高中数学 寒假专题复习资料 第二讲 解析几何 新人教A版必修2
- 格式:doc
- 大小:310.00 KB
- 文档页数:14
第二讲 解析几何一.直线与圆 1.直线的倾斜角(1)定义:当直线l 与x 轴相交时,取x 轴作为基准,x 轴正向与直线l 向上方向之间所成的角叫做直线l 的倾斜角.当直线l 与x 轴平行或重合时,规定它的倾斜角为0. (2)范围:直线l 倾斜角的取值范围是[0,π). 2.斜率公式(1)直线l 的倾斜角为α≠90°,则斜率k =tan_α.(2)P 1(x 1,y 1),P 2(x 2,y 2)在直线l 上,且x 1≠x 2,则l 的斜率k =y 2-y 1x 2-x 1. 3.直线方程的五种形式4.两条直线平行与垂直的判定 (1)两条直线平行:①对于两条不重合的直线l 1,l 2,若其斜率分别为k 1,k 2,则有l 1∥l 2⇔k 1=k 2. ②当直线l 1,l 2不重合且斜率都不存在时,l 1∥l 2. (2)两条直线垂直:①如果两条直线l 1,l 2的斜率存在,设为k 1,k 2,则有l 1⊥l 2⇔k 1·k 2=-1. ②当其中一条直线的斜率不存在,而另一条直线的斜率为0时,l 1⊥l 2. 5.距离|P 1P 2|=x 2-x 12+y 2-y 126. 线性规划中几个概念:约束条件、可行解、可行域、目标函数、最优解. 7.中心对称问题的2个类型及求解方法 (1)点关于点对称:若点M (x 1,y 1)及N (x ,y )关于P (a ,b )对称,则由中点坐标公式得⎩⎪⎨⎪⎧x =2a -x 1,y =2b -y 1,进而求解.(2)直线关于点的对称,主要求解方法是:①在已知直线上取两点,利用中点坐标公式求出它们关于已知点对称的两点坐标,再由两点式求出直线方程;②求出一个对称点,再利用两对称直线平行,由点斜式得到所求直线方程. 8.轴对称问题的2个类型及求解方法 (1)点关于直线的对称:若两点P 1(x 1,y 1)与P 2(x 2,y 2)关于直线l :Ax +By +C =0对称,由方程组⎩⎪⎨⎪⎧A ⎝ ⎛⎭⎪⎫x 1+x 22+B ⎝ ⎛⎭⎪⎫y 1+y 22+C =0,y 2-y 1x 2-x 1·⎝ ⎛⎭⎪⎫-A B =-1,可得到点P 1关于l 对称的点P 2的坐标(x 2,y 2)(其中B ≠0,x 1≠x 2). (2)直线关于直线的对称:一般转化为点关于直线的对称来解决,有两种情况:一是已知直线与对称轴相交;二是已知直线与对称轴平行. 9. 圆的方程:标准方程222()()x a y b R -+-=;一般式方程22x y Dx ++220(40)Ey F D E F ++=+->; 参数方程{cos (sin x R y R θθθ==为参数);直径式方程121()()()x x x x y y --+-2()0y y -=.注:解决直线与圆的关系问题有“函数方程思想”和“数形结合思想”两种思路,等价转化求解,重要的是发挥“圆的平面几何性质(如半径、半弦长、弦心距构成直角三角形,切线长定理等等)的作用!”二、轨迹方程的求法:(1)直接法: 如果动点满足的几何条件本身就是一些几何量的等量关系,或这些几何条件简单明了且易于表达,我们只需把这种关系“翻译”成含,x y的等式就得到曲线的轨迹方程.(2)定义法: 其动点的轨迹符合某一基本轨迹的定义,则根据定义直接求出动点的轨迹方程.(3)几何法: 若所求的轨迹满足某些几何性质(如线段的垂直平分线,角平分线的性质等),可以用几何法,列出几何式,再代人点的坐标较简单.(4)相关点法(代人法): 有些问题中,其动点满足的条件不便用等式列出,但动点是随着另一动点(称之为相关点)而运动的; 如果相关点所满足的条件是明显的,或是可分析的,这时可以用动点坐标表示相关点坐标,根据相关点所满足的方程即可求得动点的轨迹方程.(5)交轨法: 在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这类问题常常通过解方程组得出交点(含参数)的坐标,再消去参数得出所求轨迹的方程. 常与参数法并用.三、圆锥曲线2.圆锥曲线统一定义:若平面内一个动点M到一个定点F和一条定直线l的距离之比等于一个常数(0)e e>,则动点的轨迹为圆锥曲线.其中定点F为焦点,定直线l为准线,e为离心率.当01e<<时,轨迹为椭圆; 当1e=时,轨迹为抛物线; 当1e>时,轨迹为双曲线.3.在直线与圆锥曲线的位置关系问题中,有“函数方程思想”和“数形结合思想”两种思路,等价转化求解. 特别是:①直线与圆锥曲线相交的必要条件是他们构成的方程组有实数解,当出现一元二次方程时,务必“判别式≥0”,尤其是在应用韦达定理解决问题时,必须先有“判别式≥0”.②直线与抛物线(相交不一定交于两点)、双曲线位置关系的特殊性,应谨慎处理.③在直线与圆锥曲线的位置关系问题中,常与“弦”相关,“平行弦”问题的关键是“斜率”、“中点弦”问题关键是“韦达定理”或“点差法”、“长度(弦长)”问题关键是长度(弦长)公式(||AB=22|||AB x x=-=,12|||AB y y=-=1.设a∈R,则“a=-1”是“直线ax+y-1=0与直线x+ay+5=0平行”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件2.已知点A(2,3),B(-3,-2),若直线kx-y+1-k=0与线段AB相交,则k的取值范围是( ) A.[34,2] B.(-∞,34]∪[2,+∞)C.(-∞,1]∪[2,+∞) D.[1,2]3. 已知P (x ,y )是直线kx +y +4=0(k >0)上一动点,PA ,PB 是圆C :x 2+y 2-2y =0的两条切线,A ,B 是切点,若四边形PACB 的最小面积是2,则k 的值为( )A .3 B.212C .2 2D .2 4.已知圆C 1:(x -2)2+(y -3)2=1,圆C 2:(x -3)2+(y -4)2=9,M ,N 分别是圆C 1,C 2上的动点,P 为x 轴上的动点,则|PM |+|PN |的最小值为( )A .52-4 B.17-1 C .6-2 2 D .175.已知在平面直角坐标系中,点A (22,0),B (0,1)到直线l 的距离分别为1,2,则这样的直线l 共有_______条.A.2B. 3C. 4D. 16.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)与抛物线y 2=8x 有一个共同的焦点F ,两曲线的一个交点为P ,若|PF |=5,则点F 到双曲线的渐近线的距离为( ) A. 3 B .2 C. 6D .37.(2016·课标全国甲)已知F 1,F 2是双曲线E :x 2a 2-y 2b2=1的左,右焦点,点M 在E 上,MF 1与x 轴垂直,sin ∠MF 2F 1=13,则E 的离心率为( )A. 2B.32C. 3 D .28.已知双曲线x 2a 2-y 2b2=1的左、右焦点分别为F 1、F 2,过F 1作圆x 2+y 2=a 2的切线分别交双曲线的左、右两支于点B 、C ,且|BC |=|CF 2|,则双曲线的渐近线方程为( )A .y =±3xB .y =±22xC .y =±(3+1)xD .y =±(3-1)x9.点F 为椭圆x 2a 2+y 2b2=1(a >b >0)的一个焦点,若椭圆上存在点A 使△AOF 为正三角形,那么椭圆的离心率为( ) A.22 B.32 C.2-12D.3-1 10.(2016·浙江)已知椭圆C 1:x 2m 2+y 2=1(m >0)与双曲线C 2:x 2n2-y 2=1(n >0)的焦点重合,e 1,e 2分别为C 1,C 2的离心率,则( ) A .m >n 且e 1e 2>1 B .m >n 且e 1e 2<1 C .m <n 且e 1e 2>1 D .m <n 且e 1e 2<111.设抛物线E : y 2=2px (p >0)的焦点为F ,点M 为抛物线E 上一点,|MF |的最小值为3,若点P 为抛物线E 上任意一点,A (4,1),则|PA |+|PF |的最小值为( )A .4+32B .7C .4+2 3D .10 12.【2014全国1高考理第10题】已知抛物线C :x y 82=的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 得一个焦点,若4=,则=QF ( ) A. 27 B. 3 C. 25 D. 2 二、填空题13.已知两点A (3,2)和B (-1,4)到直线mx +y +3=0的距离相等,则m 的值为 . 14.一动圆与已知圆O 1:(x +3)2+y 2=1外切,与圆O 2:(x -3)2+y 2=81内切,则动圆圆心的轨迹方程为__________.15.设椭圆C :x 24+y 23=1关于原点对称 A 1,A 2两点,若点P 在椭圆C 上,且直线PA 2的斜率的取值范围是[-2,-1],那么直线PA 1斜率的取值范围是________.16.直线3x -4y +4=0与抛物线x 2=4y 和圆x 2+(y -1)2=1从左到右的交点依次为A 、B 、C 、D ,则|AB ||CD |的值为________. 三、简答题17.已知一个椭圆与双曲线1322=-y x 的焦点相同,且过点)1,3(-P . (1)求椭圆的标准方程;(2)求这个椭圆的所有斜率为2的平行弦的中点的轨迹方程.18.在平面直角坐标系xoy 中,已知圆P 在x 轴上截得的线段长为22,在y 轴上截得的线段长为32.(1)求圆心P 的轨迹方程;(2)若P 点到直线x y 的距离为22,求圆P 的方程.19.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,且点(1,32)在该椭圆上.(1)求椭圆C 的方程;(2)过椭圆C 的左焦点F 1的直线l 与椭圆C 相交于A ,B 两点,若△AOB 的面积为627,求圆心在原点O 且与直线l 相切的圆的方程.20.(2016·课标全国乙)设圆x 2+y 2+2x -15=0的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E .(1)证明|EA |+|EB |为定值,并写出点E 的轨迹方程;(2)设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围.21.已知抛物线:y 2=2px (p >0)的焦点F 在双曲线:x 23-y 26=1的右准线上,抛物线与直线l :y =k (x-2)(k >0)交于A ,B 两点,AF ,BF 的延长线与抛物线交于C ,D 两点. (1)求抛物线的方程;(2)若△AFB 的面积等于3,求k 的值; (3)记直线CD 的斜率为k CD ,证明:k CDk为定值,并求出该定值.22. (2015·新课标全国Ⅰ,20)在直角坐标系xOy 中,曲线C :y =x 24与直线l :y =kx +a (a >0)交于M ,N 两点,(1)当k =0时,分别求C 在点M 和N 处的切线方程;(2)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM =∠OPN ?说明理由.立体几何参考答案1-5CCCAB 6. 423 7. 2+22 8. ②③④ 9.1410. (1)证明 因为四边形ABCD 是长方形,所以BC ∥AD ,因为BC ⊄平面PDA ,AD ⊂平面PDA ,所以BC ∥平面PDA .(2)证明 因为四边形ABCD 是长方形,所以BC ⊥CD ,因为平面PDC ⊥平面ABCD ,平面PDC ∩平面ABCD =CD ,BC ⊂平面ABCD ,所以BC ⊥平面PDC ,因为PD ⊂平面PDC ,所以BC ⊥PD . (3)解 如图,取CD 的中点E ,连接AE 和PE .因为PD =PC ,所以PE ⊥CD ,在Rt △PED 中,PE =PD 2-DE 2=42-32=7.因为平面PDC ⊥平面ABCD ,平面PDC ∩平面ABCD =CD ,PE ⊂平面PDC , 所以PE ⊥平面ABCD .由(2)知:BC ⊥平面PDC ,由(1)知:BC ∥AD ,所以AD ⊥平面PDC ,因为PD ⊂平面PDC ,所以AD ⊥PD . 设点C 到平面PDA 的距离为h ,因为V 三棱锥C —PDA =V 三棱锥P —ACD , 所以13S △PDA ·h =13S △ACD ·PE ,即h =S △ACD ·PE S △PDA =12×3×6×712×3×4=372,所以点C 到平面PDA 的距离是372.11. (1)证明 ∵在等腰梯形ABCD 中,AB ∥CD ,AD =DC =a ,∠ABC =60°, ∴△ADC 是等腰三角形,且∠BCD =∠ADC =120°, ∴∠DCA =∠DAC =30°,∴∠ACB =90°,即BC ⊥AC .又∵平面ACEF ⊥平面ABCD ,平面ACEF ∩平面ABCD =AC ,BC ⊂平面ABCD ,∴BC ⊥平面ACEF . (2)解 当FM =33a 时,AM ∥平面BDE .证明如下: 设AC ∩BD =N ,连接EN ,如图.∵∠ACB =90°,∠ABC =60°,BC =a , ∴AC =3a ,AB =2a ,∴CN ∶NA =1∶2, ∵四边形ACEF 是平行四边形,∴EF =AC =3a .∵AM ∥平面BDE ,AM ⊂平面ACEF ,平面ACEF ∩平面BDE =NE , ∴AM ∥NE ,∴四边形ANEM 为平行四边形,∴FM ∶ME =1∶2,∴FM =13FE =13AC =3a 3.∴当FM =33a 时,AM ∥平面BDE .12. (1)证明 ∵点E ,F 分别是边CD ,CE 的中点,∴BD ∥EF .∵菱形ABCD 的对角线互相垂直,∴BD ⊥AC .∴EF ⊥AC .∴EF ⊥AO ,EF ⊥PO , ∵AO ⊂平面POA ,PO ⊂平面POA ,AO ∩PO =O ,∴EF ⊥平面POA ,∴BD ⊥平面POA , 又PA ⊂平面POA ,∴BD ⊥PA .(2)解 设AO ∩BD =H .连接BO ,∵∠DAB =60°,∴△ABD 为等边三角形, ∴BD =4,BH =2,HA =23,HO =PO =3,在Rt △BHO 中,BO =BH 2+HO 2=7, 在△PBO 中,BO 2+PO 2=10=PB 2,∴PO ⊥BO .∵PO ⊥EF ,EF ∩BO =O ,EF ⊂平面BFED ,BO ⊂平面BFED , ∴PO ⊥平面BFED ,梯形BFED 的面积S =12(EF +BD )·HO =33,∴四棱锥P —BFED 的体积V =13S ·PO =13×33×3=3.13. (1)证明 由已知可得AF ⊥DF ,AF ⊥FE ,所以AF ⊥平面EFDC ,又AF ⊂平面ABEF , 故平面ABEF ⊥平面EFDC .(2)解 过点D 作DG ⊥EF ,垂足为G ,由(1)知DG ⊥平面ABEF .以点G 为坐标原点,GF →的方向为x 轴正方向,|GF →|为单位长,建立如图所示的空间直角坐标系Gxyz .由(1)知∠DFE 为二面角D -AF -E 的平面角,故∠DFE =60°,则DF =2,DG =3,可得A (1,4,0),B (-3,4,0),E (-3,0,0),D (0,0,3).