北师大版八年级数学下册第五章分式单元复习试题1(附答案).doc
- 格式:doc
- 大小:1.06 MB
- 文档页数:11
北师大版八年级数学下册第五章《分式与分式方程》测试卷(含答案)一、选择题(共10小题,3*10=30)1. 在式子1a ,2xy π,3ab 2c 4,56+x ,x 7+y 8,9x +10y ,x 2x 中,分式的个数是( ) A .5 B .4 C .3 D .22. 下列式子:①x 3y 2·y 4x 2;②b -a ·2a 2bc ;③8xy÷4x y ;④x +y x 2-xy ÷1x -y,计算结果是分式的是( ) A .①② B .③④C .①③D .②④3. 已知2x x 2-2x =2x -2,则x 的取值范围是( ) A .x >0 B .x≠0且x≠2C .x <0D .x≠24. 若3-2x x -1÷( )=1x -1,则( )中式子为( ) A .-3 B .3-2xC .2x -3 D.13-2x5. 若将分式a +b 4a 2中的a 与b 的值都扩大为原来的2倍,则这个分式的值将( ) A .扩大为原来的2倍 B .分式的值不变C .缩小为原来的12D .缩小为原来的146. 分式3x -2(x -1)2,2x -3(1-x )3,4x -1的最简公分母是( ) A .(x -1)2 B .(x -1)3C .x -1D .(x -1)2(1-x)37. 将分式方程1x =2x -2去分母后得到的整式方程,正确的是( ) A .x -2=2x B .x 2-2x =2xC.x -2=x D .x =2x -48. 分式方程1x -1-2x +1=4x 2-1的解是( ) A .x =0 B .x =-1 C .x =±1 D .无解9. 解关于x 的方程x x -1-k x 2-1=x x +1不会产生增根,则k 的值( ) A .为2 B .为1 C .不为±2 D .无法确定10. 新能源汽车环保节能,越来越受到消费者的喜爱.各种品牌相继投放市场.一汽贸公司经销某品牌新能源汽车.去年销售总额为5000万元,今年1~5月份,每辆车的销售价格比去年降低1万元.销售数量与去年一整年的相同.销售总额比去年一整年的少20%,今年1~5月份每辆车的销售价格是多少万元?设今年1~5月份每辆车的销售价格为x 万元.根据题意,列方程正确的是( ) A.5000x +1=5000(1-20%)x B.5000x +1=5000(1+20%)x C.5000x -1=5000(1-20%)x D.5000x -1=5000(1+20%)x 二.填空题(共8小题,3*8=24)11. 计算:xy 2xy=__ __. 12. 当a =12时,代数式2a 2-2a -1-2的值为________. 13. 小松鼠为过冬储存m 天的坚果a 千克,要使储存的坚果能多吃n 天,则小松鼠每天应节约坚果_____________千克.14. 化简:x 2+4x +4x 2-4-x x -2=___________. 15. 若a 2+5ab -b 2=0,则b a -a b的值为___________. 16. 某单位全体员工在植树节义务植树240棵.原计划每小时植树m 棵,实际每小时植树的棵数比原计划每小时植树的棵数多10棵,那么实际比原计划提前了____________小时完成任务.(用含m 的代数式表示)17. 若关于x 的方程x -1x -5=m 10-2x无解,则m =________. 18. 已知关于x 的分式方程x -3x -2=2-m 2-x会产生增根,则m =____________. 三.解答题(7小题,共66分)19.(8分) 计算:(1)3a 2b·512ab 2÷(-5a 4b);(2)b a 2-b 2÷(a a -b -1);20.(8分) 先化简,再求值:(a -2ab -b 2a )÷a 2-b 2a,其中a =1+2,b =1- 2.21.(8分) 在数学课上,老师对同学们说:“你们任意说出一个x 的值(x≠-1,1,-2),我立刻就知道式子(1+1x +1)÷x +2x 2-1的结果.”请你说出其中的道理.22.(10分) 老师在黑板上书写了一个代数式的正确演算结果,随后用手掌捂住了一部分,形式如下: ⎝ ⎛⎭⎪⎫-x 2-1x 2-2x +1÷x x +1=x +1x -1. (1)求所捂部分化简后的结果;(2)原代数式的值能等于-1吗?为什么?23.(10分) 化简x 2-4x +4x 2-2x÷(x -4x ),然后从-5<x<5的范围内选取一个合适的整数作为x 的值代入求值.24.(10分) 已知:2+23=22×23,3+38=32×38,4+415=42×415…若10+a b =102×a b(a ,b 均为正整数). (1)探究a ,b 的值;(2)求分式a 2+4ab +4b 2a 2+2ab的值.25.(12分) 为配合“一带一路”国家倡议,某铁路货运集装箱物流园区正式启动了2期扩建工程.一项地基基础加固处理工程由A 、B 两个工程公司承担建设,已知A 工程公司单独建设完成此项工程需要180天,A 工程公司单独施工45天后,B 工程公司参与合作,两工程公司又共同施工54天后完成了此项工程.(1)求B 工程公司单独建设完成此项工程需要多少天?(2)由于受工程建设工期的限制,物流园区管委会决定将此项工程划分成两部分,要求两工程公司同时开工,A 工程公司建设其中一部分用了m 天完成,B 工程公司建设另一部分用了n 天完成,其中m ,n 均为正整数,且m <46,n <92,求A 、B 两个工程公司各施工建设了多少天?参考答案1-5BDBBC 6-10BADCA11.y 12.1 13.an m (m +n ) 14.2x -2 15.5 16.2400m 2+10m17. -8 18.-1 19.解:(1)原式=-1(2)原式=1a +b20.解:原式=a -b a +b . 当a =1+2,b =1-2时,原式=222= 2. 21.解:∵原式=x +1+1x +1÷x +2(x +1)(x -1)=x +2x +1·(x +1)(x -1)x +2=x -1,∴只要学生说出x 的值,老师就可以说出答案22.解:(1)设所捂部分为A ,则A =x +1x -1·x x +1+x 2-1x 2-2x +1=x x -1+x +1x -1=x +x +1x -1=2x +1x -1. (2)若原代数式的值为-1,则x +1x -1=-1,即x +1=-x +1,解得x =0,当x =0时,除式x x +1=0,∴原代数式的值不能等于-1.23.解:原式=1x +2,∵-5<x<5且x 为整数,∴若使分式有意义,x =-1或x =1. 当x =1时,原式=13;当x =-1时,原式=1 24.解:(1)a =10,b =102-1=99(2)a 2+4ab +4b 2a 2+2ab =a +2b a ,将a ,b 的值代入得原式=104525. 解:(1)设B 工程公司单独完成需要x 天,根据题意得45×1180+54(1180+1x)=1,解得x =120,经检验,x =120是分式方程的解,且符合题意,答:B 工程公司单独完成需要120天 (2)根据题意得m ×1180+n ×1120=1,整理得n =120-23m ,∵m <46,n <92,∴120-23m <92,解得42<m <46,∵m 为正整数,∴m =43,44,45,又∵120-23m 为正整数,∴m =45,n =90.答:A ,B 两个工程公司分别施工建设了45天和90天。
第五章:《分式方程》单元练习卷一.选择题1.计算的结果为()A.1 B.2+b C.D.2.关于x的方程=1的解是正数,则a的取值范围是()A.a>﹣2 B.a>﹣2,且a≠﹣1C.a>﹣1 D.a>﹣1,且a≠﹣23.下列分式方程去分母后所得结果正确的是()A.去分母得,2(x+1)=(x﹣1)(x+2)﹣1B.去分母得,x+7=3x﹣7C.去分母得,(x﹣3)2﹣x+3=x(x+3)D.去分母得,3(x﹣2)=x+44.已知分式(a,b为常数)满足下列表格中的信息:则下列结论中错误的是()x的取值﹣1 1 c d分式的值无意义 1 0 ﹣1 A.a=1 B.b=8 C.c=D.d=5.如果a2+a﹣1=0,那么代数式(1﹣)÷的值是()A.3 B.1 C.﹣1 D.﹣36.如果分式的值为0,那么x的值为()A.﹣3 B.3 C.﹣3或3 D.3或07.温州市为美化城市环境,计划种植树木30万棵,由于志愿者的加入,实际每天植树比原计划多0.2万棵,结果提前5天完成任务,设原计划每天植树x万棵,根据题意可列方程()A.=5 B.C.=5 D.8.已知关于x的分式方程的解为正数,则k的取值范围是()A.k<﹣B.k<﹣且k≠﹣C.k>﹣D.k<且k≠﹣9.如图,数轴上有两点A,B,表示的数分别是m,n.已知m,n是两个连续的整数,且m+n =﹣1,则分式÷的值为()A.﹣1 B.1 C.3 D.﹣310.若关于x的不等式组所有整数解的和为2,且关于y的分式方程+=1的解是正数,则符合条件的所有整数k的和是()A.10 B.13 C.15 D.17二.填空题11.如果代数式在实数范围内有意义,那么实数x的取值范围是.12.如果a2+a=1,那么代数式﹣的值是.13.若关于x的方程=的解为负数,则m的取值范围是.14.若关于x的分式方程=+3无解,那么a的值为.15.斑马线前“车让人”,不仅体现着一座城市对生命的尊重,也直接反映着城市的文明程度.如图,某路口的斑马线路段A﹣B﹣C横穿双向行驶车道,其中AB=BC=12米,在绿灯亮时,小敏共用22秒通过AC,其中通过BC的速度是通过AB速度的1.2倍,求小敏通过AB时的速度.设小敏通过AB时的速度是x米/秒,根据题意列方程为.16.现代互联网技术的广泛应用,催生了快递行业的高速发展.据调查,某家小型快递公司的分拣工小李和小江,在分拣同一类物件时,小李分拣120个物件所用的时间与小江分拣90个物件所用的时间相同,已知小李每小时比小江多分拣20个物件.若设小江每小时分拣x个物件,则可列方程方程为.三.解答题17.解分式方程:(1)=﹣1;(2)﹣=.18.先化简,再求值:(),其中x=+1.19.学校开展“书香校园”活动,购买了一批图书.已知购买科普类图书花费了10000元,购买文学类图书花费了9000元,其中科普类图书平均每本的价格比文学类图书平均每本的价格贵5元,且购买科普类图书的数量比购买文学类图书数量少100本,科普类图书平均每本的价格是多少元?20.如图1是一个长为2a、宽为2b的长方形,沿图中虚线用剪刀剪成四块完全一样的小长方形,然后按图2的形状拼成一个正方形.(1)图2中的阴影部分的正方形的边长是.(2)请用两种不同的方法表示图2中阴影部分的面积,并写出下列三个代数式:(a+b)2,(a﹣b)2,ab之间的等量关系;(3)利用(2)中的结论计算:x﹣y=2,xy=,求x+y的值;(4)根据(2)中的结论,直接写出m+和m﹣之间的关系;若m2﹣4m+1=0,分别求出m+和的值.21.2020年新冠肺炎疫情影响全球,各国感染人数持续攀升,医用口罩供不应求,很多企业纷纷加入生产口罩的大军中来,长沙某企业临时增加甲、乙两个厂房生产口罩,甲厂房每天生产的数量是乙厂房每天生产数量的1.5倍,两厂房各加工6000箱口罩,甲厂房比乙厂房少用5天.(1)求甲、乙两厂房每天各生产多少箱口罩;(2)已知甲、乙两厂房生产这种口罩每天的生产费分别是1500元和1200元,现有30000箱口罩的生产任务,甲厂房单独生产一段时间后另有安排,剩余任务由乙厂房单独完成.如果总生产费不超过78000元,那么甲厂房至少生产了多少天?参考答案一.选择题1.解:原式=,故选:D.2.解:去分母得:a+1=x﹣1,解得:x=a+2,由分式方程的解为正数,得到a+2>0,且a+2≠1,解得:a>﹣2且a≠﹣1.故选:B.3.