3
4 5 6 7 8
(0,1,0)
(0,1,1) (1,0,0) (1,0,1) (1,1,0) (1,1,1)
-2
3 3 8 1 6
no
no yes 3 yes 8 no no
增加约束条件(0)(Z 3)后实际做了24次运 算,而原问题需要计算 23*4=32次运算(3个变量, 4个约束条件)。
例5-9
求下列问题:
Max Z=3x1- 2x2 + 5x3
s.t. x1+2x2 - x3 2
x1+4x2 + x3 4 x1 + x2
(1)
(2) (3)3来自4x2 + x3 6 xj 0或1
(4) (5)
解: 容易看出(1,0,0)满足约束 条件,对应Z=3,对Max Z来说, 希望Z 3,所以增加约束条件: Z=3x1- 2x2 + 5x3 3 (0)
定界:把满足整数条件各分枝的 最优目标函数值作为上(下)界, 用它来判断分枝是保留还是剪枝。 剪枝:把那些子问题的最优值与 界值比较,凡不优或不能更优的 分枝全剪掉,直到每个分枝都查 清为止。
例5-6 用分枝定界法求解:
Max Z=4x1+3x2 4x1+2x2 9 x1,x2 0 整数
甲 2 4 6
乙 3 2 4
可利用 的资源 总量 100 120
加工时间(小时) 单位利润(百元)
如何安排生产,使利润达到最大。
用单纯形法求得最优解=(20,20)
最优值=200(百元)
问题:该厂提出如下目标 (1)利润达到280百元; (2)钢材不超过100吨,工时不 超过120小时; 如何安排生产?