由已知,AB ∥EF ,所以AB ∥平面EFDC ,又平面ABCD ∩平面EFDC =CD ,故AB ∥CD ,CD ∥EF , 由BE ∥AF ,可得BE ⊥平面EFDC ,所以∠CEF 为二面角C -BE -F 的平面角,∠CEF =60°,从而可得C (-2,0,3).所以EC →=(1,0,3),EB →=(0,4,0),AC →=(-3,-4,3),AB →=(-4,0,0).设n =(x ,y ,z )是平面BCE 的法向量,则⎩⎪⎨⎪⎧n ·EC →=0,n ·EB →=0,即⎩⎨⎧x +3z =0,4y =0.所以可取n =(3,0,-3).设m 是平面ABCD 的法向量,则⎩⎪⎨⎪⎧m ·AC →=0,m ·AB →=0.同理可取m =(0,3,4),则cos 〈n ,m 〉=n ·m |n ||m |=-21919.故二面角E -BC -A 的余弦值为-21919.14.(1)证明 由已知,平面ABCD ⊥平面ABPE ,且BC ⊥AB ,则BC ⊥平面ABPE ,所以BA ,BP ,BC 两两垂直,故以点B 为原点,BA →,BP →,BC →分别为x 轴,y 轴,z 轴正方向,建立如图所示的空间直角坐标系.则P (0,2,0),D (2,0,1),M ⎝ ⎛⎭⎪⎫1,1,12,E (2,1,0),C (0,0,1),所以EM →=⎝ ⎛⎭⎪⎫-1,0,12. 易知平面ABCD 的一个法向量n =(0,1,0),所以EM →·n =(-1,0,12)(0,1,0)=0,所以EM →⊥n ,又EM ⊄平面ABCD ,所以EM ∥平面ABCD .(2)当点N 与点D 重合时,直线BN 与平面PCD 所成角的正弦值为25.理由如下:PD →=(2,-2,1),CD →=(2,0,0), 设平面PCD 的法向量为n 1=(x 1,y 1,z 1), 由⎩⎪⎨⎪⎧n 1·PD →=0,n 1·CD →=0,得⎩⎪⎨⎪⎧2x 1-2y 1+z 1=0,2x 1=0,取y 1=1,得平面PCD 的一个法向量等于n 1=(0,1,2),假设线段PD 上存在一点N ,使得直线BN 与平面PCD 所成的角α的正弦值等于25.设PN →=λPD → (0≤λ≤1),则PN →=λ(2,-2,1)=(2λ,-2λ,λ),BN →=BP →+PN →=(2λ,2-2λ,λ).所以sin α=|cos 〈BN →,n 1〉|=|BN →·n 1||BN →||n 1|=25×(2λ)2+(2-2λ)2+λ2=25×9λ2-8λ+4=25. 所以9λ2-8λ-1=0,解得λ=1或λ=-19(舍去).因此,线段PD 上存在一点N ,当N 点与D 点重合时,直线BN 与平面PCD 所成角的正弦值等于25.圆锥曲线参考答案1-5.ABDAB 6-10. AACDA 11-12.BB13. m =12或m =-6. 14. x 225+y 216=1 15. 38≤1PA k ≤34. 16. 11617. 解: 椭圆的焦点, )0,2(2F 由定义a PF PF 2||||21=+,所以2,622==b a .椭圆的标准方程为12622=+y x . (2)设平行线的方程为m x y +=2联立直线和椭圆, 得063121322=-++m mx x . 由0>∆,解得2626<<-m .设直线与椭圆交于两点()()2211,,,y x B y x A ,中点),(y x M 则m x x x 136221-=+= 因为点M 在直线m x y +=2上, 联立解得06=-y x )6261362613(<<-m 所以点M 的轨迹方程为06=-y x )6261362613(<<-m . 18. 解:(1)设P ),(y x ,圆P 的半径为r ,由题可得222r y =+,223r x =+,故圆心P 的轨迹方程为122=-x y .(2) 设P ),(00y x ,由已知222||00=-y x , 又点P 在双曲线上12020=-x y . 联立解得⎩⎨⎧-==1000y x 或⎩⎨⎧==1000y x ,对应的3=r 。
数学必修2 解析几何复习一、直线的倾斜角、斜率以及直线方程1.直线的倾斜角(1)定义:当直线l 与x 轴相交时,取x 轴作为基准,x 轴正向与直线l 向上方向之间所成的角叫作直线l 的倾斜角.当直线l 与x 轴平行或重合时,规定它的倾斜角为0°. (2)范围:直线l 倾斜角的范围是[0°,180°). 2.斜率公式(1)若直线l 的倾斜角α≠90°,则斜率k =tan α.(2)P 1(x 1,y 1),P 2(x 2,y 2)在直线l 上且x 1≠x 2,则l 的斜率k =y 2-y 1x 2-x 1.3.直线方程的五种形式1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)根据直线的倾斜角的大小不能确定直线的位置.( ) (2)坐标平面内的任何一条直线均有倾斜角与斜率.( ) (3)直线的倾斜角越大,其斜率就越大.( ) (4)若直线的斜率为tan α,则其倾斜角为α.( ) (5)斜率相等的两直线的倾斜角不一定相等.( )(6)经过任意两个不同的点P 1(x 1,y 1),P 2(x 2,y 2)的直线都可以用方程(y -y 1)(x 2-x 1)=(x -x 1)(y 2-y 1)表示.( )2.若过点M (-2,m ),N (m,4)的直线的斜率等于1,则m 的值为( ) A .1 B .4 C .1或3 D .1或43.过点P (2,3)且在两坐标轴上截距相等的直线方程为 . 4.如果A ·C <0且B ·C <0,那么直线Ax +By +C =0不通过( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限5.过直线l :y =x 上的点P (2,2)作直线m ,若直线l ,m 与x 轴围成的三角形的面积为2,则直线m 的方程为 .答案 x -2y +2=0或x =2解析 ①若直线m 的斜率不存在,则直线m 的方程为x =2,直线m ,直线l 和x 轴围成的三角形的面积为2,符合题意;②若直线m 的斜率k =0,则直线m 与x 轴没有交点,不符合题意;③若直线m 的斜率k ≠0,设其方程为y -2=k (x -2),令y =0,得x =2-2k ,依题意有12×⎪⎪⎪⎪2-2k ×2=2,即⎪⎪⎪⎪1-1k =1,解得k =12,所以直线m 的方程为y -2=12(x -2),即x -2y +2=0. 综上可知,直线m 的方程为x -2y +2=0或x =2.7.直线l 过点P (1,0),且与以A (2,1),B (0,3)为端点的线段有公共点,则直线l 斜率的取值范围为 .答案 (-∞,-3]∪[1,+∞) 解析 ∵k AP =1-02-1=1,k BP =3-00-1=-3,∴k ∈(-∞,- 3 ]∪[1,+∞). 8.已知三角形的三个顶点A (-5,0),B (3,-3),C (0,2),则BC 边上中线所在的直线方程为 .答案 x +13y +5=0二、两直线的位置关系1.两条直线的位置关系 (1)两条直线平行与垂直 ①两条直线平行:(ⅰ)对于两条不重合的直线l 1,l 2,若其斜率分别为k 1,k 2,则有l 1∥l 2⇔k 1=k 2. (ⅱ)当直线l 1,l 2不重合且斜率都不存在时,l 1∥l 2. ②两条直线垂直:(ⅰ)如果两条直线l 1,l 2的斜率存在,设为k 1,k 2,则有l 1⊥l 2⇔k 1·k 2=-1. (ⅱ)当其中一条直线的斜率不存在,而另一条的斜率为0时,l 1⊥l 2. (2)两条直线的交点直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,则l 1与l 2的交点坐标就是方程组⎩⎪⎨⎪⎧A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0的解. 2.几种距离(1)两点P 1(x 1,y 1),P 2(x 2,y 2)之间的距离 |P 1P 2|=(x 2-x 1)2+(y 2-y 1)2. (2)点P 0(x 0,y 0)到直线l :Ax +By +C =0的距离d =|Ax 0+By 0+C |A 2+B 2.(3)两条平行线Ax +By +C 1=0与Ax +By +C 2=0(其中C 1≠C 2)间的距离d =|C 1-C 2|A 2+B 2.3.直线系方程(1)与直线Ax +By +C =0平行的直线系方程是Ax +By +m =0(m ∈R 且m ≠C ). (2)与直线Ax +By +C =0垂直的直线系方程是Bx -Ay +n =0(n ∈R ). 4.两直线平行或重合的充要条件直线l 1:A 1x +B 1y +C 1=0与直线l 2:A 2x +B 2y +C 2=0平行 5.两直线垂直的充要条件直线l 1:A 1x +B 1y +C 1=0与直线l 2:A 2x +B 2y +C 2=0垂直的充要条件是A 1A 2+B 1B 2=0. 6.点到直线、两平行线间的距离公式的使用条件 (1)求点到直线的距离时,应先化直线方程为一般式.(2)求两平行线之间的距离时,应先将方程化为一般式且x ,y 的系数对应相等.1.直线2x +y +m =0和x +2y +n =0的位置关系是( )A .平行B .垂直C .相交但不垂直D .不能确定 答案 C 2.已知点(a,2)(a >0)到直线l :x -y +3=0的距离为1,则a 等于( )A. 2 B .2- 2 C.2-1 D.2+1 答案 C 3.已知P (-2,m ),Q (m,4),且直线PQ 垂直于直线x +y +1=0,则m = .答案 1 4.(2017·郑州调研)直线2x +(m +1)y +4=0与直线mx +3y -2=0平行,则m 等于( ) A .2 B .-3 C .2或-3 D .-2或-3 答案 C 5.直线2x +2y +1=0,x +y +2=0之间的距离是 . 答案3246.若直线(3a +2)x +(1-4a )y +8=0与(5a -2)x +(a +4)y -7=0垂直,则a = . 答案 0或17. 已知直线l 1:ax +2y +6=0和直线l 2:x +(a -1)y +a 2-1=0. (1)试判断l 1与l 2是否平行; (2)当l 1⊥l 2时,求a 的值.解 (1)方法一 当a =1时,l 1:x +2y +6=0,l 2:x =0,l 1不平行于l 2; 当a =0时,l 1:y =-3,l 2:x -y -1=0,l 1不平行于l 2;当a ≠1且a ≠0时,两直线可化为l 1:y =-a 2x -3,l 2:y =11-a x -(a +1),l 1∥l 2⇔⎩⎪⎨⎪⎧-a 2=11-a ,-3≠-(a +1),解得a =-1,综上可知,当a =-1时,l 1∥l 2.方法二 由A 1B 2-A 2B 1=0,得a (a -1)-1×2=0, 由A 1C 2-A 2C 1≠0,得a (a 2-1)-1×6≠0,∴l 1∥l 2⇔⎩⎪⎨⎪⎧ a (a -1)-1×2=0,a (a 2-1)-1×6≠0,⇔⎩⎪⎨⎪⎧a 2-a -2=0,a (a 2-1)≠6,可得a =-1,故当a =-1时,l 1∥l 2.(2)方法一 当a =1时,l 1:x +2y +6=0,l 2:x =0,l 1与l 2不垂直,故a =1不成立;当a =0时,l 1:y =-3,l 2:x -y -1=0,l 1不垂直于l 2,故a =0不成立;当a ≠1且a ≠0时,l 1:y =-a 2x -3,l 2:y =11-a x -(a +1),由⎝⎛⎭⎫-a 2·11-a =-1,得a =23. 方法二 由A 1A 2+B 1B 2=0,得a +2(a -1)=0,可得a =23.思维升华 (1)当直线方程中存在字母参数时,不仅要考虑到斜率存在的一般情况,也要考虑到斜率不存在的特殊情况.同时还要注意x ,y 的系数不能同时为零这一隐含条件. (2)在判断两直线平行、垂直时,也可直接利用直线方程的系数间的关系得出结论.三、圆的方程1.圆的定义与方程2.确定圆的方程的方法和步骤确定圆的方程主要方法是待定系数法,大致步骤: (1)根据题意,选择标准方程或一般方程.(2)根据条件列出关于a ,b ,r 或D ,E ,F 的方程组. (3)解出a ,b ,r 或D ,E ,F 代入标准方程或一般方程. 3.点与圆的位置关系点和圆的位置关系有三种.已知圆的标准方程(x -a )2+(y -b )2=r 2,点M (x 0,y 0) (1)点在圆上:(x 0-a )2+(y 0-b )2=r 2;(2)点在圆外:(x 0-a )2+(y 0-b )2>r 2; (3)点在圆内:(x 0-a )2+(y 0-b )2<r 2.1.以点(3,-1)为圆心,并且与直线3x +4y =0相切的圆的方程是( ) A .(x -3)2+(y +1)2=1 B .(x -3)2+(y -1)2=1C .(x +3)2+(y -1)2=1D .(x +3)2+(y +1)2=1 答案 A2.圆C 的圆心在x 轴上,并且过点A (-1,1)和B (1,3),则圆C 的方程为 . 3.若方程x 2+y 2+mx -2y +3=0表示圆,则m 的取值范围是( ) A .(-∞,-2)∪(2,+∞) B .(-∞,-22)∪(22,+∞)C .(-∞,-3)∪(3,+∞)D .(-∞,-23)∪(23,+∞) 答案 B4.若点(1,1)在圆(x -a )2+(y +a )2=4的内部,则实数a 的取值范围是( ) A .-1<a <1 B .0<a <1 C .a >1或a <-1 D .a =±4 答案 A 5.若圆C 的半径为1,圆心在第一象限,且与直线4x -3y =0和x 轴都相切,则该圆的标准方程是( )A(x -2)2+(y -1)2=1 B(x -2)2+(y +1)2=1 C(x +2)2+(y -1)2=1 D(x -3)2+(y -1)2=1 答案 A四、直线与圆的位置关系1.判断直线与圆的位置关系常用的两种方法(1)几何法:利用圆心到直线的距离d 和圆的半径r 的大小关系. d <r ⇔相交;d =r ⇔相切;d >r ⇔相离. (2)代数法:――――→判别式Δ=b 2-4ac⎩⎪⎨⎪⎧>0⇔相交;=0⇔相切;<0⇔相离.2.圆与圆的位置关系设圆O 1:(x -a 1)2+(y -b 1)2=r 21(r 1>0), 圆O 2:(x -a 2)2+(y -b 2)2=r 22(r 2>0).3.圆与圆的位置关系的常用结论(1)两圆的位置关系与公切线的条数:①内含:0条;②内切:1条;③相交:2条;④外切:3条;⑤外离:4条.(2)当两圆相交时,两圆方程(x 2,y 2项系数相同)相减便可得公共弦所在直线的方程.1.若直线x -y +1=0与圆(x -a )2+y 2=2有公共点,则实数a 的取值范围是( ) A .[-3,-1] B .[-1,3] C .[-3,1] D .(-∞,-3]∪[1,+∞) 答案 C 2.圆x 2+y 2-4=0与圆x 2+y 2-4x +4y -12=0的公共弦长为 . 答案 2 2 3.若直线l :x -y +m =0与圆C :x 2+y 2-4x -2y +1=0恒有公共点,则m 的取值范围是( ) A[-2,2] B[-22,22] C[-2-1,2-1] D[-22-1,22-1] 答案 D4.过点A (3,5)作圆O :x 2+y 2-2x -4y +1=0的切线,则切线的方程为 . 答案 5x -12y +45=0或x -3=0解析 化圆x 2+y 2-2x -4y +1=0为标准方程得(x -1)2+(y -2)2=4,其圆心为(1,2), ∵|OA |=(3-1)2+(5-2)2=13>2,∴点A (3,5)在圆外.显然,当切线斜率不存在时,直线与圆相切,即切线方程为x -3=0,当切线斜率存在时,可设所求切线方程为y -5=k (x -3),即kx -y +5-3k =0.又圆心为(1,2),半径r =2,而圆心到切线的距离d =|3-2k |k 2+1=2, 即|3-2k |=2k 2+1,∴k =512,故所求切线方程为5x -12y +45=0或x -3=0.5.已知圆x 2+y 2+2x -2y +a =0截直线x +y +2=0所得的弦的长度为4,则实数a 的值是( ) A .-2 B .-4 C .-6 D .-8 答案 B解析 将圆的方程化为标准方程为(x +1)2+(y -1)2=2-a ,所以圆心为(-1,1),半径r =2-a ,圆心到直线x +y +2=0的距离d =|-1+1+2|2=2,故r 2-d 2=4,即2-a -2=4,所以a =-4,故选B.。
