一维模糊控制器的设计——水位变化
- 格式:ppt
- 大小:463.50 KB
- 文档页数:16
BI YE SHE JI(20 届)液位模糊控制系统的设计所在学院专业班级自动化学生姓名学号指导教师职称完成日期年月-II-摘要液位控制系统广泛存在于各个领域,是工业过程控制中的典型控制之一,液位控制早期运用PID控制方法实现。
常规的PID控制器具有无静态误差、高可靠行、算法简单等优点。
它的设计核心是整定参数,对于确定性的被控对象通过设定合适的PID控制器的三个参数,可以获得比较理想的控制效果。
但由于实际控制系统具有时变性、多变量、大滞后等特点,且在控制过程中会受到各种干扰因素的影响,要建立精确的数学模型很困难,也就不能达到预期效果。
近些年来,在很多控制过程中模糊控制都取得了成功,模糊控制器具有不依赖被控对象数学模型,适应性强的优点,在许多无法建立精确数学模型的复杂系统中表现出了其优越性,不仅获得了较好的控制效果,而且又能简化系统的设计。
因此,模糊控制在水箱液位控制系统中就成为较好的选择。
本文利用模糊控制理论设计一水箱水位模糊控制器,具体给出了系统设计方案。
首先详细的介绍了模糊控制的基本原理及模糊控制器的相关知识,其次讲述了对系统进行模糊控制的具体设计内容,在此基础上提出对水箱水位进行模糊控制的方案。
最后,充分利用MATLAB的模糊逻辑工具箱和Simulink相结合的功能得到实际液位跟踪给定液位的曲线,仿真结果证实水箱液位模糊控制系统能够获得良好的控制效果。
关键词:液位控制;模糊控制;MATLAB;SimulinkAbstract-II-Liquid level control system exists in each field extensively and is one of the typical control in industrial process control, the liquid level control most used PID control method in the early days. Conventional PID controller has lots of strong points, for instance, it has no static error, its algorithm is simple and it is reliable. The heart of its design is setting parameters; the certainty object can achieve satisfactory control effects through proper setting three parameters of PID. But the practical control systems have the characteristics of time-dependence, nonlinear, large lag and they will be influenced by various kinds of interference factors, so it is difficult to set up accurate mathematics model, then it is not possible to achieve the desired results.In the recent years, fuzzy control has achieved success in many control process. Fuzzy controller has outstanding merits that do not rely on mathematics model of object and whose adapting ability is strong, it shows its superiority in many complex systems which have no accurate mathematics model. It not only wins the better control results, but also can reduce system design. Therefore, control fuzzily become better choice on water tank level control system. This text designs a water tank level fuzzy control system according to the fuzzy control theory and puts forward a design scheme specifically. Firstly, it introduces the fuzzy control theory and the related knowledge of the fuzzy controller. Then, it describes