幂函数 概念整理
- 格式:wps
- 大小:265.88 KB
- 文档页数:2
幂函数与指数函数幂函数与指数函数是高等数学中的重要概念,它们在数学和实际问题中有广泛的应用。
本文将介绍幂函数和指数函数的定义、性质以及它们在不同领域的应用。
一、幂函数的定义与性质幂函数是指形如y = x^a的函数,其中x为自变量,a为常数。
幂函数的定义域为正实数集。
当a>0时,幂函数是严格递增的;当a<0时,幂函数是严格递减的。
特别地,当a=0时,幂函数为常函数。
幂函数的图像可以分为几种不同的情况。
当a>1时,幂函数的图像在原点处是水平右移的U形曲线,右侧逐渐变得陡峭;当0<a<1时,幂函数的图像在原点处是水平右移的倒U形曲线,右侧逐渐变得平缓;当a<0时,幂函数的图像在原点处是水平右移的S形曲线。
二、指数函数的定义与性质指数函数是指形如y = a^x的函数,其中a为底数,x为自变量。
指数函数的定义域为实数集。
当底数a>1时,指数函数是严格递增的;当0<a<1时,指数函数是严格递减的。
特别地,当底数a=1时,指数函数为常函数。
指数函数的图像也有几种不同的情况。
当底数a>1时,指数函数的图像在原点处是水平右移的U形曲线,右侧逐渐变得陡峭;当0<a<1时,指数函数的图像在原点处是水平右移的倒U形曲线,右侧逐渐变得平缓;当底数a<0时,指数函数的图像在原点处是水平右移的S形曲线。
三、幂函数与指数函数的应用1. 科学领域幂函数与指数函数在科学领域的应用非常广泛。
在物理学中,幂函数与指数函数可以描述天体运动、物体的增长规律等。
在化学中,幂函数与指数函数可用于描述化学反应速率、物质的衰变等。
2. 经济领域在经济学中,幂函数与指数函数常用于描述经济增长、人口增长等问题。
其中,指数函数可以用来描述指数增长,而幂函数则可以用来描述多项式增长。
3. 网络领域在网络传输中,幂函数与指数函数可以用于描述网络带宽的分配、传输速度的控制等问题。
指数函数在网络拓扑中也有广泛的应用,如指数递增的网络节点连接数量等。
(1)幂函数的概念一般地,函数y =x α叫做幂函数,其中x 是自变量,α是常数.(1)指数为常数.(2)底数是自变量,自变量的系数为1.(3)幂x α的系数为1.(4)只有1项. (2)幂函数的图象与性质 幂函数y =x ,y =x 2,y =x 3,y =x 12,y =x -1 的图象与性质y =x y =x 2 y =x 3y =x 12y =x -1图象定义域 R R R [0,+∞) (-∞,0)∪(0,+∞) 值域 R [0,+∞) R[0,+∞) (-∞,0)∪(0,+∞)奇偶性奇函数 偶函数 奇函数 非奇非偶函数奇函数单调性在(-∞,+∞)上单调递增在(-∞,0]上单调递减,在(0,+∞)上单调递增在(-∞,+∞)上单调递增在[0,+∞)上单调递增在(-∞,0)上单调递减,在(0,+∞)上单调递减公共点(1,1)1.函数f (x )=(m 2-m -1)x 是幂函数,且当x ∈(0,+∞)时,f (x )是增函数,求f (x )的解析式. ①幂函数在(0,+∞)上都有定义;②当α>0时,幂函数的图象都过点(1,1)和(0,0),且在(0,+∞)上单调递增; ③当α<0时,幂函数的图象都过点(1,1),且在(0,+∞)上单调递减.(4)若幂函数y =x α(α∈R )是偶函数,则α必为偶数.当α是分数时,一般将其先化为根式,再判断. (5)若幂函数y =x α在(0,+∞)上单调递增,则α>0,若在(0,+∞)上单调递减,则α<0.比较幂值大小的方法(1)若指数相同,底数不同,则考虑幂函数;(2)若指数不同,底数相同,则考虑指数函数;(3)若指数与底数都不同,则考虑插入中间数,1、若()()22251,,4,1,1,,12xxy x y y x y x y x y x y a a ⎛⎫====+=-==> ⎪⎝⎭上述函数是幂函数的个数是( )A.0个 B.1个 C.2个 D.3个2.已知幂函数f (x )=k ·x α的图象过点⎝ ⎛⎭⎪⎫12,22,则k +α=( )A.12 B .1C.32 D .23、幂函数224(1)m y m m x -=-+在第一象限内单调递减,求实数m 的取值集合( )A.(),2-∞ B.{}0 C.{}1 D.{}0,14.已知幂函数y =x 3m -9(m ∈N *)的图象关于y 轴对称,且在区间(0,+∞)上是减函数,求f (x )的解析式. 5.若(a +1)12<(3-2a )12,则a 的取值范围是________.6.如图是幂函数y =x m 与y =x n 在第一象限内的图象,则( )A .-1<n <0<m <1 B .n <-1,0<m <1C .-1<n <0,m >1 D .n <-1,m >15.已知幂函数f (x )=(n 2+2n -2)·x 23n n-(n ∈Z )的图象关于y 轴对称,且在(0,+∞)上是减函数,则n 的值为( )A .-3B .1C .2D .1或27.已知a =312,b =log 1312,c =log 213,则( ) A .a >b >c B .b >c >a C .c >b >a D .b >a >ca ≥f (x )恒成立⇔a ≥f (x )max ,a ≤f (x )恒成立⇔a ≤f (x )min .若不分离参数,其关键点是: ①不等式f (x )>A 在区间D 上恒成立,转化为f (x )min >A ,从而求f (x )的最小值. ②不等式f (x )<A 在区间D 上恒成立,转化为f (x )max <A ,从而求f (x )的最大值.8.设a =20.3,b =30.2,c =70.1,则a ,b ,c 的大小关系为( )A .c <a <b B .a <c <b C .a <b <c D .c <b <a 9、已知函数2243()(1)m m f x m m x -+=--是幂函数,且其图像与y 轴没有交点,则实数m =( )A.2或-1B.2C.4D.-1 10、已知点(,9)m 在幂函数()(2)nf x m x=-的图象上,设1312(),(ln ),()32a f mb fc f -===则,,a b c 的大小关系为( )A .a c b <<B .b c a <<C .c a b <<D .b a c <<11、已知幂函数()y f x =的图象过12(,)22,则2log (2)f 的值为( )A .2 B .2- C .12 D .12- 12、设11,,1,2,32a ⎧⎫∈-⎨⎬⎩⎭,则使幂函数a yx =为奇函数且在()0,?