二、平面解析几何初步【知识网络】第六章直线的方程专题一直线的倾斜角与斜率1.直线的倾斜角(1)定义:在平面直角坐标系中,对于一条与x 轴相交的直线,把x 轴所在的直线绕着交点按逆时针方向旋转到和直线重合时所转过的最小正角称为这条直线的倾斜角.当直线l 与x 轴平行或重合时,规定它的倾斜角为0°. (2)范围:直线l 倾斜角的范围是0°,180°). 2.斜率公式(1)若直线l 的倾斜角α≠90°,则斜率k =tan α.(2)P 1(x 1,y 1),P 2(x 2,y 2)在直线l 上,且x 1≠x 2,则l 的斜率k =y 2-y 1x 2-x 1.【典例1】 (1)直线2x cos α-y -3=0⎝ ⎛⎭⎪⎫α∈⎣⎢⎡⎦⎥⎤π6,π3的倾斜角的取值范围是 . (2)直线l 过点P (1,0),且与以A (2,1),B (0,3)为端点的线段有公共点,则直线l 斜率的取值范围为 .【答案】 (1)⎣⎢⎡⎦⎥⎤π4,π3 (2)(-∞,-3]∪1,+∞)(2)如图,∵k AP =1-02-1=1,k BP =3-00-1=-3, ∴k ∈(-∞,- 3 ]∪1,+∞).【迁移训练1】 (1)直线x cos α+3y +2=0的倾斜角的范围是 .(2)已知实数x ,y 满足2x +y =8,当2≤x ≤3时,则yx的最大值为 ;最小值为 . 【答案】 (1)⎣⎢⎡⎦⎥⎤0,π6∪⎣⎢⎡⎭⎪⎫5π6,π (2)2 23(2)本题可先作出函数y =8-2x (2≤x ≤3)的图象,把yx看成过点(x ,y )和原点的直线的斜率进行求解.如图,设点P (x ,y ),因为x ,y 满足2x +y =8,且2≤x ≤3,所以点P (x ,y )在线段AB 上移动,并且A ,B 两点的坐标分别是(2,4),(3,2).因为y x的几何意义是直线OP 的斜率,且k OA =2,k OB =23,所以y x 的最大值为2,最小值为23. 专题二 求直线的方程名称 方程 适用范围 点斜式 y -y 1=k (x -x 1) 不含直线x =x 1 斜截式 y =kx +b 不含垂直于x 轴的直线 两点式y -y 1y 2-y 1=x -x 1x 2-x 1不含直线x =x 1 (x 1≠x 2)和直线y =y 1 (y 1≠y 2)截距式x a +y b=1 不含垂直于坐标轴和过原点的直线一般式 Ax +By +C =0(A ,B 不全为0)平面直角坐标系内的直线都适用(1)直线过点(-4,0),倾斜角的正弦值为1010; (2)直线过点(-3,4),且在两坐标轴上的截距之和为12; (3)直线过点(5,10),且到原点的距离为5.(2)由题设知截距不为0,设直线方程为x a +y12-a=1,又直线过点(-3,4),从而-3a +412-a =1,解得a =-4或a =9.故所求直线方程为4x -y +16=0或x +3y -9=0. (3)当斜率不存在时,所求直线方程为x -5=0; 当斜率存在时,设其为k ,则所求直线方程为y -10=k (x -5), 即kx -y +(10-5k )=0.由点线距离公式,得|10-5k |k 2+1=5,解得k =34.故所求直线方程为3x -4y +25=0.综上知,所求直线方程为x -5=0或3x -4y +25=0.【思维升华】在求直线方程时,应先选择适当的直线方程的形式,并注意各种形式的适用条件.用斜截式及点斜式时,直线的斜率必须存在,而两点式不能表示与坐标轴垂直的直线,截距式不能表示与坐标轴垂直或经过原点的直线.故在解题时,若采用截距式,应注意分类讨论,判断截距是否为零;若采用点斜式,应先考虑斜率不存在的情况. 【迁移训练2】 求适合下列条件的直线方程: (1)经过点P (4,1),且在两坐标轴上的截距相等;(2)经过点A (-1,-3),倾斜角等于直线y =3x 的倾斜角的2倍. 【解析】 (1)设直线l 在x ,y 轴上的截距均为a . 若a =0,即l 过点(0,0)及(4,1), ∴l 的方程为y =14x ,即x -4y =0.若a ≠0,则设l 的方程为x a +y a=1, ∵l 过点(4,1), ∴4a +1a=1,∴a =5,∴l 的方程为x +y -5=0.综上可知,直线l 的方程为x -4y =0或x +y -5=0.专题三 直线方程的综合应用【典例3】 (1)(2014·四川)设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y ),则PA ·PB 的最大值是 .(2)(2015·安徽)在平面直角坐标系xOy 中,若直线y =2a 与函数y =|x -a |-1的图象只有一个交点,则a 的值为 . 【答案】 (1)5 (2)-12【解析】 (1)∵直线x +my =0与mx -y -m +3=0分别过定点A ,B ,∴A (0,0),B (1,3).当点P 与点A (或B )重合时,PA ·PB 为零; 当点P 与点A ,B 均不重合时,∵P 为直线x +my =0与mx -y -m +3=0的交点, 且易知此两直线垂直, ∴△APB 为直角三角形, ∴AP 2+BP 2=AB 2=10, ∴PA ·PB ≤PA 2+PB 22=102=5,当且仅当PA =PB 时,上式等号成立. (2)∵|x -a |≥0恒成立,∴要使y =2a 与y =|x -a |-1只有一个交点,必有2a =-1,解得a =-12.【迁移训练3】 已知直线l 过点P (3,2),且与x 轴、y 轴的正半轴分别交于A 、B 两点,如图所示,求△ABO 的面积的最小值及此时直线l 的方程. 【解析】【方法二】依题意知,直线l 的斜率k 存在且k <0. 则直线l 的方程为y -2=k (x -3) (k <0),且有A ⎝⎛⎭⎪⎫3-2k,0,B (0,2-3k ),∴S △ABO =12(2-3k )⎝ ⎛⎭⎪⎫3-2k =12⎣⎢⎡⎦⎥⎤12+-9k +4-k≥12⎣⎢⎡⎦⎥⎤12+2 -9k ·4-k =12×(12+12)=12. 当且仅当-9k =4-k ,即k =-23时,等号成立. 即△ABO 的面积的最小值为12.故所求直线的方程为2x+3y-12=0.第七章两条直线的位置关系专题一两条直线的平行与垂直(1)两条直线平行与垂直①两条直线平行:(ⅰ)对于两条不重合的直线l1、l2,若其斜率分别为k1、k2,则有l1∥l2⇔k1=k2(k1,k均存在).2(ⅱ)当直线l1、l2不重合且斜率都不存在时,l1∥l2.②两条直线垂直:(ⅰ)如果两条直线l1、l2的斜率存在,设为k1、k2,则有l1⊥l2⇔k1·k2=-1 (k1,k均存在).2(ⅱ)当其中一条直线的斜率不存在,而另一条的斜率为0时,l1⊥l2.【典例1】(1)已知两条直线l1:(a-1)·x+2y+1=0,l2:x+ay+3=0平行,则a=________.(2)已知两直线方程分别为l1:x+y=1,l2:ax+2y=0,若l1⊥l2,则a=________.【答案】(1)-1或2 (2)-2【思维升华】(1)当直线方程中存在字母参数时,不仅要考虑到斜率存在的一般情况,也要考虑到斜率不存在的特殊情况.同时还要注意x、y的系数不能同时为零这一隐含条件.(2)在判断两直线平行、垂直时,也可直接利用直线方程的系数间的关系得出结论.【迁移训练1】已知两直线l1:x+y sin α-1=0和l2:2x·sin α+y+1=0,求α的值,使得:(1)l1∥l2;(2)l1⊥l2.【解析】(1)【方法一】当sin α=0时,直线l1的斜率不存在,l2的斜率为0,显然l1不平行于l2.当sin α≠0时,k 1=-1sin α,k 2=-2sin α. 要使l 1∥l 2,需-1sin α=-2sin α,即sin α=±22.所以α=k π±π4,k ∈Z ,此时两直线的斜率相等.故当α=k π±π4,k ∈Z 时,l 1∥l 2.专题二 两条直线的交点与距离问题1、两条直线的交点直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,则l 1与l 2的交点坐标就是方程组⎩⎨⎧A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0的解.2、几种距离(1)两点P 1(x 1,y 1),P 2(x 2,y 2)之间的距离P 1P 2=x 2-x 12+y 2-y 12.(2)点P 0(x 0,y 0)到直线l :Ax +By +C =0的距离d =|Ax 0+By 0+C |A 2+B2. (3)两条平行线Ax +By +C 1=0与Ax +By +C 2=0(其中C 1≠C 2)间的距离d =|C 1-C 2|A 2+B 2. 【典例2】 (1)已知直线y =kx +2k +1与直线y =-12x +2的交点位于第一象限,则实数k 的取值范围是________.(2)直线l 过点P (-1,2)且到点A (2,3)和点B (-4,5)的距离相等,则直线l __________________________.【答案】 (1)⎝ ⎛⎭⎪⎫-16,12 (2)x +3y -5=0或x =-1 【解析】(1)【方法一】 由方程组⎩⎪⎨⎪⎧y =kx +2k +1,y =-12x +2,解得⎩⎪⎨⎪⎧x =2-4k2k +1,y =6k +12k +1.(若2k +1=0,即k =-12,则两直线平行) ∴交点坐标为⎝ ⎛⎭⎪⎫2-4k 2k +1,6k +12k +1.又∵交点位于第一象限,∴⎩⎪⎨⎪⎧2-4k2k +1>0,6k +12k +1>0,解得-16<k <12.【方法二】如图,已知直线y =-12x +2与x 轴、y 轴分别交于点A (4,0),B (0,2).而直线方程y =kx +2k +1可变形为y -1=k (x +2),表示这是一条过定点P (-2,1),斜率为k 的动直线.∵两直线的交点在第一象限,∴两直线的交点必在线段AB 上(不包括端点), ∴动直线的斜率k 需满足k PA <k <k PB . ∵k PA =-16,k PB =12. ∴-16<k <12.【方法二】 当AB ∥l 时,有k =k AB =-13,直线l 的方程为y -2=-13(x +1),即x +3y -5=0.当l 过AB 中点时,AB 的中点为(-1,4).∴直线l 的方程为x =-1. 故所求直线l 的方程为x +3y -5=0或x =-1. 【思维升华】(1)求过两直线交点的直线方程的方法:求过两直线交点的直线方程,先解方程组求出两直线的交点坐标,再结合其他条件写出直线方程.(2)利用距离公式应注意:①点P (x 0,y 0)到直线x =a 的距离d =|x 0-a |,到直线y =b 的距离d =|y 0-b |; ②两平行线间的距离公式要把两直线方程中x ,y 的系数化为相等. 【迁移训练2】(1)如图,设一直线过点(-1,1),它被两平行直线l 1:x +2y -1=0,l 2:x +2y -3=0所截的线段的中点在直线l 3:x -y -1=0上,求其方程.(2)正方形的中心为点C (-1,0),一条边所在的直线方程是x +3y -5=0,求其他三边所在直线的方程. 【解析】点C 到直线x +3y -5=0的距离d =|-1-5|1+9=3105.设与x +3y -5=0平行的一边所在直线的方程是x +3y +m =0(m ≠-5),则点C 到直线x +3y +m =0的距离d =|-1+m |1+9=3105,解得m =-5(舍去)或m =7,所以与x +3y -5=0平行的边所在直线的方程是x +3y +7=0. 设与x +3y -5=0垂直的边所在直线的方程是3x -y +n =0, 则点C 到直线3x -y +n =0的距离d =|-3+n |1+9=3105,解得n =-3或n =9,所以与x +3y -5=0垂直的两边所在直线的方程分别是3x -y -3=0和3x -y +9=0. 专题三 对称问题【典例3】 (1)过点P (0,1)作直线l ,使它被直线l 1:2x +y -8=0和l 2:x -3y +10=0截得的线段被点P 平分,则直线l 的方程为________________.(2)已知直线l :2x -3y +1=0,点A (-1,-2),则点A 关于直线l 的对称点A ′的坐标为____________.(3)已知直线l :2x -3y +1=0,求直线m :3x -2y -6=0关于直线l 的对称直线m ′的方程.(3) 在直线m 上任取一点,如M (2,0),则M (2,0)关于直线l 的对称点M ′必在直线m ′上. 设对称点M ′(a ,b ),则⎩⎪⎨⎪⎧2×⎝ ⎛⎭⎪⎫a +22-3×⎝ ⎛⎭⎪⎫b +02+1=0,b -0a -2×23=-1,解得⎩⎪⎨⎪⎧a =613,b =3013,∴M ′⎝ ⎛⎭⎪⎫613,3013.设直线m 与直线l 的交点为N ,则由⎩⎪⎨⎪⎧2x -3y +1=0,3x -2y -6=0,得N (4,3).又∵m ′经过点N (4,3).∴由两点式得直线m ′的方程为9x -46y +102=0. 【思维升华】 解决对称问题的方法 (1)中心对称①点P (x ,y )关于Q (a ,b )的对称点P ′(x ′,y ′)满足⎩⎪⎨⎪⎧x ′=2a -x ,y ′=2b -y .②直线关于点的对称可转化为点关于点的对称问题来解决. (2)轴对称①点A (a ,b )关于直线Ax +By +C =0(B ≠0)的对称点A ′(m ,n ),则有⎩⎪⎨⎪⎧n -b m -a ·⎝ ⎛⎭⎪⎫-A B =-1,A ·a +m 2+B ·b +n 2+C =0.②直线关于直线的对称可转化为点关于直线的对称问题来解决. 【迁移训练3】在等腰直角三角形ABC 中,AB =AC =4,点P 是边AB 上异于A ,B 的一点,光线从点P 出发,经BC ,CA 发射后又回到原点P (如图).若光线QR 经过△ABC 的重心,则AP =________.【答案】 43【解析】建立如图所示的坐标系:可得B (4,0),C (0,4),故直线BC 的方程为x +y =4, △ABC 的重心为⎝⎛⎭⎪⎫0+0+43,0+4+03,设P (a,0),其中0<a <4,故直线QR 的方程为y =4-a4+a(x +a ),由于直线QR 过△ABC 的重心(43,43),代入化简可得3a 2-4a =0,解得a =43,或a =0(舍去),故P ⎝ ⎛⎭⎪⎫43,0,故AP =43.第八章 圆的方程专题一 求圆的方程 1.