流体力学基本概念和流体运动方程
- 格式:ppt
- 大小:1.08 MB
- 文档页数:73
流体力学基本概念和方程汇总流体力学是研究流体运动的力学学科,它涉及到液体和气体在外力作用下的行为和性质。
在流体力学中,有一些基本概念和方程被广泛应用于流体的描述和分析。
下面是流体力学的基本概念和方程的汇总。
一、基本概念1.流体:流体是指可流动的物质,包括液体和气体。
2.运动:流体在空间中的运动,通常包括速度、位置和加速度等因素。
3.静止:流体在空间中不运动的状态。
4.流速:流体在单位时间内通过一些截面的体积。
二、基本方程1.静力学方程:描述在静止状态下的流体行为。
在平衡状态下,流体中各点的压强相等。
2.动力学方程:描述流体在运动状态下的行为。
包括质量守恒、动量守恒和能量守恒等方程。
-质量守恒方程:流体在宏观上的质量守恒,即在闭合系统中,质量的净进出量为零。
-动量守恒方程:描述流体动量的变化。
动量是质量与速度的乘积,动量守恒方程中考虑了流体流动的惯性和外力的作用。
-能量守恒方程:描述流体内部能量的变化。
能量守恒方程中考虑了热能和机械能的转换和损失。
3.伯努利方程:描述无黏流体在不受外力作用下沿流线的稳定流动。
它表明在流速增加的地方压强降低,为流体提供了加速的能源。
4.导体方程:描述流体内部流速分布的关系。
它是基于质量守恒、动量守恒和能量守恒方程来推导的。
三、附加方程1.状态方程:描述流体状态的方程,如理想气体状态方程pV=nRT。
2.粘性方程:描述流体黏性特性的方程。
黏性是流体内部分子间相互作用所产生的阻力,影响流体的粘度和黏性流动等现象。
3.边界条件:描述流体流动过程中与边界接触的物体对流体运动的影响。
边界条件包括无滑移条件、不透过条件和等温条件等。
4.各向同性方程:描述流体的等向性特性。
合理假设流体在各个方向上具有相同的特性,简化流体力学计算。
理解流体力学的基本概念流体力学是研究液体和气体运动行为及其相互作用的物理学科。
它是物理学的一个重要分支,对于理解自然界中的许多现象和应用于各个领域都具有重要意义。
一、流体力学的基本概念1. 流体与固体:在物质的状态中,简单的可以分成两类,即固体和流体。
固体具有一定的形状和体积,只有施加外力时才会发生形变。
而流体则没有固定的形状,可以自由流动。
流体又可以分为液体和气体两种。
2. 流动性质:流体具有高度的流动性,可以自由地扩散和传递压力。
流体的流动性质可以通过流速、流量和流态来描述。
流速是指单位时间内流过某个截面的流体体积,流量则是指通过某个横截面的单位时间内的流体体积。
流态主要分为层流和湍流两种状态,层流表示流体呈现规则的流动,湍流则表示流动混乱且不可预测。
3. 粘性:流体的粘性是指流体内部的分子或原子之间相互作用力的表现。
粘性可造成流体产生黏滞阻力,相对于非粘性流体而言,它对于流体的流动有一定的影响。
4. 流体力学的方程:流体力学的基本方程包括连续性方程、动量方程和能量方程。
连续性方程描述了流体质点的体积守恒关系,动量方程描述了流体质点的运动规律,能量方程描述了流体的能量变化。
5. 流体静力学:流体静力学研究的是静止的流体,即研究流体处于平衡状态下的性质和行为。
根据帕斯卡定律,流体中的压力是均匀的,且在任何密闭容器中,承受的压力是相等的。
二、流体力学的应用1. 工程领域:流体力学在工程领域有广泛的应用,例如飞机设计中考虑气动力学,建筑物结构设计中考虑水力学,汽车设计中考虑空气动力学等。
2. 能源领域:流体力学在能源领域也有重要应用,例如水力发电站、风力发电场的设计与优化,原油和天然气的开采与输送等。
3. 生物医学领域:流体力学对于生物体内的流体运动和血液循环等研究也起到至关重要的作用,例如心血管系统的分析和仿真。
4. 环境保护:流体力学也可应用于环境保护领域,例如水污染源的追踪与控制,大气污染模拟与治理等。
第三章流体流动的基本概念和方程引言:流体流动的特点1、流体的变形运动2、描述流体运动的主要物理量流体运动学研究流体的运动规律,如速度、加速度等运动参数的变化规律,而流体动力学则研究流体在外力作用下的运动规律,即流体的运动参数与所受力之间的关系l 3.1研究流体运动的两种方法连续介质模型:我们可以把流体看作为由无数个流体质点所组成的连续介质,并且无间隙地充满它所占据的空间。