解:A、=﹣1去分母得:2(x+1)=(x﹣1)(x+2)﹣(x+1)(x﹣1),不符合题意;B、+=1去分母得:x﹣7=3x﹣7,不符合题意;C、+=去分母得:(x﹣3)2+x+3=x(x+3),不符合题意;D、=去分母得:3(x﹣2)=x+4,符合题意.故选:D.4.解:A.根据表格数据可知:当x=﹣1时,分式无意义,即x+a=0,所以﹣1+a=0,解得a=1.所以A选项不符合题意;B.当x=1时,分式的值为1,即=1,解得b=8,所以B选项不符合题意;C.当x=c时,分式的值为0,即=0,解得c=,所以C选项不符合题意;D.当x=d时,分式的值为﹣1,即=﹣1,解得d=,所以D符合题意.故选:D.5.解:原式=(﹣)÷=•==,∵a2+a﹣1=0,∴a2+a=1,则原式==3,故选:A.6.解:∵分式的值为0,∴|x|﹣3=0且x+3≠0,解得:x=3.故选:B.7.解:设原计划每天植树x万棵,根据题意可列方程=5,故选:A.8.解:∵=,∴=,∴x+4=﹣5k,∴x=﹣4﹣5k,由题意可知:解得:k<或k≠,故选:B.9.解:原式=•=﹣,∵m,n是两个连续的整数,且m+n=﹣1,∴m=﹣1,n=0,则原式=﹣=﹣3,故选:D.10.解:不等式组整理得:,解得:﹣2<x≤,由整数解之和为2,得到整数解为﹣1,0,1,2,∴2≤<3,解得:﹣3≤k<7,分式方程去分母得:2y+1﹣k=y﹣2,解得:y=k﹣3,由分式方程的解为正数,得到k﹣3>0,且k﹣3≠2,解得:k>3且k≠5,综上,k的范围是3<k<7,且k≠5,即整数k=4,6,之和为4+6=10.故选:A.二.填空题11.解:根据题意知3﹣x≠0,解得x≠3,故答案为:x≠3.12.解:原式=﹣===,当a2+a=1时,原式=1,故答案为:1.13.解:∵=,∴x=,∵x<0,∴<0,解得m>5.故答案为:m>5.14.解:=+3,去分母得:5﹣a=x+3(x+2),将x=﹣2代入上式得:5﹣a=﹣2,所以a=7.故答案为:7.15.解:设小敏通过AB时的速度是x米/秒,可得:.故答案是:.16.解:设小江每小时分拣x个物件,则小李每小时分拣(x+20)个物件.根据题意,得=.故答案是:=.三.解答题17.解:(1)去分母得:3x+3=x2﹣2x﹣x2+x+2,解得:x=﹣,经检验x=﹣是分式方程的解;(2)去分母得:1﹣3x=6x﹣2,解得:x=,经检验x=是增根,分式方程无解.18.解:()===,当x=+1时,原式==.19.解:设科普类图书平均每本的价格是x元,则文学类图书平均每本的价格为(x﹣5)元,根据题意可得:=﹣100,解得:x=20,经检验得:x=20是原方程的根,答:科普类图书平均每本的价格是20元.20.解:(1)由图可得,图2中的阴影部分的正方形的边长是a﹣b,故答案为:a﹣b;(2)图2中阴影部分的面积:(a﹣b)2和(a+b)2﹣4ab,三个式子(a+b)2,(a﹣b)2,ab之间的等量关系:(a﹣b)2=(a+b)2﹣4ab;(3)∵x﹣y=2,xy=,∴(x+y)2=(x﹣y)2+4xy=4+5=9,∴x+y=±3;(4)根据(2)中的结论,可得,∵m2﹣4m+1=0,且m不能为0,∴,∴,∴.21.解:(1)设乙厂房每天生产x箱口罩,则甲厂房每天生产1.5x箱口罩,依题意,得:﹣=5,解得:x=400,经检验,x=400是原分式方程的解,且符合题意,∴1.5x=600.答:甲厂房每天生产600箱口罩,乙厂房每天生产400箱口罩.(2)设甲厂房生产了m天,则乙厂房生产了天,依题意,得:1500m+1200×≤78000,解得:m≥40.答:甲厂房至少生产了40天.。
一、选择题1.下列运算中,正确的是( )A .211a a a +=+B .21111a a a -⋅=-+C .1b a a b b a +=--D .0.22100.7710++=--a b a b a b a b2.下列命题:①若22||11x x x x x ++⋅=++,则x 的值是1; ②若关于x 的方程1122mx x x -=--无解,则m 的值是1-; ③若(2019)(2018)2017x x --=,则22(2019)(2018)4034x x -+-=;④若111,,567ab bc ac a b b c c a ===+++,且0abc ≠,则abc ab bc ac ++的值是19. 其中正确的个数是( )A .1B .2C .3D .4 3.现在汽车已成为人们出行的交通工具.李刚、王勇元旦那天相约一起到某加油站加油,当天95号汽油的单价为m 元/升,他俩加油的情况如图所示.半个月后的某天,他俩再次相约到同一加油站加油,此时95号汽油的单价下调为n 元/升,他俩加油的情况与上次相同,请运用所学的数学知识计算李刚、王勇两次加油谁的平均单价更低?低多少?下列结论正确的是( )A .李刚比王勇低()22m n mn-元/升B .王勇比李刚低()22mn m n -元/升C .王勇比李刚低()22m n mn -元/升D .李刚与王勇的平均单价都是2m n +元/升 4.下列关于分式2x x+的各种说法中,错误的是( ). A .当0x =时,分式无意义 B .当2x >-时,分式的值为负数C .当2x <-时,分式的值为正数D .当2x =-时,分式的值为0 5.若整数a 使得关于x 的不等式组3(1)32(1)x a x x >⎧⎨-+>+⎩的解集为2x >,且关于x 的分式方程21111ax x x+=---的解为整数,则符合条件的所有整数a 的和是( ) A .2- B .1- C .1 D .26.若关于x 的分式方程3211m x x =---有非负实数解,且关于x 的不等式组102x x m +≥⎧⎨+≤⎩有解,则满足条件的所有整数m 的和为( ) A .9-B .8-C .7-D .6- 7.计算221(1)(1)x x x +++的结果是( ) A .1B .1+1xC .x +1D .21(+1)x 8.如果分式11m m -+的值为零,则m 的值是( ) A .1m =- B .1m = C .1m =±D .0m = 9.若使分式2x x -有意义,则x 的取值范围是( ) A .2x ≠ B .0x = C .1x ≠- D .2x = 10.下列说法:①解分式方程一定会产生增根;②方程4102x -=+的根为2;③方程11224=-x x 的最简公分母为2(24)-x x ;④1111x x x+=+-是分式方程.其中正确的个数是( )A .1B .2C .3D .411.若a =1,则2933a a a -++的值为( ) A .2 B .2- C .12 D .12-12.如图,在数轴上表示2224411424x x x x x x-++÷-+的值的点是( )A .点PB .点QC .点MD .点N二、填空题13.若关于x 的分式方程3122++=--x m x x有增根,则m 的值是______. 14.如果30,m n --=那么代数式2⎛⎫-⋅ ⎪+⎝⎭m n n n m n 的值为______________________. 15.已知3m n +=.则分式222m n m n n m m ⎛⎫+--÷- ⎪⎝⎭的值是_________. 16.已知关于x 的分式方程239133x mx x x ---=--无解,则m 的值为______. 17.若x =2是关于x 的分式方程31k x x x -+-=1的解,则实数k 的值等于_____. 18.甲、乙两同学的家与学校的距离均为3000米,甲同学先步行600米然后乘公交车去学校,乙同学骑自行车去学校,已知甲步行的速度是乙骑自行车速度的12,公交车速度是乙骑自行车速度的2倍.甲乙两同学同时从家出发去学校结果甲同学比乙同学早到2分钟,若甲同学到达学校时,乙同学离学校还有m 米,则m =________.19.计算:262393x x x x -÷=+--______. 20.若()()023248x x ----有意义,则x 的取值范围是______.三、解答题21.(1)分解因式3228x xy -(2)解分式方程:23193x x x +=-- (3)先化简:2443111a a a a a -+⎡⎤÷-+⎢⎥++⎣⎦,然后a 在2-,1-,1,2五个数中选一个你认为合适的数代入求值.22.(1)先化简,再求值:2222213214x x x x x x x x -⎛⎫÷-- ⎪+++-⎝⎭,其中12x =. (2)解方程:11322x x x--=--. 23.2016年12月29日,引江济淮工程正式开工.该工程供水范围涵盖安徽省12个市和河南省2个市,共55个区县.其中在我县一段工程招标时,有甲、乙两个工程队投标,从投标书上得知:甲队单独完成这项工程需要60天,若由甲队先做20天,剩下的工程由甲、乙合作24天可完成.(1)乙队单独完成这项工程需要多少天?(2)现将该工程分为两部分,甲队做完其中一部分工程用了m 天,乙队做完其中一部分工程用了n 天,m ,n 都是正整数,且甲队用时不到20天,乙队用时不到65天,甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.请用含m 的式子表示n ,并求出该工程款总共为多少万元?24.列分式方程解应用题:2020年玉林市倡导市民积极参与垃圾分类,某小区购进A 型和B 型两种分类垃圾桶,购买A 型垃圾桶花费了2500元,购买B 型垃圾桶花费了2000元,且购买A 型垃圾桶数量是购买B 型垃圾桶数量的2倍,已知购买一个B 型垃圾桶比购买一个A 型垃圾桶多花30元,求购买一个A 型垃圾桶、一个B 型垃圾桶各需多少元?25.先化简,再求值:221111x x x ⎛⎫-÷ ⎪+-⎝⎭,其中2021x =. 26.为支援贫困山区,某学校爱心活动小组准备用筹集的资金购买A 、B 两种型号的学习用品.已知B 型学习用品的单价比A 型学习用品的单价多10元,用180元购买B 型学习用品与用120元购买A 型学习用品的件数相同.(1)求A 、B 两种学习用品的单价各是多少元;(2)若购买A 、B 两种学习用品共1000件,且总费用不超过28000元,则最多购买B 型学习用品多少件?【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据分式的运算法则及分式的性质逐项进行计算即可.【详解】A :211a a a a+=+,故不符合题意; B :()()21111111111a a a a a a a a a a-+--⋅=⋅==-++,故不符合题意; C :1b a b a a b b a a b a b+=-=-----,故不符合题意;D :0.22100.7710++=--a b a b a b a b,故不符合题意; 故选:D .【点睛】 本题考查分式的性质及运算,熟练掌握分式的性质及运算法则是解题的关键. 2.B解析:B【分析】根据等式的性质和分式有意义的条件判断①;根据分式方程无解的意义求出m 值,可判断②;运用完全平方公式判断③;根据分式的化简求值判断④.【详解】解:①若22||11x x x x x ++⋅=++, ∴||1x =,又∵x ≠-1,∴x 的值是1,故正确; ②1122mx x x -=--化简得:()13m x +=, ∵方程1122mx x x -=--无解, ∴m +1=0,或321x m ==+, 则m 的值是-1或12,故错误; ③若(2019)(2018)2017x x --=,则22(2019)(2018)x x -+-=[]2(2019)(2018)(2019)(2018)2x x x x +-----=2120172+⨯=4035,故错误; ④若111,,567ab bc ac a b b c c a ===+++,且0abc ≠, ∴1111115,6,7a b b c a c ab a b bc b c ac a c +++=+==+==+=, ∴ab bc ac abc++ =111a b c ++ =12222a b c ⎛⎫⨯++ ⎪⎝⎭=11111112a b b c a c ⎛⎫⨯+++++ ⎪⎝⎭ =()15672⨯++ =9 ∴abc ab bc ac ++的值是19,故正确; 故选:B .