圆的标准方程(x -a )2+(y -b )2=r 2(r >0),其中(a ,b )为圆心,r 为半径. 2.圆的一般方程x 2+y 2+Dx +Ey +F =0表示圆的充要条件是D 2+E 2-4F >0,其中圆心为⎝ ⎛⎭⎪⎫-D2,-E 2,半径r =D 2+E 2-4F2.【典例1】 根据下列条件,求圆的方程.(1)经过P (-2,4)、Q (3,-1)两点,并且在x 轴上截得的弦长等于6; (2)圆心在直线y =-4x 上,且与直线l :x +y -1=0相切于点P (3,-2).(2)【方法一】如图,设圆心(x 0,-4x 0),依题意得4x 0-23-x 0=1,∴x 0=1,即圆心坐标为(1,-4),半径r =22, 故圆的方程为(x -1)2+(y +4)2=8.【方法二】 设所求方程为(x -x 0)2+(y -y 0)2=r 2,根据已知条件得⎩⎪⎨⎪⎧y 0=-4x 0,3-x 02+-2-y2=r 2,|x 0+y 0-1|2=r ,解得⎩⎨⎧x0=1,y 0=-4,r =2 2.因此所求圆的方程为(x -1)2+(y +4)2=8.【思维升华】 (1)直接法:根据圆的几何性质,直接求出圆心坐标和半径,进而写出方程. (2)待定系数法①若已知条件与圆心(a ,b )和半径r 有关,则设圆的标准方程依据已知条件列出关于a ,b ,r 的方程组,从而求出a ,b ,r 的值;②若已知条件没有明确给出圆心或半径,则选择圆的一般方程,依据已知条件列出关于D 、E 、F 的方程组,进而求出D 、E 、F 的值.【迁移训练1】 (1)(2014·陕西)若圆C 的半径为1,其圆心与点(1,0)关于直线y =x 对称,则圆C 的标准方程为____________.(2)过点A (4,1)的圆C 与直线x -y -1=0相切于点B (2,1),则圆C 的方程为________________. 【答案】 (1)x 2+(y -1)2=1 (2)(x -3)2+y 2=2专题二 与圆有关的最值问题 命题点1 斜率型最值问题【典例2】 已知实数x 、y 满足方程x 2+y 2-4x +1=0,则求: (1)y x的最大值为________,最小值为________. (2)求y -x 的最小值和最大值. (3)求x 2+y 2的最大值和最小值. 【解析】 (1)如图,方程x 2+y 2-4x +1=0表示以点(2,0)为圆心,以3为半径的圆. 设y x=k ,即y =kx ,则圆心(2,0)到直线y =kx 的距离为半径时直线与圆相切,斜率取得最大、最小值. 由|2k -0|k 2+1=3,解得k 2=3, ∴k max =3,k min =- 3.(也可由平面几何知识,得OC =2,CP =3,∠POC =60°,直线OP 的倾斜角为60°,直线OP ′的倾斜角为120°)解(3)x 2+y 2表示圆上的一点与原点距离的平方,由平面几何知识知,在原点和圆心连线与圆的两个交点处取得最大值和最小值(如图). 又因为圆心到原点的距离为2-02+0-02=2,所以x 2+y 2的最大值是(2+3)2=7+43,x 2+y 2的最小值为(2-3)2=7-4 3.【思维升华】 与圆有关的最值问题的常见类型及解题策略(1)与圆有关的长度或距离的最值问题的解法.一般根据长度或距离的几何意义,利用圆的几何性质数形结合求解.(2)与圆上点(x ,y )有关代数式的最值的常见类型及解法.①形如u =y -bx -a型的最值问题,可转化为过点(a ,b )和点(x ,y )的直线的斜率的最值问题;②形如t =ax +by 型的最值问题,可转化为动直线的截距的最值问题;③形如(x -a )2+(y -b )2型的最值问题,可转化为动点到定点(a ,b )的距离平方的最值问题. 【迁移训练2】(1)设P 是圆(x -3)2+(y +1)2=4上的动点,Q 是直线x =-3上的动点,则PQ 的最小值为 ________. 【答案】 4【解析】 PQ 的最小值为圆心到直线的距离减去半径.因为圆的圆心为(3,-1),半径为2,所以PQ 的最小值d =3-(-3)-2=4.(2)已知M 为圆C :x 2+y 2-4x -14y +45=0上任意一点,且点Q (-2,3). ①求MQ 的最大值和最小值; ②若M (m ,n ),求n -3m +2的最大值和最小值.②可知n -3m +2表示直线MQ 的斜率,设直线MQ 的方程为y -3=k (x +2),即kx -y +2k +3=0,则n -3m +2=k . 由直线MQ 与圆C 有交点,所以|2k -7+2k +3|1+k 2≤22,可得2-3≤k ≤2+3, 所以n -3m +2的最大值为2+3,最小值为2- 3. 专题三 与圆有关的轨迹问题【典例3】设定点M (-3,4),动点N 在圆x 2+y 2=4上运动,以OM 、ON 为两边作平行四边形MONP ,求点P 的轨迹. 【解析】如图所示,设P (x ,y ),N (x 0,y 0),则线段OP 的中点坐标为⎝ ⎛⎭⎪⎫x 2,y2,线段MN 的中点坐标为⎝⎛⎭⎪⎫x 0-32,y 0+42.由于平行四边形的对角线互相平分, 故x 2=x 0-32,y 2=y 0+42.从而⎩⎪⎨⎪⎧x 0=x +3,y 0=y -4.又N (x +3,y -4)在圆上,故(x +3)2+(y -4)2=4. 因此所求轨迹为圆:(x +3)2+(y -4)2=4,但应除去两点⎝ ⎛⎭⎪⎫-95,125和⎝ ⎛⎭⎪⎫-215,285(点P 在直线OM 上的情况).【思维升华】 求与圆有关的轨迹问题时,根据题设条件的不同常采用以下方法: ①直接法:直接根据题目提供的条件列出方程. ②定义法:根据圆、直线等定义列方程. ③几何法:利用圆的几何性质列方程.④代入法:找到要求点与已知点的关系,代入已知点满足的关系式等.【迁移训练3】 已知圆x 2+y 2=4上一定点A (2,0),B (1,1)为圆内一点,P ,Q 为圆上的动点. (1)求线段AP 中点的轨迹方程;(2)若∠PBQ =90°,求线段PQ 中点的轨迹方程.(2)设PQ 的中点为N (x ,y ),连结BN . 在Rt△PBQ 中,PN =BN .设O 为坐标原点,连结ON ,则ON ⊥PQ , 所以OP 2=ON 2+PN 2=ON 2+BN 2, 所以x 2+y 2+(x -1)2+(y -1)2=4.故线段PQ 中点的轨迹方程为x 2+y 2-x -y -1=0.第九章 直线与圆、圆与圆的位置关系专题一 直线与圆的位置关系判断直线与圆的位置关系常用的两种方法(1)几何法:利用圆心到直线的距离d 和圆半径r 的大小关系.d <r ⇔相交;d =r ⇔相切;d >r ⇔相离. (2)代数法:――→判别式Δ=b 2-4ac ⎩⎨⎧>0⇔相交;=0⇔相切;<0⇔相离.【典例1】(1)已知点M (a ,b )在圆O :x 2+y 2=1外,则直线ax +by =1与圆O 的位置关系是______. (2)若过点(1,2)总可以作两条直线与圆x 2+y 2+kx +2y +k 2-15=0相切,则实数k 的取值范围是________.(3)已知方程x 2+x tan θ-1sin θ=0有两个不等实根a 和b ,那么过点A (a ,a 2),B (b ,b 2)的直线与圆x 2+y 2=1的位置关系是________.【答案】 (1)相交 (2)⎝ ⎛⎭⎪⎫-833,-3∪⎝⎛⎭⎪⎫2,833(3)相切(2)把圆的方程化为标准方程得⎝ ⎛⎭⎪⎫x +k 22+(y +1)2=16-3k 24,所以16-3k24>0,解得-833<k <833.由题意知点(1,2)应在已知圆的外部, 把点代入圆的方程得1+4+k +4+k 2-15>0, 即(k -2)(k +3)>0, 解得k >2或k <-3,则实数k 的取值范围是⎝ ⎛⎭⎪⎫-833,-3∪⎝⎛⎭⎪⎫2,833.(3)由题意可知过A ,B 两点的直线方程为(a +b )x -y -ab =0,圆心到直线AB 的距离为d =|-ab |a +b 2+1,而a +b =-1tan θ,ab =-1sin θ,因此d =⎪⎪⎪⎪⎪⎪1sin θ⎝ ⎛⎭⎪⎫-1tan θ2+1,化简后得d=1,故直线与圆相切.【思维升华】 判断直线与圆的位置关系的常见方法 (1)几何法:利用d 与r 的关系. (2)代数法:联立方程之后利用Δ判断.(3)点与圆的位置关系法:若直线恒过定点且定点在圆内,可判断直线与圆相交. 上述方法中最常用的是几何法,点与圆的位置关系法适用于动直线问题. 【迁移训练1】 已知直线l :y =kx +1,圆C :(x -1)2+(y +1)2=12. (1)试证明:不论k 为何实数,直线l 和圆C 总有两个交点; (2)求直线l 被圆C 截得的最短弦长.(2)解 设直线与圆交于A (x 1,y 1)、B (x 2,y 2)两点, 则直线l 被圆C 截得的弦长AB =1+k 2|x 1-x 2|=28-4k +11k21+k2=2 11-4k +31+k2,令t =4k +31+k 2,则tk 2-4k +(t -3)=0,当t =0时,k =-34,当t ≠0时,因为k ∈R ,所以Δ=16-4t (t -3)≥0,解得-1≤t ≤4,且t ≠0, 故t =4k +31+k 2的最大值为4,此时AB 最小为27.专题二 圆与圆的位置关系设圆O 1:(x -a 1)2+(y -b 1)2=r 21(r 1>0),圆O 2:(x -a 2)2+(y -b 2)2=r 22(r 2>0).方法 位置关系几何法:圆心距d 与r 1,r 2的关系代数法:联立两圆方程组成方程组的解的情况外离 d >r 1+r 2 无解 外切 d =r 1+r 2 一组实数解 相交 |r 1-r 2|<d <r 1+r 2两组不同的实数解 内切 d =|r 1-r 2|(r 1≠r 2) 一组实数解 内含0≤d <|r 1-r 2|(r 1≠r 2)无解【典例2】 (1)圆(x +2)2+y 2=4与圆(x -2)2+(y -1)2=9的位置关系为________. (2)过两圆x 2+y 2+4x +y =-1,x 2+y 2+2x +2y +1=0的交点的圆中面积最小的圆的方程为____________.(3)如果圆C :x 2+y 2-2ax -2ay +2a 2-4=0与圆O :x 2+y 2=4总相交,那么实数a 的取值范围是__________.【答案】 (1)相交 (2)⎝ ⎛⎭⎪⎫x +352+⎝ ⎛⎭⎪⎫y +652=45(3)(-22,0)∪(0,22)∴两圆两个交点为⎝ ⎛⎭⎪⎫-15,-25,(-1,-2). 过两交点的圆中,以⎝ ⎛⎭⎪⎫-15,-25,(-1,-2)为端点的线段为直径的圆时,面积最小. ∴该圆圆心为⎝ ⎛⎭⎪⎫-35,-65,半径为 ⎝ ⎛⎭⎪⎫-15+12+⎝ ⎛⎭⎪⎫-25+222=255,圆的方程为⎝ ⎛⎭⎪⎫x +352+⎝ ⎛⎭⎪⎫y +652=45. (3)C 的标准方程为(x -a )2+(y -a )2=4,圆心坐标为(a ,a ),半径为2.依题意得:0<a 2+a 2<2+2,∴0<|a |<2 2.∴a ∈(-22,0)∪(0,22)【思维升华】 判断圆与圆的位置关系时,一般用几何法,其步骤是(1)确定两圆的圆心坐标和半径长;(2)利用平面内两点间的距离公式求出圆心距d ,求r 1+r 2,|r 1-r 2|;(3)比较d ,r 1+r 2,|r 1-r 2|的大小,写出结论.【迁移训练2】 (1)圆C 1:x 2+y 2-2y =0,C 2:x 2+y 2-23x -6=0的位置关系为________.【答案】 内切(2)设M ={(x ,y )|y =2a 2-x 2,a >0},N ={(x ,y )|(x -1)2+(y -3)2=a 2,a >0},且M ∩N ≠∅,求a 的最大值和最小值.解 M ={(x ,y )|y =2a 2-x 2,a >0},即{(x ,y )|x 2+y 2=2a 2,y ≥0},表示以原点O 为圆心,半径等于2a 的半圆(位于横轴或横轴以上的部分). N ={(x ,y )|(x -1)2+(y -3)2=a 2,a >0},表示以O ′(1,3)为圆心,半径等于a 的一个圆. 再由M ∩N ≠∅,可得半圆和圆有交点,故半圆和圆相交或相切.当半圆和圆相外切时,由OO ′=2=2a +a ,求得a =22-2;当半圆和圆相内切时,由OO ′=2=2a -a ,求得a =22+2,故a 的取值范围是22-2,22+2],a 的最大值为22+2,最小值为22-2.专题三 直线与圆的综合问题【典例3】 (2015·课标全国Ⅰ)已知过点A (0,1)且斜率为k 的直线l 与圆C :(x -2)2+(y -3)2=1交于M ,N 两点.(1)求k 的取值范围;(2)若OM →·ON →=12,其中O 为坐标原点,求MN .【解析】 (1)由题设,可知直线l 的方程为y =kx +1,因为直线l 与圆C 交于两点,所以|2k -3+1|1+k2<1. 解得4-73<k <4+73. 所以k 的取值范围为⎝ ⎛⎭⎪⎫4-73,4+73. (2)设M (x 1,y 1),N (x 2,y 2). 将y =kx +1代入方程(x -2)2+(y -3)2=1,整理得(1+k 2)x 2-4(1+k )x +7=0. 所以x 1+x 2=41+k 1+k 2,x 1x 2=71+k2. OM →·ON →=x 1x 2+y 1y 2=(1+k 2)x 1x 2+k (x 1+x 2)+1=4k 1+k 1+k2+8. 由题设可得4k 1+k 1+k 2+8=12,解得k =1, 所以直线l 的方程为y =x +1.故圆心C 在直线l 上,所以MN =2.【迁移训练3】 (1)过点(3,1)作圆(x -2)2+(y -2)2=4的弦,其中最短弦的长为________.(2)已知圆C 的方程为x 2+y 2+ax +2y +a 2=0,一定点为A (1,2),要使过A 点作圆的切线有两条,则a 的取值范围是____________. 【答案】 (1)2 2 (2)⎝ ⎛⎭⎪⎫-233,233 【解析】 (1)设P (3,1),圆心C (2,2),则PC =2,由题意知最短的弦过P (3,1)且与PC 垂直,所以最短弦长为222-22=2 2.。
