北邮信息论201209级期末考题
- 格式:pdf
- 大小:180.85 KB
- 文档页数:8
《信息论基础》参考答案一、填空题1、信源编码的主要目的是提高有效性,信道编码的主要目的是提高可靠性。
2、信源的剩余度主要来自两个方面,一是信源符号间的相关性,二是信源符号的统计不均匀性。
3、三进制信源的最小熵为0,最大熵为bit/符号。
4、无失真信源编码的平均码长最小理论极限制为信源熵(或H(S)/logr= H r (S))。
5、当R=C或(信道剩余度为0)时,信源与信道达到匹配.6、根据信道特性是否随时间变化,信道可以分为恒参信道和随参信道。
7、根据是否允许失真,信源编码可分为无失真信源编码和限失真信源编码。
8、若连续信源输出信号的平均功率为,则输出信号幅度的概率密度是高斯分布或正态分布或时,信源具有最大熵,其值为值。
9、在下面空格中选择填入数学符号“”或“"(1)当X和Y相互独立时,H(XY)=H(X)+H(X/Y)=H(Y)+H(X)。
(2)(3)假设信道输入用X表示,信道输出用Y表示.在无噪有损信道中,H(X/Y)〉 0, H(Y/X)=0,I(X;Y)<H(X)。
二、若连续信源输出的幅度被限定在【2,6】区域内,当输出信号的概率密度是均匀分布时,计算该信源的相对熵,并说明该信源的绝对熵为多少.=2bit/自由度该信源的绝对熵为无穷大.三、已知信源(1)用霍夫曼编码法编成二进制变长码;(6分)(2)计算平均码长;(4分)(3)计算编码信息率;(2分)(4)计算编码后信息传输率;(2分)(5)计算编码效率。
(2分)(1)编码结果为:(2)(3)(4)其中,(5)四、某信源输出A、B、C、D、E五种符号,每一个符号独立出现,出现概率分别为1/8、1/8、1/8、1/2、1/8。
如果符号的码元宽度为0。
5。
计算:(1)信息传输速率。
(2)将这些数据通过一个带宽为B=2000kHz的加性白高斯噪声信道传输,噪声的单边功率谱密度为。
试计算正确传输这些数据最少需要的发送功率P。
解:(1)(2)五、一个一阶马尔可夫信源,转移概率为.(1) 画出状态转移图。
信息论与编码期末考试题信息论与编码期末考试题(一)一、判断题.1.当随机变量和相互独立时,条件熵等于信熵.()2.由于构成同一空间的基底不是唯一的,所以不同的基底或生成矩阵有可能生成同一码集.()3.一般情况下,用变长编码得到的平均码长比定长编码大得多.()4.只要信息传输率大于信道容量,总存在一种信道编译码,可以以所要求的任意小的误差概率实现可靠的通信.()5.各码字的长度符合克拉夫特不等式,是唯一可译码存在的充分和必要条件.()6.连续信和离散信的熵都具有非负性.()7.信的消息通过信道传输后的误差或失真越大,信宿收到消息后对信存在的不确定性就越小,获得的信息量就越小.8.汉明码是一种线性分组码.()9.率失真函数的最小值是.()10.必然事件和不可能事件的自信息量都是.()二、填空题 1、码的检、纠错能力取决于 .2、信编码的目的是;信道编码的目的是 .3、把信息组原封不动地搬到码字前位的码就叫做.4、香农信息论中的三大极限定理是、、 .5、设信道的输入与输出随机序列分别为和,则成立的条件..6、对于香农-费诺编码、原始香农-费诺编码和哈夫曼编码,编码方法惟一的是 .7、某二元信,其失真矩阵,则该信的= .三、计算题.1、某信发送端有2种符号,;接收端有3种符号,转移概率矩阵为.(1)计算接收端的平均不确定度;(2)计算由于噪声产生的不确定度;(3)计算信道容量以及最佳入口分布.2、一阶马尔可夫信的状态转移图如右图所示,信的符号集为.(1)求信平稳后的概率分布;(2)求此信的熵;(3)近似地认为此信为无记忆时,符号的概率分布为平稳分布.求近似信的熵并与进行比较.3、设码符号为,信空间为试构造一种三元紧致码.4、设二元线性分组码的生成矩阵为.(1)给出该码的一致校验矩阵,写出所有的陪集首和与之相对应的伴随式;(2)若接收矢量,试计算出其对应的伴随式并按照最小距离译码准则试着对其译码.(二)一、填空题 1、信编码的主要目的是,信道编码的主要目的是。
安徽大学2011—2012学年第1学期 《信息论》考试试卷(AB 合卷)院/系 年级 专业 姓名 学号一、填空题1、接收端收到y 后,获得关于发送的符号是x 的信息量是 。