the detailed design things for the system design, and proposes a fuzzy control scheme for the liquid level of the water tank on this basis. At last, the system has also fully utilized the function that the fuzzy logic toolbox of MATLAB combines with SIMULINK, and obtains the curve of the actual level tracking the desired level. Simulation results show that the water tank fuzzy control system can possess good control performance.Keywords: liquid level control; fuzzy control; MATLAB; Simulink-II--IV-目 录摘要..............................................................Ⅰ Abstract..........................................................Ⅱ 目录.. (Ⅲ)第一章 引言 (1)1.1 模糊控制的研究背景和现状 (1)1.1.1 研究背景 (1)1.1.2 研究现状 (1)1.2 课题来源及研究的意义 (2)1.3 本课题的研究内容及任务 (3)第二章 模糊控制系统 (4)2.1 模糊控制的原理 (4)2.2 模糊控制器的组成 (4)2.2.1 模糊化 (5)2.2.2 数据库 (7)2.2.3 规则库 (8)2.2.4 推理机 (8)2.2.5 反模糊化 (8)2.3 模糊控制器的结构 (9)第三章 模糊控制器及模糊控制系统设计 (11)3.1 常规模糊控制器设计 (11)3.2 模糊控制器的输出形式 (13)3.2.1 位置式输出 (13)3.2.2 增量式输出 (14)3.3 模糊控制器参数与系统控制性能 (15)3.3.1 模糊控制器输入、输出变量的论域 (15)3.3.2 模糊控制器输入比例因子e K 及c K 的影响 (16)第四章 液位模糊控制系统的设计及仿真 (19)4.1 确定控制方案 (19)4.2 液位模糊控制系统的设计 (19)4.2.1 确定模糊控制器的结构 (19)4.2.2 定义输入、输出模糊集及其论域 (19)4.2.3 定义隶属函数 (19)4.2.4 建立模糊控制表 (21)4.2.5 模糊推理 (22)4.2.6 反模糊化 (22)4.3 模糊控制系统仿真 (22)4.3.1 系统仿真模型的建立 (22)4.3.2 水箱液位模糊推理系统(FIS)的建立 (22)4.3.3 对Simulink模型控制系统的构建 (25)4.3.4 对系统进行Simulink模型仿真 (27)结论 (31)参考文献 (32)致谢 (33)-IV-第一章引言1.1模糊控制的研究背景和现状1.1.1 研究背景控制技术被广泛地应用在各种工业技术领域里,成为现代高新技术的重要手段之一。
模糊PID 控制水位系统分析摘要: pid调节规律对建立精确数学模型控制系统是非常有效的。
但对于那些具有非线性、时变不确定性的控制对象,应用传统的pid调节器就难以实现有效的控制。
文中提出了利用模糊pid控制技术,对水位进行控制,以使plc对不同模型参数的系统均具有较好的控制性能,实现对系统动静态参数的最优控制。
abstract: pid regulating law is very effective for establishing a precise mathematical model control system. however, for those control objects with non-linearity, time-varying uncertainty, applying the traditional pid regulator would be difficult to achieve effective control. this paper proposed tocontrol the water level by using indistinct pid control technology, so that the plc has better control performance on the system of different model parameters, to achieve optimal control of static and dynamic parameters of the system.关键词: plc;模糊pid;模糊控制key words: plc;indistinct pid;indistinct control0 引言对于pid控制技术,其工作稳定、可靠性高、鲁棒性强,且易于接受。
