17章:2013年春季中学学科单元评价测试题《反比例函数》
- 格式:doc
- 大小:185.50 KB
- 文档页数:2
初三数学 反比例函数全章测试(60分钟,满分100分)一.填空题:(每题6分,共48分)1.函数13--=x y 的自变量的取值范围是 . 2.反比例函数xy 6=当自变量2-=x 时,函数值是 .3.图象经过点)4,2(--A 的反比例函数的解析式为 . 4.当0<x 时,反比例函数xy 3-=中,变量y 随x 的增大而 . 5.函数2||)1(--=k x k y 是y 关于x 反比例函数,则它的图象不经过 的象限.6.反比例函数x ky =与一次函数2+=x y 图象的交于点),1(a A -,则=k . 7.反比例函数xk y 1+=的图象经过),(11y x A ,),(22y x B 两点,其中021<<x x 且21y y >,则k 的范围是 .8.已知:点A 在反比例函数图象上,B x AB 轴于点⊥,点C (0,1),且AB C ∆的面积是3,如图,则反比 例函数的解析式为 .二.选择题:(每题5分,共35分)9.下列函数中,变量y 是x 的反比例函数的是( ).A . 21x y =B .1--=x y C .32+=x y D .11-=x y10.在物理学中压力F ,压强p 与受力面积S 的关系是:SFp =则下列描述中正确的是( ).A 当压力F 一定时,压强p 是受力面积S 的正比例函数B 当压强p 一定时,压力F 是受力面积S 的反比例函数C 当受力面积S 一定时,压强p 是压力F 的反比例函数D 当压力F 一定时,压强p 是受力面积S 的反比例函数11.反比例函数xy 6=与一次函数1+=x y 的图象交于点)3,2(A ,利用图象的对称性可知它们的另一个交点是( ).A )2,3(B )2,3(--C )3.2(--D )3,2(-12.若r 为圆柱底面的半径,h 为圆柱的高.当圆柱的侧面积一定时,则h 与r 之间函数关系的图象大致是( ).13.某气球内充满了一定质量的气体,当温度不变时,气球 内气体的气压P(kPa)是气体体积V(m 3)的反比例函数,其图 象如图所示. 当气球内的气压大于140kPa 时,气球将爆炸,为了安全起见,气体体积应( ). (13题图)h r O h r O h r O h r O A . B . C . D .A .不大于3m 3524;B .不小于3m 3524;C .不大于3m 3724;D .不小于3m 372414xk 1-的图象不可能是....( ).A B C D15.正方形ABCD 的顶点A (2,2),B(-2,2)C(-2,-2),反比例函数x y 2=与xy 2-=的图象均与正方形ABCD 的边相交,如图,则图中的阴影部分的面积是( ) . A 、2 B 、4 C 、8 D 、6三.解答题:(16题5分,17、18、19题每题4分,共17分)16.你吃过拉面吗?实际上在做拉面的过程中就渗透着数学知识:一定体积的面团做成拉面时,面条的总长度y (m )是面条的粗细(横截面积)S (mm 2)的反比例函数,其图象如图所示.⑴写出y (m )与S (mm 2)的函数关系式;⑵求当面条粗1.6 mm 2时,面条的总长度是多少米?x O yxOyxO yxOyS y(m)(mm 2)O P(4,32)100806040205432117.如图,正方形ABCD 的边长是2,E ,F 分别在BC ,CD 两边上,且E ,F 与BC ,CD 两边的端点不重合,AEF ∆的面积是1,设BE=x ,DF=y.(1)求y 关于x 函数的解析式;(2) 判断在(1)中,y 关于x 的函数是什么函数? (3)写出此函数自变量x 的范围.18.已知:反比例函数的图象经过)2,1(a a A )1,12(aaa a B ---两点, 〈1〉 求反比例函数解析式;〈2〉 若点C )1,(m 在此函数图象上,则ABC ∆的面积是 .(填空)19.如图,已知直线m x y +=1与x 轴,y 轴分别交于点A 、B ,与双曲线xky =2(x <0)分别交于点C 、D ,且点C 的坐标为(-1,2). ⑴ 分别求出直线及双曲线的解析式;⑵利用图象直接写出,当x 在什么范围内取值时,21y y >. 答案1.1≠x ;2.3-=y ;3.xy 8=;4.