平面解析几何1.直线的倾斜角与斜率:(1)直线的倾斜角:在平面直角坐标系中,对于一条与x 轴相交的直线,如果把x 轴绕着交点按逆时针方向旋转到和直线重合时所转的最小正角记为α叫做直线的倾斜角.倾斜角)180,0[︒∈α,︒=90α斜率不存在.(2)直线的斜率:αtan ),(211212=≠--=k x x x x y y k .(111(,)P x y 、222(,)P x y ). 2.直线方程的五种形式:(1)点斜式:)(11x x k y y -=- (直线l 过点),(111y x P ,且斜率为k ).注:当直线斜率不存在时,不能用点斜式表示,此时方程为0x x =.(2)斜截式:b kx y += (b 为直线l 在y 轴上的截距).(3)两点式:121121x x x x y y y y --=-- (12y y ≠,12x x ≠). 注:① 不能表示与x 轴和y 轴垂直的直线;② 方程形式为:0))(())((112112=-----x x y y y y x x 时,方程可以表示任意直线.(4)截距式:1=+by a x (b a ,分别为x 轴y 轴上的截距,且0,0≠≠b a ). 注:不能表示与x 轴垂直的直线,也不能表示与y 轴垂直的直线,特别是不能表示过原点的直线.(5)一般式:0=++C By Ax (其中A 、B 不同时为0). 一般式化为斜截式:B C x B A y --=,即,直线的斜率:BA k -=. 注:(1)已知直线纵截距b ,常设其方程为y kx b =+或0x =.已知直线横截距0x ,常设其方程为0x my x =+(直线斜率k 存在时,m 为k 的倒数)或0y =. 已知直线过点00(,)x y ,常设其方程为00()y k x x y =-+或0x x =.(2)解析几何中研究两条直线位置关系时,两条直线有可能重合;立体几何中两条直线一般不重合.3.直线在坐标轴上的截矩可正,可负,也可为0.(1)直线在两坐标轴上的截距相等....⇔直线的斜率为1-或直线过原点.(2)直线两截距互为相反数.......⇔直线的斜率为1或直线过原点.(3)直线两截距绝对值相等.......⇔直线的斜率为1±或直线过原点.4.两条直线的平行和垂直:(1)若111:l y k x b =+,222:l y k x b =+① 212121,//b b k k l l ≠=⇔; ② 12121l l k k ⊥⇔=-.(2)若0:1111=++C y B x A l ,0:2222=++C y B x A l ,有① 1221122121//C A C A B A B A l l ≠=⇔且.② 0212121=+⇔⊥B B A A l l .5.平面两点距离公式:(111(,)P x y 、222(,)P x y ),22122121)()(y y x x P P -+-=.x 轴上两点间距离:A B x x AB -=.线段21P P 的中点是),(00y x M ,则⎪⎪⎩⎪⎪⎨⎧+=+=22210210y y y x x x . 6.点到直线的距离公式:点),(00y x P 到直线0=++C By Ax l :的距离:2200B A C By Ax d +++=. 7.两平行直线间的距离:两条平行直线002211=++=++C By Ax l C By Ax l :,:距离:2221B A C C d +-=.8.直线系方程:(1)平行直线系方程:① 直线y kx b =+中当斜率k 一定而b 变动时,表示平行直线系方程..② 与直线:0l Ax By C ++=平行的直线可表示为10Ax By C ++=.③ 过点00(,)P x y 与直线:0l Ax By C ++=平行的直线可表示为:00()()0A x x B y y -+-=.(2)垂直直线系方程:① 与直线:0l Ax By C ++=垂直的直线可表示为10Bx Ay C -+=.② 过点00(,)P x y 与直线:0l Ax By C ++=垂直的直线可表示为:00()()0B x x A y y ---=.(3)定点直线系方程:① 经过定点000(,)P x y 的直线系方程为00()y y k x x -=-(除直线0x x =),其中k 是待定的系数. ② 经过定点000(,)P x y 的直线系方程为00()()0A x x B y y -+-=,其中,A B 是待定的系数.(4)共点直线系方程:经过两直线0022221111=++=++C y B x A l C y B x A l :,:交点的直线系方程为0)(222111=+++++C y B x A C y B x A λ (除2l ),其中λ是待定的系数.9.曲线1:(,)0C f x y =与2:(,)0C g x y =的交点坐标⇔方程组{(,)0(,)0f x y g x y ==的解. 10.圆的方程:(1)圆的标准方程:222)()(r b y a x =-+-(0>r ).(2)圆的一般方程:)04(02222>-+=++++F E D F Ey Dx y x .(3)圆的直径式方程:若),(),(2211y x B y x A ,,以线段AB 为直径的圆的方程是:0))(())((2121=--+--y y y y x x x x . 注:(1)在圆的一般方程中,圆心坐标和半径分别是)2,2(E D --,F E D r 42122-+=. (2)一般方程的特点:① 2x 和2y 的系数相同且不为零;② 没有xy 项; ③ 0422>-+F E D(3)二元二次方程022=+++++F Ey Dx Cy Bxy Ax 表示圆的等价条件是:① 0≠=C A ; ② 0=B ; ③ 0422>-+AF E D .11.圆的弦长的求法:(1)几何法:当直线和圆相交时,设弦长为l ,弦心距为d ,半径为r ,则:“半弦长2+弦心距2=半径2”——222)2(r d l =+; (2)代数法:设l 的斜率为k ,l 与圆交点分别为),(),(2211y x B y x A ,,则||11||1||22B A B A y y k x x k AB -+=-+= (其中|||,|2121y y x x --的求法是将直线和圆的方程联立消去y 或x ,利用韦达定理求解)12.点与圆的位置关系:点),(00y x P 与圆222)()(r b y a x =-+-的位置关系有三种①P 在在圆外22020)()(r b y a x r d >-+-⇔>⇔.②P 在在圆内22020)()(r b y a x r d <-+-⇔<⇔.③P 在在圆上22020)()(r b y a x r d =-+-⇔=⇔. 【P到圆心距离d =13.直线与圆的位置关系:直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种(22B A CBb Aa d +++=):圆心到直线距离为d ,由直线和圆联立方程组消去x (或y )后,所得一元二次方程的判别式为∆. 0<∆⇔⇔>相离r d ;0=∆⇔⇔=相切r d ;0>∆⇔⇔<相交r d .14.两圆位置关系:设两圆圆心分别为21,O O ,半径分别为21,r r ,d O O =21条公切线外离421⇔⇔+>r r d ; 无公切线内含⇔⇔-<21r r d ;条公切线外切321⇔⇔+=r r d ;条公切线内切121⇔⇔-=r r d ;条公切线相交22121⇔⇔+<<-r r d r r .15.圆系方程:)04(02222>-+=++++F E D F Ey Dx y x(1)过直线0=++C By Ax l :与圆C :022=++++F Ey Dx y x 的交点的圆系方程:0)(22=+++++++C By Ax F Ey Dx y x λ,λ是待定的系数.(2)过圆1C :011122=++++F y E x D y x 与圆2C :022222=++++F y E x D y x 的交点的圆系方程:0)(2222211122=+++++++++F y E x D y x F y E x D y x λ,λ是待定的系数.特别地,当1λ=-时,2222111222()0x y D x E y F x y D x E y F λ+++++++++=就是121212()()()0D D x E E y F F -+-+-=表示两圆的公共弦所在的直线方程,即过两圆交点的直线.16.圆的切线方程:(1)过圆222r y x =+上的点),(00y x P 的切线方程为:200r y y x x =+.(2)过圆222)()(r b y a x =-+-上的点),(00y x P 的切线方程为:200))(())((r b y b y a x a x =--+-- .(3)当点),(00y x P 在圆外时,可设切方程为)(00x x k y y -=-,利用圆心到直线距离等于半径,即r d =,求出k ;或利用0=∆,求出k .若求得k 只有一值,则还有一条斜率不存在的直线0x x =.17.把两圆011122=++++F y E x D y x 与022222=++++F y E x D y x 方程相减即得相交弦所在直线方程:0)()()(212121=-+-+-F F y E E x D D .18.对称问题:(1)中心对称:① 点关于点对称:点),(11y x A 关于),(00y x M 的对称点)2,2(1010y y x x A --.② 直线关于点对称:法1:在直线上取两点,利用中点公式求出两点关于已知点对称的两点坐标,由两点式求直线方程. 法2:求出一个对称点,在利用21//l l 由点斜式得出直线方程.(2)轴对称:① 点关于直线对称:点与对称点连线斜率是已知直线斜率的负倒数,点与对称点的中点在直线上.点 A A '、关于直线l 对称⎩⎨⎧''⇔上中点在⊥l A A l A A ⎩⎨⎧'-=⇔'方程中点坐标满足·l A A k k l A A 1 . ② 直线关于直线对称:(设b a ,关于l 对称)法1:若b a ,相交,求出交点坐标,并在直线a 上任取一点,求该点关于直线l 的对称点.若l a //,则l b //,且b a ,与l 的距离相等.法2:求出a 上两个点B A ,关于l 的对称点,在由两点式求出直线的方程.(3)点(a , b )关于x 轴对称:(a ,- b )、关于y 轴对称:(-a , b )、关于原点对称:(-a ,- b )、点(a , b )关于直线y=x 对称:(b , a )、关于y=- x 对称:(-b ,- a )、关于y = x +m 对称:(b -m 、a +m )、关于y=-x+m 对称:(-b+m 、- a+m ) .19.若),(),(),(332211y x C y x B y x A ,,,则△ABC 的重心G 的坐标是⎪⎭⎫ ⎝⎛++++33321321y y y x x x ,. 20.各种角的范围:直线的倾斜角 ︒<≤︒1800α 两条相交直线的夹角 ︒≤<︒900α两条异面线所成的角 ︒≤<︒900α。
平面解析几何1.直线的倾斜角与斜率:(1)直线的倾斜角:在平面直角坐标系中,对于一条与x 轴相交的直线,如果把x 轴绕着交点按逆时针方向旋转到和直线重合时所转的最小正角记为α叫做直线的倾斜角. 倾斜角)180,0[︒∈α,︒=90α斜率不存在. (2)直线的斜率:αtan ),(211212=≠--=k x x x x y y k .(111(,)P x y 、222(,)P x y ).2.直线方程的五种形式:(1)点斜式:)(11x x k y y -=- (直线l 过点),(111y x P ,且斜率为k ).注:当直线斜率不存在时,不能用点斜式表示,此时方程为0x x =. (2)斜截式:b kx y += (b 为直线l 在y 轴上的截距). (3)两点式:121121x x x x y y y y --=-- (12y y ≠,12x x ≠).注:① 不能表示与x 轴和y 轴垂直的直线;② 方程形式为:0))(())((112112=-----x x y y y y x x 时,方程可以表示任意直线.(4)截距式:1=+bya x (b a ,分别为x 轴y 轴上的截距,且0,0≠≠b a ). 注:不能表示与x 轴垂直的直线,也不能表示与y 轴垂直的直线,特别是不能表示过原点的直线.(5)一般式:0=++C By Ax (其中A 、B 不同时为0).一般式化为斜截式:B C x B A y --=,即,直线的斜率:BAk -=. 4.两条直线的平行和垂直:(1)若111:l y k x b =+,222:l y k x b =+① 212121,//b b k k l l ≠=⇔; ② 12121l l k k ⊥⇔=-. (2)若0:1111=++C y B x A l ,0:2222=++C y B x A l ,有① 1221122121//C A C A B A B A l l ≠=⇔且.② 0212121=+⇔⊥B B A A l l .5.平面两点距离公式:(111(,)P x y 、222(,)P x y ),22122121)()(y y x x P P -+-=. 21P P 的中点是),(00y x M ,⎪⎪⎩⎪⎪⎨⎧+=+=22210210y y y x x x . 6.点到直线的距离公式:点),(00y x P 到直线0=++C By Ax l :的距离:2200BA CBy Ax d +++=.7.两平行直线间的距离: 002211=++=++C By Ax l C By Ax l :,:距离:2221BA C C d +-=.8.直线系方程:(1)平行直线系方程:与直线:0l Ax By C ++=平行的直线可表示为10Ax By C ++=. (2)垂直直线系方程:与直线:0l Ax By C ++=垂直的直线可表示为10Bx Ay C -+=.10.圆的方程:(1)圆的标准方程:222)()(r b y a x =-+-(0>r ).(2)圆的一般方程:)04(02222>-+=++++F E D F Ey Dx y x . 11.圆的弦长的求法:(1)几何法:当直线和圆相交时,设弦长为l ,弦心距为d ,半径为r ,则:“半弦长2+弦心距2=半径2”——222)2(r d l=+;(2)代数法:设l 的斜率为k ,l 与圆交点分别为),(),(2211y x B y x A ,||11||1||22B A B A y y kx x k AB -+=-+= 12.点与圆的位置关系:点),(00y x P 与圆222)()(r b y a x =-+-的位置关系有三种 ①P 在在圆外22020)()(r b y a x r d >-+-⇔>⇔. ②P 在在圆内22020)()(r b y a x r d <-+-⇔<⇔.③P 在在圆上22020)()(r b y a x r d =-+-⇔=⇔. 【P到圆心距离d =13.直线与圆的位置关系:直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种(22BA C Bb Aa d +++=):圆心到直线距离为d ,由直线和圆联立方程组消去x (或y )后,所得一元二次方程的判别式为∆.0<∆⇔⇔>相离r d ;0=∆⇔⇔=相切r d ;0>∆⇔⇔<相交r d .14.两圆位置关系:设两圆圆心分别为21,O O ,半径分别为21,r r ,d O O =21条公切线外离421⇔⇔+>r r d ; 无公切线内含⇔⇔-<21r r d ; 条公切线外切321⇔⇔+=r r d ;条公切线内切121⇔⇔-=r r d ; 条公切线相交22121⇔⇔+<<-r r d r r .17.把两圆011122=++++F y E x D y x 与022222=++++F y E x D y x 方程相减即得相交弦所在直线方程:0)()()(212121=-+-+-F F y E E x D D . 18.对称问题: (1)中心对称:① 点关于点对称:点),(11y x A 关于),(00y x M 的对称点)2,2(1010y y x x A --.② 直线关于点对称:法1:在直线上取两点,利用中点公式求出两点关于已知点对称的两点坐标,由两点式求直线方程. 法2:求出一个对称点,在利用21//l l 由点斜式得出直线方程. (2)轴对称:① 点关于直线对称:点与对称点连线斜率是已知直线斜率的负倒数,点与对称点的中点在直线上.点 A A '、关于直线l 对称⎩⎨⎧''⇔上中点在⊥l A A l A A ⎩⎨⎧'-=⇔'方程中点坐标满足·l A A k k l A A 1 . ② 直线关于直线对称:(设b a ,关于l 对称)法1:若b a ,相交,求出交点坐标,并在直线a 上任取一点,求该点关于直线l 的对称点.若l a //,则l b //,且b a ,与l 的距离相等.法2:求出a 上两个点B A ,关于l 的对称点,在由两点式求出直线的方程.。