+∞上单调递增的a 值的个数为( )A.2 B.3 C.4 D.513、已知函数,,a b c y x y x y x ===的图像如图所示,则,,a b c 的大小关系为( )A.c b a << B. a b c << C. b c a << D. c a b <<14、已知函数1()2x f x -=,则2(2)(log 12)f f +=_________________.15、幂函数()f x 的图像过点()3,3,则()22f x x -的减区间为__________.16、2.已知幂函数f (x )=(n 2+2n -2)·x 2-3n n (n ∈Z)的图象关于y 轴对称,且在(0,+∞)上是减函数,则n 的值为( )A .-3 B .1 C .2 D .1或217、已知221(2)(2)x x a a a a -++>++,则x 的取值范围是________.15、已知幂函数21()*()()m m f x x m N -+=∈的图象经过点(2,2)(1).试求m 的值并写出该幂函数的解析式 (2).试求满足(1)(3)f a f a +>-的实数a 的取值范围18.幂函数f (x )=(m 2-4m +4)·x m2-6m +8在(0,+∞)上为增函数,则m 的值为________.19.若a =⎝ ⎛⎭⎪⎫1223,b =⎝ ⎛⎭⎪⎫1523,c =⎝ ⎛⎭⎪⎫1213,则a ,b ,c 的大小关系是( )20下列函数中,其图象与函数y =ln x 的图象关于直线x =1对称的是( )A .y =ln(1-x ) B .y =ln(2-x )C .y=ln(1+x ) D .y =ln(2+x )。
指数对数幂函数知识点总结8篇第1篇示例:指数对数幂函数是高等数学中重要、常用的一类函数。
它们是解决数学问题和建立数学模型中不可或缺的工具。
在学习指数对数幂函数的知识时,需要掌握函数的定义、性质、图像、导数等方面的内容。
本文将对指数对数幂函数进行系统总结,以便读者更好地理解和掌握这一知识点。
一、指数函数指数函数是形如y = a^x(其中a>0且a≠1)的函数,其中a称为底数,x称为指数。
指数函数的图像通常是一个以底为a的指数曲线,其特点是随着x的增大,y值迅速增大。
指数函数的性质有:1.当底数a>1时,函数y = a^x是递增函数;当0 0时,函数y = a^x是减函数。
2.指数函数的定义域是所有实数,值域是所有大于0的实数。
3.指数函数的图像通常是通过点(0,1) 并且随着x的增大发生指数增长。
4.指数函数满足f(x) * f(y) = f(x+y)。
5.指数函数的反函数是对数函数,即y = loga(x)。
3.对数函数的图像是一个S形曲线,随着x的增大,y值逐渐增大。
5.对数函数的导数为1/x*ln(a)。
三、幂函数幂函数是形如y = x^a(其中a为常数)的函数,其特点是x的次方为a。
幂函数的性质有:3.幂函数的特殊情况之一是y = x^2,即二次函数,其图像是一个开口向上的抛物线。
第2篇示例:指数对数幂函数是数学中常见的一类函数,主要包括指数函数、对数函数和幂函数。
在数学中,这些函数在图像、性质和应用等方面都有着重要的作用。
本文将从定义、性质和应用三个方面对指数对数幂函数进行总结。
一、指数函数指数函数的一般形式为f(x) = a^x,其中a为底数且a>0且a≠1,x为指数。
指数函数的定义域为实数集R,值域为正实数集R+。
指数函数的图像呈指数增长或指数衰减的特点,当底数a>1时为指数增长;当底数0<a<1时为指数衰减。
指数函数的特点包括:单调性、奇偶性、零点、渐近线等。
k < 1幂函数【知识要点】一、幂函数的定义:形如k x y =(k 为常数,∈k Q )的函数叫做幂函数。
二、幂函数在第一象限的图像:【注】掌握幂函数在第一象限的图像,并据此结合定义域和奇偶性即可画出幂函数的图像。
三、幂函数的性质:1、幂函数在第一象限必有图像,在第四象限没有图像;2、幂函数恒过定点)1,1(;当0>k 时,幂函数还过定点)0,0(;3、当0>k 时,幂函数在),0[∞+单调递增;当0<k 时,幂函数在),0(∞+单调递减;反之亦然。
【例题解析】1、画出下列幂函数的大致图像:(1)21x y =; (2)4x y =; (3)31x y =; (4)3-=x y ; (5)32x y =;(6)2-=x y ; (7)21-=x y ; (8)23x y =; (9)3x y =。
2、判断下列命题的真假:(1)幂函数0x y =的图像是一条直线;(×) (2)幂函数的图像与坐标轴至多一个交点;(√) (3)幂函数要么是奇函数,要么是偶函数;(×) (4)若一个幂函数是奇函数,则它必经过原点;(×) (5)若一个幂函数是奇函数,则它在定义域内单调递增;(×)(6)如果一个幂函数的图像不经过)1,1(-,则它一定不是偶函数;(√)(7)如果两个幂函数的图像有三个公共点,那么这两个函数一定相同; (8)任何两个不同的幂函数的图像最多有三个交点。
(√)3、已知函数a x y =(∈a Q )的图像当10<<x 时在直线x y =的上方,当1>x 时在直线x y =的下方,则a 的取值范围是}1|{Q ∈<a a a 且。
4、已知幂函数)237(3251)1(t t x t t y -+⋅+-=(∈t Z )是偶函数,且在区间),0[∞+单调递增,求整数t 的值。
【解】由题意得:113=+-t t ,解得:0=t 或1=t 或1-=t ;当0=t 时,57x y =不是偶函数,所以0=t 不满足题意; 当1=t 时,58x y =是偶函数,所以1=t 满足题意; 当1-=t 时,52x y =是偶函数,所以1-=t 满足题意。