增大;5.第一、三象限;6. ,1- 7.1->k 8.xy 6=;9.B ;10.D ;11.B ;12.B ;13.B ;14.D ;15.C 16.(1) x y 128= (2)80m ;17.(1)3+=x y xy 2-=(2)12-<<-x18.<1>x y 2=,<2> 3 19.(1)xy 2=(2)反比例函数(3)20<≤xxyD C BAO专项训练二概率初步一、选择题1.(徐州中考)下列事件中的不可能事件是( )A.通常加热到100℃时,水沸腾 B.抛掷2枚正方体骰子,都是6点朝上C.经过有交通信号灯的路口,遇到红灯 D.任意画一个三角形,其内角和是360°2.小张抛一枚质地均匀的硬币,出现正面朝上的可能性是( )A.25% B.50% C.75% D.85%3.(2016·贵阳中考)2016年5月,为保证“中国大数据产业峰会及中国电子商务创新发展峰会”在贵阳顺利召开,组委会决定从“神州专车”中抽调200辆车作为服务用车,其中帕萨特60辆、狮跑40辆、君越80辆、迈腾20辆,现随机从这200辆车中抽取1辆作为开幕式用车,则抽中帕萨特的概率是( )A.110B.15C.310D.254.(金华中考)小明和小华参加社会实践活动,随机选择“打扫社区卫生”和“参加社会调查”其中一项,那么两人同时选择“参加社会调查”的概率为( )A.14B.13C.12D.345.在一个不透明的袋中装着3个红球和1个黄球,它们只有颜色上的区别,随机从袋中摸出2个小球,两球恰好是一个黄球和一个红球的概率为( )A.12B.13C.14D.166.现有两枚质地均匀的正方体骰子,每枚骰子的六个面上都分别标有数字1、2、3、4、5、6.同时投掷这两枚骰子,以朝上一面所标的数字为掷得的结果,那么所得结果之和为9的概率是( )A.13B.16C.19D.1127.分别转动图中两个转盘一次,当转盘停止转动时,两个指针分别落在某个数所表示的区域,则两个数的和是2的倍数或3的倍数的概率等于( )A.316B.38C.58D.1316第7题图第8题图8.(2016·呼和浩特中考)如图,△ABC是一块绿化带,将阴影部分修建为花圃,已知AB=15,AC=9,BC=12,阴影部分是△ABC 的内切圆,一只自由飞翔的小鸟将随机落在这块绿化带上,则小鸟落在花圃上的概率为( )A.16B.π6C.π8D.π5二、填空题9.已知四个点的坐标分别是(-1,1),(2,2),⎝ ⎛⎭⎪⎫23,32,⎝ ⎛⎭⎪⎫-5,-15,从中随机选取一个点,在反比例函数y =1x 图象上的概率是________.10.(黄石中考)如图所示,一只蚂蚁从A 点出发到D ,E ,F 处寻觅食物.假定蚂蚁在每个岔路口都可能随机选择一条向左下或右下的路径(比如A 岔路口可以向左下到达B 处,也可以向右下到达C 处,其中A ,B ,C 都是岔路口).那么,蚂蚁从A 出发到达E 处的概率是________.11.(贵阳中考)现有50张大小、质地及背面图案均相同的《西游记》任务卡片,正面朝下放置在桌面上,从中随机抽取一张并记下卡片正面所绘人物的名字后原样放回,洗匀后再抽.通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3.估计这些卡片中绘有孙悟空这个人物的卡片张数约为________.12.(荆门中考)荆楚学校为了了解九年级学生“一分钟内跳绳次数”的情况,随机选取了3名女生和2名男生,则从这5名学生中,选取2名同时跳绳,恰好选中一男一女的概率是________.13.(重庆中考)点P 的坐标是(a ,b ),从-2,-1,0,1,2这五个数中任取一个数作为a 的值,再从余下的四个数中任取一个数作为b 的值,则点P (a ,b )在平面直角坐标系中第二象限内的概率是________.14.★从-1,1,2这三个数字中,随机抽取一个数记为a ,那么,使关于x 的一次函数y =2x +a 的图象与x 轴、y 轴围成的三角形的面积为14,且使关于x 的不等式组⎩⎨⎧x +2≤a ,1-x ≤2a有解的概率为________.三、解答题15.(南昌中考)在一个不透明的袋子中装有仅颜色不同的10个小球,其中红球4个,黑球6个.(1)先从袋子中取出m (m >1)个红球,再从袋子中随机摸出1个球,将“摸出黑球”记为事件A ,请完成下列表格:(2)先从袋子中取出m 个红球,再放入m 个一样的黑球并摇匀,随机摸出1个黑球的概率等于45,求m 的值.16.