但是,工业生产过程中经常遇到大时滞、强扰动、被控对象参数未知或是时变的系统,对这一类系统实施常规pid控制往往效果欠佳。
吉林化工学院毕业设计模糊控制在液位控制中的仿真应用设计Simulation Design Based on Fuzzy Controller in Liquid LevelControl学生学号:09510441学生姓名:霍可栋专业班级:自动0904指导教师:吕春兰职称:副教授起止日期:2013.03.04~2013.06.23吉林化工学院Jilin Institute of Chemical Technology摘要本次设计主要论述了应用模糊控制理论控制水箱液位,详尽的介绍模糊控制理论的相关知识,提出水箱液位模糊控制的方案,建立基于水箱水位的数学模型并用MATLAB进行仿真设计。
首先根据双容水箱的系统结构,通过计算得到数学模型的传递函数;然后利用Matlab 工具箱设计模糊控制器,具体包括以下三步:(1)确定模糊控制器的结构;(2)输入输出的模糊化;(3)模糊推理决策算法设计;最后分别用常规PID控制与模糊控制对双容水箱系统仿真。
通过常规PID控制与模糊控制仿真结果的对比,我们能看出模糊控制较传统的PID控制来讲具有响应速度快、适应性较强,即鲁棒性好、超调量小稳定时间较长等优点,显示出很强的抗干扰性能。
关键词:水位控制;模糊控制器;模糊规则; FISAbstractThis paper is primarily on the applied fuzzy control theory control level in the reservoir system, first introduced in detail the fuzzy control theory of knowledge, and Then put forward to realize the control of the water level in the water tank scheme using fuzzy theory,finally simulation design of mathematical model of fuzzy controller with MATLAB based on the water tank water level .Firstly, according to the system structure of double tank, transfer function is obtained through the calculation of mathematical model. Then use the Matlab toolbox to design the fuzzy controller, including the following three steps: (1)Determine the structure of fuzzy controller;(2)Fuzzy input and output; (3)Design of fuzzy reasoning and decision algorithms. Finally, by using the MATLAB fuzzy logic toolbox and SIMULINK combination function,Compare the simulation result of conventional PID control and fuzzy control for dual-tank system.By contrast to conventional PID control and fuzzy control simulation results, we can see the fuzzy control over the conventional PID control with fast response, strong adaptability, robustness, and overshoot advantages of a small stable for a long time, showing the expected good steady performance.Key Words:Level control; Fuzzy controller; Fuzzy rules; FIS目录摘要 (I)Abstract (II)第一章绪论 (1)1.1 模糊控制水箱水位系统概述 (1)1.2 模糊控制理论简介 (1)1.2.1 模糊控制理论的产生、发展及现状 (1)1.2.2 模糊控制理论运用于水箱水位系统控制的意义 (2)1.3 仿真建模工具软件MATLAB/SIMULINK简介 (2)1.4 本文的主要任务及内容安排 (4)第二章模糊理论及模糊控制基础 (6)2.1模糊理论基础 (6)2.1.1 从经典集合到模糊集合的转变 (6)2.1.2 模糊集合的基本概念 (8)2.1.3 