chapter13-newcatalyticmaterials--新催化材料
- 格式:ppt
- 大小:5.66 MB
- 文档页数:64
催化化学书籍催化化学是化学领域中极为重要的一个分支,涉及到催化剂的设计、合成和应用等方面。
因此,有很多优秀的书籍涵盖了催化化学的理论和实践知识。
下面我将介绍一些被广泛推崇的催化化学书籍。
1. "催化化学基础"(Fundamentals of Catalysis)- Masakazu Anpo, Yutaka Ono这本书是催化化学领域的经典之作,涵盖了催化剂的种类、反应机制以及催化反应的表征等内容。
此外,该书还探讨了催化剂合成和催化剂的表面结构等相关话题。
对于学习催化化学的学生和研究人员来说,这本书是一个很好的入门指南。
2. "催化剂的设计原理"(Principles of Catalyst Design)- Challa S. S. R. Kumar 这本书系统地介绍了催化剂的设计原理和方法。
作者以反应工程和材料科学为基础,深入探讨了催化剂的制备、表征以及应用等方面。
此外,还介绍了催化剂的表面结构和反应机理的相关概念。
对于催化化学领域的研究人员和工程师来说,这本书是一本非常有价值的参考资料。
3. "现代催化科学:表征和设计"(Modern Catalysis: Surface Science Concepts and Applications)- Vladimir Ponec, Geoffrey C. Bond这本书以催化科学的最新研究进展为基础,讨论了催化剂的表征和设计方法。
书中详细介绍了表面科学的相关概念和技术,并探讨了催化剂表面结构与反应机理的关系。
此外,该书还论述了催化剂的合成和应用等实际问题。
对于从事催化化学研究和工程的科学家和工程师来说,这本书是一本不可或缺的参考书籍。
4. "催化化学原理与实践"(Catalysis: Principles and Practice)- John T. Davies 这本书是一本综合性的催化化学教科书,介绍了催化剂的种类、合成和应用方面的知识。
研究与开发CHINA SYNTHETIC RESIN AND PLASTICS合 成 树 脂 及 塑 料 , 2022, 39(5): 13DOI:10.19825/j.issn.1002-1396.2022.05.03*聚丙烯(PP )具有力学性能优良、加工性能和耐热性能好、化学性能稳定等特点,且原料价格低廉、来源丰富,被广泛应用于日常生活、包装、汽车、农业等领域。
自1957年工业化以来,PP已成为通用树脂中发展最快的品种之一[1-3]。
PP工业发展的关键在于催化剂及相应聚合工艺的发展,而催化剂则是PP发展的核心。
近些年,随着PP需求量的增长,我国的一些大型企业和研究院通过不断努力尝试已研制出性能良好的丙烯聚合催化高活性及高立体定向性丙烯聚合催化剂的合成与性能吴岩松1,高金龙2,丁 伟1,姜 涛2*(1. 东北石油大学 化学化工学院,黑龙江 大庆 163318;2. 天津科技大学 化工与材料学院,天津 300457)摘 要: 以MgCl 2、异辛醇为载体,9,9-双(羟基)甲基芴为内给电子体,苯酐为助析剂,在TiCl 4溶液中进行载钛反应,得到新型丙烯聚合催化剂,并研究了新型丙烯聚合催化剂与2种参比催化剂的元素含量、粒径及分布、催化剂形貌、聚合性能和氢调敏感性。
结果表明:苯酐在TiCl 4载钛过程中原位生成邻苯二甲酸二异辛酯,并与内给电子体复配使用,提高了催化剂活性及聚合物等规指数;3种催化剂的元素含量基本接近,新型丙烯聚合催化剂具有活性高、氢调敏感性好、得到的聚合物粒径分布更加集中且细粉含量更少的优点。
关键词: 丙烯聚合催化剂 颗粒形态 催化剂活性 氢调敏感性 等规指数中图分类号: TQ 325.1+4 文献标志码: B 文章编号: 1002-1396(2022)05-0013-04Synthesis and properties of high activity and stereotactic catalyst for polymerization of propyleneWu Yansong 1,Gao Jinlong 2,Ding Wei 1,Jiang Tao 2(1. School of Chemistry and Chemical Engineering ,Northeast Petroleum University ,Daqing 163318,China ;2. College of Chemical Engineering and Material Science ,Tianjin University of Science & Technology ,Tianjin 300457,China )Abstract : Isobutanol and MgCl 2 were used as carriers,9,9-bis (hydroxy )methyl fluorene as the internal electron donor,and phthalic anhydride as the co-precipitation agent,to carry out the titanium-loading reaction in TiCl 4 solution to obtain a new type of propylene polymerization catalyst. The element content,particle size and distribution,catalyst morphology,polymerization performance and hydrogen sensitivity of the new type of propylene polymerization catalyst and two reference catalysts were studied. The results show that phthalic anhydride in situ forms diisooctyl phthalate,which is used in combination with internal electron donor to improve catalyst activity and polymer isotacticity. The element content of three catalysts is basically similar,and the new propylene polymerization catalyst has the advantages of high catalytic activity,good hydrogen modulation sensitivity,particle size distribution of the obtained polymer more concentrated,and powder content less fine.Keywords : propylene polymerization catalyst; particle morphology; catalytic activity; hydrogen modulation sensitivity; isotacticity收稿日期: 2022-03-27;修回日期: 2022-06-26。