(菏泽中考)锐锐参加我市电视台组织的“牡丹杯”智力竞答节目,答对最后两道单选题就顺利通关,第一道单选题有3个选项,第二道单选题有4个选项,这两道题锐锐都不会,不过锐锐还有两个“求助”可以用(使用“求助”一次可以让主持人去掉其中一题的一个错误选项).(1)如果锐锐两次“求助”都在第一道题中使用,那么锐锐通关的概率是________;(2)如果锐锐两次“求助”都在第二道题中使用,那么锐锐通关的概率是________;(3)如果锐锐将每道题各用一次“求助”,请用树状图或者列表来分析他顺利通关的概率.17.(丹东中考)甲、乙两人进行摸牌游戏.现有三张形状大小完全相同的牌,正面分别标有数字2,3,5.将三张牌背面朝上,洗匀后放在桌子上.(1)甲从中随机抽取一张牌,记录数字后放回洗匀,乙再随机抽取一张.请用列表法或画树状图的方法,求两人抽取相同数字的概率;(2)若两人抽取的数字之和为2的倍数,则甲获胜;若抽取的数字之和为5的倍数,则乙获胜.这个游戏公平吗?请用概率的知识加以解释.18.一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有数字3,3,5,x,甲、乙两人每次同时从袋中各随机摸出1个球,并计算摸出的这2个球上数字之和,记录后将小球放回袋中搅匀,进行重复实验.实验数据如下表:(1)如果实验继续进行下去,根据上表数据,出现“和为8”的频率稳定在它的概率附近,估计出现“和为8”的概率是________;(2)如果摸出的这两个小球上数字之和为9的概率是13,那么x的值可以取4吗?请用列表法或画树状图法说明理由;如果x的值不可以取4,请写出一个符合要求的x的值.参考答案与解析1.D 2.B 3.C 4.A 5.A 6.C 7.C8.B 解析:∵AB =15,BC =12,AC =9,∴AB 2=BC 2+AC 2,∴△ABC 为直角三角形,∴△ABC 的内切圆半径为12+9-152=3,∴S △ABC =12AC ·BC =12×12×9=54,S 圆=9π,∴小鸟落在花圃上的概率为9π54=π6. 9.12 10.12 11.15 12.35 13.15 14.1315.解:(1)4 2或3(2)根据题意得6+m 10=45,解得m =2,所以m 的值为2. 16.解:(1)14 解析:第一道肯定能对,第二道对的概率为14,所以锐锐通关的概率为14; (2)16 解析:锐锐两次“求助”都在第二道题中使用,则第一道题对的概率为13,第二道题对的概率为12,所以锐锐能通关的概率为12×13=16; (3)锐锐将每道题各用一次“求助”,分别用A ,B 表示剩下的第一道单选题的2个选项,a ,b ,c 表示剩下的第二道单选题的3个选项,树状图如图所示.共有6种等可能的结果,锐锐顺利通关的只有1种情况,∴锐锐顺利通关的概率为16.17.解:(1)所有可能出现的结果如下表,从表格可以看出,总共有9种结果,每种结果出现的可能性相同,其中两人抽取相同数字的结果有3种,所以两人抽取相同数字的概率为13; (2)不公平.从表格可以看出,两人抽取数字之和为2的倍数有5种,两人抽取数字之和为5的倍数有3种,所以甲获胜的概率为59,乙获胜的概率为13.∵59>13,∴甲获胜的概率大,游戏不公平.2 3 5 22 23 2 5 2 32 3 3 3 5 3 52 53 5 5 518.解:(1)0.33(2)图略,当x 为4时,数字和为9的概率为212=16≠13,所以x 不能取4;当x =6时,摸出的两个小球上数字之和为9的概率是13.。
一、选择题1.如图,正比例函数y = ax 的图象与反比例函数ky x=的图象相交于A ,B 两点,其中点A 的横坐标为2,则不等式ax<kx的解集为( )A .x < - 2或x > 2B .x < - 2或0 < x < 2C .-2 < x < 0或0 < x < 2D .-2 < x < 0或 x > -22.已知()()()112233,,,,,A x y B x y C x y 是反比例函数2y x=上的三点,若123x x x <<,213y y y <<,则下列关系式不正确的是 ( )A .120x x <B .130x x <C .230x x <D .120x x +<3.