【点睛】本题考查了分式有意义的条件,完全平方公式,分式的化简求值,解题的关键是灵活运用运算法则以及分式的性质.3.A解析:A【分析】先求解李刚两次加油每次加300元的平均单价为每升:2mn m n +元,再求解王勇每次加油30升的平均单价为每升:2m n +元,再利用作差法比较两个代数式的值,从而可得答案. 【详解】解:李刚两次加油每次加300元,则两次加油的平均单价为每升: ()6006002300300300mn m n m n m n mn==+++(元), 王勇每次加油30升,则两次加油的平均单价为每升:3030602m n m n ++=(元), ()()()224222m n m n mn mn m n m n m n ++∴-=-+++ ()()()222222m n m mn n m n m n --+==++ 由题意得:,m n ≠ ()()22m n m n -∴+>0, ∴ 2m n +>2mn m n +. 故A 符合题意,,,B C D 都不符合题意,故选:.A本题考查的是列代数式,分式的加减运算,代数式的值的大小比较,掌握以上知识是解题的关键.4.B解析:B【分析】根据分式的定义和性质,对各个选项逐个分析,即可得到答案.【详解】当0x =时,分式无意义,选项A 正确;当2x >-时,分式的值可能为负数,可能为正数,故选项B 错误;当2x <-时,20x +<,分式的值为正数,选项C 正确;当2x =-时,20x +=,分式的值为0,选项D 正确;故选:B .【点睛】本题考查了分式的知识;解题的关键是熟练掌握分式的性质,从而完成求解. 5.D解析:D【分析】先分别解不等式组里的两个不等式,根据解集为2x >,得出a 的范围,根据分式方程的解为整数即得到a 的值,结合a 的范围即可求得符合条件的所有整数a 的和.【详解】解:关于x 的不等式组3(1)32(1)x a x x >⎧⎨-+>+⎩①② 解不等式①得,x a >;解不等式②得,2x >;∵不等式组的解集为2x >,∴a≤2, 解方程21111ax x x+=---得:21x a =- ∵分式方程的解为整数,∴11a -=±或2±∴a=0、2、-1、3又x≠1, ∴211a≠-,∴a≠-1, ∴a≤2且a ≠-1,则a=0、2,∴符合条件的所有整数a 的和=0+2=2,【点睛】本题考查了分式方程的解以及解一元一次不等式组,根据分式方程的解为整数结合不等式组有解,找出a 的值是解题的关键.6.D解析:D【分析】 先根据方程3211m x x =---有非负实数解,求得5m ≥-,由不等式组102x x m +≥⎧⎨+≤⎩有解求得3m ≤,得到m 的取值范围53m -≤≤,再根据10x -≠得3m ≠-,写出所有整数解计算其和即可.【详解】 解:3211m x x =--- 解得:52m x +=, ∵方程有非负实数解, ∴0x ≥即502m +≥, 得5m ≥-;∵不等式组102x x m +≥⎧⎨+≤⎩有解, ∴12x m -≤≤-,∴21m -≥-,得3m ≤,∴53m -≤≤,∵10x -≠,即502m +≠, ∴3m ≠-,∴满足条件的所有整数m 为:-5,-4,-2,-1,0,1,2,3,其和为:-6,故选:D .【点睛】此题考查利用分式方程解的情况求参数,根据不等式组的解的情况求参数,正确掌握方程及不等式组的解的情况确定m 的取值范围是解题的关键. 7.B解析:B【分析】根据同分母分式加法法则计算.【详解】221(1)(1)x x x +++=211(1)1x x x +=++, 故选:B .【点睛】此题考查同分母分式加法,熟记加法法则是解题的关键.8.B解析:B【分析】先根据分式为零的条件列出关于m 的不等式组并求解即可.【详解】解:∵11m m -+=0 ∴m-1=0,m+1≠0,解得m=1.故选B .【点睛】本题主要考查了分式为零的条件,掌握分式为零的条件是解答本题的关键,同时分母不等于零是解答本题的易错点.9.A解析:A【分析】根据分式有意义分母不为零即可得答案.【详解】∵分式2x x -有意义, ∴x-2≠0,解得:x≠2.故选:A .【点睛】 本题考查了分式有意义的条件,利用分母不为零得出不等式是解题关键.10.B解析:B【分析】根据分式方程的定义、解分式方程、增根的概念及最简公分母的定义解答.【详解】解:分式方程不一定会产生增根,故①错误; 方程4102x -=+的根为x=2,故②正确;方程11224=-x x 的最简公分母为2x(x-2),故③错误; 1111x x x+=+-是分式方程,故④正确; 故选:B .【点睛】 此题考查分式方程的定义、解分式方程、增根的概念及最简公分母的定义,熟记各定义及正确解方程是解题的关键.11.B解析:B【分析】根据同分母分式减法法则计算,再将a=1代入即可求值.【详解】2933a a a -++=293a a -+=a-3, 当a=1时,原式=1-3=-2,故选:B .【点睛】此题考查分式的化简求值,掌握因式分解及同分母分式的减法计算法则是解题的关键. 12.C解析:C【分析】先进行分式化简,再确定在数轴上表示的数即可.【详解】 解:2224411424x x x x x x-++÷-+ 2(2)14(2)(2)(2)x x x x x x -=+⨯+-+, 2422x x x -=+++, 242x x -+=+, 22x x +=+, =1, 在数轴是对应的点是M ,故选:C .【点睛】本题考查了分式化简和数轴上表示的数,熟练运用分式计算法则进行化简是解题关键.二、填空题13.1【分析】分式方程去分母转化为整式方程由分式方程有增根确定出m 的值即可【详解】解:去分母得:3﹣x ﹣m =x ﹣2由分式方程有增根得到x ﹣2=0即x =2把x =2代入整式方程得:3﹣2﹣m =0解得:m =1解析:1【分析】分式方程去分母转化为整式方程,由分式方程有增根,确定出m 的值即可【详解】解:去分母得:3﹣x ﹣m =x ﹣2,由分式方程有增根,得到x ﹣2=0,即x =2,把x =2代入整式方程得:3﹣2﹣m =0,解得:m =1,故答案:1.【点睛】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.14.【分析】将原式进行分式的混合计算化简先算小括号里面的然后算乘法最后整体代入求值【详解】解:===∵∴故答案为:3【点睛】本题考查分式的混合运算掌握运算顺序和计算法则正确计算是解题关键解析:3【分析】将原式进行分式的混合计算化简,先算小括号里面的,然后算乘法,最后整体代入求值.【详解】 解:2⎛⎫-⋅ ⎪+⎝⎭m n n n m n =22m n n m n n ⎛⎫⋅ ⎪⎭-+⎝ =()()n n m nm n m n -⋅++ =m n -∵30m n --=,∴=3m n -故答案为:3.【点睛】本题考查分式的混合运算,掌握运算顺序和计算法则正确计算是解题关键.15.【分析】根据分式运算法则即可求出答案【详解】解:===当m+n=-3时原式=故答案为:【点睛】本题考查分式解题的关键是熟练运用分式的运算法则本题属于基础题型 解析:13【分析】根据分式运算法则即可求出答案.【详解】 解:222m n m n n m m ⎛⎫+--÷- ⎪⎝⎭=22(2)m n m mn n m m+-++÷ =2()m n m m m n +⋅-+ =1m n-+, 当m+n=-3时, 原式=13故答案为:13 【点睛】本题考查分式,解题的关键是熟练运用分式的运算法则,本题属于基础题型. 16.1或4【分析】先去分母将原方程化为整式方程根据一元一次方程无解的条件得出一个m 值再根据分式方程无解的条件得出一个m 值即可【详解】解:去分母得:2x-3-mx+9=x-3整理得:(m-1)x=9∴当m解析:1或4【分析】先去分母,将原方程化为整式方程,根据一元一次方程无解的条件得出一个m 值,再根据分式方程无解的条件得出一个m 值即可.【详解】解:去分母得:2x-3- mx+9 =x-3,整理得:(m-1)x=9,∴当m-1=0,即m=1时,方程无解;当m-1≠0时,由分式方程无解,可得x-3=0,即x=3,把x=3代入(m-1)x=9,解得:m=4,综上,m 的值为1或4.故答案为:1或4.【点睛】本题考查了分式方程的解,熟练掌握分式方程及整式方程无解的条件是解题的关键. 17.4【分析】将x=2代入求解即可【详解】将x=2代入=1得解得k=4故答案为:4【点睛】此题考查分式方程的解解一元一次方程正确理解方程的解是解题的关键解析:4【分析】将x=2代入求解即可.【详解】将x=2代入31k x x x -+-=1,得112k -=, 解得k=4,故答案为:4.【点睛】此题考查分式方程的解,解一元一次方程,正确理解方程的解是解题的关键. 18.600【分析】设乙骑自行车的速度为x 米/分钟则甲步行速度是x 米/分钟公交车的速度是2x 米/分钟根据题意找到等量关系:甲步行的时间+甲公车时间=乙的时间-2分钟列方程即可得到乙的速度甲同学到达学校时乙解析:600【分析】设乙骑自行车的速度为x 米/分钟,则甲步行速度是12x 米/分钟,公交车的速度是2x 米/分钟,根据题意找到等量关系:甲步行的时间+甲公车时间=乙的时间-2分钟,列方程即可得到乙的速度,甲同学到达学校时,乙同学离学校还有2x 米,即可得到结论;【详解】解:设乙骑自行车的速度为x 米/分钟,则甲步行速度是12x 米/分钟,公交车的速度是2x 米/分钟,根据题意得 600300060030002122x x x -+=- , 解得:x=300米/分钟,经检验x=300是方程的根,则乙骑自行车的速度为300米/分钟.那么甲同学到达学校时,乙同学离学校还=2×300=600米.故答案为:600.【点睛】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键. 19.1【分析】先将分母因式分解再将除法转化为乘法再根据法则计算即可【详解】故答案为:1【点睛】本题主要考查了分式的混合运算解题的关键是掌握分式的混合运算顺序和运算法则解析:1【分析】先将分母因式分解,再将除法转化为乘法,再根据法则计算即可.【详解】262393x x x x -÷+-- 633(3)(3)2x x x x x -=+⋅++- 333x x x =+++ 33x x +=+ 1=.故答案为:1.【点睛】本题主要考查了分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则. 20.且【分析】根据0指数幂及负整数指数幂有意义的条件列出关于x 的不等式组求出x 的取值范围即可【详解】解:∵(x-3)0-(4x-8)-2有意义∴解得x≠3且x≠2故答案为:x≠3且x≠2【点睛】本题考查解析:2x ≠,且3x ≠【分析】根据0指数幂及负整数指数幂有意义的条件列出关于x 的不等式组,求出x 的取值范围即可.【详解】解:∵(x-3)0-(4x-8)-2有意义,∴30480x x -≠⎧⎨-≠⎩, 解得x≠3且x≠2.故答案为:x≠3且x≠2.【点睛】本题考查的是负整数指数幂,熟知非0数的负整数指数幂等于该数正整数指数幂的倒数是解答此题的关键.三、解答题21.(1)()()222x x y x y +-;(2)4x =-;(3)22a a --+,13【分析】(1)先提取公因式,然后再利用平方差公式进行求解即可;(2)先去分母,然后进行整式方程的求解即可;(3)先算括号内的,然后再进行分式的运算即可,最后选择一个使最简公分母不为零的数代值求解即可.【详解】解:(1)3228x xy -=()2224x x y -=()()222x x y x y +-;(2)23193x x x +=-- 去分母得:()2339x x x ++=-,整理得:312x =-,解得:4x =-,经检验4x =-是方程的解;(3)2443111a a a a a -+⎛⎫÷-+ ⎪++⎝⎭=()222411a a a a --÷++ =()()()221122a a a a a -+⨯++- =22a a --+, 把1a =代入得:原式=311212-=-+. 