动力学蒙特卡罗模拟的方法简介共30页文档
- 格式:ppt
- 大小:3.53 MB
- 文档页数:30
当科学家们使用计算机来试图预测复杂的趋势和事件时, 他们通常应用一类需要长串的随机数的复杂计算。
设计这种用来预测复杂趋势和事件的数字模型越来越依赖于一种称为蒙特卡罗模似的统计手段, 而这种模拟进一步又要取决于可靠的无穷尽的随机数目来源。
蒙特卡罗模拟因摩纳哥著名的赌场而得名。
它能够帮助人们从数学上表述物理、化学、工程、经济学以及环境动力学中一些非常复杂的相互作用。
数学家们称这种表述为“模式”, 而当一种模式足够精确时, 他能产生与实际操作中对同一条件相同的反应。
但蒙特卡罗模拟有一个危险的缺陷: 如果必须输入一个模式中的随机数并不像设想的那样是随机数, 而却构成一些微妙的非随机模式, 那么整个的模拟(及其预测结果)都可能是错的。
最近, 由美国佐治亚大学的费伦博格博士作出的一分报告证明了最普遍用以产生随机数串的计算机程序中有5个在用于一个简单的模拟磁性晶体中原子行为的数学模型时出现错误。
科学家们发现, 出现这些错误的根源在于这5个程序产生的数串其实并不随机, 它们实际上隐藏了一些相互关系和样式, 这一点只是在这种微小的非随机性歪曲了晶体模型的已知特性时才表露出来。
贝尔实验室的里德博士告诫人们记住伟大的诺伊曼的忠告:“任何人如果相信计算机能够产生出真正的随机的数序组都是疯子。
”蒙特卡罗方法(MC)蒙特卡罗(Monte Carlo)方法:蒙特卡罗(Monte Carlo)方法,又称随机抽样或统计试验方法,属于计算数学的一个分支,它是在本世纪四十年代中期为了适应当时原子能事业的发展而发展起来的。
传统的经验方法由于不能逼近真实的物理过程,很难得到满意的结果,而蒙特卡罗方法由于能够真实地模拟实际物理过程,故解决问题与实际非常符合,可以得到很圆满的结果。
这也是我们采用该方法的原因。
蒙特卡罗方法的基本原理及思想如下:当所要求解的问题是某种事件出现的概率,或者是某个随机变量的期望值时,它们可以通过某种“试验”的方法,得到这种事件出现的频率,或者这个随机变数的平均值,并用它们作为问题的解。
第二章蒙特卡洛方法计算机模拟采用的方法来看,它大致可以分为两种类型:(1) 随机模拟方法或统计试验方法,又称蒙特卡洛(MonteCarlo)方法。
它是通过不断产生随机数序列来模拟过程。
自然界中有的过程本身就是随机的过程,物理现象中如粒子的衰变过程、粒子在介质中的输运过程...等。
当然蒙特卡洛方法也可以借助慨率模型来解决不直接具有随机性的确定性问题。
(2) 确定性模拟方法。
它是通过数值求解一个个的粒子运动方程来模拟整个系统的行为。
在统计物理中称为分子动力学(Molecular Dynamics)方法。
关于分子动力学方法我们将在第六章中介绍。
此外, 近年来还发展了神经元网络方法和原胞自动机方法。
从蒙特卡洛模拟的应用来看,该类型的应用可以分为三种形式:(1)直接蒙特卡洛模拟。
它采用随机数序列来模拟复杂随机过程的效应。
(2)蒙特卡洛积分。
这是利用随机数序列计算积分的方法。
积分维数越高,该方法的积分效率就越高。
(3)Metropolis蒙特卡洛模拟。
这种模拟是以所谓“马尔科夫”(Markov)鏈的形式产生系统的分布序列。
该方法可以使我们能够研究经典和量子多粒子系统的问题。
2.1蒙特卡洛方法的基础知识一、 基本思想对求解问题本身就具有概率和统计性的情况,例如中子在介质中的传播,核衰变过程等,我们可以使用直接蒙特卡洛模拟方法。
该方法是按照实际问题所遵循的概率统计规律,用电子计算机进行直接的抽样试验,然后计算其统计参数。
直接蒙特卡洛模拟法最充分体现出蒙特卡洛方法无可比拟的特殊性和优越性,因而在物理学的各种各样问题中得到广泛的应用。
该方法也就是通常所说的“计算机实验”。
蒙特卡洛方法也可以人为地构造出一个合适的概率模型,依照该模型进行大量的统计实验,使它的某些统计参量正好是待求问题的解。
这也就是所谓的间接蒙特卡洛方法。
下面我们举两个最简单的例子来说明间接蒙特卡洛方法应用的内涵。
巴夫昂(Buffon)投针实验。