3.3幂函数【知识梳理】知识点一幂函数的概念一般地,函数y =x α叫做幂函数,其中x 是自变量,α是常数.知识点二五个幂函数的图象与性质1.在同一平面直角坐标系内函数(1)y =x ;(2)y =12x ;(3)y =x 2;(4)y =x -1;(5)y =x 3的图象如图.2.五个幂函数的性质y =xy =x 2y =x 312y xy =x-1定义域R R R [0,+∞){x |x ≠0}值域R [0,+∞)R [0,+∞){y |y ≠0}奇偶性奇偶奇非奇非偶奇单调性增在[0,+∞)上增,在(-∞,0]上减增增在(0,+∞)上减,在(-∞,0)上减知识点三一般幂函数的图象特征1.所有的幂函数在(0,+∞)上都有定义,并且图象都过点(1,1).2.当α>0时,幂函数的图象通过原点,并且在区间[0,+∞)上是增函数.特别地,当α>1时,幂函数的图象下凸;当0<α<1时,幂函数的图象上凸.3.当α<0时,幂函数的图象在区间(0,+∞)上是减函数.4.幂指数互为倒数的幂函数在第一象限内的图象关于直线y =x 对称.5.在第一象限作直线x =a (a >1),它同各幂函数图象相交,按交点从下到上的顺序,幂指数按从小到大的顺序排列.【基础自测】1.下列函数中不是幂函数的是________.①y =x 0;②y =x 3;③y =2x ;④y =x -1.2.幂函数a b c d y x y x y x y x ====,,,在第一象限的图像如图所示,则a b c d ,,,的大小关系是()A .a b c d >>>B .d b c a >>>C .d c b a >>>D .b c d a>>>3.已知幂函数f (x )=k ·x αk +α等于()A.12B .1C.32D .24.函数()12f x x -=的定义域为_______,值域为___________.5.已知幂函数()()221m f x m m x +=-+是奇函数,则m =___________.【例题详解】一、幂函数的概念例1(1)给出下列函数:①31y x=;②32y x =-;③42y x x =+;④y =;⑤()21y x =-;⑥0.3x y =,其中是幂函数的有()A .1个B .2个C .3个D .4个(2)已知幂函数()(R,R)f x k x k αα=⋅∈∈的图象经过点(14,2),则k α+=()A .12B .1C .32D .2(3)若幂函数()25ay a a x =--的图像关于y 轴对称,则实数=a ______.跟踪训练1(1)下列函数是幂函数的是()A .22y x =B .1y x -=-C .31y x =D .2xy =(2)(多选)如果幂函数()22233mm y m m x--=-+的图象不过原点,则实数m 的取值为()A .0B .2C .1D .无解(3)已知幂函数()2232(1)mm f x m x -+=-在()0+∞,上单调递增,则()f x 的解析式是_____.二、幂函数的图象及应用例2(1)如图,下列3个幂函数的图象,则其图象对应的函数可能是()A .①1y x -=,②12y x =,③13y x =B .①1y x -=,②13y x =,③12y x =C .①13y x =,②12y x =,③1y x -=D .①13y x =,②1y x -=,③12y x =(2)函数()12f x x -=的大致图象是()A .B .C .D .跟踪训练2(1)图中C 1、C 2、C 3为三个幂函数y x α=在第一象限内的图象,则解析式中指数α的值依次可以是()A .12、3、1-B .1-、3、12C .12、1-、3D .1-、12、3(2)在同一坐标系内,函数(0)a y x a =≠和1y ax a=+的图象可能是()A .B .C .D .三、比较幂值的大小例3(1)1.5-3.1,23.1,2-3.1的大小关系是()A .23.1<2-3.1<1.5-3.1B .1.5-3.1<23.1<2-3.1C .1.5-3.1<2-3.1<23.1D .2-3.1<1.5-3.1<23.1(2)下列比较大小中正确的是()A .0.50.53223⎛⎫⎛⎫< ⎪⎪⎝⎭⎝⎭B .112335--⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭C .3377(2.1)(2.2)--<-D .44331123⎛⎫⎛⎫-< ⎪ ⎪⎝⎭⎝⎭跟踪训练3(1)设1313a ⎛⎫= ⎪⎝⎭,1325b ⎛⎫= ⎪⎝⎭,12c =,则()A .a b c<<B .c a b<<C .b c a<<D .b a c<<(2)已知0.325a ⎛⎫= ⎪⎝⎭,0.313b ⎛⎫= ⎪⎝⎭,0.313c -⎛⎫= ⎪⎝⎭,则a ,b ,c 的大小关系为()A .a c b<<B .a b c<<C .b<c<aD .b a c<<四、幂函数性质的应用例4(1)若幂函数f (x )的图象过点(16,8),则f (x )<f (x 2)的解集为()A .(–∞,0)∪(1,+∞)B .(0,1)C .(–∞,0)D .(1,+∞)(2)已知12()3f x x =,若01a b <<<,则下列各式中正确的是().A .11()()f a f b f f a b ⎛⎫⎛⎫<<<⎪ ⎪⎝⎭⎝⎭B .11()()f f f b f a a b ⎛⎫⎛⎫<<< ⎪ ⎪⎝⎭⎝⎭C .11()()f a f b f f b a ⎛⎫⎛⎫<<<⎪ ⎪⎝⎭⎝⎭D .11()()f f a f f b a b ⎛⎫⎛⎫<<< ⎪ ⎪⎝⎭⎝⎭(3)已知函数355()3f x x =,若当()0,x ∈+∞时,()0a f x f x ⎛+-> ⎝恒成立,则实数a 的取值范围是()A .()0,∞+B .(),2-∞C .()3,+∞D .(),1-∞跟踪训练4(1)对于幂函数45()=f x x ,若0<a <b ,则2+⎛⎫⎪⎝⎭a b f ,()()2f a f b +的大小关系是________.(2)已知幂函数的图象经过点1(,22,那么()f x 的解析式为____________;不等式()2f x ≤的解集为____________.(3)已知幂函数39m y x -=(*m N ∈)的图象关于y 轴对称,且在(0,)+∞上是减函数.(i )求m 的值;(ii )求满足不等式33(1)(32)m m a a +<-的实数a 的取值范围.【课堂巩固】1.下列幂函数中,既是偶函数,又在区间(0,+∞)上单调递减的是()A .y =x-2B .y =x-1C .y =x 2D .y =13x2.函数y =的图象大致为()A .B .C .D .3.(多选)下列关于幂函数说法不正确的是()A .一定是单调函数B .可能是非奇非偶函数C .图像必过点(1,1)D .图像不会位于第三象限4.对幂函数y x α=,填空:(1)当1α>,0x ≥时,图象恒过______和______两点;其中当01x <<时,幂函数图象在y x =图象的______方;当1x >时,幂函数图象在y x =图象的______方.(2)当01α<<,0x ≥时,图象也恒过______和______两点;其中当01x <<时,幂函数图象在y x =图象的______方;当1x >,幂函数图象在y x =图象的______方.