Development of new catalytic materialsis an essential aspect of addressing the world's energy and environmental challenges. Catalysts are substances that accelerate chemical reactions without getting consumed in the process. They play a crucial role in various industrial processes, including the production of fuels, chemicals, and pharmaceuticals. However, conventional catalysts are often expensive, inefficient, and toxic. Therefore, there is a growing need for the development of new catalytic materials that are sustainable, versatile, and cost-effective.One promising approach to the design of new catalytic materials is the use of nanotechnology. Nanomaterials are materials with dimensions ranging from 1 to 100 nanometers, and they have unique electronic, magnetic, optical, and catalytic properties. Because of their small size, nanomaterials offer a high surface area to volume ratio, which enhances their reactivity and selectivity as catalysts. Moreover, nanomaterials can be engineered to have specific shapes, sizes, and surface chemistries, which allows precise control over their catalytic activity.Several types of nanomaterials have been explored as catalysts, including nanoparticles, nanowires, nanotubes, and nanosheets. One of the most extensively studied nanocatalysts is gold nanoparticles, which exhibit remarkable catalytic activity for several chemical reactions, such as oxidation, hydrogenation, and reduction. Gold nanoparticles are also stable, nontoxic, and easy to synthesize, making them attractive for industrial applications. However, their high cost and low abundance limit their scalability.To address the limitations of gold nanoparticles, researchers have explored the use of other nanomaterials, such as metal oxides, carbon-based materials, and metal nitrides. Metal oxides, particularly those based on titanium, cerium, and iron, have shown promising catalytic activity for various reactions, including carbon dioxide reduction, water splitting, and pollutant degradation. Carbon-based materials, such as graphene and carbon nanotubes, are also interesting catalysts due to their high electrical conductivity and large surface area, which enable efficient charge transfer and reactant adsorption.Another area of research in catalytic materials is the development of heterogeneous catalysts. Unlike homogeneous catalysts, which are uniformly dispersed in a liquid or gas phase, heterogeneous catalysts are solid materials that come into contact with the reactants. Heterogeneous catalysts offer several advantages, such as easy separation from the products, reuse, and stability under harsh conditions. However, the design of efficient heterogeneous catalysts requires the optimization of several parameters, such as the size, morphology, and surface chemistry of the materials.In recent years, the development of catalytic materials has also been driven by the growing demand for renewable energy sources, such as hydrogen and biomass. Hydrogen is a clean and versatile fuel that can be produced from water by using catalysts to split it into hydrogen and oxygen. However, current hydrogen production methods rely on expensive and carbon-intensive processes, such as steam methane reforming and electrolysis. Therefore, new catalysts are needed to enable cost-effective and sustainable hydrogen production.Similarly, biomass is a promising source of renewable energy that can be converted into fuels and chemicals