解析几何复习(二)一.直线1.平行、垂直斜率关系平行: 。
垂直: 。
2.点到直线距离公式:一点()00,y x P 到直线0:1=++C By Ax l 的距离d= 。
二、圆1.圆的方程(1)标准方程: 。
(2)一般方程: 。
2.两圆相交公共玄方程:。
高频考点一例1.若直线()200,0ax by a b -+=>>被圆222410x y x y ++-+=截得的弦长为4,则11a b +的最小值是 。
32拓展变式练习1.圆012222=+--+y x y x 上的点到直线2=-y x 的距离最大值是 。
2 + 12.若直线0=++m y x 与圆m y x =+22相切,则m 为 。
23.已知直线340x y a ++=与圆2242+40x y x y +-+=相切,则=a ___________。
高频考点二例2.圆1)1()2(22=-+-y x 关于A(1,2)对称的圆的方程为 。
1)3()3(22=-+-y x拓展变式练习1.直线022=--y x 与圆C 10)2()1(22=-+-y x 交于B A ,两点,则弦AB 的长为 。
2.以A (-1,2 ),B (5,6)为直径端点的圆的方程是_______________。
3.经过两圆922=+y x 和8)3()4(22=+++y x 的交点的直线方程________。
高频考点三例 3.如图,设P 是圆2522=+y x 上的动点,点D 是P 在x 轴上的投影,M 为PD 上一点,且PD MD 54=. (1)当P 在圆上运动时,求点M 的轨迹C 的方程;(2)求过点)0,3(且斜率为54的直线被C 所截线段的长度.拓展变式练习(12分)已知点M (3,1),直线ax -y +4=0及圆(x -1)2+(y -2)2=4.(1)求过M 点的圆的切线方程;(2)若直线ax -y +4=0与圆相切,求a 的值.典型高考已知圆()51:22=-+y x C ,直线l :01=-+-m y mx ,R m ∈。
人教版高中数学必修二知识点梳理重点题型(常考知识点)巩固练习《解析几何初步》全章复习与巩固【学习目标】1.理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式,能根据两条直线的斜率判定这两条直线平行或垂直;2.掌握确定直线位置的几何要素,掌握直线方程的几种形式(点斜式、两点式及一般式),了解斜截式与一次函数的关系;3.能用解方程组的方法求两直线的交点坐标;4.掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离;5.掌握圆的标准方程的特点,能根据所给有关圆心、半径的具体条件准确地写出圆的标准方程;6.掌握圆的一般方程的特点,能将圆的一般方程化为圆的标准方程从而求出圆心的坐标和半径;7.能根据给定直线、圆的方程,判断直线与圆、圆与圆的位置关系. 【知识网络】【要点梳理】要点一:直线方程的几种形式(1)直线方程的几种表示形式中,除一般式外都有其适用范围,任何一种表示形式都有其优越性,需要根据条件灵活选用.(2)在求解与直线方程有关的问题中,忽视对斜率不存在时的直线方程的讨论是常见的错误,应特别警惕.(3)确定直线方程需要且只需两个独立条件,利用待定系数法求直线方程是常用方法. 常用的直线方程有: ①00()y y k x x -=-;②y kx b =+;③220(0)Ax By C A B ++=+≠;④111222()()0A x B y C A x B y C λ+++++=(λ为参数).要点二:两条直线的位置关系1.特殊情况下的两直线平行与垂直.(1)当两条直线的斜率都不存在时,两直线的倾斜角都为090,互相平行;(2)当一条直线的斜率不存在(倾斜角为090),另一条直线的倾斜角为00时,两直线互相垂直. 2.斜率都存在时两直线的平行:(1)已知直线111:=+l y k x b 和222:=+l y k x b ,则21//l l ⇔1k =2k 且21b b ≠(2)已知直线1l :0111=++C y B x A 和2l :0222=++C y B x A )0,0(222111≠≠C B A C B A ,则1l ∥2l ⇔212121C C B B A A ≠= . 要点诠释:对于一般式方程表示的直线的位置的判定,可以先将方程转化为斜截式形式,再作判定.3.斜率都存在时两直线的垂直:(1)已知直线111:=+l y k x b 和222:=+l y k x b ,则 12121⊥⇔=-l l k k ; (2)已知直线1l :0111=++C y B x A 和2l :0222=++C y B x A ,则1l ⊥2l ⇔02121=+B B A A .要点三:点到直线的距离公式 1.点到直线距离公式:点),(00y x P 到直线0:=++C By Ax l 的距离为:2200BA CBy Ax d +++=2.两平行线间的距离公式已知两条平行直线1l 和2l 的一般式方程为1l :01=++C By Ax ,2l :02=++C By Ax ,则1l 与2l 的距离为2221BA C C d +-=.要点诠释:一般在其中一条直线1l 上随意地取一点M ,再求出点M 到另一条直线2l 的距离即可 要点四:对称问题1.点关于点成中心对称点关于点成中心对称的对称中心恰是这两点为端点的线段的中点,因此中心对称的问题是线段中点坐标公式的应用问题.设00(,)P x y ,对称中心为(,)A a b ,则P 关于A 的对称点为00(2,2)P a x b y '--.2.点关于直线成轴对称由轴对称定义知,对称轴即为两对称点连线的“垂直平分线”.利用“垂直”“平分”这两个条件建立方程组,就可求出对称点的坐标,一般情形如下:设点00(,)P x y 关于直线y kx b =+的对称点为(,)P x y ''',则有0000122y y k x x y y x x k b '-⎧⋅=-⎪'-⎪⎨''++⎪=⋅+⎪⎩,求出x '、y '.特殊地,点00(,)P x y 关于直线x a =的对称点为00(2,)P a x y '-;点00(,)P x y 关于直线y b =的对称点为00(,2)P x b y '-.3.两点关于点对称、两点关于直线对称的常见结论: (1)点(,)x y 关于x 轴的对称点为(,)x y -; (2)点(,)x y 关于y 轴的对称点为(,)x y -; (3)点(,)x y 关于原点的对称点为(,)x y --; (4)点(,)x y 关于直线0x y -=的对称点为(,)y x ; (5)点(,)x y 关于直线0x y +=的对称点为(,)y x --.要点五:圆的方程求圆的方程通常果用待定系数法,若条件涉及圆心、半径等,可设成圆的标准方程;若条件涉及圆过一些定点,则可设成圆的一般方程.运用圆的几何性质可以使运算简便.1.圆的标准方程222()()x a y b r -+-=,其中()a b ,为圆心,r 为半径.要点诠释:(1)如果圆心在坐标原点,这时00a b ==,,圆的方程就是222x y r +=.有关图形特征与方程的转化:如:圆心在x 轴上:b=0;圆与y 轴相切时:||a r =;圆与x 轴相切时:||b r =;与坐标轴相切时:||||a b r ==;过原点:222a b r +=.(2)圆的标准方程222()()x a y b r -+-=⇔圆心为()a b ,,半径为r ,它显现了圆的几何特点.(3)标准方程的优点在于明确指出了圆心和半径.由圆的标准方程可知,确定一个圆的方程,只需要a 、b 、r 这三个独立参数,因此,求圆的标准方程常用定义法和待定系数法.2.圆的一般方程当2240D E F +->时,方程220x y Dx Ey F ++++=叫做圆的一般方程.,22D E ⎛⎫-- ⎪⎝⎭为圆心,为半径. 要点诠释:由方程220x y Dx Ey F ++++=得22224224D E D E F x y +-⎛⎫⎛⎫+++= ⎪ ⎪⎝⎭⎝⎭(1)当2240D E F +-=时,方程只有实数解,22D E x y =-=-.它表示一个点(,)22D E --. (2)当2240D E F +-<时,方程没有实数解,因而它不表示任何图形.(3)当2240D E F +->时,可以看出方程表示以,22D E ⎛⎫-- ⎪⎝⎭为半径的圆.要点六:点和圆的位置关系如果圆的标准方程为222()()x a y b r -+-=,圆心为()C a b ,,半径为r ,则有(1)若点()00M x y ,在圆上()()22200||CM r x a y b r ⇔=⇔-+-=(2)若点()00M x y ,在圆外()()22200||CM r x a y b r ⇔>⇔-+->(3)若点()00M x y ,在圆内()()22200||CM r x a y b r ⇔<⇔-+-<要点七:直线与圆的位置关系1.直线与圆的位置关系:(1)直线与圆相交,有两个公共点; (2)直线与圆相切,只有一个公共点; (3)直线与圆相离,没有公共点.2.直线与圆的位置关系的判定方法: (1)代数法:判断直线l 与圆C 的方程组成的方程组是否有解. 如果有解,直线l 与圆C 有公共点; 有两组实数解时,直线l 与圆C 相交; 有一组实数解时,直线l 与圆C 相切; 无实数解时,直线l 与圆C 相离. (2)几何法:设直线22:0(0)l Ax By C A B ++=+≠,圆222:()()(0)C x a y b r r -+-=>,圆心(,)C a b 到直线l 的距离记为d =:当d r <时,直线l 与圆C 相交; 当d r =时,直线l 与圆C 相切; 当d r >时,直线l 与圆C 相离. 要点诠释:(1)当直线和圆相切时,求切线方程,一般要用到圆心到直线的距离等于半径;求切线长,一般要用到切线长、圆的半径、圆外点与圆心连线构成的直角三角形,由勾股定理解得.(2)当直线和圆相交时,有关弦长的问题,要用到弦心距、半径和半弦构成的直角三角形,也是通过勾股定理解得,有时还用到垂径定理.(3)当直线和圆相离时,常讨论圆上的点到直线的距离问题,通常画图,利用数形结合来解决. 要点八:圆与圆的位置关系 1.圆与圆的位置关系:(1)圆与圆相交,有两个公共点;(2)圆与圆相切(内切或外切),有一个公共点; (3)圆与圆相离(内含或外离),没有公共点. 2.圆与圆的位置关系的判定: (1)代数法:判断两圆的方程组成的方程组是否有解. 有两组不同的实数解时,两圆相交; 有一组实数解时,两圆相切; 方程组无解时,两圆相离. (2)几何法:圆2221111:()()C x a y b r -+-=与圆222222:()()C xa yb r-+-=,两圆圆心距d =当1212r r d r r -<<+时,两圆相交; 当12r r d +=时,两圆外切; 当12r r d +<时,两圆外离; 当12r r d -=时,两圆内切; 当12r r d ->时,两圆内含.要点诠释:判定圆与圆的位置关系主要是利用几何法,通过比较两圆的圆心距和两圆的半径的关系来确定,这种方法运算量小.也可利用代数法,但是利用代数法解决时,一是运算量大,二是方程组仅有一解或无解时,两圆的位置关系不明确,还要比较两圆的圆心距和两圆半径的关系来确定.因此,在处理圆与圆的位置关系时,一般不用代数法.要点九:求圆的切线方程的常用方法:(1)直接法:应用常见结论,直接写出切线方程;(2)待定系数法:设出切点坐标或切线斜率,由题意列出方程(组)解得切点坐标或切线斜率,写出点斜式,最后将点斜式化为一般式;(3)定义法:根据直线方程的定义求出切线方程. 常见圆的切线方程:①过圆222x y r +=上一点()00,P x y 的切线方程是200x x y y r +=;②过圆()()222x a y b r -+-=上一点()00,P x y 的切线方程是:()()()()200x a x a y b y b r --+--=.要点十:空间直角坐标系空间直角坐标系中坐标的求法:过该点作两条轴所确定平面的平行平面交另一轴于一点,交点在这条轴上的坐标就是已知点相应的一个坐标.确定简单几何体的顶点坐标是今后正确运用坐标法解题的关键,必须要熟练且正确地掌握空间直角坐标系的建立与中点坐标的确定方法. 【典型例题】类型一:直线方程的综合问题例1.已知A (-m -3,2),B (-2m -4,4),C (-m ,m ),D (3,3m+2),若直线AB ⊥CD ,求m 的值. 【思路点拨】两直线垂直⇔121k k =-的前提条件是1k 、2k 均存在且不为零,所以这类问题应分斜率存在和不存在两种情况讨论. 【答案】1或-1【解析】∵ A 、B 两点纵坐标不相等,∴ AB 与x 轴不平行. ∵ AB ⊥CD ,∴ CD 与x 轴不垂直,-m ≠3,m ≠-3. ①当AB 与x 轴垂直时,-m -3=-2m -4,解得m =-1.而m =-1时,C 、D 纵坐标均为-1,∴ CD ∥x 轴,此时AB ⊥CD ,满足题意.②当AB 与x 轴不垂直时,由斜率公式42224(3)(1)AB k m m m -==------+,322(1)3()3CD m m m k m m +-+==--+.∵ AB ⊥CD ,∴ 1A B C Dk k =-,即22(1)1(1)3m m m +=--++,解得m =1.综上,m 的值为1或-1.举一反三:【变式1】已知1l :23250,:(31)20x ay l a x ay +-=---=,求使12//l l 的a 的值.【答案】0或16- 【解析】解法一:当直线斜率不存在,即0a =时,有12:350,:20l x l x -=--=,符合12//l l ; 直线斜率存在时,123311//26a l l a a a -⇔-=⇔=-. 故使12//l l 的a 的值为0或16-. 解法二:由12//3()(31)20,l l a a a ⇔⋅---⋅=解得0a =或16-,故使12//l l 的a 的值为0或16-. 例2.已知三条直线120(0)l x y a a -+=>:,24210l x y --=:,310l x y +-=:且1l 与2l的距离为(1)求a 的值.(2)能否找到一点P ,使得点P 同时满足下列三个条件:①点P 是第一象限点,②点P 到1l 、3l 的P 到1l 、2l 的距离比是1:2.若能,求点P 的坐标;若不能,说明理由.【思路点拨】用平行线间的距离、点到直线的距离公式求解. 【答案】(1)3 (2)137918P ⎛⎫⎪⎝⎭, 【解析】(1)直线2l 的方程变为1202x y --=, ∴ 1l 与2的距离d ==∴ 1722a +=,∵ 0a >,∴ 3a =. (2)设P (x 0,y 0),若点P 满足条件③,则点P 在与直线1l 、2l 平行的直线20l x y c '-+=:上,=,即132c =或116,∴ l '为0013202x y -+=或0011206x y -+=. 若点P 满足条件②,由点到直线的距离公式得002=解得00240x y-+=或320x+=(∵点P是第一象限点,∴不合题意,舍去).联立方程000013202240x yx y⎧-+=⎪⎨⎪-+=⎩,,解得312xy=-⎧⎪⎨=⎪⎩,舍去.联立方程000011206240x yx y⎧-+=⎪⎨⎪-+=⎩,解得193718xy⎧=⎪⎪⎨⎪=⎪⎩,.