模糊集合的基本运算 (11)2.2 模糊控制的基础知识 (13)2.2.1 模糊控制的一般概念 (14)2.2.2 模糊控制的回顾和展望 (15)2.2.3 模糊控制系统的结构 (15)2.3 本章小结 (20)第三章水箱水位模糊控制器的建立 (22)3.1 双容水箱的动态分析与建模 (22)3.2Matlab下模糊控制器的设计 (24)3.2.1 确定模糊控制器的结构 (24)3.2.2 输入输出的模糊化 (25)3.2.3 模糊推理决策算法设计 (26)3.3 本章小结 (29)第四章利用MATLAB对水箱水位系统进行仿真建模 (30)4.1 水箱水位模糊推理系统(FIS)的建立 (30)4.2 模糊规则的建立 (32)4.3 对SIMULINK模型控制系统的构建 (35)4.4Matlab对水箱液位的仿真设计 (36)4.4.1 常规PID对液位模型的仿真 (36)4.4.2 模糊控制对液位模型的仿真 (37)4.4.3 混合式模糊控制对液位的仿真 (38)4.4.4 干扰后常规PID与模糊控制仿真对比 (39)4.5 本章小结 (40)结论 (42)参考文献 (43)致谢 (44)第一章绪论1.1 模糊控制水箱水位系统概述在能源、化工等多个领域中普遍存在着各类液位控制系统,各种控制方式在液位控制系统中也层出不穷,如较常用的浮子式、磁电式和接近开关式。
模糊控制算法实例解析(含代码)
首先来看一个实例,控制进水阀S1和出水阀S2,使水箱水位保持在目标水位O处。
按照日常操作经验,有以下规则:
1、若当前水位高于目标水位,则向外排水,差值越大,排水越快;
2、若当前水位低于目标水位,则向内注水,差值越大,注水越快;
3、若当前水位和目标水位相差很小,则保持排水速度和注水速度相等。
下面来设计一个模糊控制器
1、选择观测量和控制量
一般选择偏差e,即目标水位和当前水位的差值作为观察量,选取阀门开度u为控制量。
2、输入量和输出量的模糊化
将偏差e划分为5个模糊集,负大(NB)、负小(NS)、零(ZO)、正小(PS)、正大(PB),e为负表示当前水位低于目标水位,e 为正表示当前水位高于目标水位。
设定e的取值范围为[-3,3],隶属度函数如下。
偏差e对应的模糊表如下:隶属度
变化等级-3 -2
-1
1
2
3模糊集
PB 0 0 0 0 0 0.5
1PS 0
0 0.5 1 0.5 0ZO
0 0.5 1 0.5 0
0NS
0 0.5 1 0.5 0
0NB
0.5 0 0 0 0 0。
模糊控制——基于matlab的锅炉水位控制系统设计郑州大学物理工程学院测控技术与仪器1班杜佰林20102240103一、应用背景由于锅炉水位具有大滞后、多变量、强耦合等非线性特性,因此采用经典控制理论和现代控制理论的控制方法都不能取得理想的控制效果。
针对锅炉水位的实际运行情况,采用模糊控制策略,设计了锅炉水位的模糊控制系统,并且使用MATLAB时,主要使用模糊逻辑工具箱构建模糊控制器,使用进行SIMULINK动态仿真技术。
二、锅炉水位动态特性锅炉给水控制系统的操作变量是给水流量,主要是使水位维持在给定的范围内。
给水流量增加后,就从原来有饱和水中吸收部分热量,这使得水位下汽包容积有所减少,当水位下汽包的变化过程逐渐平衡时,水位的变化就完全反应了汽包储水量增减。
当给水量做阶跃变化时,汽包水位在起始状态不会立即增加,而要呈现出起始惯性段,水位H与水流量W之间的传递函数类似于一个积分环节和时滞环节的串联。
系统特性可表示为:式子中,s为拉式算子;k为给水流量改变单位流量时水位的变化速度;T为时间常数。
由于所选用的锅炉的供气量是120t/h,依据此项指标,选用液位变送器的量程160mm 流量计的量程为150t/h,水流量与水位的传递函数为:三、模糊控制系统结构模糊控制系统是一种自动控制系统,它以模糊数学、模糊语言形式的知识表示和模糊逻辑的规则推理为基础,是采用计算机控制技术构成的一种具有反馈通道的闭环结构的数字控制系统。
因此,模糊控制系统的组成具有常规计算机控制系统的结构形式,通常由模糊控制器、输入/输出接口、执行机构,被控对象和测量装置五部分组成.从理论上讲,模糊控制器的维数越高,控制越精细.但是维数太高,模糊控制规则变得过于复杂,控制算法的实现相当困难。
因此,目前被广泛采用的均是二维模糊控制器。
本设计的锅炉水位模糊控制系统也采用二维结构。
锅炉水位的模糊变量:水位误差为e,水位误差变化率ec作为模糊控制器的输入变量,模糊控制器的输出变量控制直流伺服电动机SM两端电枢电压的大小和极性。
模糊PID在水位控制系统中的应用为了解决造纸行业对恒定水位的控制问题,设计并应用了水位恒定控制系统中的模糊PID控制器。
详细论述了模糊PID算法的设计过程,通过实验验证了此方法的可行性。
实现了水位控制系统的PID参数的在线调整,达到了对水位的有效控制的目的。
引言水位控制系统在造纸行业得到广泛应用,如果液位控制不好,液位高了或低了,会影响纸张的质量。
本文将模糊控制和PID控制结合起来,实现PID参数的在线调整,可以有效地解决系统的非线性和不确定性,同时随时根据系统的输入与反馈的偏差及偏差率来调节水位,实现水位的恒定。