如图,已知在平面直角坐标系中,Rt ABC 的顶点()0,3A ,()3,0B ,90ABC ∠=︒,函数()40y x x=>的图象经过点C ,则AC 的长为( )A .32B .5C .26D 264.已知反比例函数2y -x=,点A (a-b ,2),B (a-c ,3)在这个函数图象上,下列对于a ,b ,c 的大小判断正确的是( ) A .a <b <c B .a <c <b C .c <b <a D .b <c <a5.在反比例函数13my x-=图象上有两点()11,A x y ,()22,B x y ,120x x <<,12y y <,则m 的取值范围是( )A .13m >B .13m <C .13m ≥D .13m ≤6.如图,反比例函数ky x=的图像经过平行四边形ABCD 的顶点C ,D ,若点A 、点B 、点C 的坐标分别为()3,0,()0,4,(),a b ,且7.5a b +=,则k 的值是( )A .7.5B .9C .10D .127.一次函数y =kx ﹣k 与反比例函数y =kx在同一直角坐标系内的图象大致是( ) A . B . C .D .8.同一坐标系中,函数()1y k x +=与ky x=的图象正确的是( ) A . B .C .D .9.已知二次函数2y ax bx c =++的图象如图,则一次函数y ax bc =+与反比例函数abcy x=在平面直角坐标系中的图象可能是( ).A .B .C .D .10.给出下列函数:①y =﹣3x +2:②y =3x ;③y =﹣5x:④y =3x ,上述函数中符合条件“当x >1时,函数值y 随自变量x 增大而增大”的是( ) A .①③ B .③④ C .②④ D .②③11.已知反比例函数ky x=的图象过二、四象限,则一次函数y kx k =+的图象大致是( )A .B .C .D .12.如图, O 为坐标原点,点B 在x 轴的正半轴上,四边形OBCA 是平行四边形,45sin AOB ∠=,反比例函数()0m y m x=>在第一象限内的图像经过点A ,与BC 交于点F ,若点F 为BC 的中点,且AOF 的面积为12,则m 的值为( )A .16B .24C .36D .48二、填空题13.有5张正面分别有数字-1,14-,0,1,3的卡片,它们除数字不同外全部相同,将它们背面朝上,洗匀后从中随机的抽取一张.记卡片上的数字为a ,则使以x 为自变量的反比例函数37a y x-=经过二、四象限,且关于x 的一元二次方程2230ax x -+=有实数解的概率是__________.14.如图,在平面直角坐标系xOy 中,已知直线(0)y kx k =>分别交反比例函数1y x=和9y x=在第一象限的图象于点A ,B ,过B 作BD x ⊥轴于点D ,交1y x =的图象于点C .若BA BC =,则k 的值为________.15.如图,在平面直角坐标系中,直线36y x =-+与x 轴,y 轴分别交于A 、B 两点,以AB 为边在第一象作正方形ABCD ,则过D 的反比例函数解析式为________.16.如图,在方格纸中(小正方形的边长为1),反比例函数ky x=的图象与直线AB 的交点A 、B 在图中的格点上,点C 是反比例函数图象上的一点,且与点A 、B 组成以AB 为底的等腰△,则点C 的坐标为________.17.反比例函数2(0)m y x x+=<的图象如图所示,则m 的取值范围为__________.18.已知点(1,),(3,)A a B b 都在反比例函数4y x=的图像上,则,a b 的大小关系为____.(用“<”连接)19.若A 、B 两点关于y 轴对称,且点A 在双曲线y =12x上,点B 在直线y =x +6上,设点A 的坐标为(a ,b ),则a bb a+=_____. 20.从﹣3,﹣2,﹣1,0,1,2这6个数中任意取出一个数记作k ,则既能使函数y =k x的图象经过第一、第三象限,又能使关于x 的一元二次方程x 2﹣kx +1=0有实数根的概率为_____.参考答案三、解答题21.如图,一次函数3y x =-+的图像与反比例函数(0)ky k x=≠在第一象限的图像交于()1,A a 和B 两点,与x 轴交于点C .