【点睛】 本题主要考查因式分解、分式方程及分式的运算,熟练掌握因式分解、分式方程及分式的运算是解题的关键.22.(1)2x x +,15;;(2)3x = 【分析】(1)原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,把12x =代入计算即可求出值; (2)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】(1)解:原式2222123214x x x x x x x x x +--=÷-+++- ()()()()()22112122x x x x x x x x -+=⋅-++-+ 2222x x x x x x =-=+++ 当12x =原式2x x =+15=; (2)解:去分母得:()1321x x --=-,移项合并得:-2x =-6,解得:3x =,经检验3x =是分式方程的解【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.23.(1)90天;(2)3902n m =-(50203m <<,m ,n 均为正整数),189万元. 【分析】 (1)设乙队单独完成这项工程需要x 天,根据题意列出方程20112416060x ⎛⎫++= ⎪⎝⎭,求出x 的值并进行检验即可;(2)根据题意得出16090m n +=解得3902n m =-,继而得出20390652m m <⎧⎪⎨-<⎪⎩,解出m 的取值并分情况求解即可;【详解】解:(1)设乙队单独完成这项工程需要x 天, 根据题意得:20112416060x ⎛⎫++= ⎪⎝⎭,解得:90x =, 经检验,90x =是所列分式方程的解,且符合题意.答:乙队单独完成这项工程需要90天.(2)解:由题意得16090m n +=整理,得3902n m =-, 20390652m m <⎧⎪⎨-<⎪⎩,解得:50203m <<, 因为m ,n 均为正整数,所以,当17m =时,64.5n =,不是整数(舍去);当18m =时,63n =,符合题意;当19m =时,61.5n =,不是整数(舍去),工程款总数为3.518263189⨯+⨯=万元.【点睛】本题考查了分式方程的工程问题,正确理解题意和工作效率和工作时间之间的关系是解题的关键;24.一个A 型垃圾桶需50元,一个B 型垃圾桶需80元【分析】设一个A 型垃圾桶需x 元,则一个B 型垃圾桶需(x+30)元,根据购买A 型垃圾桶数量是购买B 品牌足球数量的2倍列出方程解答即可.【详解】解:设购买一个A 型垃圾桶需x 元,则一个B 型垃圾桶需()30x +元 由题意得:25002000230x x =⨯+, 解得:50x =,经检验:50x =是原方程的解,且符合题意,则:3080x +=,答:购买一个A 型垃圾桶需50元,一个B 型垃圾桶需80元.【点睛】此题考查了分式方程的应用,找出题目蕴含的等量关系列出方程是解决问题的关键. 25.1x x-,20202021 【分析】直接将括号里面通分运算,再利用分式的混合运算法则计算得出答案.【详解】 解:221111x x x ⎛⎫-÷ ⎪+-⎝⎭ 211(1)(1)1x x x x x +-+-=⋅+ 2(1)(1)1x x x x x +-=⋅+ 1x x-=, 当2021x =时, 原式202112021-=20202021=. 【点睛】 此题主要考查了分式的化简求值,正确化简分式是解题关键.26.(1)A 型学习用品的单价为20元,B 型学习用品的单价为30元;(2)最多购买B 型学习用品800件.【分析】(1)设A 型学习用品单价x 元,利用“用180元购买B 型学习用品的件数与用120元购买A 型学习用品的件数相同”列分式方程求解即可;(2)设可以购买B 型学习用品y 件,则A 型学习用品(1000−y )件,根据这批学习用品的钱不超过28000元建立不等式求出其解即可.【详解】解:(1)设A 型学习用品的单价为x 元,则B 型学习用品的单价为(x +10)元,由题意得:18012010x x=+, 解得:x =20,经检验x =20是原分式方程的根,且符合实际,则x +10=30.答:A 型学习用品的单价为20元,B 型学习用品的单价为30元;(2)设购买B 型学习用品y 件,则购买A 型学习用品(1000−y )件,由题意得:20(1000−y )+30y≤28000,解得:y≤800.答:最多购买B 型学习用品800件.【点睛】本题考查了列分式方程解应用题和一元一次不等式解实际问题的运用,找到数量关系,列出分式方程和一元一次不等式,是解题的关键.。
第五章 分式与分式方程一、选择题(本大题共8小题,每小题3分,共24分)1.有下列各式:12(1-x ),4x π-3,x2-y22,1+a b ,5x2y ,其中分式共有( )A .2个B .3个C .4个D .5个2.下列各式中,正确的是( ) A.a +b ab =1+b b B.x +y x -y =x2-y2(x -y )2 C.x -3x2-9=1x -3 D.-x +y 2=-x +y 23.在分式15b2c -5a ,5(x -y )2y -x ,a2+b23(a +b ),4a2-b22a -b ,a -2b 2b -a 中,最简分式有( )A .1个B .2个C .3个D .4个4.解分式方程x 3+x -22+x =1时,去分母后可得到( )A .x (2+x )-2(3+x )=1B .x (2+x )-2=2+xC .x (2+x )-2(3+x )=(2+x )(3+x )D .x -2(3+x )=3+x5.化简⎝⎛⎭⎫x -2x -1x ÷⎝⎛⎭⎫1-1x 的结果是( ) A.1x B .x -1 C.x -1x D.xx -1 6.如果解关于x 的分式方程mx -2-2x2-x =1时出现增根,那么m 的值为( ) A .-2 B .2 C .4 D .-47.某工厂生产一种零件,计划在20天内完成.若每天多生产4个,则15天完成且还多生产10个.设原计划每天生产x 个,根据题意可列分式方程为( )A.20x +10x +4=15B.20x -10x +4=15C.20x +10x -4=15D.20x -10x -4=158.若关于x 的方程a x -1+1=x +ax +1的解为负数,且关于x 的不等式组⎩⎨⎧-12(x -a )>0,x -1≥2x +13无解,则所有满足条件的整数a 的值之和是( )A .5B .7C .9D .10二、填空题(本大题共6小题,每小题4分,共24分)9.若分式1x -5在实数范围内有意义,则x 的取值范围是________.10.计算:x2x +1-1x +1=________.11.化简:m2-4mn +4n2m2-4n2=________.12.某学校为了增强学生体质,准备购买一批体育器材,已知A 类器材比B 类器材的单价低10元,用150元购买A 类器材与用300元购买B 类器材的数量相同,则B 类器材的单价为________元/件.13.若关于x 的方程x +m m (x -1)=-45的解为x =-15,则m =________.14.若关于x 的分式方程2x +mx -3=3的解为正数,则m 的取值范围是________.三、解答题(本大题共6小题,共52分) 15.(10分)解下列方程: (1) xx -3-2=-33-x;(2)x x +3+2x2+3x =1.16.(6分)化简:9-a2a2+6a +9÷a2-3a a +3+1a .17.(8分)先化简,再求值:⎝⎛⎭⎫1+1a ·a2a2-1,其中a =3.18.(9分)已知关于x 的方程2xx -2+m x -2=3. (1)当m 取何值时,此方程的解为x =3? (2)当m 取何值时,此方程会产生增根?(3)当此方程的解是正数时,求m的取值范围.19.(9分)某校组织学生去9 km外的郊区游玩,一部分学生骑自行车先走,半小时后,其他学生乘公共汽车出发,结果他们同时到达.已知公共汽车的速度是自行车速度的3倍,求自行车的速度和公共汽车的速度分别是多少.20.(10分)某班到毕业时共节余班费1800元,班委会决定拿出不少于270元但不超过300元的资金为母校购买纪念品,其余经费用于在毕业晚会上给50名同学每人购买一件文化衫或一本相册作为留念.已知每件文化衫的价格比每本相册贵9元,用175元购买文化衫和用130元购买相册的数量相等.(1)求每件文化衫和每本相册的价格分别为多少元;(2)有哪几种购买文化衫和相册的方案?1.[解析] A12(1-x),4x π-3,x2-y22的分母中均不含有字母,因此不是分式,是整式;1+a b,5x2y的分母中含有字母,因此是分式.故选A .2.[答案] B3.[解析] A 15b2c -5a =3b2c -a ;5(x -y )2y -x =5(y -x);4a2-b22a -b =(2a +b )(2a -b )2a -b=2a +b ;a -2b2b -a=-1.所以只有一个最简分式.故选A .4.[解析] C 在方程x 3+x -22+x=1的两边同乘最简公分母(3+x)(2+x),得x(2+x)-2(3+x)=(2+x)(3+x).故选C .5.[解析] B ⎝⎛⎭⎫x -2x -1x ÷⎝⎛⎭⎫1-1x =x2-2x +1x ÷x -1x =(x -1)2x ·x x -1=x -1.故选B . 6.[答案] D 7.[答案] A8.[解析] C a x -1+1=x +ax +1,方程两边同乘(x -1)(x +1),得a(x +1)+(x -1)(x +1)=(x -1)(x +a), 整理得x =1-2a , 由题意得1-2a <0,解得a >12.解不等式组⎩⎨⎧-12(x -a )>0,x -1≥2x +13,得4≤x <a.∵不等式组无解,∴a ≤4, 则12<a ≤4. ∵1-2a ≠±1, ∴a ≠0,a ≠1,∴所有满足条件的整数a 的值之和为2+3+4=9. 故选C .9.[答案] x ≠5 10.[答案] x -111.[答案] m -2nm +2n[解析] 原式=(m -2n )2(m +2n )(m -2n )=m -2nm +2n.12.[答案] 20[解析] 设B 类器材的单价为x 元/件,则A 类器材的单价是(x -10)元/件,由题意得150x -10=300x, 解得x =20.经检验,x =20是原方程的解. 即B 类器材的单价为20元/件. 故答案为:20. 13.[答案] 5[解析] 把x =-15代入方程即可求得m 的值.14.[答案] m >-9且m ≠-6[解析] 去分母,得2x +m =3x -9,解得x =m +9.由分式方程的解为正数,得到m +9>0,且m +9≠3,解得m >-9且m ≠-6.15.解:(1)方程两边同乘(x -3),得x -2(x -3)=3. 去括号,得x -2x +6=3. 移项、合并同类项,得x =3. 检验:当x =3时,x -3=0, ∴原分式方程无解.(2)方程两边同乘x(x +3),得 x 2+2=x 2+3x ,移项、合并同类项,得3x =2,解得x =23.经检验,x =23是原方程的解.16.[解析] 先算乘除,再算加减.解:原式=-(a +3)(a -3)(a +3)2·a +3a (a -3)+1a=-1a +1a=0. 17.解:原式=a +1a ·a2(a -1)(a +1)=aa -1.当a =3时,原式=32.18.解:(1)把x =3代入方程2x x -2+mx -2=3,得m =-3.(2)方程的增根为x =2,原方程去分母得2x +m =3x -6,将x =2代入,得m =-4.(3)原方程去分母得2x +m =3x -6,解得x =m +6.因为方程的解是正数,所以m +6>0,解得m >-6.因为x ≠2,所以m ≠-4.综上,m 的取值范围是m>-6且m ≠-4.19.[解析] 设自行车的速度为x km /h ,则公共汽车的速度为3xkm /h ,根据时间=路程÷速度结合乘公共汽车比骑自行车少用12h ,即可得出关于x 的分式方程,解之经检验即可得出结论.解:设自行车的速度为x km /h ,则公共汽车的速度为3x km /h .根据题意,得9x -93x =12,解得x =12.经检验,x =12是原分式方程的解, ∴3x =36.答:自行车的速度是12 km /h ,公共汽车的速度是36 km /h .20.解:(1)设每件文化衫的价格为x 元,则每本相册的价格为(x -9)元,由题意得175x=130x -9, 解得x =35.经检验,x =35是原分式方程的解, 则x -9=35-9=26(元).答:每件文化衫的价格为35元,每本相册的价格为26元.(2)设购买文化衫m 件,则购买相册(50-m)件.由题意得1800-300≤35m +26(50-m)≤1800-270,解得2229≤m ≤2559.共有3种购买方案:①购买文化衫23件,购买相册27件;②购买文化衫24件,购买相册26件;③购买文化衫25件,购买相册25件.。
