹣r,∴4﹣r+3﹣r=5,解得r=1,即⊙O的半径为1cm.(2)如图2,过点P作PG⊥BC,垂直为G.∵∠PGB=∠C=90°,∴PG∥AC.∴△PBG∽△ABC,∴.∵BP=t,∴PG=,BG=.若⊙P与⊙O相切,则可分为两种情况,⊙P与⊙O外切,⊙P与⊙O内切.①当⊙P与⊙O外切时,如图3,连接OP,则OP=1+t,过点P作PH⊥OE,垂足为H.∵∠PHE=∠HEG=∠PGE=90°,∴四边形PHEG是矩形,∴HE=PG,PH=CE,∴OH=OE﹣HE=1﹣,PH=GE=BC﹣EC﹣BG=3﹣1﹣=2﹣.在Rt△OPH中,由勾股定理,,解得t=.②当⊙P与⊙O内切时,如图4,连接OP,则OP=t﹣1,过点O作OM⊥PG,垂足为M.∵∠MGE=∠OEG=∠OMG=90°,∴四边形OEGM是矩形,∴MG=OE,OM=EG,∴PM=PG﹣MG=,OM=EG=BC﹣EC﹣BG=3﹣1﹣=2﹣,在Rt△OPM中,由勾股定理,,解得t=2.综上所述,⊙P与⊙O相切时,t=s或t=2s.20. :(1)如图2,连接OA、OB、OC、OD.∵S=S△AOB+S△BOC+S△COD+S△AOD=+++=,∴r=.(2)如图3,过点D作DE⊥AB于E,∵梯形ABCD为等腰梯形,∴AE===5,∴EB=AB﹣AE=21﹣5=16.在Rt△AED中,∵AD=13,AE=5,∴DE=12,∴DB==20.∵S△ABD===126,S△CDB===66,∴===.。