实验结果表明,这样既能防止超调又能提高响应速度,明显地改善了系统的动态和静态性能,在水的压力及负载变化的情况下也能保持水位的恒定。
1 水位控制系统本系统的控制对象如图1所示:假若液罐I和液罐Ⅱ里面均是水,由液罐I的水通过进水管的水泵将水输送到液罐Ⅱ。
水位的控制过程如下:水位变送器检测到的水位值通过PLC 送到控制器中,该值与控制器的设定值进行比较,如果检测到的值小于设定值,那么控制器将输出调节信号,经过PLC、手操器,最终将信号送至出水管的电动调节阀上,此信号将阀关小。
如果检测到的值大于设定值,那么阀将开大。
如果检测值与设定值正好相等时,这时的出水量应与水泵的进水量相等,保持动态平衡犯。
2 水位的模糊PID控制2.1模糊PID的构成常规的PID控制虽有着原理简单、使用方便等优点但却不具备在线调整参数P、I、D 的功能,使其不能满足系统在不同条件下对PID参数自调整的要求,模糊控制器是一种近年来发展起来的新型控制器,其优点是不要求掌握被控对象的精确数学模型,而根据人工规则组织决策表,且由该表决定控制量的大小。
模糊控制器代替了传统的控制器,它是模糊控制系统的核心部分。
由输入量模糊化、模糊控制规则、模糊决策等几部分组成,如图2所示。
点击图片查看大图图1 水位控制结构框图点击图片查看大图图2 模糊控制系统原理框图2.2模糊-PID控制原理模糊一PID控制器是以误差e和误差变化率ec作为输入,根据不同的偏差和偏差率对PID参数进行在线调整,以满足不同时刻对控制参数的不同要求,而使被控对象有良好的动、静态性能,如图3所示。
模糊PID控制在液位控制中的应用摘要液位控制是工业控制中的一个重要问题,针对液位控制过程中存在大滞后、时变、非线性的特点,为适应复杂系统的控制要求,人们研制了种类繁多的先进的智能控制器,模糊PID控制器便是其中之一。
模糊PID控制结合了PID控制算法和模糊控制方法的优点,可以在线实现PID参数的调整,使控制系统的响应速度快,过渡过程时间大大缩短,超调量减少,振荡次数少,具有较强的鲁棒性和稳定性,在模糊控制中扮演着十分重要的角色。
本文介绍了模糊PID控制在双容水箱的液位控制系统中的应用。
首先建立了液位控制系统数学模型,介绍了PID控制、模糊控制以及模糊PID的基本原理,然后利用MATLAB工具生成仿真曲线。
关键词:液位系统,液位控制,模糊PID控制,仿真The Application on Fuzzy PID Control for WaterLevel Control SystemAbstractWater level control is an important problem in industry control.Aimed at the characteristics of long time lag, nonlinearity and variation with time in the process of level control, a vast range of advanced intelligent controllers are designed to meet the control demand of complex systems,——among which is fuzzy PID bining the advantages of PID control algorithm and fuzzy control,fuzzy PID control could realize online adjusting of PID parameters, so as to quicken the control system response speed, reduce the overshoot, shorten the transitional period, and decrease the oscillating time.The system has strong robustness and stability,and plays a leading role in fuzzy control.This thesis introduces the application of fuzzy PID control in double-tank water level system. It first builds a mathematical model of the water level control system, illustrating the rationale of PID control, fuzzy control and fuzzy PID.Then it uses a tool of MA TLAB to have a simulating experiment of set-point tracking,disturbance rejection, and accommodating to the object's parameter variation. The results