(3)当0α<,0x >时,图象恒过点______.5.幂函数()()222mm m f x x =+-在区间()0,∞+上单调递减,则实数m 的值为______.6.已知2.4α>2.5α,则α的取值范围是________.7.已知幂函数()()211m f x m m x +=--是奇函数,则实数m 的值为________.8.已知幂函数1101 ()f x x ⎛⎫= ⎪⎝⎭,若()()182f a f a -<-,则a 的取值范围是__________.9.比较下列各组数的大小:(1)33()(2 2.5)----,;(2)788-,7819⎛⎫ ⎪⎝⎭.10.已知幂函数()()222322N mm y k k xm --*=--⋅∈的图象关于y 轴对称,且在()0,∞+上是减函数.(1)求m 和k 的值;(2)求满足()()132mma a --+<-的a 的取值范围.11.已知幂函数()y f x =的表达式为223()(21)()n n f x m x n -++=-∈Z ,函数()y f x =的图像关于y 轴对称,且满足(3)(5)f f <,求m n +的值.12.已知幂函数f (x )=(m 2-5m +7)x m -1为偶函数.(1)求f (x )的解析式;(2)若g (x )=f (x )-ax -3在[1,3]上不是单调函数,求实数a 的取值范围.【课时作业】1.“当()0,x ∈+∞时,幂函数()22231m m y m m x --=--为减函数”是“1m =-或2”的()条件A .既不充分也不必要B .必要不充分C .充分不必要D .充要2.已知幂函数122()(32)m f x m m x -=-满足(2)(3)f f >,则m =()A .23B .13-C .1D .1-3.函数23y x =的大致图象是()A .B .C .D .4.给出幂函数:①()f x x =;②2()f x x =;③()3f x x =;④()f x =⑤()1f x x=.其中满足条件()()()121221022f x f x x x f x x ++⎛⎫>>> ⎪⎝⎭的函数的个数是()A .1B .2C .3D .45.幂函数y =f (x )的图象经过点(4,2),若0<a <b <1,则下列各式正确的是()A .f (a )<f (b )<f (1b )1f a ⎛⎫< ⎪⎝⎭B .11f f a b ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭<f (b )<f (a )C .f (a )<f (b )11f f a b ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭D .()()11f f a f f b a b ⎛⎫⎛⎫<<< ⎪ ⎪⎝⎭⎝⎭6.在同一直角坐标系中,二次函数2y ax bx =+与幂函数(0)ba y x x =>图像的关系可能为()A .B .C .D .7.已知幂函数a y x =与b y x =的部分图像如图所示,直线2x m =,()01x m m =<<与a y x =,b y x =的图像分别交于A ,B ,C ,D 四点,且AB CD =,则a b m m +=()A .12B .1C D .28.函数()()2231mm f x m m x +-=--是幂函数,对任意()12,0,,x x ∈+∞,且12x x ≠,满足()()12120f x f x x x ->-,若,a b R ∈,且0,0a b ab +><,则()()f a f b +的值()A .恒大于0B .恒小于0C .等于0D .无法判断9.(多选)已知幂函数()()2m f x m x =-,则()A .3m =B .定义域为[)0,∞+C .(1.5)(1.4)m m -<-D 2=10.(多选)下列说法正确的是()A .若幂函数的图象经过点1(,2)8,则解析式为13y x -=B .若函数()45f x x -=,则()f x 在区间(,0)-∞上单调递减C .幂函数y x α=()0α>始终经过点(0,0)和()1,1D .若幂函数()()2223m f x m m x =--图象关于y 轴对称,则()()2253f a a f -+->11.已知幂函数()()2133a f x a a x +=-+为偶函数,则实数a 的值为__________.12.不等式()()2233213x x +<-的解为______.13.已知幂函数()f x 的图象过点⎛ ⎝⎭,且()()212f b f b -<-,则b 的取值范围是______.14.已知幂函数()f x 经过点(9,3),则不等式()211f x x -+<的解集为___________.15.已知幂函数()()35m f x xm N -=∈在(0,+∞)上是减函数,且f(-x)=f(x),求m 的值.16.已知幂函数f (x )=()12-+m m x (m ∈N *)的图象经过点(2.(1)试求m 的值,并写出该幂函数的解析式;(2)试求满足f (1+a )>f (a 的取值范围.17.已知幂函数()()2133m f x m m x +=-+为偶函数.(1)求幂函数()f x 的解析式;(2)若函数()()1f x g x x+=,根据定义证明()g x 在区间()1,+∞上单调递增.18.已知幂函数22+1()=(2+2)m f x m m x -在(0,)+∞上是减函数(1)求()f x 的解析式(2)若f f <,求a 的取值范围.。
幂函数知识点总结5篇在平时的学习中,大家都没少背知识点吧?知识点就是掌握某个问题/知识的学习要点。
想要一份整理好的知识点吗?的我精心为您带来了5篇《幂函数知识点总结》,如果能帮助到亲,我们的一切努力都是值得的。
高一数学幂函数知识点总结篇一1、函数的单调性(局部性质)(1)增函数设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1如果对于区间D上的任意两个自变量的值x1,x2,当x1f(x2),那么就说f(x)在这个区间上是减函数。
区间D称为y=f(x)的单调减区间。
注意:函数的单调性是函数的局部性质;(2)图象的特点如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的。