八年级数学下册《第五章 认识分式》练习题-附答案(北师大版)一、选择题1. 若分式x 2−1x+1的值等于0,则x 的值为( )A. ±1B. 0C. −1D. 12. 若x ,y 的值均扩大为原来的3倍,则下列分式的值保持不变的是( ) A. 2+xx−y B. 2xx−yC.2+xxyD. x 2x+y3. 分式12a 2b 与1ab2的最简公分母是( )A. abB. 2a 2b 2C. a 2b 2D. 2a 3b 3 4. 下列分式中是最简分式的是( )A. 6x 29xB. x 2+y 2x+yC. x2+4x+4x+2D. x2−1x−15. 下列各分式化简后与m+nm−n 相等的是( ) A. 2m+n2m−nB. m 2+n 2m 2−n 2C. m+n+2m−n+2D. m 2+mn m 2−mn6. 若x ,y 的值均扩大为原来的3倍,则下列分式的值保持不变的是( ) A. 2+x x−y B. x+yx 2+y 2C. x 2+y 22x−3yD. x 2−y 2x 2+y 27. 下列式子从左到右变形正确的是( )A. m 2n 2=m nB. m−n =−mnC.m+1n=mn+1 D. n+5n+1=58. 对于分式x−nx−m (m,n 为常数),若当x ≥0时,该分式总有意义;当x =0时,该分式的值为负数.则m ,n 与0的大小关系正确的是( )A. m <0<nB. 0<m <nC. n <0<mD. 0<n <m9. 分式x+a3x−1中,当x =−a 时,下列结论正确的是( ) A. 分式的值为零B. 分式无意义C. 当a ≠−13时,分式的值为零 D. 当a ≠13时,分式的值为零10. 已知1x −1y =3,则式子2x+3xy−2yx−xy−y 的值是( )A. −72B. −112 C. 92D. 34二、填空题11. 在函数y =√ 1−x x+2中,自变量x 的取值范围是____.12. 把分式0.2a+10.5a−12的分子、分母中系数化为整数,则分式变为__________.13. 化简分式xy+xx 2的结果是______. 14. 求√ a +4+1|a|−2−√ 3−a a 的整数值:______ . 15. 若√ x−3y+|x2−9|x+3=0,则2x −3y =______.16. 分式2xx−2和3x 2−2x 的最简公分母是________. 17. 已知{3x +y =12x +3y =4,则2(x−y)x+y= ______ .18. 分式1a 2−4,1a 2−4a+4的最简公分母是 .19. 不改变分式的值,把分式的分子和分母的各项系数都化成整数:0.4a−12b 15a+0.3b = .20. 已知非零实数x ,y 满足y =xx+1,则x−y+3xyxy的值等于 . 三、解答题21. 通分:(1)32a 2b 与a−bab 2c; (2)2x x−5与3x x+522. x 千克橘子糖、y 千克椰子糖、x 千克奶糖混合成“什锦糖”.已知这3种糖的单价分别为28元/千克、32元/千克、48元/千克.求这种“什锦糖”的单价.23. 当x 、y 满足什么条件时,分式x−y1+x 的值为0?24. 当m 取哪些整数时,分式4m−1的值是整数?25. 不改变下列分式的值,将分式的分子和分母中的各项的系数化为整数.(1)15x−12y 14x+23y(2)0.1x+0.3y0.5x−0.02y .参考答案1、D2、B3、B4、B5、D6、D7、B8、A9、C 10、D 11、x ≤1且x ≠−2 12、2a+105a−5 13、y+1x14、−4,−3,−1,0,1 15、3 16、x (x −2) 17、2 18、(a +2)(a −2)2 19、4a−5b2a+3b20、421、解:(1)最简公分母是2a 2b 2c.32a 2b =3⋅bc 2a 2b⋅bc =3bc2a 2b 2c.a−b ab 2c=(a−b)⋅2a ab 2c⋅2a=2a 2−2ab 2a 2b 2c.(2)最简公分母是(x +5)(x −5).2x x−5=2x(x+5)(x−5)(x+5)=2x 2+10xx 2−25. 3x x+5=3x(x−5)(x+5)(x−5)=3x 2−15xx 2−25. 22、解:这种“什锦糖”的单价为28x+32y+48xx+y+x=76x+32y2x+y (元/千克).23、解:由题意得:x −y =0且1+x ≠0解得:x =y ≠−1.24、解:当分式4m−1的值是整数时m −1=−4、−2、−1、1、2、4解得,m =−3、−1、0、2、3、5 ∴当m =−3、−1、0、2、3、5时,分式4m−1的值是整数. 25、解:(1)原式=60(15x−12y)60(14x+23y)=12x−30y15x+40y(2)原式=50(0.1x+0.3y)50(0.5x−0.02y)=5x+15y25x−y .。
北师大版数学八年级下册第五章测试卷评卷人得分一、单选题1.如果把分式a−2b 2a+b 中的a 和b 都扩大5倍,那么分式的值A .扩大5倍B .缩小为原来的15C .扩大10倍D .不变2.下列各式正确的是A .c -a-b =-c a-bB .c -a-b =-c a b+C .c -a b +=-c a b +D .c -a-b =--c a-b 3.已知关于x 的分式方程+=1的解是非负数,则m 的取值范围是()A .m >2B .m≥2C .m≥2且m≠3D .m >2且m≠3评卷人得分二、解答题4.先化简,再求值:2282442x x x x x ⎛⎫÷-- ⎪-+-⎝⎭,其中2x =.5.先化简,后求值:22a a -11-a 1a 2a 1⎛⎫÷ ⎪+++⎝⎭,其中+1.6.解方程:2x 2x-2x -4-=1.7.解分式方程:21x 3x-1=+.8.解分式方程:312422x x x -=--.9.某自动化车间计划生产480个零件,当生产任务完成一半时,停止生产进行自动化程序软件升级,用时20分钟,恢复生产后工作效率比原来提高了13,结果完成任务时比原计划提前了40分钟,求软件升级后每小时生产多少个零件?10.我市经济技术开发区某智能手机有限公司接到生产300万部智能手机的订单,为了尽快交货,增开了一条生产线,实际每月生产能力比原计划提高了50%,结果比原计划提前5个月完成交货,求每月实际生产智能手机多少万部.评卷人得分三、填空题11.化简22x 11x-1x -2x 1+⎛⎫+÷ ⎪+⎝⎭的结果为__.12.已知方程2(x a)a(x-1)+=-135的解为x=-15,则a=__.13.当m=________时,方程233x m x x =---会产生增根.参考答案1.D【解析】【分析】根据题意,则原来的分式变形为5K2×52×5r5,再进一步根据分式的基本性质进行判断.【详解】根据题意,得原来的分式变形为5K2×52×5r5=5(K2p5(2rp=a−2b2a+b,即分式的分子和分母同时扩大了5倍,分式的值不变.故选D.【点睛】此题考查了分式的基本性质.2.B【解析】本题考查的是分式的基本性质根据分式的基本性质对各项分析即可.A、,故本选项错误;B、c ca b a b=---+,正确;C、,故本选项错误;D、,故本选项错误;故选B.3.C【解析】试题解析:分式方程去分母得:m-3=x-1,解得:x=m-2,由方程的解为非负数,得到m-2≥0,且m-2≠1,解得:m≥2且m≠3.故选C.考点:分式方程的解.4.22x -,12-.【解析】分析:先化简括号内的式子,再根据分式的除法进行计算即可化简原式,然后将x=-2代入化简后的式子即可解答本题.详解:原式()()()22228222x x x x x x ⎡⎤+-=÷-⎢⎥---⎣⎦()2228422x x x x -+=÷--()28242x x -=⋅-=22x -.∵2x =,∴2x =±,舍去2x =,当2x =-时,原式21222==---.点睛:本题考查分式的化简求值,解题的关键是明确分式化简求值的方法.5.1a-1,2【解析】【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把a的值代入计算即可求出值.【详解】原式=2a1a(a1)1a11 -··a1a1(a1)(a-1)a1a-1a-1 +++⎛⎫==⎪++++⎝⎭.当+1时,原式2==.【点睛】本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.6.x=﹣3.【解析】观察可得方程最简公分母为(x+2)(x﹣2),将方程去分母转化为整式方程即可求解.解:方程两边都乘(x+2)(x﹣2),得:x(x+2)+2=(x+2)(x﹣2),即x2+2x+2=x2﹣4,移项、合并同类项得2x=﹣6,系数化为1得x=﹣3.经检验:x=﹣3是原方程的解.7.x=5【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】去分母得,2(x-1)=x+3,去括号得,2x-2=x+3,移项,化简得,x=5,经检验,x=5是原方程的解,故原方程的解为:x=5.【点睛】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.8.53 x=【解析】【分析】首先两边同时乘以2(x-2),去分母,再解整式方程,然后再检验即可.【详解】去分母,得3-2x=x-2整得,得3x=5解得x=5 3经检验x=53是原方程的解所以,原方程的解是x=5 3.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.9.软件升级后每小时生产80个零件.【解析】分析:设软件升级前每小时生产x个零件,则软件升级后每小时生产(1+13)x个零件,根据工作时间=工作总量÷工作效率结合软件升级后节省的时间,即可得出关于x的分式方程,解之经检验后即可得出结论.详解:设软件升级前每小时生产x个零件,则软件升级后每小时生产(1+13)x个零件,根据题意得:240240402016060(1)3x x-=++,解得:x=60,经检验,x=60是原方程的解,且符合题意,∴(1+13)x=80.答:软件升级后每小时生产80个零件.点睛:本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.10.每月实际生产智能手机30万部.【解析】分析:设原计划每月生产智能手机x 万部,则实际每月生产智能手机(1+50%)x 万部,根据工作时间=工作总量÷工作效率结合提前5个月完成任务,即可得出关于x 的分式方程,解之经检验后即可得出结论.详解:设原计划每月生产智能手机x 万部,则实际每月生产智能手机(1+50%)x 万部,根据题意得:()3003005150%x x-=+,解得:x=20,经检验,x=20是原方程的解,且符合题意,∴(1+50%)x=30.答:每月实际生产智能手机30万部.点睛:本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.11.x-1【解析】【分析】根据分式的混合运算,可先算括号里面的,再把除化为乘法,约分即可.【详解】解:2211121x x x x +⎛⎫+÷ ⎪--+⎝⎭=212(1)111x x x x x --⎛⎫+ ⎪--+⎝⎭ =()21111x x x x -+-+ =1x -故答案为:x-1.【点睛】本题考查分式的混合运算,掌握运算法则正确计算是解题关键.12.5【解析】【分析】根据方程的解满足方程,把方程的解代入,可得关于a 的方程,根据解方程,可得答案.【详解】把x=-15代入2(x a)a(x-1)+=-135,得12()8515(1)5a a -+=---,化简,得(48-50)a=-10.解得a=5,经检验:a=5是分式方程的解,故答案为5.【点睛】本题考查了分式方程,先把方程的跟代入方程得出关于a 的方程,再求a 的值,注意要检验分式方程的解.13.3【解析】【分析】根据分式性质、分式方程增根的条件进行求解.【详解】∵233x m x x ,=---∴233x m x x -=---2(x-3)-x=m,求得x=-m ,∵x-3=0即x=3时,原方程有增根∴-m=3m=-3故答案为-3.【点睛】主要考察的是分式性质、分式方程有增根的条件的知识点.。