该试验方案是:在平滑桌面上划一组相距为s 的平行线,向此桌面随意地投掷长度l s =的细针,那末从针与平行线相交的概率就可以得到π的数值。
Monte Carlo 方法法§1 概述Monte Carlo 法不同于确定性数值方法,它是用来解决数学和物理问题的非确定性的(概率统计的或随机的)数值方法。
Monte Carlo 方法(MCM ),也称为统计试验方法,是理论物理学两大主要学科的合并:即随机过程的概率统计理论(用于处理布朗运动或随机游动实验)和位势理论,主要是研究均匀介质的稳定状态。
它是用一系列随机数来近似解决问题的一种方法,是通过寻找一个概率统计的相似体并用实验取样过程来获得该相似体的近似解的处理数学问题的一种手段。
运用该近似方法所获得的问题的解in spirit 更接近于物理实验结果,而不是经典数值计算结果。
普遍认为我们当前所应用的MC 技术,其发展约可追溯至1944年,尽管在早些时候仍有许多未解决的实例。
MCM 的发展归功于核武器早期工作期间Los Alamos (美国国家实验室中子散射研究中心)的一批科学家。
Los Alamos 小组的基础工作刺激了一次巨大的学科文化的迸发,并鼓励了MCM 在各种问题中的应用[2]-[4]。
“Monte Carlo ”的名称取自于Monaco (摩纳哥)内以赌博娱乐而闻名的一座城市。
Monte Carlo 方法的应用有两种途径:仿真和取样。
仿真是指提供实际随机现象的数学上的模仿的方法。
一个典型的例子就是对中子进入反应堆屏障的运动进行仿真,用随机游动来模仿中子的锯齿形路径。
取样是指通过研究少量的随机的子集来演绎大量元素的特性的方法。
例如,)(x f 在b x a <<上的平均值可以通过间歇性随机选取的有限个数的点的平均值来进行估计。
这就是数值积分的Monte Carlo 方法。
MCM 已被成功地用于求解微分方程和积分方程,求解本征值,矩阵转置,以及尤其用于计算多重积分。
任何本质上属随机组员的过程或系统的仿真都需要一种产生或获得随机数的方法。
这种仿真的例子在中子随机碰撞,数值统计,队列模型,战略游戏,以及其它竞赛活动中都会出现。
动力学蒙特卡洛方法(KMC)及相关讨论动态模拟在目前的计算科学中占据着非常重要的位置。
随着计算能力和第一原理算法的发展,复杂的动态参数(扩散势垒、缺陷相互作用能等)均可利用第一原理计算得出。
因此,部分复杂的体系动态变化,如表面形貌演化或辐射损伤中缺陷集团的聚合-分解演变等,已可以较为精确的予以研究。
KMC——动力学蒙特卡洛方法(kinetic Monte Carlo)原理简单,适应性强,因此在很多情况下都是研究人员的首选。
此外,KMC在复杂体系或复杂过程中的算法发展也非常活跃。
本文试图介绍KMC方法的基础理论和若干进展。
KMC方法基本原理在原子模拟领域内,分子动力学(molecular dynamics, MD)具有突出的优势。
它可以非常精确的描述体系演化的轨迹。
一般情况下MD的时间步长在飞秒(s)量级,因此足以追踪原子振动的具体变化。
但是这一优势同时限制了MD在大时间尺度模拟上的应用。
现有的计算条件足以支持MD到10 ns,运用特殊的算法可以达到10 s的尺度。
即便如此,很多动态过程,如表面生长或材料老化等,时间跨度均在s 以上,大大超出了MD的应用范围。
有什么方法可以克服这种局限呢?当体系处于稳定状态时,我们可以将其描述为处于维势能函数面的一个局域极小值(阱底)处。
有限温度下,虽然体系内的原子不停的进行热运动,但是绝大部分时间内原子都是在势能阱底附近振动。
偶然情况下体系会越过不同势阱间的势垒从而完成一次“演化”,这类小概率事件才是决定体系演化的重点。
因此,如果我们将关注点从“原子”升格到“体系”,同时将“原子运动轨迹”粗化为“体系组态跃迁”,那么模拟的时间跨度就将从原子振动的尺度提高到组态跃迁的尺度。
这是因为这种处理方法摈弃了与体系穿越势垒无关的微小振动,而只着眼于体系的组态变化。
因此,虽然不能描绘原子的运动轨迹,但是作为体系演化,其“组态轨迹”仍然是正确的。