∴137918P⎛⎫⎪⎝⎭,为同时满足三个条件的点.【总结升华】本题综合性较强,用距离公式时要注意转化为方程的一般形式.例3.求直线:240a x y+-=关于直线:3410l x y+-=对称的直线b的方程.【思路点拨】1.曲线的对称通常转化为点的中心对称或轴对称(这里既可选特殊点,也可选任意点实施转化).2.由平面几何知识可知,若a与b关于l对称,则应具有下列几何性质:(1)若点A在直线a上,则A点关于l的对称点B一定在直线b上,即l为线段AB的垂直平分线(AB l⊥,AB的中点在l上);(2)设(,)P x y是所求直线b上一点,则P关于l的对称点(,)P x y'''的坐标适合直线a的方程;(3)若a与b相交,则l过a与b交点,只需求出交点和一个对称点,利用两点式就可以求出答案;若//a l,则////b l a,三条直线的斜率相等,只需再求出一个对称点,利用点斜式可以求出答案.【解析】方法一:在直线:240a x y+-=上取一点(2,0)A,设A点于l的对称点00(,)B x y,则00203410220423x yyx++⎧⋅+⋅-=⎪⎪⎨-⎪=-⎪⎩,解得48(,)55B-,由2403410x yx y+-=⎧⎨+-=⎩,解得交点(3,2)D-.由两点式可求得直线b的方程:211160x y++=.方法二:设(,)P x y是所求直线b上任一点;设P关于l的对称点(,)P x y''',则有:''341022'4'3y yx xy yx x++⎧⋅+⋅-=⎪⎪⎨-⎪=⎪-⎩,解得7246'252478'25x yxx yy-+⎧=⎪⎪⎨--+⎪=⎪⎩∵(,)P x y'''在直线:240a x y+-=上,∴724624782402525x y x y -+--+⋅+-=,整理得211160x y ++=,故所求直线b 的方程:211160x y ++=.【总结升华】1. 对称问题是高考的热点之一,一般包括点关于点对称,直线关于点对称,点关于直线对称,直线关于直线对称,要掌握通解通法和记忆一些常用结论.2. 求一条直线关于已知直线的对称直线,基本方法之一在直线上任取两点求其对称点,方法之二是利用相关点——伴随曲线方法解决,其中方法2还可以推广,如改变直线a 为二次曲线C ,仍可用此方法解决.举一反三:【变式1】由点P (2,3)发出的光线射到直线1x y +=-上,反射后过点Q (1,1),则反射光线所在直线的一般方程为________.【答案】:4510x y -+=【解析】设点P 关于直线1x y +=-的对称点00(,)P x y ',则00(,)P x y '满足条件0000231,2231,2x y y x ++⎧+=-⎪⎪⎨-⎪=-⎪⎩ 解得(4,3)P '--,∴ 由直线方程的两点式可求得反射光线所在直线方程为311(1)41y x ---=---,即4510x y -+=. 类型二:圆的方程的综合问题例4.(2016 天津河西区模拟)已知圆C 经过点A (2,0)、(1,3)B,且圆心C 在直线y =x 上.(1)求圆C 的方程; (2)过点(1,3的直线l截圆所得弦长为l 的方程. 【思路点拨】(1)求出圆心坐标与半径,即可求圆C 的方程;(2)设出直线方程,利用点到直线的距离以及半径半弦长求解即可. 【答案】(1)x 2+y 2=4;(2)x =1或33y x =-+ 【解析】(1)AB的中点坐标3(,22-,AB可得AB垂直平分线为60y +=,与x -y =0的交点为(0,0), 圆心坐标为(0,0),半径为2,所以圆C 的方程为x 2+y 2=4; (2)直线的斜率存在时,设直线l 的斜率为k ,又直线l过,∴直线l的方程为(1)y k x-=-,即y kx k=,则圆心(0,0)到直线的距离||kd-=,又圆的半径r=2,截得的弦长为22(||)4k=,解得:3k=-,则直线l的方程为33y x=-+当直线的斜率不存在时,直线方程为x=1,满足题意.直线l的方程:x=1或33y x=-+.【总结升华】此题考查了直线与圆相交的性质,涉及的知识有点到直线的距离公式,垂径定理及勾股定理,当直线与圆相交时,常常利用弦长的一半,圆的半径及弦心距构造直角三角形来解决问题.举一反三:【变式1】直线l被圆C:2220x y y+-=所截得的弦的中点是13(,)22M-,求直线l的方程.【答案】20x y--=【变式2】(2015春东台市校级期中)已知:圆C:22(1)(2)25x y-+-=,直线l:(2m+1)x+(m+1)y-7m-4=0,求:(1)求直线l恒过定点P的坐标;(2)求直线l被圆M截得的弦长最小时的方程.【答案】(1)P(3,1);(2)2x-y-5=0.【解析】(1)直线l:(2m+1)x+(m+1)y-7m-4=0,即为m(2x+y-7)+(x+y-4)=0,令27040x yx y+=+-=⎧⎨⎩-,则31xy=⎧⎨=⎩.故直线l恒过点P(3,1);(2)当圆心C到直线l的距离最大时弦长最短,此时CP⊥l,圆C:22(1)(2)25x y-+-=的圆心C(1,2),由直线CP 的斜率为211132-=-- , 即有直线l 的斜率为2,即2121m m +-=+, 即34m =-, 则直线l 的方程为2x -y -5=0.例5.已知圆的方程:2222(2)20x y ax a y +-+-+=,其中a ≠1,且a ∈R .(1)求证:a ≠1,且a ∈R 时,圆恒过定点;(2)求与圆相切的直线方程;(3)求证圆心总在一条直线上,并求其方程.【思路点拨】本题是含参数的圆的方程,可用分离参数法、待定系数法、配方法解题.【解析】(1)证明:方程2222(2)20x y ax a y +-+-+=变为2242(22)0x y y a x y +-+--=, 令22420220x y y x y ⎧+-+=⎨-=⎩,,解得11x y =⎧⎨=⎩,. ∴ 定点为(1,1).故圆恒过定点(1,1).(2)解:易求圆心坐标为(a ,2-a ),半径为1|a -.设所求切线方程为y kx b =+,即0kx y b -+=,则圆心到直线的距离等于半径,即1|a =-恒成立,即22222(1)4(1)2(1)k a k a k +-+++ 222(1)2(2)(1)(2)k a b k a b =++-++-恒成立. 比较系数可得222222(1)(1)4(1)2(2)(1)2(1)(2)k k k b k k b ⎧+=+⎪-+=-+⎨⎪+=-⎩,,, 解得10k b =⎧⎨=⎩,. 故所求切线方程为y =x .(3)解:易求圆心坐标为(a ,2-a ),又设圆心坐标为(x ,y ),则2x a y a =⎧⎨=-⎩,,消去a ,可得2y x =-,即20x y +-=.故圆心(a ,2-a )总在直线x+y -2=0上.举一反三:【变式1】求过两圆2220x y x y +---=与224480x y x y ++--=的交点和点(3,1)的圆的方程.【解析】设所求圆的方程为22222(448)0x y x y x y x y λ+---+++--=,∵ 点(3,1)在圆上,把(3,1)代入圆的方程求得25λ=-. ∴ 所求圆的方程为223313360x y x y +-++=.【总结升华】注意圆系方程的特殊情形:过直线与圆的交点的圆系方程和过圆与圆的交点的圆的方程.类型三:直线与圆的方程的综合问题例6.已知圆C 的圆心为坐标原点O ,且与直线1:0l x y --=相切.(1)求圆C 的方程;(2)若与直线1l 垂直的直线2l 与圆C 交于不同的两点P 、Q ,且以PQ 为直径的圆过原点,求直线2l 的方程.【思路点拨】(1)根据点到直线的距离确定圆的半径,则圆的方程可得.(2)设出直线2l 的方程,判断出△OPQ 为等腰直角三角形,求得圆心到直线2l 的距离,进而利用点到直线的距离求得C ,则直线方程可得.【答案】(1)224x y +=;(2)x +y +2=0或x +y -2=0.【解析】(1)由已知圆心到直线的距离为半径,求得半径2r ==, ∴ 圆的方程为224x y +=.(2)设直线2l 的方程为x +y +c =0, 由已知△OPQ 为等腰直角三角形,则圆心到直线2l 的距离为1,利用点到直线的距离公式得, 求得c =±2.∴ 直线2l 的方程为x +y +2=0或x +y -2=0.举一反三:【变式1】已知直线l 过点P (2,4),且与圆224x y +=相切,求直线l 的方程.错解:∵ 2OP k =,且OP l ⊥,∴ 12l k =-, ∴ l 的方程为14(2)2y x -=--,即2100x y +-=. 错因分析:本题错误的原因是误把点P 当作切点.求过定点的圆的切线方程,应首先验证定点是否在圆上.正解:当直线斜率不存在时,直线l 的方程为x =2,适合题意.当直线斜率存在时,设直线l 的方程为4(2)y k x -=-,即4020kx y k -+-=,∵ 直线与圆相切,∴|2=,解得34k =, ∴ 直线l 的方程为34100x y -+=.∴ 直线l 的方程为2x =或34100x y -+=.例7.已知m ∈R ,直线2(1)4l mx m y m -+=:和圆2284160C x y x y +-++=:.(1)求直线l 斜率的取值范围;(2)直线l 能否将圆C 分割成弧长的比值为12的两段圆弧?为什么? 【答案】(1)1122⎡⎤-⎢⎥⎣⎦,(2)不能 【解析】(1)直线l 的方程可化为22411m m y x m m =-++, 直线l 的斜率21m k m =+. 因为21||(1)2m m ≤+, 所以2||1||12m k m =≤+,当且仅当||1m =时等号成立. 所以斜率k 的取值范围是1122⎡⎤-⎢⎥⎣⎦,. (2)不能.由(1)知l 的方程为y =k (x -4),其中||k ≤12. 圆C 的圆心为C (4,-2),半径r =2.圆心C 到直线l 的距离d =.由1||2k ≤,得d 1>,即2r d >. 从而,若l 与圆C 相交,则圆C 截直线l 所得的弦所对的圆心角小于23π. 所以l 不能将圆C 分割成弧长的比值为12的两段圆弧. 类型四:空间直角坐标系例8.正方形ABCD ,ABEF 的边长都是1,并且平面ABCD ⊥平面ABEF ,点M 在AC 上移动,点N在BF 上移动.若|CM|=|BN|=a (0a <<).当a 为何值时,|MN|最小?【思路点拨】建立空间直角坐标系,把|MN|写成a 的函数,用函数的思想方法解题.【答案】2【解析】因为平面ABCD ⊥平面ABEF ,且交线为AB ,BE ⊥AB ,所以BE ⊥平面ABCD ,所以BA ,BC ,BE 两两垂直.取B 为坐标原点,过BA ,BE ,BC的直线分别为x 轴,y 轴和z 轴,建立如图所示的空间直角坐标系.因为|BC|=1,|CM|=a ,且点M 在坐标平面xBz 内且在正方形ABCD 的对角线上,所以点,0,122m a a ⎛⎫- ⎪ ⎪⎝⎭.因为点N 在坐标平面xBy 内且在正方形ABEF 的对角线上,|BN|=a ,所以点,,022N a a ⎛⎫⎪ ⎪⎝⎭. 由空间两点间的距离公式,得||MN ==,当2a =(满足0a <<|MN|最小,最小值为2. 【总结升华】由于图形中出现了两两垂直的三条直线,因此采用了建立空间直角坐标系,把几何问题转化为代数问题的方法求解,利用空间两点间的距离公式求得MN 的长度,并利用二次函数求MN 的最小值.举一反三:【变式1】空间直角坐标系中,在平面xoy 内的直线1x y +=上确定一点M ,使它到点N (6,5,1)的距离最小,求出最小值.【思路点拨】注意在平面xoy 内的直线1x y +=上的点的特点.【解析】设点(,1,0)M x x -,则||MN ==当1x =时,min ||MN =M (1,0,0).。
第二讲 解析几何一.直线与圆 1.直线的倾斜角(1)定义:当直线l 与x 轴相交时,取x 轴作为基准,x 轴正向与直线l 向上方向之间所成的角叫做直线l 的倾斜角.当直线l 与x 轴平行或重合时,规定它的倾斜角为0. (2)范围:直线l 倾斜角的取值范围是[0,π). 2.斜率公式(1)直线l 的倾斜角为α≠90°,则斜率k =tan_α.(2)P 1(x 1,y 1),P 2(x 2,y 2)在直线l 上,且x 1≠x 2,则l 的斜率k =y 2-y 1x 2-x 1. 3.直线方程的五种形式4.两条直线平行与垂直的判定 (1)两条直线平行:①对于两条不重合的直线l 1,l 2,若其斜率分别为k 1,k 2,则有l 1∥l 2⇔k 1=k 2. ②当直线l 1,l 2不重合且斜率都不存在时,l 1∥l 2. (2)两条直线垂直:①如果两条直线l 1,l 2的斜率存在,设为k 1,k 2,则有l 1⊥l 2⇔k 1·k 2=-1. ②当其中一条直线的斜率不存在,而另一条直线的斜率为0时,l 1⊥l 2. 5.距离|P 1P 2|=x 2-x 12+y 2-y 126. 线性规划中几个概念:约束条件、可行解、可行域、目标函数、最优解. 7.中心对称问题的2个类型及求解方法 (1)点关于点对称:若点M (x 1,y 1)及N (x ,y )关于P (a ,b )对称,则由中点坐标公式得⎩⎪⎨⎪⎧x =2a -x 1,y =2b -y 1,进而求解.(2)直线关于点的对称,主要求解方法是:①在已知直线上取两点,利用中点坐标公式求出它们关于已知点对称的两点坐标,再由两点式求出直线方程;②求出一个对称点,再利用两对称直线平行,由点斜式得到所求直线方程. 8.轴对称问题的2个类型及求解方法 (1)点关于直线的对称:若两点P 1(x 1,y 1)与P 2(x 2,y 2)关于直线l :Ax +By +C =0对称,由方程组⎩⎪⎨⎪⎧A ⎝ ⎛⎭⎪⎫x 1+x 22+B ⎝ ⎛⎭⎪⎫y 1+y 22+C =0,y 2-y 1x 2-x 1·⎝ ⎛⎭⎪⎫-A B =-1,可得到点P 1关于l 对称的点P 2的坐标(x 2,y 2)(其中B ≠0,x 1≠x 2). (2)直线关于直线的对称:一般转化为点关于直线的对称来解决,有两种情况:一是已知直线与对称轴相交;二是已知直线与对称轴平行. 9. 圆的方程:标准方程222()()x a y b R -+-=;一般式方程22x y Dx ++220(40)Ey F D E F ++=+->; 参数方程{cos (sin x R y R θθθ==为参数);直径式方程121()()()x x x x y y --+-2()0y y -=.注:解决直线与圆的关系问题有“函数方程思想”和“数形结合思想”两种思路,等价转化求解,重要的是发挥“圆的平面几何性质(如半径、半弦长、弦心距构成直角三角形,切线长定理等等)的作用!”二、轨迹方程的求法:(1)直接法: 如果动点满足的几何条件本身就是一些几何量的等量关系,或这些几何条件简单明了且易于表达,我们只需把这种关系“翻译”成含,x y的等式就得到曲线的轨迹方程.(2)定义法: 其动点的轨迹符合某一基本轨迹的定义,则根据定义直接求出动点的轨迹方程.(3)几何法: 若所求的轨迹满足某些几何性质(如线段的垂直平分线,角平分线的性质等),可以用几何法,列出几何式,再代人点的坐标较简单.(4)相关点法(代人法): 有些问题中,其动点满足的条件不便用等式列出,但动点是随着另一动点(称之为相关点)而运动的; 如果相关点所满足的条件是明显的,或是可分析的,这时可以用动点坐标表示相关点坐标,根据相关点所满足的方程即可求得动点的轨迹方程.