北师大版数学八年级下册第五章测试卷一、单选题1.下列式子中,不属于分式的是A .2-73x x + B .2-5a a C .2--2πx x D .222xy x y + 2.要使分式-2(1)(-3)x x x +没有意义,则x 的值为 A .2 B .-1或3 C .-1 D .33.下列各式从左到右变形正确的是A .1-2-2122x y x y x yx y =++ B .0.220.22a b a b a b a b ++=++C .-1-1--x x x y x y += D .--a b a b a b a b +=+ 4.关于x 的分式方程230x x a +=-解为4x =,则常数a 的值为( ) A .1a = B .2a = C .4a = D .10a = 5.下列分式中,计算正确的是A .2()23()3b c a b c a +=+++B .221a b a b a b+=++ C .22(-)()a b a b +=-1 D .22-12---x y xy x y y x = 6.若分式2-1x 与1互为相反数,则x 的值为 A .-2B .1C .-1D .2 7.化简22122-2--1-1-x x x x x x +⎛⎫÷⎪⎝⎭的结果是 A .--2x x B .1x C .1-1x x + D .-11x x +8.施工队要铺设1000米的管道,因在中考期间需停工2天,每天要比原计划多施工30米才能按时完成任务.设原计划每天施工x 米,所列方程正确的是( )A .1000100030x x -+=2 B .1000100030x x -+=2 C .1000100030x x --=2 D .1000100030x x --=2二、填空题9.分式x 2−9x+3的值为0,那么x 的值为_____.10.计算22111m m m ---的结果是_____. 11.方程-3x x -2=4-3x 的解为_______. 12.观察下列分式:-212,x x ,-3448,x x ,-516x ,…,根据你的发现,它的第8项是_____________. 13.已知x 2-2=0,则代数式222(-1)-11x x x x ++=_____.三、解答题14.化简:(1)8x 2y 3·233--42x x y y ⎛⎫⎛⎫÷ ⎪ ⎪⎝⎭⎝⎭; (2) 211-1-1x x x ⎛⎫÷ ⎪+⎝⎭.15.先化简:221-21-11a a a a a a ⎛⎫++÷ ⎪++⎝⎭,再从-1,0,1中选取一个数并代入求值.16.解分式方程: (1)23x x x ++=1; (2)224-1-1x x =.17.某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种.已知乙种树苗的价格比甲种树苗贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同.(1)求甲、乙两种树苗每棵的价格各是多少元?(2)在实际帮扶中,他们决定再次购买甲、乙两种树苗共50棵,此时,甲种树苗的售价比第一次购买时降低了10%,乙种树苗的售价不变,如果再次购买两种树苗的总费用不超过1500元,那么他们最多可购买多少棵乙种树苗?18.某商场在一楼与二楼之间装有一部自动扶梯,以均匀的速度向上行驶,一男孩与一女孩同时从自动扶梯上走到二楼(扶梯本身也在行驶).如果二人都做匀速运动,且男孩每分钟走动的级数是女孩的两倍.又已知男孩走了27级到达顶部,女孩走了18级到达顶部(二人每步都只跨1级).求扶梯有多少级?参考答案1.C【解析】【分析】根据分式的定义分析即可.【详解】A、B、D中的分母都含有字母,是分式;C中的分母含有圆周率π,π是常数,故C不是分式.故选C.【点睛】本题主要考查分式的定义,判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.注意π不是字母,是常数,所以分母中含π的代数式不是分式,是整式.2.B【解析】【分析】根据当分母等于零时分式无意义求解即可.【详解】由题意得(x+1)(x-3)=0,解之得x=-1或x=3.故选B.【点睛】本题考查了分式有无意义的条件,当分母等于零时,分式无意义;当分母不等于零时,分式有意义.3.A【解析】A 原式=222222x y x y x y x y --=++,正确;B 原式=210102a b a b++,错误;C 原式=1x x y ---,错误;D 显然错误.故选A4.D【解析】【分析】根据分式方程的解的定义把x=4代入原分式方程得到关于a 的一次方程,解得a 的值即可.【详解】解:把x=4代入方程230x x a+=-,得 23044a+=-, 解得a=10.经检验,a=10是原方程的解故选D .点睛:此题考查了分式方程的解,分式方程注意分母不能为0.5.D【解析】【分析】根据约分的定义逐项分析即可,根据分式的基本性质把分子、分母中除1以外的公因式约去,叫做分式的约分.【详解】A 、()()23b c a b c +++不能约分,故本选项错误; B 、()()()()2222a b a b b a a b --==--1,故本选项错误; C 、22a b a b ++不能约分,故本选项错误; D 、2222122x y y x xy x y xy x y y x--==---++-,故本选项正确; 故选D .【点睛】本题考查了分式的约分,熟练掌握分式的基本性质是解答本题的关键,本题也考查了因式分解.6.C【解析】【分析】根据互为相反数相加得零列式求解即可.【详解】由题意得2-1x+1=0,解之得x=-1.经检验x=-1是原方程的根.故选C.【点睛】本题考查了相反数的应用及分式方程的解法,其基本思路是把方程的两边都乘以各分母的最简公分母,化为整式方程求解,求出x的值后不要忘记检验.7.A【解析】【分析】先把括号内的分式的分子分母分解因式,再把除法运算转化为乘法运算,利用乘法的分配律计算后,再进行分式的加减运算即可.【详解】(11x-﹣2221xx+-)÷22xx x--=12(1)(1)1(1)(1)2x x xx x x x⎡⎤+--⋅⎢⎥-+--⎣⎦=1(1)2(1)(1) 12(1)(1)2 x x x x xx x x x x-+-⋅-⋅--+--=222x x x x --- =2x x -- 故选A.【点睛】本题考查了分式的混合运算,利用乘法分配律可以使运算变得简单.8.A【解析】分析:设原计划每天施工x 米,则实际每天施工(x+30)米,根据:原计划所用时间﹣实际所用时间=2,列出方程即可.详解:设原计划每天施工x 米,则实际每天施工(x+30)米, 根据题意,可列方程:1000100030x x -+=2, 故选A .点睛:本题考查了由实际问题抽象出分式方程,关键是读懂题意,找出合适的等量关系,列出方程.9.3【解析】【分析】分式的值为0的条件是:(1)分子为0;(2)分母不为0.两个条件需同时具备,缺一不可.据此可以解答本题.【详解】解:由题意可得:x 2﹣9=0且x +3≠0,解得x =3.故答案为:3.【点睛】此题主要考查了分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零.注意:分母不为零这个条件不能少.10.11m - 【解析】【分析】根据分式的加减法法则进行计算即可得答案.【详解】原式=22111m m m +-- =()()111m m m ++- =11m -, 故答案为11m -. 【点睛】本题考查分式的加减运算,熟练掌握分式加减的运算法则是解题的关键,本题属于基础题.11.x=2【解析】【分析】把方程两边都乘以x -3,化为整式方程求解,求出未知数的值要验根.【详解】-3x x -2=4-3x , 两边都乘以x -3,得x -2(x -3)=4,解之得x =2.经检验x =2是分式方程的解.故答案为:x =2.【点睛】本题考查了分式方程的解法,其基本思路是把方程的两边都乘以各分母的最简公分母,化为整式方程求解,求出x 的值后不要忘记检验.12.8128x 【解析】【分析】根据所给代数式探索出分子、分母及符号变与不变的规律,根据规律求解即可.∵第1项()01112-1x x-=⨯, 第2项()122222-1x x=⨯, 第3项()233342--1x x=⨯, 第4项()344482-1x x=⨯, …∴第n 项()12-1n nn x -⨯, ∴第8项()78882128-1=x x ⨯, 故答案为:8128x . 【点睛】 本题考查了规律型---数字类规律与探究,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.此题注意分别观察各部分的符号规律.13.1【解析】【分析】先把所给代数式化简,然后把x 2=2代入进一步化简即可.【详解】222(-1)-11x x x x ++=22(-1)111x x x x x ++-+()() =2-111x x x x +++ =2-11x x x ++,∴x 2=2,∴原式=2-11x x x ++ =2-11x x ++ =+11x x + =1.故答案为1【点睛】本题考查了分式的计算和化简.解决这类题目关键是把握好通分与约分,分式加减的本质是通分,乘除的本质是约分.14.(1)12 x y.(2)x-1. 【解析】【分析】(1)先把除法转化为乘法,然后约分化简即可;(2)先把括号内通分,并把除法转化为乘法,然后把分子、分母分解因式约分化简即可.【详解】解:(1)原式=8x 2y 3·3232-?-4x y x y ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭=12x y; (2)原式=1-1(1)(-1)·1x x x x x+++ =(1)(-1)·1x x x x x ++ =x-1.【点睛】本题考查了分式的混合运算:分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先乘方,再乘除,然后加减,有括号的先算括号里面的;最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.15.1【解析】【分析】先把括号内通分,并把除法转化为乘法,然后把分子、分母分解因式约分化简,再从-1,0,1中选取一个使分式有意义的数代入计算即可.