2、香农信息的定义 。
3、在已知事件z Z ∈的条件下,接收到y 后获得关于事件x 的条件互信息(;|)I x y z 的表达式为 。
4、通信系统模型主要分成五个部分分别为: 。
5、研究信息传输系统的目的就是要找到信息传输过程的共同规律,以提高信息传输的可靠性、有效性、 和 ,使信息传输系统达到最优化。
6、某信源S 共有32个信源符号,其实际熵H ∞=1.4比特/符号,则该信源剩余度为 。
7、信道固定的情况下,平均互信息(;)I X Y 是输入信源概率分布()Px 的 型凸函数。
信源固定的情况下,平均互信息(;)I X Y 是信道传递概率(|)P y x 的 型凸函数。
8、当信源与信道连接时,若信息传输率达到了信道容量,则称此信源与信道达到匹配。
信道剩余度定义为 。
9、已知信源X 的熵H (X )=0.92比特/符号,则该信源的五次无记忆扩展信源X 5的信息熵5()H X = 。
10、将∞H ,6H ,0H ,4H ,1H 从大到小排列为 。
11、根据香农第一定理,对于离散无记忆信源S ,用含r 个字母的码符号集对N 长信源符号序列进行变长编码,总能找到一种无失真的唯一可译码,使每个信源符号所需平均码长满足: 。
12、多项式剩余类环[]())q F x f x 是域的充要条件为 。
13、多项式剩余类环[](1)n q F x x -的任一理想的生成元()g x 与1n x -关系为 。
14、有限域122F 的全部子域为 。
15、国际标准书号(ISBN )由十位数字12345678910a a a a a a a a a a 组成(诸i a ∈11F ,满足:1010(mod11)ii ia=≡∑),其中前九位均为0-9,末位0-10,当末位为10时用X 表示。
《信息论基础》参考答案一、填空题1、信源编码的主要目的是提高有效性,信道编码的主要目的是提高可靠性。
2、信源的剩余度主要来自两个方面,一是信源符号间的相关性,二是信源符号的统计不均匀性。
3、三进制信源的最小熵为0,最大熵为bit/符号。
4、无失真信源编码的平均码长最小理论极限制为信源熵(或H(S)/logr= H r (S))。
5、当R=C或(信道剩余度为0)时,信源与信道达到匹配.6、根据信道特性是否随时间变化,信道可以分为恒参信道和随参信道。
7、根据是否允许失真,信源编码可分为无失真信源编码和限失真信源编码。
8、若连续信源输出信号的平均功率为,则输出信号幅度的概率密度是高斯分布或正态分布或时,信源具有最大熵,其值为值。
9、在下面空格中选择填入数学符号“”或“"(1)当X和Y相互独立时,H(XY)=H(X)+H(X/Y)=H(Y)+H(X)。
(2)(3)假设信道输入用X表示,信道输出用Y表示.在无噪有损信道中,H(X/Y)〉 0, H(Y/X)=0,I(X;Y)<H(X)。
二、若连续信源输出的幅度被限定在【2,6】区域内,当输出信号的概率密度是均匀分布时,计算该信源的相对熵,并说明该信源的绝对熵为多少.=2bit/自由度该信源的绝对熵为无穷大.三、已知信源(1)用霍夫曼编码法编成二进制变长码;(6分)(2)计算平均码长;(4分)(3)计算编码信息率;(2分)(4)计算编码后信息传输率;(2分)(5)计算编码效率。
(2分)(1)编码结果为:(2)(3)(4)其中,(5)四、某信源输出A、B、C、D、E五种符号,每一个符号独立出现,出现概率分别为1/8、1/8、1/8、1/2、1/8。
如果符号的码元宽度为0。
5。
计算:(1)信息传输速率。
(2)将这些数据通过一个带宽为B=2000kHz的加性白高斯噪声信道传输,噪声的单边功率谱密度为。
试计算正确传输这些数据最少需要的发送功率P。
解:(1)(2)五、一个一阶马尔可夫信源,转移概率为.(1) 画出状态转移图。
北邮(信息工程)数据库系统概论期末习题及答案数据库系统概论复习资料:第一章假设教学管理规定:①一个学生可选修多门课,一门课有若干学生选修;②一个教师可讲授多门课,一门课只有一个教师讲授;③一个学生选修一门课,仅有一个成绩。
学生的属性有学号、学生姓名;教师的属性有教师编号,教师姓名;课程的属性有课程号、课程名。