(5)交轨法: 在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这类问题常常通过解方程组得出交点(含参数)的坐标,再消去参数得出所求轨迹的方程. 常与参数法并用.三、圆锥曲线2.圆锥曲线统一定义:若平面内一个动点M到一个定点F和一条定直线l的距离之比等于一个常数(0)e e>,则动点的轨迹为圆锥曲线.其中定点F为焦点,定直线l为准线,e为离心率.当01e<<时,轨迹为椭圆; 当1e=时,轨迹为抛物线; 当1e>时,轨迹为双曲线.3.在直线与圆锥曲线的位置关系问题中,有“函数方程思想”和“数形结合思想”两种思路,等价转化求解. 特别是:①直线与圆锥曲线相交的必要条件是他们构成的方程组有实数解,当出现一元二次方程时,务必“判别式≥0”,尤其是在应用韦达定理解决问题时,必须先有“判别式≥0”.②直线与抛物线(相交不一定交于两点)、双曲线位置关系的特殊性,应谨慎处理.③在直线与圆锥曲线的位置关系问题中,常与“弦”相关,“平行弦”问题的关键是“斜率”、“中点弦”问题关键是“韦达定理”或“点差法”、“长度(弦长)”问题关键是长度(弦长)公式(||AB=22|||AB x x=-=,12|||AB y y=-=1.设a∈R,则“a=-1”是“直线ax+y-1=0与直线x+ay+5=0平行”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件2.已知点A(2,3),B(-3,-2),若直线kx-y+1-k=0与线段AB相交,则k的取值范围是( ) A.[34,2] B.(-∞,34]∪[2,+∞)C.(-∞,1]∪[2,+∞) D.[1,2]3. 已知P (x ,y )是直线kx +y +4=0(k >0)上一动点,PA ,PB 是圆C :x 2+y 2-2y =0的两条切线,A ,B 是切点,若四边形PACB 的最小面积是2,则k 的值为( )A .3 B.212C .2 2D .2 4.已知圆C 1:(x -2)2+(y -3)2=1,圆C 2:(x -3)2+(y -4)2=9,M ,N 分别是圆C 1,C 2上的动点,P 为x 轴上的动点,则|PM |+|PN |的最小值为( )A .52-4 B.17-1 C .6-2 2 D .175.已知在平面直角坐标系中,点A (22,0),B (0,1)到直线l 的距离分别为1,2,则这样的直线l 共有_______条.A.2B. 3C. 4D. 16.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)与抛物线y 2=8x 有一个共同的焦点F ,两曲线的一个交点为P ,若|PF |=5,则点F 到双曲线的渐近线的距离为( ) A. 3 B .2 C. 6D .37.(2016·课标全国甲)已知F 1,F 2是双曲线E :x 2a 2-y 2b2=1的左,右焦点,点M 在E 上,MF 1与x 轴垂直,sin ∠MF 2F 1=13,则E 的离心率为( )A. 2B.32C. 3 D .28.已知双曲线x 2a 2-y 2b2=1的左、右焦点分别为F 1、F 2,过F 1作圆x 2+y 2=a 2的切线分别交双曲线的左、右两支于点B 、C ,且|BC |=|CF 2|,则双曲线的渐近线方程为( )A .y =±3xB .y =±22xC .y =±(3+1)xD .y =±(3-1)x9.点F 为椭圆x 2a 2+y 2b2=1(a >b >0)的一个焦点,若椭圆上存在点A 使△AOF 为正三角形,那么椭圆的离心率为( ) A.22 B.32 C.2-12D.3-1 10.(2016·浙江)已知椭圆C 1:x 2m 2+y 2=1(m >0)与双曲线C 2:x 2n2-y 2=1(n >0)的焦点重合,e 1,e 2分别为C 1,C 2的离心率,则( ) A .m >n 且e 1e 2>1 B .m >n 且e 1e 2<1 C .m <n 且e 1e 2>1 D .m <n 且e 1e 2<111.设抛物线E : y 2=2px (p >0)的焦点为F ,点M 为抛物线E 上一点,|MF |的最小值为3,若点P 为抛物线E 上任意一点,A (4,1),则|PA |+|PF |的最小值为( )A .4+32B .7C .4+2 3D .10 12.【2014全国1高考理第10题】已知抛物线C :x y 82=的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 得一个焦点,若4=,则=QF ( ) A. 27 B. 3 C. 25 D. 2 二、填空题13.已知两点A (3,2)和B (-1,4)到直线mx +y +3=0的距离相等,则m 的值为 . 14.一动圆与已知圆O 1:(x +3)2+y 2=1外切,与圆O 2:(x -3)2+y 2=81内切,则动圆圆心的轨迹方程为__________.15.设椭圆C :x 24+y 23=1关于原点对称 A 1,A 2两点,若点P 在椭圆C 上,且直线PA 2的斜率的取值范围是[-2,-1],那么直线PA 1斜率的取值范围是________.16.直线3x -4y +4=0与抛物线x 2=4y 和圆x 2+(y -1)2=1从左到右的交点依次为A 、B 、C 、D ,则|AB ||CD |的值为________. 三、简答题17.已知一个椭圆与双曲线1322=-y x 的焦点相同,且过点)1,3(-P . (1)求椭圆的标准方程;(2)求这个椭圆的所有斜率为2的平行弦的中点的轨迹方程.18.在平面直角坐标系xoy 中,已知圆P 在x 轴上截得的线段长为22,在y 轴上截得的线段长为32.(1)求圆心P 的轨迹方程;(2)若P 点到直线x y 的距离为22,求圆P 的方程.19.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,且点(1,32)在该椭圆上.(1)求椭圆C 的方程;(2)过椭圆C 的左焦点F 1的直线l 与椭圆C 相交于A ,B 两点,若△AOB 的面积为627,求圆心在原点O 且与直线l 相切的圆的方程.20.(2016·课标全国乙)设圆x 2+y 2+2x -15=0的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E .(1)证明|EA |+|EB |为定值,并写出点E 的轨迹方程;(2)设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围.21.已知抛物线:y 2=2px (p >0)的焦点F 在双曲线:x 23-y 26=1的右准线上,抛物线与直线l :y =k (x-2)(k >0)交于A ,B 两点,AF ,BF 的延长线与抛物线交于C ,D 两点. (1)求抛物线的方程;(2)若△AFB 的面积等于3,求k 的值; (3)记直线CD 的斜率为k CD ,证明:k CDk为定值,并求出该定值.22. (2015·新课标全国Ⅰ,20)在直角坐标系xOy 中,曲线C :y =x 24与直线l :y =kx +a (a >0)交于M ,N 两点,(1)当k =0时,分别求C 在点M 和N 处的切线方程;(2)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM =∠OPN ?说明理由.立体几何参考答案1-5CCCAB 6. 423 7. 2+22 8. ②③④ 9.1410. (1)证明 因为四边形ABCD 是长方形,所以BC ∥AD ,因为BC ⊄平面PDA ,AD ⊂平面PDA ,所以BC ∥平面PDA .(2)证明 因为四边形ABCD 是长方形,所以BC ⊥CD ,因为平面PDC ⊥平面ABCD ,平面PDC ∩平面ABCD =CD ,BC ⊂平面ABCD ,所以BC ⊥平面PDC ,因为PD ⊂平面PDC ,所以BC ⊥PD . (3)解 如图,取CD 的中点E ,连接AE 和PE .因为PD =PC ,所以PE ⊥CD ,在Rt △PED 中,PE =PD 2-DE 2=42-32=7.因为平面PDC ⊥平面ABCD ,平面PDC ∩平面ABCD =CD ,PE ⊂平面PDC , 所以PE ⊥平面ABCD .由(2)知:BC ⊥平面PDC ,由(1)知:BC ∥AD ,所以AD ⊥平面PDC ,因为PD ⊂平面PDC ,所以AD ⊥PD . 设点C 到平面PDA 的距离为h ,因为V 三棱锥C —PDA =V 三棱锥P —ACD , 所以13S △PDA ·h =13S △ACD ·PE ,即h =S △ACD ·PE S △PDA =12×3×6×712×3×4=372,所以点C 到平面PDA 的距离是372.11. (1)证明 ∵在等腰梯形ABCD 中,AB ∥CD ,AD =DC =a ,∠ABC =60°, ∴△ADC 是等腰三角形,且∠BCD =∠ADC =120°, ∴∠DCA =∠DAC =30°,∴∠ACB =90°,即BC ⊥AC .又∵平面ACEF ⊥平面ABCD ,平面ACEF ∩平面ABCD =AC ,BC ⊂平面ABCD ,∴BC ⊥平面ACEF . (2)解 当FM =33a 时,AM ∥平面BDE .证明如下: 设AC ∩BD =N ,连接EN ,如图.∵∠ACB =90°,∠ABC =60°,BC =a , ∴AC =3a ,AB =2a ,∴CN ∶NA =1∶2, ∵四边形ACEF 是平行四边形,∴EF =AC =3a .∵AM ∥平面BDE ,AM ⊂平面ACEF ,平面ACEF ∩平面BDE =NE , ∴AM ∥NE ,∴四边形ANEM 为平行四边形,∴FM ∶ME =1∶2,∴FM =13FE =13AC =3a 3.∴当FM =33a 时,AM ∥平面BDE .12. (1)证明 ∵点E ,F 分别是边CD ,CE 的中点,∴BD ∥EF .∵菱形ABCD 的对角线互相垂直,∴BD ⊥AC .∴EF ⊥AC .∴EF ⊥AO ,EF ⊥PO , ∵AO ⊂平面POA ,PO ⊂平面POA ,AO ∩PO =O ,∴EF ⊥平面POA ,∴BD ⊥平面POA , 又PA ⊂平面POA ,∴BD ⊥PA .(2)解 设AO ∩BD =H .连接BO ,∵∠DAB =60°,∴△ABD 为等边三角形, ∴BD =4,BH =2,HA =23,HO =PO =3,在Rt △BHO 中,BO =BH 2+HO 2=7, 在△PBO 中,BO 2+PO 2=10=PB 2,∴PO ⊥BO .∵PO ⊥EF ,EF ∩BO =O ,EF ⊂平面BFED ,BO ⊂平面BFED , ∴PO ⊥平面BFED ,梯形BFED 的面积S =12(EF +BD )·HO =33,∴四棱锥P —BFED 的体积V =13S ·PO =13×33×3=3.13. (1)证明 由已知可得AF ⊥DF ,AF ⊥FE ,所以AF ⊥平面EFDC ,又AF ⊂平面ABEF , 故平面ABEF ⊥平面EFDC .(2)解 过点D 作DG ⊥EF ,垂足为G ,由(1)知DG ⊥平面ABEF .以点G 为坐标原点,GF →的方向为x 轴正方向,|GF →|为单位长,建立如图所示的空间直角坐标系Gxyz .由(1)知∠DFE 为二面角D -AF -E 的平面角,故∠DFE =60°,则DF =2,DG =3,可得A (1,4,0),B (-3,4,0),E (-3,0,0),D (0,0,3).由已知,AB ∥EF ,所以AB ∥平面EFDC ,又平面ABCD ∩平面EFDC =CD ,故AB ∥CD ,CD ∥EF , 由BE ∥AF ,可得BE ⊥平面EFDC ,所以∠CEF 为二面角C -BE -F 的平面角,∠CEF =60°,从而可得C (-2,0,3).所以EC →=(1,0,3),EB →=(0,4,0),AC →=(-3,-4,3),AB →=(-4,0,0).设n =(x ,y ,z )是平面BCE 的法向量,则⎩⎪⎨⎪⎧n ·EC →=0,n ·EB →=0,即⎩⎨⎧x +3z =0,4y =0.所以可取n =(3,0,-3).设m 是平面ABCD 的法向量,则⎩⎪⎨⎪⎧m ·AC →=0,m ·AB →=0.同理可取m =(0,3,4),则cos 〈n ,m 〉=n ·m |n ||m |=-21919.故二面角E -BC -A 的余弦值为-21919.14.(1)证明 由已知,平面ABCD ⊥平面ABPE ,且BC ⊥AB ,则BC ⊥平面ABPE ,所以BA ,BP ,BC 两两垂直,故以点B 为原点,BA →,BP →,BC →分别为x 轴,y 轴,z 轴正方向,建立如图所示的空间直角坐标系.则P (0,2,0),D (2,0,1),M ⎝ ⎛⎭⎪⎫1,1,12,E (2,1,0),C (0,0,1),所以EM →=⎝ ⎛⎭⎪⎫-1,0,12. 易知平面ABCD 的一个法向量n =(0,1,0),所以EM →·n =(-1,0,12)(0,1,0)=0,所以EM →⊥n ,又EM ⊄平面ABCD ,所以EM ∥平面ABCD .(2)当点N 与点D 重合时,直线BN 与平面PCD 所成角的正弦值为25.理由如下:PD →=(2,-2,1),CD →=(2,0,0), 设平面PCD 的法向量为n 1=(x 1,y 1,z 1), 由⎩⎪⎨⎪⎧n 1·PD →=0,n 1·CD →=0,得⎩⎪⎨⎪⎧2x 1-2y 1+z 1=0,2x 1=0,取y 1=1,得平面PCD 的一个法向量等于n 1=(0,1,2),假设线段PD 上存在一点N ,使得直线BN 与平面PCD 所成的角α的正弦值等于25.设PN →=λPD → (0≤λ≤1),则PN →=λ(2,-2,1)=(2λ,-2λ,λ),BN →=BP →+PN →=(2λ,2-2λ,λ).所以sin α=|cos 〈BN →,n 1〉|=|BN →·n 1||BN →||n 1|=25×(2λ)2+(2-2λ)2+λ2=25×9λ2-8λ+4=25. 所以9λ2-8λ-1=0,解得λ=1或λ=-19(舍去).因此,线段PD 上存在一点N ,当N 点与D 点重合时,直线BN 与平面PCD 所成角的正弦值等于25.圆锥曲线参考答案1-5.ABDAB 6-10. AACDA 11-12.BB13. m =12或m =-6. 14. x 225+y 216=1 15. 38≤1PA k ≤34. 16. 11617. 解: 椭圆的焦点, )0,2(2F 由定义a PF PF 2||||21=+,所以2,622==b a .椭圆的标准方程为12622=+y x . (2)设平行线的方程为m x y +=2联立直线和椭圆, 得063121322=-++m mx x . 由0>∆,解得2626<<-m .设直线与椭圆交于两点()()2211,,,y x B y x A ,中点),(y x M 则m x x x 136221-=+= 因为点M 在直线m x y +=2上, 联立解得06=-y x )6261362613(<<-m 所以点M 的轨迹方程为06=-y x )6261362613(<<-m . 18. 解:(1)设P ),(y x ,圆P 的半径为r ,由题可得222r y =+,223r x =+,故圆心P 的轨迹方程为122=-x y .(2) 设P ),(00y x ,由已知222||00=-y x , 又点P 在双曲线上12020=-x y . 联立解得⎩⎨⎧-==1000y x 或⎩⎨⎧==1000y x ,对应的3=r 。