【详解】解:原式=22221---21-(-1)1·111(-1)a a a a a a a a a a a +++÷=+++=-1-1a , 其中a ≠1且a ≠-1,∴a 只能取0.当a=0时,原式=1.【点睛】本题考查了分式的化简求值及分式有意义的条件,分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先乘方,再乘除,然后加减,有括号的先算括号里面的;最后结果分子、分母要进行约分,注意所取数字要使分式有意义.16.(1) x=6;(2)无解【解析】【分析】(1)把方程两边都乘以x (x +3),化为整式方程求解,求出未知数的值要验根; (2)把方程两边都乘以(x +1)(x -1),化为整式方程求解,求出未知数的值要验根.【详解】 (1)23x x x ++=1, 两边都乘以x (x +3),得2(x +3)+x 2= x (x +3),解之得x=6,经检验x=6是原方程的解; (2)224-1-1x x =,两边都乘以(x+1)(x-1),得2(x+1)=4,解之得x=1,检验:当x=1时,(x+1)(x-1)=0,∴x=1是分式方程的增根,原方程无解.【点睛】本题考查了分式方程的解法,其基本思路是把方程的两边都乘以各分母的最简公分母,化为整式方程求解,求出x的值后不要忘记检验.17.(1)甲种树苗每棵的价格是30元,乙种树苗每棵的价格是40元;(2)他们最多可购买11棵乙种树苗.【解析】【分析】(1)可设甲种树苗每棵的价格是x元,则乙种树苗每棵的价格是(x+10)元,根据等量关系:用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同,列出方程求解即可;(2)可设他们可购买y棵乙种树苗,根据不等关系:再次购买两种树苗的总费用不超过1500元,列出不等式求解即可.【详解】(1)设甲种树苗每棵的价格是x元,则乙种树苗每棵的价格是(x+10)元,依题意有480x+10=360x,解得:x=30,经检验,x=30是原方程的解,x+10=30+10=40,答:甲种树苗每棵的价格是30元,乙种树苗每棵的价格是40元;(2)设他们可购买y棵乙种树苗,依题意有30×(1﹣10%)(50﹣y)+40y≤1500,解得y≤11713,∵y为整数,∴y最大为11,答:他们最多可购买11棵乙种树苗.【点睛】本题考查了分式方程的应用,一元一次不等式的应用,弄清题意,找准等量关系与不等关系列出方程或不等式是解决问题的关键.18.扶梯有54级.【解析】【分析】如果设女孩上梯速度为x级/分,男孩速度为2x级/分钟,自动扶梯的速度为y级/分,扶梯有S级.题中有两个等量关系,男孩走27级的时间等于扶梯走(S-27)级的时间;女孩走18级的时间等于扶梯走(S-18)级的时间,据此列出方程组,求出S的值即可.【详解】解:设女孩速度为x级/分钟,电梯速度为y级/分钟,扶梯为s级,则男孩速度为2x级/分钟,由题意,得27-27, 218-18,sx ysx y ⎧=⎪⎪⎨⎪=⎪⎩解得s=54.答:扶梯有54级.【点睛】本题考查应用类问题,分式方程在行程问题中的应用,分析题意,找到合适的等量关系是解决问题的关键.本题属于竞赛题型,有一定难度.难点在于自动扶梯在上升,具有一定的速度,同时甲、乙也在上楼梯,变化量较多.解题时要善于抓住不变量,只有不变量才是列方程的依据.另外,本题求解时设的未知数x、y,只设不求,这种方法在解复杂的应用题时常用来帮助分析数量关系,便于解题.。
北师大版八年级数学下册第五章《分式与分式方程》单元测试题5.下列分式的值,可以为零的是( )6.某校用420元钱到商场去购买“ 84”消毒液,经过还价,每瓶便宜0.5元,结果比用原价多买了 20瓶,7.下列计算正确的是( )1 1.若分式 乞二1有意义,则x 的取值范围为X +1,当x= ________________ 时,分式无意义;当 x= 时,分式值为零.(班级:姓名:得分 、 选择题 (每小题3分,共30分)1. 下列各式:2 21( 1 -x ) 4xx -y 5x 2 其中分式有(5 3 2xA . 1个B . 2个C . 3个D. .4个2.分式的计算结果是(a+1色(金+1」)_______))A .1 La1a+1 B.CD.a)x > 04.已知两个分式:A .相等人说B •互为倒数 汁2其中XM 土 2,则A 与B 的关系是()C.互为相反数A.D.求原价每瓶多少元?设原价每瓶 x 元,则可列出方程为(A.4204200.5=20B .420=20C.420420 x-20=0.5 D. 420420=0.5A .若 x= -1,y=2,则2x x 2-64y 21 17A .x -8yC.-16土的结果是(2z+y B.认丁 C .15C . k 二 3 且 k 二 5 二、填空题(每小题12.对于分式3.使分式的值为正的条件是(I -J+11-11 17的值为(120.(每小题6分,共12分)解下列方程:21 . ( 10分)列分式方程解应用题:年2月的水费是30元.已知今年2月的用水量比去年12月的用水量多5吨,求该市今年居民用水的价格? 、 1 x —222.( 12分)小明解方程 —=1的过程如下:x x解:方程两边乘x ,得1 —( x — 2) =1•① 去括号,得1 — x — 2=1.② 移项,得—x=1 — 1+2.③ 合并同类项,得—x=2.④ 解得x= — 2⑤所以,原分式方程的解为x= — 2.⑥请指出他解答过程中的错误,并写出正确的解答过程.一亠E1 -时 y 1 013.填空:?一 X 一呵0,-z - yx+y30b2 , 2 , 2 y 4-x£14.下列各式①黔白;② s+y:③ E :④m:⑤ z_3 •(填15.若关于x 的方程匸1= m一无解,则X _5 10_2x m=16.在方程‘3 .' J 」中,如果设y=x 2-4x ,那么原方程可化为关于 y 的整式方程是K - 4x17•若+ (2n —1)(2 n 1) 2n —1 2n 1b,对任意自然数n 都成立,则a=,b=1 I’ 1 1 ' 18 .当 y=x+ -时,—一一 | 3 x丿(共58分)6分,共12分)计算:三、解答题 19.(每小题 xyX 2 -2xy y 2的值是 (2)+ ( 4x 2- y 2)-=:,-:「!・:-某市从今年1月1日起调整居民用水价格,每吨水费上涨三分之一,小丽家去年 12月的水费是15元,今序中分子与分母没有公因式的分式是(1)2z 2(1) 1-2(1)化简A ;(2)当x满足不等式组卩―1 -0,且x为整数时,求A的值.x 一3<0,参考答案-—•、1.A2. A3. C4. C 5. C 6. A 7. A 8. D9. D 10. A1、11. x工—112.213. * -214. y 15. 816. 45a1117.-一18. —322三1、19. 解: ( 1)原式: 21K2=,lOy20.解:(1)去分母得:x2- 25 - x - 5=x2- 5x,解得:x=¥,1 5经检验x=「一是分式方程的解;(2)去分母得:3x+3 - 2x+3=1,解得:x= - 5,经检验x= - 5是分式方程的解.+5)吨,依题意有解得:x=1.5 ,经检验得:x=1.5是原方程的根,23. ( 12分)已知A=x 2x1-1xx -11(2x-y)(2x+y)21.解:设去年每吨水费为x元,则今年每吨水费为( 12月的用水量为1.5吨, (2)原式=)x元,小丽家去年年2月的用水量为答:今年居民用水的价格为 1.5元.22.解:小明的解法有三处错误,步骤①去分母有误; 步骤②去括号有误;步骤⑥少检验正确解法为:方程两边乘 x ,得1—( x — 2) =x. 去括号,得1 — x+2=x. 移项,得—x — x= — 1 — 2. 合并同类项,得一2x= — 3.3 解得x=. 23 经检验,x=3是原分式方程的解23 6 x +k10.关于x 的分式方程3+ ------------------ =0有解,则k 满足()x X —1 x(x —1 ) A . k 斗 3B . k 工5D . k 二 3 且 k 工5 4分,共32分)x -1 _0, x -3< 0,/• 1 $< 3. •/ x 为整数, /• x=1 或 x=2,又当x=1或x= — 1时,A 无意义,1.•.当 x=2 时,A= 1=1 .2 —1所以,原分式方程的解为 3 x=. 223.解:(1) A=2x = x 1x -1 x 1 X-1 x _ x 1x -1 X 「1 x _ 1 x -1 X _1 2x 2x1。
北师大版八年级数学(下)单元测试卷第五章《分式与分式方程》班级:___________ 姓名:___________ 得分:___________一.选择题:(每小题3分共36分) 1.在2a b -,x x 1+,5πx +,a ba b+-中,是分式的有( )A .1个B .2个C .3个D .4个2.每千克m 元的糖果x 千克与每千克n 元的糖果y 千克混合成杂拌糖,这样混合后的杂拌糖果每千克的价格为( ) A .y x my nx ++元 B .yx ny mx ++元 C .y x n m ++元 D .12x y m n ⎛⎫+ ⎪⎝⎭元3.当x =2时,下列分式中,值为零的是( ) A .2322+--x x x B .942--x x C .21-x D .12++x x4.下列分式是最简分式的是( ) A .11m m -- B .3xy y xy - C .22x y x y -+ D .6132mm -5.若34y x =,则x yx+的值为( ) A .1 B .47 C .54 D .746.计算⎪⎭⎫⎝⎛-÷-x x x x 11所得的正确结论是( ) A.11x - B.1 C. 11x + D.-1 7.a ÷b ×b 1÷c ×c 1÷d ×d1等于( )A .aB .222dc b a C .d aD .ab 2c 2d 28.计算22193m m m --+的结果为: ( ) A .13m + B .-13m - C .-13m + D .13m - 9.分式121x x +-的分子分母都加1,所得的分式22x x +的值比121x x +-( ) A .减小了 B .不变 C .增大了 D .不能确定 10.若241()w 1a 42a+⋅=--,则w=( ) A.a 2(a 2)+≠- B.a 2(a 2)-+≠ C.a 2(a 2)-≠ D.a 2(a 2)--≠- 11.关于x 的方式方程232x mx +=-的解是正数,则m 可能是( ) A .﹣4 B .﹣5 C .﹣6 D .﹣7 12.如果关于x 的方程2435x a x b++=的解不是负值,那么a 与b 的关系是( ) A . a >35b B . b≥35a C .5a≥3b D .5a=3b二、填空题:(每小题3分共12分)13.化简:23410ab ba = .14.已知31=+a a ,则221a a +的值是 。
第五章分式与分式方程一、选择题1.分式﹣可变形为()A.﹣B.C.﹣D.2.在中,分式的个数是()A.2B.3C.4D.53.下列算式中,你认为错误的是()A. B. C. D.4.化简的结果为()A.﹣1B.1C.D.5.分式方程﹣2=的解是()A.x=±1B.x=﹣1+C.x=2D.x=﹣16.设m﹣n=mn,则的值是()A. B.0 C.1 D.-17.如果分式的值为零,那么的值是()A. B. C. D.8.如果分式的值为负数,则的x取值范围是( )A. B. C. D.9.解方程去分母得()A. B.C. D.10.若m+n﹣p=0,则的值是()A.-3B.-1C.1D.3二、填空题11. 方程的解为________.12. 若分式方程=a无解,则a的值为________13.若分式的值为零,则=________。