(3)函数单调区间与单调性的判定方法(A)定义法:a.任取x1,x2D,且x1b.作差f(x1)-f(x2);c.变形(通常是因式分解和配方);d.定号(即判断差f(x1)-f(x2)的正负);e.下结论(指出函数f(x)在给定的区间D上的单调性)。
(B)图象法(从图象上看升降)(C)复合函数的单调性复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律:"同增异减'注意:函数的单调区间只能是其定义域的子区间,不能把单调性相同的区间和在一起写成其并集。
8、函数的奇偶性(整体性质)(1)偶函数一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数。
(2)奇函数一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做奇函数。
(3)具有奇偶性的函数的图象的特征偶函数的图象关于y轴对称;奇函数的图象关于原点对称。
利用定义判断函数奇偶性的步骤:a.首先确定函数的定义域,并判断其是否关于原点对称;b.确定f(-x)与f(x)的关系;c.作出相应结论:若f(-x)=f(x)或f(-x)-f(x)=0,则f(x)是偶函数;若f(-x)=-f(x)或f(-x)+f(x)=0,则f(x)是奇函数。
专题20 幂函数【知识点梳理】 知识点一:幂函数概念 形如()yx R αα=∈的函数,叫做幂函数,其中α为常数.知识点诠释: 幂函数必须是形如()yx R αα=∈的函数,幂函数底数为单一的自变量x ,系数为1,指数为常数.例如:()2423,1,2y x y x y x ==+=-等都不是幂函数.知识点二:幂函数的图象及性质 1.作出下列函数的图象:(1)x y =;(2)21x y =;(3)2x y =;(4)1-=x y ;(5)3x y =.知识点诠释:幂函数随着α的取值不同,它们的定义域、性质和图象也不尽相同,但它们有一些共同的性质: (1)所有的幂函数在(0,+∞)都有定义,并且图象都过点(1,1);(2)0>α时,幂函数的图象通过原点,并且在区间),0[+∞上是增函数.特别地,当1>α时,幂函数的图象下凸;当10<<α时,幂函数的图象上凸;(3)0<α时,幂函数的图象在区间),0(+∞上是减函数.在第一象限内,当x 从右边趋向原点时,图象在y 轴右方无限地逼近y 轴正半轴,当x 趋于∞+时,图象在x 轴上方无限地逼近x 轴正半轴.2.作幂函数图象的步骤如下: (1)先作出第一象限内的图象;(2)若幂函数的定义域为(0)+∞,或[0)+∞,,作图已完成; 若在()0-∞,或(]0-∞,上也有意义,则应先判断函数的奇偶性 如果为偶函数,则根据y 轴对称作出第二象限的图象; 如果为奇函数,则根据原点对称作出第三象限的图象.3.幂函数解析式的确定(1)借助幂函数的定义,设幂函数或确定函数中相应量的值. (2)结合幂函数的性质,分析幂函数中指数的特征.(3)如函数()af x k x =⋅是幂函数,求()f x 的表达式,就应由定义知必有1k =,即()af x x =.4.幂函数值大小的比较(1)比较函数值的大小问题一般是利用函数的单调性,当不便于利用单调性时,可与0和1进行比较.常称为“搭桥”法.(2)比较幂函数值的大小,一般先构造幂函数并明确其单调性,然后由单调性判断值的大小. (3)常用的步骤是:①构造幂函数;②比较底的大小;③由单调性确定函数值的大小.【题型归纳目录】 题型一:幂函数的概念 题型二:幂函数的图象的应用 题型三:幂函数的单调性 题型四:幂函数的奇偶性 题型五:幂值大小的比较 题型六:定点问题 题型七:定义域问题 题型八:值域问题【典型例题】 题型一:幂函数的概念1.(2022·河北沧州·高一期末)下列函数是幂函数的是( ) A .2y x = B .21y x =- C .3y x = D .2x y =2.(2022·吉林·梅河口市第五中学高一期末)下列函数是幂函数的是( ) A .22y x = B .1y x -=- C .31y x = D .2x y =3.(2022·河南新乡·高一期末)已知幂函数()()2311mf x m x =-在()0,∞+上单调递减,则()4f =( )A .2B .16C .12D .1164.(2022·四川·什邡中学高一阶段练习)已知点4)在幂函数()y f x =的图象上,则(2)f =_______.5.(2022·甘肃·甘南藏族自治州合作第一中学高一期末)幂函数()y f x =的图象经过点(14,2),则1()4f =____.6.(2022·新疆·乌市一中高一期末)已知幂函数()f x 的图象过点18,2⎛⎫⎪⎝⎭,则127f ⎛⎫= ⎪⎝⎭________7.(2022·广东·深圳科学高中高一期中)若幂函数()21my m m x =--为偶函数,则m = ________ .8.(2022·甘肃庆阳·高一期末)已知幂函数()f x 的图象过点13,3⎛⎫ ⎪⎝⎭,则此函数的解析式为______.9.(2022·湖北·宜昌市夷陵中学高一期中)已知幂函数()2()1mf x m m x =--的图象关于y 轴对称,则()f m =___________.10.(2022·宁夏·青铜峡市宁朔中学高二期中(文))已知幂函数()()a f x x a R =∈过点A (4,2),则f (14)=___________.11.(2022·湖南·高一课时练习)已知()m x 是幂函数,若()()9271m m =,求()25m 和()8m .题型二:幂函数的图象的应用1.(2021·河北省博野中学高一开学考试)函数2,y x y x ==和1y x=的图象如图所示,有下列四个说法: ①如果21a a a>>,那么01a <<; ②如果21a a a>>,那么1a >; ③如果21a a a>>,那么10a -<<; ④如果21a a a>>时,那么1a <-. 其中正确的是( ).A .①④B .①C .①②D .①③④2.(2020·上海市晋元高级中学高一期中)已知幂函数()y f x =的图象经过点14,2P ⎛⎫⎪⎝⎭,则()y f x =的大致图象是( )A .B .C .D .3.(2022·四川凉山·高一期末)如图,①②③④对应四个幂函数的图像,其中①对应的幂函数是( )A .3y x =B .2y xC .y x =D .58y x =4.(2022·宁夏吴忠区青铜峡市教育局高一开学考试)已知幂函数()f x 的图象过点()9,3,则函数()f x 的图象是( )A .B .C .D .5.