描述流体运动的各物理量(如速度、加速度等)均应是空间点的坐标和时间的连续函数流场(flow field ):流体质点运动的全部空间。
流体力学中研究流体的运动有两种不同的方法,一种是拉格朗日(Lagrange )方法,另一种是欧拉(Euler )方法。
一、拉格朗日方法1、分析方法:又称随体法,是从分析流场中个别流体质点着手来研究整个流体运动的。
2、位置表示:这种研究方法,最基本的参数是流体质点的位移,在某一时刻t ,任一流体质点的位置可表为:(velocity )和加速度(acceleration )为:4、密度表示:流体的密度(density )、压强(pressure )和温度(temperature ) 写成a 、b 、t 的函数,即ρ= ρ( a , b , c , t ) , p = p ( a , b , c , t ) , t = t ( a , b , c , t)二、欧拉法1、分析方法:又称局部法,是从分析流场中每一个空间点上的流体质点的运动着手,来研究整个流体的运动的,即研究流体质点在通过某一空间点时流动参数随时间的变化规律。
2、表示:流体质点的流动是空间点坐标(x , y , z )和时间t 的函数,流体质点的三个速度分量表示为:流体质点密度表示:(3——6)式( 3 一 6 )是流体质点的运动轨迹方程,将上式对时间t 求导就可得流体质点沿运动轨的三个速度分量根据矢量分析的点积公式间的变化而产生的,即式( 3 一 8 )中等式右端的第一项tw t v t u ∂∂∂∂∂∂、、 ○2第二部分,迁移加速度( acceleration of transport ):是某一瞬时由于流体质点速度随空间点的变化而引起的,即式( 3 一 8 )中等式右端的后三项z u w y u v x u u ∂∂∂∂∂∂、、等 当地加速度和迁移加速度之和称为总加速度( total acceleration )5、流体质点的加速度的物理意义如图 3 一 1 所示,不可压缩流体流过一个中间有收缩形的变截面管道,截面 2 比截面 1 小,则截面 2 的速度就要比截面 1 的速度大。
流体力学的运动方程流体力学是研究流体的运动以及与周围环境的相互作用的科学领域。
在流体力学中,运动方程是描述流体运动的基本方程。
它们可以基于质量守恒定律、动量守恒定律和能量守恒定律来推导。
1. 质量守恒方程质量守恒方程也称为连续性方程,它描述了流体质量在空间和时间上的守恒。
质量守恒方程的数学表达式如下:∂ρ/∂t + ∇·(ρv) = 0其中,ρ是流体的密度,t是时间,v是流体的速度矢量,∇·是散度操作符。
这个方程说明流体质量在空间和时间上保持不变,即流体在任何给定的区域内的质量是恒定的。
方程右边的项表示流体质量的流入和流出。
2. 动量守恒方程动量守恒方程描述了流体运动的动力学行为,它说明流体受外力作用下的加速度以及在流体中传递的动量。
动量守恒方程的数学表达式如下:∂(ρv)/∂t + ∇·(ρvv) = -∇p + ∇·τ + ρg其中,ρ是流体的密度,t是时间,v是流体的速度矢量,∇·是散度操作符,p是流体的压力,τ是应力张量,g是重力加速度。
这个方程表示了流体受外力作用下的动力学变化。
方程右边的第一项是压力梯度产生的力,第二项是应力产生的力,第三项是重力产生的力。
方程左边的第一项是流体速度的变化率,第二项是流体动量的传递率。
3. 能量守恒方程能量守恒方程描述了流体能量的守恒情况,它说明了流体在运动过程中能量的变化与能量转化。
能量守恒方程的数学表达式如下:∂(ρe)/∂t + ∇·(ρve) = -p∇·v + ∇·(k∇T) + ρv·g + τ:∇v其中,ρ是流体的密度,t是时间,e是单位质量的内能,v是流体的速度矢量,∇·是散度操作符,p是流体的压力,k是热传导系数,T是温度,g是重力加速度,τ是应力张量。
这个方程描述了流体能量随时间的变化。