14. 分式方程﹣=0的解是________.15.化简:=________.16.________17.计算:=________ .18.已知关于x的方程=3的解是正数,则m的取值范围是________.三、解答题19.解方程:.20.解分式方程:.21.计算:(1)y(2x﹣y)+(x+y)2;(2)(y﹣1﹣)÷.22.某县为了落实中央的“强基惠民工程”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的3倍.如果由甲、乙队先合做15天,那么余下的工程由甲队单独完成还需10天.(1)这项工程的规定时间是多少天?(2)已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙队合做来完成.则该工程施工费用是多少?参考答案一、选择题D B B B D D C D C A二、填空题11.x=﹣112.1或﹣113.-314.1515.x+y16.a2-b²17.18.m>-6且m≠-4三、解答题19.解:=1+ ,2x=x﹣2+1,x=﹣1,经检验x=﹣1是原方程的解,则原方程的解是x=﹣120.解:去分母得:x(x+1)﹣x2+1=2,去括号得:x2+x﹣x2+1=2,解得:x=1,经检验x=1是增根,分式方程无解21.解:(1)原式=2xy﹣y2+x2+2xy+y2=4xy+x2;(2)原式=•=.22.解:(1)设这项工程的规定时间是x天,根据题意得:(+)×15+=1.解得:x=30.经检验x=30是原分式方程的解.答:这项工程的规定时间是30天.(2)该工程由甲、乙队合做完成,所需时间为:1÷(+)=22.5(天),则该工程施工费用是:22.5×(6500+3500)=225000(元).答:该工程的费用为225000元.。
【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
】第五章复习一、填空题 1.当x 时,分式2+x x有意义。
2.在函数y=22-x 中,自变量x 的取值范围是 。
3.当m = 时,关于x 的分式方程213x mx +=--无解4.当x = 时,分式33x x --为0。
5.约分:112--x x = 。
6.化简211xx x -÷的结果是 . 7.方程423532=-+-xx x 的解是 . 8.某市对一段全长1500米的道路进行改造.原计划每天修x 米,为了尽量减少施工对城市交通所造成的影响,实际施工时,每天修路比原计划的2倍还多35米,那么修这条路实际用了 天。
二.、选择题 9、代数式42,1,3,31nm b a b a ,x -++π中,分式有( ) A 、1个; B 、2个; C 、3个; D 、4个。
10.若分式122--x x 的值为0,则x 的值为( ) A. 1B. -1C. ±1D.211.计算22()ab ab的结果为( ) A.bB .aC.1 D1b12、将分式yx x +2中的x 、y 的值同时扩大3倍,则 扩大后分式的值( )A 、扩大3倍;B 、缩小3倍;C 、保持不变;D 、无法确定。
13.计算()a b a bb a a+-÷的结果为( )A .a b b - B .a b b + C .a b a - D .a ba+ 14、小马虎在下面的计算中只作对了一道题,他做对的题目是( )A 、b a b a 22=⎪⎭⎫ ⎝⎛ B 、23a a a =÷ C 、b a b a +=+211 D 、1-=---y x y x 15.一件工作,甲独做a 小时完成,乙独做b 小时完成,则甲、乙两人合作完成需要( )小时. A.11a b +; B.1ab ; C.1a b +; D.aba b+ 三.简答题 16.(212x x --2144x x -+)÷222x x -17、解方程:22221=-+-xxx18.先化简,再求值:221111121x x x x x +-÷+--+,其中31x =.19.(课堂上,李老师出了这样一道题:已知352008x -=,求代数式)1x 3x 1(1x 1x 2x 22+-+÷-+-,小明觉得直接代入计算太繁了,请你来帮他解决,并写出具体过程。
20.今年以来受各种因素的影响,猪肉的市场价格仍在不断上升.据调查,今年5月份一级猪肉的价格是1月份猪肉价格的1.25倍.小英同学的妈妈同样用20元钱在5月份购得一级猪肉比在1月份购得的一级猪肉每斤是肉少0.4斤,那么今年1月份的多少元?21.在暴雨到来之前,武警某部承担了一段长150米的河堤加固任务,加固40米后,接到上级抗旱防汛指挥部的指示,要求加快施工进度,为此,该部队在保证施工质量的前提下,投入更多的兵力,每天多加固15米,这样一共用了3天完成了任务。
问接到指示后,该部队每天加固河堤多少米?22.在2008年春运期间,我国南方出现大范围冰雪灾害,导致某地电路断电.该地供电局组织电工进行抢修.供电局距离抢修工地15千米.抢修车装载着所需材料先从供电局出发,15分钟后,电工乘吉普车从同一地点出发,结果他们同时到达抢修工地.已知吉普车速度是抢修车速度的1.5倍,求这两种车的速度。
23.某一工程,在工程招标时,接到甲、乙两个工程队的投标书.施工一天,需付甲工程队工程款1.2万元,乙工程队工程款0.5万元.工程领导小组根据甲、乙两队的投标书测算,有如下方案:(1)甲队单独完成这项工程刚好如期完成;(2)乙队单独完成这项工程要比规定日期多用6天;(3)若甲、乙两队合做3天,余下的工程由乙队单独做也正好如期完成.试问:在不耽误工期的前提下,你觉得哪一种施工方案最节省工程款?请说明理由.初中奥数题试题一一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么 ( )A.a,b都是0 B.a,b之一是0C.a,b互为相反数 D.a,b互为倒数2.下面的说法中正确的是 ( )A.单项式与单项式的和是单项式B.单项式与单项式的和是多项式C.多项式与多项式的和是多项式D.整式与整式的和是整式3.下面说法中不正确的是 ( )A. 有最小的自然数 B.没有最小的正有理数C.没有最大的负整数 D.没有最大的非负数4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么 ( )A.a,b同号 B.a,b异号 C.a>0 D.b>05.大于-π并且不是自然数的整数有 ( )A.2个 B.3个 C.4个 D.无数个6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身。
这四种说法中,不正确的说法的个数是 ( )A.0个 B.1个 C.2个 D.3个7.a代表有理数,那么,a和-a的大小关系是 ( )A.a大于-a B.a小于-aC.a大于-a或a小于-a D.a不一定大于-a8.在解方程的过程中,为了使得到的方程和原方程同解,可以在原方程的两边( ) A.乘以同一个数 B.乘以同一个整式C.加上同一个代数式 D.都加上19.杯子中有大半杯水,第二天较第一天减少了10%,第三天又较第二天增加了10%,那么,第三天杯中的水量与第一天杯中的水量相比的结果是( )A.一样多 B.多了 C.少了 D.多少都可能10.轮船往返于一条河的两码头之间,如果船本身在静水中的速度是固定的,那么,当这条河的水流速度增大时,船往返一次所用的时间将( )A.增多 B.减少 C.不变 D.增多、减少都有可能二、填空题(每题1分,共10分)1.19891990²-19891989²=______。
2.1-2+3-4+5-6+7-8+…+4999-5000=______。
3.当a=-0.2,b=0.04时,代数式 a²-b的值是______。
4.含盐30%的盐水有60千克,放在秤上蒸发,当盐水变为含盐40%时,秤得盐水的重是______克。
三、解答题1.甲乙两人每年收入相等,甲每年储蓄全年收入的15,乙每月比甲多开支100元,三年后负债600元,求每人每年收入多少?4.一个人以3千米/小时的速度上坡,以6千米/小时的速度下坡,行程12千米共用了3小时20分钟,试求上坡与下坡的路程。
5.求和:。
6.证明:质数p除以30所得的余数一定不是合数。
初中奥数题试题二一、选择题1.数1是 ( )A.最小整数 B.最小正数 C.最小自然数 D.最小有理数2.a为有理数,则一定成立的关系式是 ( )A.7a>a B.7+a>a C.7+a>7 D.|a|≥73.3.1416×7.5944+3.1416×(-5.5944)的值是 ( )A.6.1632 B.6.2832 C.6.5132 D.5.36924.在-4,-1,-2.5,-0.01与-15这五个数中,最大的数与绝对值最大的那个数的乘积是( )A.225 B.0.15 C.0.0001 D.1二、填空题1.计算:(-1)+(-1)-(-1)×(-1)÷(-1)=______。
2.求值:(-1991)-|3-|-31||=______。
3.n为正整数,1990n-1991的末四位数字由千位、百位、十位、个位、依次排列组成的四位数是8009。
则n的最小值等于______。
4.不超过(-1.7)²的最大整数是______。
5.一个质数是两位数,它的个位数字与十位数字的差是7,则这个质数是______。
三、解答题1.已知3x2-x=1,求6x3+7x2-5x+2000的值。
2.某商店出售的一种商品,每天卖出100件,每件可获利4元,现在他们采用提高售价、减少进货量的办法增加利润,根据经验,这种商品每涨价1元,每天就少卖出10件。
试问将每件商品提价多少元,才能获得最大利润?最大利润是多少元?3.如图1-96所示,已知CB⊥AB,CE平分∠BCD,DE平分∠CDA,∠1+∠2=90°。
求证:DA⊥AB。
4.求方程|xy|-|2x|+|y|=4的整数解。
5.王平买了年利率7.11%的三年期和年利率为7.86%的五年期国库券共35000元,若三年期国库券到期后,把本息再连续存两个一年期的定期储蓄,五年后与五年期国库券的本息总和为47761元,问王平买三年期与五年期国库券各多少?(一年期定期储蓄年利率为5.22%)6. 对k,m的哪些值,方程组至少有一组解?初中奥数题试题三一、选择题1.下面给出的四对单项式中,是同类项的一对是 ( )A. x²y与-3x²zB.3.22m²n3与 n3m²C.0.2a²b与0.2ab²D.11abc与 ab2.(x-1)-(1-x)+(x+1)等于 ( )A.3x-3 B.x-1 C.3x-1 D.x-33.两个10次多项式的和是 ( )A.20次多项式 B.10次多项式C.100次多项式 D.不高于10次的多项式4.若a+1<0,则在下列每组四个数中,按从小到大的顺序排列的一组是 ( ) A.a,-1,1,-a B.-a,-1,1,aC.-1,-a,a,1 D.-1,a,1,-a5.a=-123.4-(-123.5),b=123.4-123.5,c=123.4-(-123.5),则 ( )A.c>b>a B.c>a>b C.a>b>c D.b>c>a6.若a<0,b>0,且|a|<|b|,那么下列式子中结果是正数的是 ( ) A.(a-b)(ab+a) B.(a+b)(a-b)C.(a+b)(ab+a) D.(ab-b)(a+b)7.从2a+5b减去4a-4b的一半,应当得到( )A.4a-b B.b-a C.a-9b D.7b8.a,b,c,m都是有理数,并且a+2b+3c=m,a+b+2c=m,那么b与c ( ) A.互为相反数 B.互为倒数 C.互为负倒数 D.相等9.张梅写出了五个有理数,前三个有理数的平均值为15,后两个有理数的平均值是10,那么张梅写出的五个有理数的平均值是 ( )A.5B.8C.12D.13二、填空题(每题1分,共10分)1.2+(-3)+(-4)+5+6+(-7)+(-8)+9+10+(-11)+(-12)+13+14+15=______。
2.若P=a²+3ab+b²,Q=a²-3ab+b²,则代入到代数式P-[Q-2P-(-P-Q)]中,化简后,是______。