(2022·辽宁大连·高一期末)已知幂函数a y x =与b y x =的部分图像如图所示,直线2x m =,()01x m m =<<与a y x =,b y x =的图像分别交于A ,B ,C ,D 四点,且AB CD =,则a b m m +=( )A .12B .1CD .26.(2021·福建·高三学业考试)函数y = )A .B .C .D .7.(2021·全国·高一单元测试)图中C 1、C 2、C 3为三个幂函数y x α=在第一象限内的图象,则解析式中指数α的值依次可以是( )A .12、3、1-B .1-、3、12C .12、1-、3D .1-、12、38.(2021·全国·高一课时练习)若幂函数m y x =与n y x =在第一象限内的图像如图所示,则( )A .101n m -<<<<;B .1n <-,01m <<;C .10n -<<,1m ;D .1n <-,1m .9.(2021·陕西·咸阳市实验中学高一阶段练习)若幂函数,a b y x y x ==在同一坐标系中的部分图象如图所示,则a 、b 的大小关系正确的是( )A .1a b >>B .1b a >>C .0a b >>D .0b a >>(多选题)10.(2021·全国·高一课时练习)下列关于幂函数y x α=的性质说法正确的有( ) A .当1α=-时,函数在其定义域上递减 B .当0α=时,函数图象是一条直线 C .当2α=时,函数是偶函数D .当3α=时,函数的图象与x 轴交点的横坐标为0(多选题)11.(2022·广东·韶关市田家炳中学高一期末)如果幂函数()22233m m y m m x--=-+的图象不过原点,则实数m 的取值为( ) A .0 B .2 C .1 D .无解12.(2022·湖南·高一课时练习)对幂函数y x α=,填空:(1)当1α>,0x ≥时,图象恒过______和______两点;其中当01x <<时,幂函数图象在y x =图象的______方;当1x >时,幂函数图象在y x =图象的______方.(2)当01α<<,0x ≥时,图象也恒过______和______两点;其中当01x <<时,幂函数图象在y x =图象的______方;当1x >,幂函数图象在y x =图象的______方. (3)当0α<,0x >时,图象恒过点______.题型三:幂函数的单调性1.(2022·四川成都·高一开学考试)下列幂函数中,既是奇函数又在区间()0,∞+单调递增的是( )A .()3f x x =B .()2f x x =C .()12f x x =D .()1f x x -=2.(2022·湖南·株洲二中高一阶段练习)已知函数()22my m m x =+幂函数,且在其定义域内为单调函数,则实数m =( ) A .12B .1-C .12或1-D .12-3.(2022·四川凉山·高一期末)已知0a ≠,若()2021202120a b a a b ++++=,则ba=( ) A .-2 B .-1C .12-D .2(多选题)4.(2022·安徽·泾县中学高一阶段练习)已知函数()a f x x 的图象经过点1,33⎛⎫⎪⎝⎭则( )A .()f x 的图象经过点(3,9)B .()f x 的图象关于y 轴对称C .()f x 在(0,)+∞上单调递减D .()f x 在(0,)+∞内的值域为(0,)+∞5.(2022·全国·池州市第一中学高一开学考试)已知幂函数()()213m f x m x -=-在()0,∞+内是单调递减函数,则实数m =______.6.(2022·北京房山·高一期末)试写出函数()f x ,使得()f x 同时()f x 满足以下条件: ①定义域为[)0,∞+;②值域为[)0,∞+;③在定义域内是单调增函数.则函数()f x 的解析式可以是_______(写出一个满足题目条件的解析式).7.(2022·湖南·高一课时练习)已知2.4α>2.5α,则α的取值范围是________.8.(2022·湖南·高一课时练习)已知幂函数()f x x α=的图象经过点3,19⎛⎫ ⎪⎝⎭,求函数的解析式,并作出该函数图象的草图,判断该函数的奇偶性和单调性.9.(2022·湖南·高一课时练习)结合图中的五个函数图象回答问题:(1)哪几个是偶函数,哪几个是奇函数? (2)写出每个函数的定义域、值域; (3)写出每个函数的单调区间; (4)从图中你发现了什么?10.(2022·湖南·高一课时练习)已知幂函数()f x x α=的图象经过点1(8,)2,求函数的解析式,并作出该函数图象的草图,判断该函数的奇偶性和单调性.11.(2022·全国·高一课时练习)求函数2()(2)f x x -=+的定义域,并指出其单调区间.题型四:幂函数的奇偶性1.(2022·北京丰台·高一期末)下列函数中,图象关于坐标原点对称的是( )A .y =B .3y x =C .y x =D .2x y =2.(2022·江西·景德镇一中高一期末)已知幂函数()y f x =的图象过,则下列结论正确的是( )A .()y f x =的定义域为[0,)+∞B .()y f x =在其定义域内为减函数C .()y f x =是偶函数D .()y f x =是奇函数3.(2022·四川雅安·高一期末)已知幂函数()()2133a f x a a x +=-+为偶函数,则实数a 的值为( )A .3B .2C .1D .1或2(多选题)4.(2022·安徽阜阳·高一期中)已知函数()21m my m x -=-为幂函数,则该函数为( )A .奇函数B .偶函数C .区间()0,∞+上的增函数D .区间()0,∞+上的减函数(多选题)5.(2022·广东深圳·高一期末)若函数()2()3104m f x m m x =-+是幂函数,则()f x 一定( )A .是偶函数B .是奇函数C .在(,0)x ∈-∞上单调递减D .在(,0)x ∈-∞上单调递增(多选题)6.(2022·广西钦州·高一期末)若函数()2231()69m m f x m m x-+=-+是幂函数且为奇函数,则m的值为( ) A .1 B .2 C .3 D .47.(2022·湖南·湘潭一中高一期末)已知幂函数()()221m f x m m x +=-+是奇函数,则m =___________.8.(2022·湖南怀化·高一期末)写出一个同时具有下列三个性质的函数:()f x =________.①()()f x x R αα=∈;②()f x 在R 上单调递增;③()()f x f x -=-.9.