show that comparing with the normal PID algorithm, fuzzy PID control algorithm has characteristics such as strong robustness and good dynamic performance. This control method is effective to the doubletank water level system.Keywordstem: Water Level Syter ,Water level control, fuzzy PID control, simulation目录1绪论 (1)1.1课题研究的背景与意义 (1)1.1.1PID控制器的应用与发展 (1)1.1.2模糊控制产生的背景与意义 (2)1.2液位控制系统实验装置及其控制策略 (3)1.2.1水箱液位控制系统简介 (3)1.2.2液位控制系统控制对象及控制策略 (5)2液位控制系统结构及其建模 (6)2.1水箱系统的结构 (6)2.2二阶对象的结构 (7)2.3双容水箱系统的建模 (7)3控制算法研究 (9)3.1PID控制算法 (9)3.1.1模拟PID调节器 (9)3.1.2数字PID控制算法 (11)3.1.3 PID控制器的特点 (13)3.2模糊控制算法 (14)3.2.1模糊控制的产生及发展 (14)3.2.2模糊控制的特点 (15)3.2.3模糊控制的基本概念 (15)3.2.4模糊控制的基本理论 (19)4模糊PID算法的研究与仿真 (24)4.1模糊PID控制 (24)4.1.1模糊PID控制器的基本理论 (24)4.1.1.1输入输出变量模糊化接口设计 (24)4.1.1.2模糊推理算法设计 (25)4.1.1.3模糊PID的清晰化 (28)4.1.2模糊PID控制原理 (28)4.1.3模糊PID控制算法 (30)4.2模糊PID在液位控制中的仿真 (30)5总结 (32)致谢 (33)1 绪论1.1课题研究的背景与意义随着工业生产的飞速发展,人们对控制系统的控制精度、响应速度、系统稳定性与适应能力的要求越来越高。
水箱水位模糊控制控制130337杨康一、问题描述1.使用MATLAB的模糊逻辑工具箱,建立模糊推理系统,进行水位系统的模糊控制。
受控对象为二阶有自平衡能力的对象,h(s)/Q(s)=2/(s^2+1.2s+4),其中h(s)是水位偏差,Q(s)是入口阀门开度偏差。
2.模糊控制规则参考如下:IF(水位低)then(阀门迅速打开)IF(水位高)then(阀门迅速关闭)IF(水位偏差小且变化率为零)then(阀门大小不变)IF(水位偏差小且变化率为负)then(阀门缓慢关闭)IF(水位偏差小且变化率为正)then(阀门缓慢打开)二、解决方案熟悉模糊逻辑工具箱,通过工具箱并按照规则参考设计模糊控制逻辑;在Simulink工具箱中加载模糊控制逻辑完成仿真。
通过与传统PID控制的比较,来分析各自的优缺点,加强对控制算法的认识。
三、算法实现1、模糊控制逻辑实现按照上述模糊控制规则分别对水位(level)、水位变化(levelrate)和阀门动作(output)三个变量进行设计。
(1)在水位变量设计时,范围为[-1 1],其模糊子集为{high,okay,low},其隶属度函数如图所示:图一、水位变量设计(2)在水位速率变化设计时,范围为[-1 1],其模糊子集为{negative,none,positive},其隶属度函数如下图所示:图二、水位变化速率设计(3)在阀门变化设计时,范围为[-7 7],其模糊子集为{close fast, close slow, no change, open slow, open fast},其隶属度函数如下图所示:图三、阀门变化设计(4)按照参考的规则设计模糊推理决策的算法:图四、模糊推理设计(5)对输出模糊量的解模糊:模糊控制器的输出量是一个模糊集合,通过反模糊化方法判决出一个确切的精确量,凡模糊化方法很多,我们这里选取重心法。
如图所示:图五、模糊量解模糊2、Simulink平台搭建将设计好的模糊控制器导入到workspace中,并搭建好仿真控制系统,如图所示:图六、模糊逻辑控制仿真平台其中,参考选为正弦波信号,并将误差值及其变化率信号输入到模糊逻辑控制器中进行处理;对象的传递函数为h(s)/Q(s)=2/(s^2+1.2s+4),四、结果分析与比较当参考信号为正选函数时,传统的PID控制会产生一定的相位差,从而导致控制效果变差,若采用模糊逻辑控制可以大大减少相位差。
模糊控制在matlab中的实例以下是一个模糊控制在MATLAB中的简单实例:假设我们要设计一个模糊控制器来控制一个水箱中水位的高低。
我们可以先建立一个模糊推理系统,其中包含输入和输出变量以及规则。
1. 输入变量:水箱中的水位(假设范围为0到100)。
2. 输出变量:水泵的流量(假设范围为0到10)。
我们需要定义一组模糊规则,例如:如果水箱中的水位为低,则水泵的流量为低。
如果水箱中的水位为中等,则水泵的流量为中等。
如果水箱中的水位为高,则水泵的流量为高。