要求:根据上述语义画出ER图,要求在图中画出实体的属性并注明联系的类型;第2章关系数据库1、设有如下所示的关系S(S#,SNAME,AGE,SEX)、C(C#,CNAME,TEACHER)和SC(S#,C#,GRADE),试用关系代数表达式表示下列查询语句:(1)检索“程军”老师所授课程的课程号(C#)和课程名(CNAME)。
(2)检索年龄大于21的男学生学号(S#)和姓名(SNAME)。
(3)检索至少选修“程军”老师所授全部课程的学生姓名(SNAME)。
(4)检索”强”同学不学课程的课程号(C#)。
(5)检索至少选修两门课程的学生学号(S#)。
(6)检索全部学生都选修的课程的课程号(C#)和课程名(CNAME)。
(7)检索选修课程包含“程军”老师所授课程之一的学生学号(S#)。
(8)检索选修课程号为k1和k5的学生学号(S#)。
(9)检索选修全部课程的学生姓名(SNAME)。
(10)检索选修课程包含学号为2的学生所修课程的学生学号(S#)。
(11)检索选修课程名为“C语言”的学生学号(S#)和姓名(SNAME)。
解:本题各个查询语句对应的关系代数表达式表示如下:(1). ∏C#,CNAME(σTEACHER=‘程军’(C))(2). ∏S#,SNAME(σAGE>21∧SEX=”男”(C)) (3). ∏SNAME{s[∏S#,C#(sc )÷∏C#(σTEACHER=‘程军’(C))]}(4). ∏C#(C)- ∏C#(σSNAME=‘强’(S) SC) (5). ∏S#(σ[1]=[4]∧[2]≠[5] (SC × SC))(6). ∏C#,CNAME(C (∏S#,C#(sc)÷∏S#(S)))(7). ∏S#(SC∏C#(σTEACHER=‘程军’(C)))(8). ∏S#,C#(sc )÷∏C#(σC#=’k1’∨ C#=’k5’(C)) (9). ∏SNAME{s[∏S#,C#(sc )÷∏C#(C)]}(10). ∏S#,C#(sc )÷∏C#(σS#=’2’(SC))(11). ∏S#,SNAME{s[∏S#(SCσCNAME=‘C 语言’(C))]}2、关系R 和S 如下图所示,试计算R ÷S 。
试题编号:重庆邮电大学2009/2010学年2学期《信息论基础》试卷(期末)(B卷)(开卷)一、填空题(共15分,每空1分)1、若一连续消息通过某放大器,该放大器输出的最大瞬时电压为b,最小瞬时电压为a。
若消息从放大器中输出,则该信源的绝对熵是;其能在每个自由度熵的最大熵是。
2、高斯白噪声信道是指。
3、若连续信源的平均功率为5 W,则最大熵为,达到最大值的条件是。
4、离散信源存在剩余度的原因是和。
5、离散无记忆信源在进行无失真变长信源编码时,编码效率最大可以达到。
6、离散无记忆信源在进行无失真变长信源编码时,码字长度是变化的。
根据信源符号的统计特性,对概率大的符号用码,对概率小的符号用码,这样平均码《信息论基础》试卷第1页《信息论基础》试卷第2页长就可以降低,从而提高编码效率。
7、八进制信源的最小熵为 ,最大熵为 。
8、一个事件发生概率为0.125,则自信息量为 。
9、在下面空格中选择填入数学符号“=,≥,≤,>”或“<”()XY H ()()Y X H Y H |+ ()()X H Y H +。
二、判断题(正确打√,错误打×)(共5分,每小题1分)1)离散无记忆等概信源的剩余度为0。
( ) 2)离散无记忆信源N 次扩展源的熵是原信源熵的N 倍。
( ) 3)互信息可正、可负、可为零。
( ) 4)信源的真正功率P 永远不会大于熵功率P ,即P P ≤。
( ) 5)信道容量与信源输出符号的概率分布有关。
( ) 三、(5分)已知信源的概率密度函数)(x p 如下图所示,求信源的相对熵。
《信息论基础》试卷第3页四、(15分)设一个离散无记忆信源的概率空间为它们通过干扰信道,信道输出端的接收符号集为[]21,b b Y =,已知信道传输概率如下图所示。
试计算:(1)信源X 中事件1x 的自信息量;(3分) (2)信源X 的信息熵;(3分) (3)共熵)(XY H (3分) (4)噪声熵(|)H Y X ;(3分)(5)收到消息Y 后获得的关于信源X 的平均信息量。