方程右边的第一项是压力和速度梯度之积产生的功,第二项是热传导产生的能量变化,第三项是重力势能的转化,第四项是应力张量和速度梯度之积产生的功。
流体力学基础概念与定义流体力学是研究流体运动及其相关现象的科学领域,是力学的一个分支学科。
它以流体力学基础概念与定义为研究对象,包括流体、流速、密度、压力、流量等方面。
本文将重点介绍流体力学的基础概念与定义,以帮助读者更好地理解和应用流体力学知识。
第一部分:流体力学概述一、流体的定义流体是指能够流动的物质,包括液体和气体。
与固体相比,流体的分子之间的相互作用较弱,容易发生流动。
二、流体运动的描述流体运动包括径流和湍流,径流是指流体在光滑表面上的顺畅流动,湍流是指流体在粗糙表面上的混沌不规则流动。
三、重要性及应用领域流体力学在众多领域中都具有广泛的应用,例如工程领域的水力学、气动学、船舶设计等,医学领域的血液循环学等。
第二部分:流体力学基本量和概念一、流速流速是指单位时间内流体通过某一横截面积的体积。
它可以用于描述流体运动的快慢。
二、密度密度是指单位体积内流体所含的质量。
它与流体的压力和温度有关,可以用于描述流体的致密程度。
三、压力压力是指单位面积上施加的力。
流体中的压力可以通过定义流体的垂直压强来表示,是流体力学中的重要概念。
四、流量流量是指单位时间内通过某一横截面积的流体体积。
它可以用于描述流体运动的量。
第三部分:流体力学方程一、连续性方程连续性方程描述了流体在流动过程中质量守恒的原理,即在稳态条件下,流体在任何两个截面的流量相等。
二、动量方程动量方程描述了流体运动中的力学变化,它可以通过流体中的压力和流速的关系来表达。
三、能量方程能量方程描述了流体运动中能量守恒的原理,考虑了流体在运动中与外界的能量交换。
第四部分:流体力学的应用实例一、水流的行为通过分析水流的流速、流量和压力变化,可以更好地了解水力学,应用于水坝设计、水源利用等领域。
二、空气动力学空气动力学研究空气在运动中的力学行为,可以应用于飞机设计、汽车流体力学等领域。
三、血液循环学血液循环学研究血液在人体中的流动和压力变化,对于心血管疾病的治疗和预防具有重要意义。
流体力学的基本概念及应用引言流体力学是研究流体运动的一门学科,主要涉及流体的力学性质和运动规律。
在工程领域中,流体力学的应用非常广泛,例如在航空航天、水利工程、能源开发等领域都有重要的应用。
本文将分析流体力学的基本概念和其在实际应用中的具体运用。
流体力学的基本概念流体的基本性质流体是一种无固定形状的物质,其具有流动性和压力性。
在流体力学中,流体主要分为液体和气体两种。
液体具有固定体积和形状,而气体具有自由膨胀和收缩的特点。
流体力学研究的基本对象是流体的运动和变形。
流体的力学性质在流体力学中,流体具有以下的力学性质: - 流体的密度:流体的密度是指单位体积内流体包含的质量。
密度越大,流体越重;密度越小,流体越轻。
- 流体的压力:流体的压力是指单位面积上受到的力的大小。
根据流体静力学原理,流体的压力在同一水平面上是均匀的。
- 流体的黏性:流体的黏性是指流体内部分子之间的相互作用力。
黏性越大,流体的阻力越大。
- 流体的表面张力:流体的表面张力是指流体表面上的分子间相互作用力。
表面张力越大,流体越容易形成凹凸的表面。
流体的运动规律在流体力学中,流体的运动规律由以下的方程描述: - 连续性方程:描述了流体在运动过程中质量守恒的原理。
根据连续性方程,流体在单位时间内通过一个固定横截面的体积是恒定的。
- 动量方程:描述了流体在运动过程中动量守恒的原理。
根据动量方程,流体在受力作用下会产生加速度。
- 能量方程:描述了流体在运动过程中能量守恒的原理。
根据能量方程,流体在运动过程中会产生热量和压力。
流体力学的数学模型为了定量研究流体的力学性质和运动规律,流体力学的数学模型主要包括: -欧拉方程:欧拉方程是基于流体质点的运动建立的数学模型。
欧拉方程描述了流体质点在运动过程中的速度和加速度之间的关系。
- 麦克斯韦方程:麦克斯韦方程是基于流体运动的连续性和动量守恒原理建立的数学模型。