将这些规则转换成模糊集合,如下所示:输入变量:- 低:[0, 30]- 中等:[20, 50]- 高:[40, 100]输出变量:- 低:[0, 3]- 中等:[2, 6]- 高:[4, 10]接下来,我们可以使用MATLAB的Fuzzy Logic Toolbox来建立模糊推理系统。
以下是一个简单的MATLAB脚本:```% 定义输入变量water_level = fisvar("input", "Water Level", [0 100]); water_level.addmf("input", "low", "trapmf", [0 0 30 40]); water_level.addmf("input", "medium", "trimf", [20 50 80]);water_level.addmf("input", "high", "trapmf", [60 70 100 100]);% 定义输出变量pump_flow = fisvar("output", "Pump Flow", [0 10]);pump_flow.addmf("output", "low", "trapmf", [0 0 3 4]); pump_flow.addmf("output", "medium", "trimf", [2 6 8]); pump_flow.addmf("output", "high", "trapmf", [7 8 10 10]); % 建立模糊推理系统rule1 = "If Water Level is low then Pump Flow is low"; rule2 = "If Water Level is medium then Pump Flow is medium"; rule3 = "If Water Level is high then Pump Flow is high"; rules = char(rule1, rule2, rule3);fis = newfis("Water Tank Fuzzy Controller");fis = addvar(fis, water_level);fis = addvar(fis, pump_flow);fis = addrule(fis, rules);% 模糊控制器输入water_level_value = 70;% 运行模糊推理系统pump_flow_value = evalfis([water_level_value], fis);disp(["Water level: " num2str(water_level_value) "%"]); disp(["Pump flow: " num2str(pump_flow_value)]);```在这个简单的例子中,我们使用了Fuzzy Logic Toolbox来定义输入和输出变量以及规则,并运行模糊推理系统来计算输出值。
资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载水箱液位的模糊控制地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容1、绪论1.1 水箱水位系统概述在能源、化工等多个领域中普遍存在着各类液位控制系统液。
各种控制方式在液位控制系统中也层出不穷,如较常用的浮子式、磁电式和接近开关式。
而随着我国工业自动化程度的提高,规模的扩大,在工程中液位控制的计算机控制得到越来越多的应用。
液位控制系统的检测及计算机控制已成为工业生产自动化的一个重要方面。
经典控制理论和现代控制理论的控制效果很大一部分取决于描述被控过程精确模型的好坏,这使得基于精确数学模型的常规控制器难以取得理想的控制效果。
但是一些熟练的操作工人、领域专家却可以得心应手的进行手工控制。
因此基于知识规则的模糊控控制理论在其应用中就有了理论和现实意义1.2模糊控制的概述人工智能包括推理、学习和联想三大要素,它是采用非数学式子方法,把人们的思维过程模型化,并用计算机来模仿人的智能的学科。
许多科学家认为下一世纪生产力的飞跃寄托于人工智能技术,并认为人工智能的发展必将带来一次新的史无前例的技术革命,第五代计算机的研究充分体现了人类左脑的逻辑推理功能,而人工智能研究的下一步是模仿人类右脑的模糊处理功能。
人工智能将在逻辑推理计算机、模糊计算机和神经网络计算机这三者的基础上,由两个方面来实现,即:一是利用现有的计算机技术模拟人类的智能;二是利用一种全新的技术来实现信息处理的模糊化和网络化。
前者是实现人工智能必需的先决条件;后者是实现人工智能的根本途径。
“模糊控制理论”是由美国学者加利福尼亚大学著名教授L.A.Zadeh于1965年首先提出,至今仅有20余年时间。
它以模糊数学为基础,用语言规则表示方法和先进的计算机技术,由模糊推理进行判决的一种高级控制策略。