by using biocatalysts or chemocatalysts. Biocatalysts are enzymes or microorganisms that can transform biomass into valuable products. However, biocatalysts are often expensive and require complex upstream processes to obtain and maintain them. Chemocatalysts, on the other hand, are synthetic materials that can mimic the function of biocatalysts with higher efficiency and easier scalability. Therefore, the development of new chemocatalysts for biomass conversion is a rapidly expanding field of research.In conclusion, the development of new catalytic materials is a critical step towards a sustainable and low-carbon future. Nanotechnology and heterogeneous catalysis offer exciting opportunities for the design of versatile, efficient, and cost-effective catalytic materials for various applications. Moreover, the growing demand for renewable energy sources is driving the development of new catalysts for hydrogen and biomass conversion. As research in catalytic materials advances, we can expect to see significant progress in the fields of energy, environment, and materials science.。
Catalytic Technology Research Progress: AGlobal PerspectiveCatalysis, a fundamental process in chemistry, has played a pivotal role in the advancement of scientific and industrial applications. The rapid evolution of catalytic technology has not only revolutionized the way we produce energy and chemicals but has also opened new horizons for sustainable development. This article delves into the recent advancements in catalytic technology research, highlighting the global perspective and its potential impact on our future.The field of catalysis has experienced remarkable growth in recent years, with researchers worldwide making significant breakthroughs in materials science, nanotechnology, and computational modeling. These advancements have led to the development of more efficient and selective catalysts, which are critical for addressing the challenges of energy scarcity and environmental degradation.One of the most significant areas of research in catalytic technology has been the development of novelcatalysts for fuel cells and batteries. These catalystsplay a crucial role in the efficient conversion of chemical energy into electrical energy, making them essential forthe future of renewable energy sources. Nanoscale catalysts, particularly those made from platinum group metals, have shown promise in improving the performance and durabilityof fuel cells, while also reducing their cost.Another area of active research is the application of catalysis in carbon dioxide capture and conversion. Withthe escalating concern over climate change, the conversionof carbon dioxide into useful chemicals and fuels has become a highly desirable objective. Catalysts that can efficiently convert carbon dioxide into valuable products, such as methanol or ethylene, are being actively explored, with the aim of realizing a carbon-neutral future.The role of catalysis in the synthesis of complex molecules and materials is also receiving increasing attention. Catalysts are essential for the efficient and selective production of pharmaceuticals, agrochemicals, and other high-value chemicals. The development of newcatalytic systems that can operate under milder conditionsand with higher selectivity is crucial for