(2022·河南南阳·高一期末)写出一个同时具有下列三个性质的函数:()f x =___________. ①()f x 为幂函数;②()f x 为偶函数;③()f x 在(),0∞-上单调递减.10.(2022·黑龙江绥化·高一期末)已知幂函数f (x )是奇函数且在(0,)+∞上是减函数,请写出f (x )的一个表达式________.11.(2022·山东·济南一中高一阶段练习)已知幂函数()223m m y xm N --*=∈的图象关于y 轴对称,且在()0,∞+上单调递减,则满足()()33132mma a --+<-的a 的取值范围为________.12.(2022·重庆巫山·高一期末)若幂函数()f x 过点()2,8,则满足不等式()()310f a f a -+-≤的实数a 的取值范围是______13.(2022·上海·同济大学第二附属中学高一期末)已知α∈112,1,,,1,2,322⎧⎫---⎨⎬⎩⎭.若幂函数f (x )=xα为奇函数,且在(0,+∞)上递减,则α=______.14.(2022·北京房山·高一期末)已知幂函数()f x x α=的图象经过点2). (1)求函数()f x 的解析式;(2)若函数()f x 满足条件(2)(1)f a f a ->- ,试求实数a 的取值范围.15.(2022·上海市第三女子中学高一期末)已知幂函数()()24Z m mf x x m -+=∈的图象关于y 轴对称,且在区间()0,+∞上是严格增函数. (1)求m 的值;(2)求满足不等式()()211f a f a -<+的实数a 的取值范围.16.(2022·全国·高一课时练习)判断函数3y x -=与2y x 的奇偶性.题型五:幂值大小的比较1.(2022·湖北·华中师大一附中高一期末)已知幂函数a y x =的图象过点13,9⎛⎫⎪⎝⎭,则下列两函数的大小关系为:()224ax x -+( )(3)a - A .≤ B .≥ C .< D .>2.(2021·山东聊城一中高一期中)设幂函数()f x 的图像经过点12⎛ ⎝,若实数1m ,则()f m 与()1f m -的大小关系是( )A .()()1f m f m ->B .()()1f m f m -<C .()()1f m f m -=D .以上都有可能3.(2021·江苏·高一专题练习)下列比较大小中正确的是( ). A .0.50.532()()23<B .1123()()35---<-C .3377( 2.1)( 2.2)--<-D .443311()()23-<4.(2022·湖南·高一课时练习)已知()()1230m a a -=+≠,13n -=,则m 与n 的大小关系为________.5.(2022·全国·高一)比较下列各组数的大小. (1)11331.5 1.71,,;(2)22433310(,,1.()17---;(3)2235353.()8 3.9 1.8--,,;6.(2021·全国·高一课前预习)求出函数2245()44x x f x x x ++=++的单调区间,并比较()f π-与f ⎛ ⎝⎭的大小.7.(2021·全国·高一课时练习)已知幂函数()0,R my xm m =<∈.(1)求证:该函数在区间()0,∞+上是严格减函数; (2)利用(1)的结论,比较1ca ⎛⎫ ⎪⎝⎭与1cb ⎛⎫⎪⎝⎭()0,0a b c >>>的大小关系.8.(2021·江苏·高一课时练习)比较下列各组数中两个数的大小(0a >): (1)560.31,560.35; (2)13-,13-; (3) 1.5(1)a +, 1.5a ; (4)23(2)a -+,232-.9.(2021·全国·高一课时练习)已知223()m m f x x +-=(m ∈Z )的图像关于y 轴对称且在(0,)+∞上()f x 随着x 值的增大而减小,求()f x 的解析式及其定义域、值域,并比较(2)f -与(1)f -的大小.10.(2021·全国·高一课时练习)比较下列各组中两个数的大小,并说明理由. (1)120.75,120.76;(2)()30.95-,()30.96-.11.(2021·全国·高一专题练习)比较下列各组数的大小:(1)5-23和523.1-;(2)788--和781()9-;(3)232()3--和23()6π--;题型六:定点问题1.(2022·全国·高一)下列命题中正确的是( ) A .幂函数的图象一定过点(0,0)和点(1,1)B .若函数f (x )=xn 是奇函数,则它在定义域上单调递增C .幂函数的图象上的点一定不在第四象限D .幂函数的图象不可能是直线2.(2022·全国·高三专题练习)下列结论正确的是( ) A .幂函数图象一定过原点B .当0α<时,幂函数y x α=是减函数C .当1α>时,幂函数y x α=是增函数D .函数2y x 既是二次函数,也是幂函数3.(2021·全国·高一课时练习)下列命题中正确的是( ) A .当0α=时,函数y x α=的图像是一条直线; B .幂函数的图像都经过()0,0和()1,1点; C .幂函数32y x -=的定义域为[)0,∞+; D .幂函数的图像不可能出现在第四象限.(多选题)4.(2022·福建漳州·高一期末)已知幕函数()f x x α=的图象经过点()4,2,则( )A .函数()f x 是偶函数B .函数()f x 是增函数C .函数()f x 的图象一定经过点()0,1D .函数()f x 的最小值为0(多选题)5.(2022·全国·高三专题练习)下列关于幂函数图象和性质的描述中,正确的是( ) A .幂函数的图象都过(1,1)点B .幂函数的图象都不经过第四象限C .幂函数必定是奇函数或偶函数中的一种D .幂函数必定是增函数或减函数中的一种6.(2022·全国·高三专题练习)如图是幂函数i y x α=(αi >0,i =1,2,3,4,5)在第一象限内的图象,其中α1=3,α2=2,α3=1,412α=,513α=,已知它们具有性质: ①都经过点(0,0)和(1,1); ②在第一象限都是增函数.请你根据图象写出它们在(1,+∞)上的另外一个共同性质:___________.7.(2021·湖南·衡阳市田家炳实验中学高一期中)若幂函数()221()1m f x m m x -=--的图象经过点()0,0,则m =________.8.