麦克斯韦方程描述了流体运动中的速度和压力分布等变量之间的关系。
第三章流体流动的基本概念与方程质量守恒定律、牛顿第二定律、能量守恒定律等是物质运动的普遍原理,流体作为一类物质也应该遵循这些原理。
这些原理刚体运动的方程式在物理学和理论力学中大家已经学习过,适用于流体运动的方程式将在本章讨论。
本章首先介绍描述流体流动的一些基本概念,然后推导出流体流动的基本方程,即连续方程、动量方程、能量方程等。
这些基本概念与方程在流体运动学中的研究中是十分重要的。
3.1 描述流体流动的方法在流体力学的研究中,描述流体的运动一般有两种方法,即拉格朗日法与欧拉法。
3.1.1 拉格朗日法拉格朗日法着眼于单个流体质点是怎样运动的,以及流体质点的特性是如何随时间变化的。
为了区别流体质点,使用某特定质点在某瞬时的坐标(a, b, c)是比较方便的,坐标(a, b, c)描述的只是某一特定的质点。
在任何瞬时质点的位置可表示为(3.1)对于一给点的坐标(a, b, c),上述方程组代表的是一特定流体质点的轨迹。
此时,质点是速度可以通过将质点是位置矢量对时间求导数得到。
在笛卡尔坐标系中,质点的速度可表示为(3.2)加速度为(3.3)3.1.2欧拉法流体是由无数流体质点组成的连续介质,充满流动流体的空间称为流场。
表示流体速度的一种方法就是着眼于空间的某一点,观察流经该点的流体质点随时间的运动。
这种研究流体质点运动的方法称为欧拉法。
在更一般的意义上,欧拉法可以通过以下方面描述整个流场:(1)在空间某一点流动参数,如速度、压强等,随时间的变化;(2)这些参数相对于空间邻近点的变化。
此时,流动参数是空间点的坐标与时间的函数:(3.4)或(3.4a)(3.5)流体质点随时间将从一点运动到另一点,这意味着流体质点的位置也是时间的函数。
利用多元函数的微分连锁律,可将流体质点在x方向的加速度表示为:(3.6a)同样(3.6b)(3.6c)或写成矢量的形式(3.7)式中称为梯度,或∇运算符。
方程(3.6)右端包含两种不同类型的两项:速度关于位置的变化与速度关于时间的变化。
第二讲流体动力学基础【内容提要】流体运动的基本概念:恒定总流的连续性方程,恒定总流的能量方程【重点、难点】恒定总流的连续性方程和能量方程的运用。
【内容讲解】一、流体运动的基本概念(一)流线和迹线流线是在流场中画出的这样一条曲线:同一瞬时,线上各流体质点的速度矢量都与该曲线相切,这条曲线就称为该瞬时的一条流线。
由它确定该瞬时不同流体质点的流速方向。
流线的特征是在同一瞬时的不同流线一般情况下不能相交;流线也不能转折,只能是光滑的曲线。
迹线是某一流体质点在一段时间内运动的轨迹,迹线上各点的切线表示同一质点在不同时刻的速度方向。
(二)元流和总流在流场中任取一微小封闭曲线,通过曲线上的每一点均可作出一根流线,这些流线形成一管状封闭曲面称流管。
由于速度与流线相切,所以穿过流管侧表面的流体流动是不可能的。
这就是说位于流管中的流体有如被刚性的薄壁所限制。
流管中的液(气)流就是元流,元流的极限是一条流线。
总流是无限多元流的总和。
因此,在分析总流前,先分析元流流动,再将元流积分就可推广到总流。
与元流或总流的流线相垂直的截面称过流断面,用符号A表示其断面面积。
在流线平行时,过流断面为平面,流线不平行则过流断面为曲面。
(三)流量和断面平均流速(四)流动分类1.按流动是否随时间变化将流动分为恒定流和非恒定流。
若所有的运动要素(流速、压强等)均不随时间而改变称为恒定流。
反之,则为非恒定流。
恒定流中流线不随时间改变;流线与迹线相重合。
在本节中,我们只讨论恒定流。
2.按流动是否随空间变化将流动分为均匀流和非均匀流。
流线为平行直线的流动称为均匀流。
如等直径长管中的水流,其任一点的流速的大小和方向沿流线不变。
反之,流线不相平行或不是直线的流动称为非均匀流。
即任一点流速的大小或方向沿流线有变化。
在非均匀流中,当流线接近于平行直线,即各流线的曲率很小,而且流线间的夹角也很小的流动称为渐变流。
否则,就称为急变流。
渐变流和急变流没有明确的界限,往往由工程需要的精度来决定。