此外,因为组态变化的时间间隔很长,体系完成的连续两次演化是独立的,无记忆的,所以这个过程是一种典型的马尔可夫过程(Markov process),即体系从组态到组态,这一过程只与其跃迁速率有关。
一些简单和复杂反应动力学的montecarlo模拟1. 一级反应动力学:一级反应是指反应速率与反应物浓度的一次方成正比的反应。
例如,A → B 是一个一级反应,其速率方程可以表示为:$r = k[A]$其中,$r$ 是反应速率,$k$ 是反应速率常数,$[A]$ 是反应物 A 的浓度。
我们可以使用蒙特卡罗模拟来模拟一级反应的动力学过程。
具体步骤如下: - 初始化反应物 A 的浓度为 [A]0。
- 在每个时间步长 dt 内,生成一个随机数 $r$,满足 $0 \leq r \leq k[A]0$。
- 根据随机数 $r$,计算反应物 A 的浓度变化量:$[A] = [A]0 - r$。
- 更新反应物 A 的浓度:$[A]0 = [A]$。
- 重复步骤 2-4,直到达到指定的模拟时间。
2. 复杂反应动力学:复杂反应动力学包括多步反应、可逆反应、连锁反应等。
例如,A → B → C 是一个两步反应,其中 A 先转化为 B,然后 B 再转化为 C。
我们可以使用蒙特卡罗模拟来模拟复杂反应的动力学过程。
具体步骤如下: - 初始化反应物 A 的浓度为 [A]0。
- 在每个时间步长 dt 内,生成一个随机数 $r$,满足 $0 \leq r \leq k_1[A]0$。
- 根据随机数 $r_1$,计算反应物 A 转化为 B 的转化率:$[B] = r_1[A]0$。
- 更新反应物 A 和 B 的浓度:$[A]0 = [A]0 - r_1[A]0$,$[B] = [B] + r_1[A]0$。
- 生成一个随机数 $r_2$,满足 $0 \leq r_2 \leq k_2[B]$。
- 根据随机数 $r_2$,计算 B 转化为 C 的转化率:$[C] = r_2[B]$。
- 更新反应物 B 和 C 的浓度:$[B] = [B] - r_2[B]$,$[C] = [C] + r_2[B]$。
- 重复步骤 2-6,直到达到指定的模拟时间。
蒙特卡洛模拟法的步骤-概述说明以及解释1.引言1.1 概述蒙特卡洛模拟法是一种基于随机数的数值计算方法,用于解决复杂的数学问题和模拟真实世界的现象。
它在各个领域都有广泛的应用,包括金融、物理学、工程学、统计学等。
蒙特卡洛模拟法的核心思想是通过生成大量的随机样本,并统计这些样本的结果来获取问题的解或现象的模拟。
它模拟随机变量的概率分布,以此推断未知参数的分布或评估某种决策的风险。
蒙特卡洛模拟法的步骤可以简单概括为以下几个关键步骤:1. 确定问题或现象的数学模型:首先,需要将问题或现象抽象为数学模型。
这个模型需要描述问题的输入、输出以及各个元素之间的关系。
2. 生成随机样本:通过使用合适的随机数生成方法,生成满足问题模型要求的随机样本。
样本的生成应充分反映问题模型的特征。
3. 计算模型输出:将生成的随机样本代入问题模型,计算出相应的模型输出。
这个输出可能是一个统计量、概率分布或者其他有意义的指标。
4. 统计分析样本结果:对计算得到的模型输出进行统计分析。
可以计算均值、方差等统计指标,也可以对结果进行可视化分析。
5. 得出结论:根据统计分析的结果,可以得出关于问题的解或现象的模拟。
结论可以包括对问题的影响因素的评估、风险的评估等。
蒙特卡洛模拟法的优势在于它能够处理复杂的数学模型和现象,而不需要依赖于精确的解析方法。
它可以通过增加样本数量来提高模拟结果的精度,因此在计算资源充足的情况下能够得到非常准确的结果。
尽管蒙特卡洛模拟法有着许多优势,但也存在一些限制和挑战。
例如,随机样本的生成可能会消耗大量的计算资源和时间;模型的结果可能受到随机样本选择的影响等。
在未来,随着计算机计算能力的不断提升,蒙特卡洛模拟法将在更多的领域得到应用,并且有望进一步发展和优化,以应对更加复杂的问题和模拟需求。
1.2 文章结构文章结构部分应该介绍整篇文章的组成和内容安排,让读者了解到接下来会讲解哪些内容。
以下是文章结构部分的内容示例:文章结构本文分为引言、正文和结论三个部分。