基于模糊控制的清水池水位控制系统设计王小娟;刘俊霞;胡兵【摘要】清水池水位控制具有时变、滞后、突发性强等特点,难以准确建立合适的数学模型,为了达到快速维持清水池水位在期望值,避免所有水泵同时启停的目的,提出了一种清水池水位模糊控制的方法,该方法借助于MATLAB软件对控制系统进行了仿真,验证了模糊控制算法在清水池水位控制系统中应用的合理性,并计算出模糊输出控制量表,为确定水泵启停台数提供指导;采用了S7-200PLC控制器和MCGS 组态软件实现了清水池模糊控制系统的程序设计,给出相应的模糊控制PLC程序,并应用于清水池水位控制系统中;结果表明,系统稳定性好,响应速度快,能够较好地满足控制要求;系统将模糊控制理论与实际控制相结合,满足了清水池水位控制的要求,延长了水泵使用寿命,节省电能,为清水池水位自动控制提供借鉴.【期刊名称】《计算机测量与控制》【年(卷),期】2016(024)004【总页数】3页(P105-107)【关键词】清水池;模糊控制;PLC;MCGS;S7-200【作者】王小娟;刘俊霞;胡兵【作者单位】新疆工程学院,乌鲁木齐830011;新疆工程学院,乌鲁木齐830011;新疆工程学院,乌鲁木齐830011【正文语种】中文【中图分类】TP273水厂工艺流程包括混合、沉淀、滤池、消毒和清水池等工艺过程,其中清水池具有储水、保障恒压供水和调节水量等重要作用,清水池水位受用户用水量和水井水泵启停台数的变化而变化,为了维持清水池水位在一定范围内变化,传统的方法采用所有水泵同时启停或者延时启停的方法,这种方法不能根据水位变化及变化趋势来调节水泵启停的台数,容易造成水泵的频繁启停,缩短水泵的使用寿命,对短时大量的应急用水反应能力较差。
受到清水池面积大和用户用水随机性大的影响,对控制系统建立精确的数学模型很难实现,而模糊控制在模糊集理论的基础上发展而来,不需要数学建模,直接根据操作人员或者专家的经验编成模糊规则进行模糊推理,完成模糊控制[1],能够很好地解决这一问题。
东北石油大学华瑞学院毕业设计(论文)任务书题目模糊液位控制器的设计与仿真专业自动化学号姓名主要内容、基本要求、主要参考资料等:主要内容:1、研究模糊控制理论和PID基本理论,并把两者进行结合,得到模糊自整定PID 控制器,并将其以用于洗衣机的模糊液位水位控制中。
2、应用MATLAB仿真软件对洗衣机的液位、进水量、出水量等进行了细致的仿真,得出一系列关于采用模糊液位控制器的全自动洗衣机的仿真数据与图文。
基本要求:1、充分调研,充分利用网络资源查阅文献。
2、完成方案设计。
3、完成功能设计。
4、完成软件系统设计。
5、完成硬件系统设计。
6、按学校有关毕业设计规范完成毕业论文工作。
主要参考资料:1、闻新,周露,李东江.MATLAB模糊逻辑工具箱的分析与应用[M].北京科学出版社,2002:141—207.2、易继锴,侯媛彬.智能控制技术[M].北京工业大学出版社,2003.4.3、诸静.模糊控制原理与应用[M].北京:机械工业出版社,2002.4、YKang,JD Lavers.Transient analysis of electric power system refomulation andtheoretical basis[J].JEEE Tram on Power Systems.2003,11(2):754~760.5、J Mahseredjian,F Alvarado.Creating an electromagnetic transients program inMATLAB[J].IEEE Tram on Power Delivery.2004(12):380~388.完成期限:指导教师签章:专业负责人签章:年月日。
模糊PID控制器的设计与仿真——设计步骤1.确定控制目标和系统模型:首先确定需要控制的目标,并建立系统模型。
系统模型可以是实际系统的数学模型,也可以是通过实验和观测得到的经验模型。
2.设计模糊控制器的输入和输出变量:根据系统模型和控制目标,确定模糊控制器的输入和输出变量。
输入变量通常是系统误差和误差变化率,输出变量是控制信号。
3.设计模糊控制器的模糊集合:为每个输入和输出变量定义模糊集合。
模糊集合可以是三角形、梯形或高斯分布等形状,根据实际情况选择最合适的形状。
4.设计模糊控制器的规则库:根据经验和专业知识,设计模糊控制器的规则库。
规则库是一组条件-结论对,规定了在不同情况下如何调整输出变量。
5. 进行仿真实验:使用仿真软件(如MATLAB/Simulink)或自己编写的代码,将设计好的模糊PID控制器与系统模型进行结合,进行仿真实验。
6.优化和调整模糊控制器参数:根据仿真实验的结果,通过优化和调整模糊PID控制器的参数,使系统的性能达到预期要求。
可以使用试验-分析-调整的方法,不断迭代优化直到满意为止。
7.实际系统应用:在仿真实验中验证通过后,将优化调整好的模糊PID控制器应用到实际系统中,进行实际控制。
过程中需要注意安全性和稳定性,随时进行监控和调整。
总结:模糊PID控制器的设计和仿真步骤包括确定控制目标和系统模型,设计模糊控制器的输入和输出变量,设计模糊控制器的模糊集合,设计模糊控制器的规则库,进行仿真实验,优化和调整模糊控制器参数,最后将优化的模糊PID控制器应用到实际系统中。
在整个过程中,需要根据实际情况不断尝试和调整,使模糊PID控制器能够更好地适应它所控制的系统。