(2022·北京·高一期末)幂函数()y f x =的图象恒过点_________,若幂函数()y f x =的图象过点()2,4,则此函数的解析式是____________.9.(2022·湖南·高一课时练习)对幂函数y x α=,填空:(1)当1α>,0x ≥时,图象恒过______和______两点;其中当01x <<时,幂函数图象在y x =图象的______方;当1x >时,幂函数图象在y x =图象的______方.(2)当01α<<,0x ≥时,图象也恒过______和______两点;其中当01x <<时,幂函数图象在y x =图象的______方;当1x >,幂函数图象在y x =图象的______方. (3)当0α<,0x >时,图象恒过点______.题型七:定义域问题1.(2022·山西吕梁·高一期末)已知幂函数()f x 的图象过点(,则()f x 的定义域为( ) A .R B .()0,∞+ C .[)0,∞+ D .()(),00,∞-+∞2.(2022·全国·高一课时练习)设α∈11,132⎧⎫-⎨⎬⎩⎭,,,则使函数y =xα的定义域为R 的所有α的值为( )A .1,3B .-1,1C .-1,3D .-1,1,33.(2022·黑龙江绥化·高一期末)函数4()(1)f x x =- ) A .()1,∞+ B .(2,)-+∞C .()()211∞-⋃+,,D .R4.(2021·河北·石家庄市藁城区第一中学高一阶段练习)已知幂函数()y f x =的图象过点⎛ ⎝⎭,则下列关于()f x 说法正确的是( ) A .奇函数B .偶函数C .在(0,)+∞单调递减D .定义域为[0,)+∞5.(2021·陕西·西安市第三中学高一期中)幂函数a y x =中a 的取值集合C 是11,0,,1,2,32⎧⎫-⎨⎬⎩⎭的子集,当幂函数的值域与定义域相同时,集合C 为( ) A .11,0,2⎧⎫-⎨⎬⎩⎭B .1,1,22⎧⎫⎨⎬⎩⎭C .11,,32⎧⎫-⎨⎬⎩⎭D .1,1,2,32⎧⎫⎨⎬⎩⎭(多选题)6.(2022·海南鑫源高级中学高一期末)若函数()f x x α=的定义域为R 且为奇函数,则α可能的值为( ) A .1- B .1 C .2 D .37.(2022·内蒙古·赤峰红旗中学松山分校高一期末)已知幂函数()1*4n y x n N -=∈的定义域为()0,∞+,且单调递减,则n =________.8.(2022·辽宁丹东·高一期末)写出一个具有性质①②③的函数()f x =______. ①()f x 定义域为{}0x x ≠;②()f x 在(),0∞-单调递增;③()()()f ab f a f b =⋅.9.(2022·全国·高一课时练习)求函数2()(2)f x x -=+的定义域,并指出其单调区间.题型八:值域问题1.(2022·安徽·歙县教研室高一期末)已知幂函数()f x x α=的图象过点2⎫⎪⎪⎝⎭,则下列说法中正确的是( )A .()f x 的定义域为RB .()f x 的值域为[)0,∞+C .()f x 为偶函数D .()f x 为减函数2.(2022·广东·广州六中高一期末)幂函数()y f x =的图象过点(,则函数()y x f x =-的值域是( ) A .(),-∞+∞ B .1,4⎛⎫-∞ ⎪⎝⎭C .1,4⎡⎫-+∞⎪⎢⎣⎭D .1,4⎛⎫-+∞ ⎪⎝⎭(多选题)3.(2022·江西省丰城中学高一开学考试)已知函数()f x x α=图像经过点(4,2),则下列命题正确的有( ) A .函数为增函数 B .函数为偶函数 C .若1x >,则()1f x > D .若120x x <<,则()()121222f x f x x x f ++⎛⎫< ⎪⎝⎭4.(2022·北京房山·高一期末)试写出函数()f x ,使得()f x 同时()f x 满足以下条件: ①定义域为[)0,∞+;②值域为[)0,∞+;③在定义域内是单调增函数.则函数()f x 的解析式可以是_______(写出一个满足题目条件的解析式).5.(2021·江苏·高一专题练习)函数213324y x x =++,其中8x ,则其值域为___________.6.(2021·全国·高一课时练习)已知函数2(),x af x x x a=>⎪⎩,若函数()f x 的值域为R ,则实数a 的取值范围为__________.7.(2022·湖南·高一课时练习)已知幂函数()()226Z m m f x x m --=∈在区间()0,∞+上是减函数.(1)求函数()f x 的解析式;(2)讨论函数()f x 的奇偶性和单调性; (3)求函数()f x 的值域.8.(2022·全国·高一课时练习)写出函数53y x =与15y x =的定义域和值域.9.(2021·全国·高一课时练习)(1)使用五点作图法,在图中画出()23f x x =的图象,并注明定义域.(2)求函数()423323h x x x =--的值域.10.(2021·江苏·高一专题练习)已知幂函数()2()1()kf x k k x k R =--∈,且在区间(0,)+∞内函数图象是上升的.(1)求实数k 的值;(2)若存在实数a ,b 使得函数f (x )在区间[a ,b ]上的值域为[a ,b ],求实数a ,b 的值.11.(2019·全国·高一课时练习)已知幂函数()()22421m m f x m x -+=-在()0,∞+上单调递增.(1)求m 的值;(2)当[]1,2x ∈时,记()f x 的值域为集合A ,若集合[]2,4B k k =--,且A B A ⋃=,求实数k 的取值范围.。
幂函数 概念整理
幂函数
1.幂函数的概念:形如k x y =(Q k ∈,k 为常数)的函数,叫做幂函数。
2.幂函数在第一象限的图像:
3.幂函数的性质:
(1)当0>k 时,k x y =在[)+∞,0上为增函数;
当0<k 时,k
x y =在()+∞,0上为减函数;
(2)函数k x y =的图像恒过定点()1,1。
4.幂函数的图像: 对于幂函数k x y =,p
q
k =
的图像: k 的范围
p 、q
的奇偶
函数的奇偶性
图像
1>k
p 为奇数 q 为奇数
奇函数
p 为奇数 q 为偶数
偶函数
p 为偶数 q 为奇数
非奇非偶函数
1=k
奇函数
<k 1
>k 1
=k 1
0<<k 0
=k
1 0< <k p为奇数
q为奇数奇函数
p为奇数
q为偶数偶函数
p为偶数
q为奇数非奇非偶函数
=
k偶函数
0 < k p为奇数
q为奇数奇函数
p为奇数
q为偶数偶函数
p为偶数
q为奇数非奇非偶函数。