the sustainable production of these compounds.Computational modeling has emerged as a powerful tool in catalytic research, enabling researchers to design and optimize catalysts at the atomic level. By simulating the behavior of catalysts under realistic reaction conditions, researchers can gain insights into their active sites, reaction mechanisms, and selectivity. This information can then be used to guide the rational design of improved catalysts.In conclusion, the progress in catalytic technology research is not only driving innovation in the chemical industry but also holds the key to addressing some of the most pressing challenges of our time, including energy scarcity and climate change. The global perspective on catalytic research highlights the need for collaboration and knowledge sharing among researchers, industries, and governments to ensure that these advancements lead to sustainable and inclusive development.**催化技术研究进展:全球视角**催化作为化学领域的一项基础过程,在科学和工业应用的发展中发挥了至关重要的作用。
新型催化功能纤维素的制备及催化降解四环素机制石莉莉;谭贤;郦行杰;郭明【摘要】通过固相法合成新型四氨基酞菁类化合物:四氨基钴酞菁(CoTAPc);氧化法合成纤维素衍生物载体,化学键联制备新型纤维素负载酞菁:纤维素负载钴酞菁(F-CoTDTAPc).利用红外光谱结合元素分析和原子吸收表征中间产物和最终产物的结构,确认预期产物的合成.研究新型催化功能纤维在不同温度、时间、氧化剂浓度和四环素浓度下对四环素降解性能的影响.利用正交试验设计优化工艺.结果成功制备纤维素负载钴酞菁.纤维素负载钴酞菁在过氧化氢存在下能快速催化氧化四环素,并具有较好的原位再生能力,氧化降解优化工艺组合为温度60℃,时间5h,氧化剂用量0.05 mol· L-1,四环素浓度5×10-5mol·L-1.【期刊名称】《浙江农林大学学报》【年(卷),期】2016(033)005【总页数】9页(P881-889)【关键词】纤维素;酞菁;催化功能;降解机制;四环素【作者】石莉莉;谭贤;郦行杰;郭明【作者单位】浙江农林大学理学院,浙江临安311300;浙江农林大学理学院,浙江临安311300;浙江农林大学理学院,浙江临安311300;浙江农林大学理学院,浙江临安311300【正文语种】中文【中图分类】TQ352.2;S7-05抗生素的环境污染已成为中国乃至全球所面临的重大环境问题之一[1]。
四环素类抗生素(tetracyclines,TCs)是常用抗生素之一[2],由于其成本低廉、使用方便和副作用相对较小,四环素类抗生素是畜禽常用的饲用抗生素[3]。
作为近年来日益受到关注的潜在环境生态危险源,四环素类抗生素的环境污染研究日益增多[4]。
由于四环素类抗生素的强极性和抗生素特性[5],常规的污水生物处理工艺及自来水厂处理工艺,如活性污泥法、生物滤池、加氯消毒工艺都无法有效去除水中的四环素类抗生素[6]。
四环素类抗生素容易在高pH值、氧化还原和光照条件下发生降解,形成多种降解产物[7]。
具体介绍各个催化期刊之前,有必要对现今几大出版社或数据库简要介绍一下(一般催化期刊都是这四个出版社或数据库名下的):(1)Elsevier Science出版社QUOTE:Elsevier 出版的期刊是世界公认的高品位学术期刊,且大多数为核心期刊,被世界上许多著名的二次文献数据库所收录。
SDOS目前收录1700多种数字化期刊,该数据库涵盖了食品、数学、物理、化学、生命科学、商业及经济管理、计算机科学、工程技术、能源科学、环境科学、材料科学和社会科学等众多学科。
该数据库不仅涵盖了以上各个学科的研究成果,还提供了简便易用的智能检索程序。
通过Science Direct Onsite(SDOS)中国集团的数据库支持,用户可以使用Elsevier Science为其特别定制的科学、技术方面的学术期刊并共享资源。
目前 (截止到2005年11月16日)该数据库已有期刊种数1,734,期刊期数145,078 ,文章篇数2,576,316,最早年份为1995年。
这个数据库的服务器是通过专线对中国大陆用户提供服务的。
Elsevier Science是一家非常好的电子出版商,从2001年1月起,就已有28家杰出的学术机构加入了Elsevier SDOS中国集团。
(2)Springer出版社QUOTE:德国施普林格( Springer-Verlag )是世界上著名的科技出版公司,通过Springer Link 系统提供学术期刊及电子图书的在线服务。
全文期刊数据库所收录的学科范围较广,包括:行为科学、生物医药与生命科学、化学与材料科学、计算机科学、商业与经济学、工程学、地球和环境科学、人文科学、社会科学与法律、数学、医学、物理与天文学等 11 个学科,其中许多为核心期刊。
(3)ACS数据库QUOTE:美国化学学会 ----ACS(American Chemical Society)成立于1876年,现已成为世界上最大的科技协会之一,多年来,ACS一直致力于为全球化学研究机构、企业及个人提供高品质的文献及服务,在科学、教育、政策等领域提供了多方位的专业支持,成为享誉全球的科技出版机构。
催化裂化新催化剂NaphthaMaxⅡ
钱伯章(摘译)
【期刊名称】《精细石油化工进展》
【年(卷),期】2006(7)2
【摘要】Engelhard公司推出的一项专利新催化剂能使炼油厂明显提高汽油产率,这种称为NaphthaMaxⅡ的新催化剂,在实际运转中已经证实,能使炼油厂在加
工同样多原油的情况下,比原用NaphthaMax技术制造的NaphthaMaxⅠ催化
剂多产汽油2%。
Engelhard工艺部称,对用改进技术百分之零点几衡量的炼油工业而言,在过去5年间汽油产率提高达4%是一项重大成果。
对经历过油价大幅度上扬的炼油厂实在是意义重大。
【总页数】1页(P12-12)
【关键词】新催化剂;MaxⅡ;催化裂化;Engelhard公司;炼油厂;技术制造;炼油工业;改进技术;汽油;大幅度
【作者】钱伯章(摘译)
【作者单位】
【正文语种】中文
【中图分类】TQ426.94;TE624.41
【相关文献】
1.巴斯夫渣油催化裂化新催化剂开始工业应用 [J],
2.巴斯夫推出新一代渣油催化裂化新催化剂 [J], ;
3.巴斯夫渣油催化裂化新催化剂开始工业应用 [J], 谷心;
4.BASF公司的新催化剂解决方案NaphthaMax Ⅲ [J], 程薇
5.巴斯夫公司硼基催化裂化新催化剂问世 [J], 胡敏
因版权原因,仅展示原文概要,查看原文内容请购买。