(1)求反比例函数的解析式;(2)求出另一个交点B 的坐标,并直接写出当0x >时,不等式3kx x-+<的解集; (3)若点P 在x 轴上,且APC △的面积为5,求点P 的坐标.22.如图,为某公园“水上滑梯”的侧面图,其中BC 段可看成是一段双曲线,建立如图的坐标系后,其中,矩形AOEB 为向上攀爬的梯子,OA=5米,进口//O AB D ,且AB=2米,出口C 点距水面的距离CD 为1米,B 、C 之间的水平距离DE 的长度为多少米?23.小芳从家骑自行车去学校,所需时间y (min )与骑车速度x (/m min )之间的反比例函数关系如图.(1)小芳家与学校之间的距离是多少? (2)写出y 与x 的函数表达式;(3)若小芳7点20分从家出发,预计到校时间不超过7点28分,请你用函数的性质说明小芳的骑车速度至少为多少? 24.阅读理解:材料一:若三个非零实数x ,y ,z 满足:只要其中一个数的倒数等于另外两个数的倒数的和,则称这三个实数x ,y ,z 构成“和谐三数组”.材料二:若关于x 的一元二次方程ax 2+bx +c = 0(a ≠0)的两根分别为1x ,2x ,则有12bx x a +=-,12c x x a⋅=. 问题解决: (1)请你写出三个能构成“和谐三数组”的实数 ;(2)若1x ,2x 是关于x 的方程ax 2+bx +c = 0 (a ,b ,c 均不为0)的两根,3x 是关于x 的方程bx +c =0(b ,c 均不为0)的解.求证:x 1,x 2,x 3可以构成“和谐三数组”; (3)若A (m ,y 1) ,B (m + 1,y 2) ,C (m +3,y 3)三个点均在反比例函数4y x=的图象上,且三点的纵坐标恰好构成“和谐三数组”,求实数m 的值. 25.如图,已知一次函数y kx b =+的图象与反比例函数my x=的图象交于点()3,A a ,点(142,2)B a -.(1)求反比例函数的表达式;(2)若一次函数图象与y 轴交于点C ,点D 为点C 关于原点O 的对称点,求ACD △的面积.26.已知一次函数y =kx +b (k ≠0)的图象经过A (3,18)和B (﹣2,8)两点. (1)求一次函数的解析式;(2)若一次函数y =kx +b (k ≠0)的图象与反比例函数y =mx(m ≠0)的图象只有一个交点,求交点坐标.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】先根据反比例函数与正比例函数的性质求出B 点横坐标,再由函数图象即可得出结论. 【详解】∵正比例函数y ax =的图象与反比例函数ky x=的图象相交于A ,B 两点, ∴A ,B 两点坐标关于原点对称, ∵点A 的横坐标为2, ∴B 点的横坐标为-2, ∵k ax x<, ∴在第一和第三象限,正比例函数y ax =的图象在反比例函数ky x=的图象的下方, ∴2x <-或02x <<, 故选:B . 【点睛】本题考查了反比例函数与一次函数的交点问题,关键是掌握正比例函数与反比例函数图象交点关于原点对称.2.A解析:A 【分析】根据反比例函数2y x=和x 1<x 2<x 3,y 2<y 1<y 3,可得点A ,B 在第三象限,点C 在第一象限,得出x 1<x 2<0<x 3,再选择即可. 【详解】解:∵反比例函数2y x=中,2>0, ∴在每一象限内,y 随x 的增大而减小, ∵x 1<x 2<x 3,y 2<y 1<y 3,∴点A ,B 在第三象限,点C 在第一象限, ∴x 1<x 2<0<x 3,∴x 1•x 2>0,x 1•x 3<0,x 2•x 3<0,x 1+x 2<0, 故选:A . 【点睛】本题考查了反比例函数图象上点的坐标特征,解答此题的关键是熟知反比例函数的增减性,本题是逆用,难度有点大.3.B解析:B 【分析】如图(见解析),先根据点A 、B 的坐标可得3,45OA OB OBA ==∠=︒,从而可得45CBD ∠=︒,再根据等腰直角三角形的判定与性质可得BD CD =,设BD CD a ==,从而可得点C 的坐标为(3,)C a a +,然后利用反比例函数的解析式可求出a 的值,最后利用两点之间的距离公式即可得.【详解】如图,过点C 作CD x ⊥轴于点D ,()()0,3,3,0A B ,3OA OB ∴==,Rt AOB ∴是等腰直角三角形,45OBA ∠=︒, 90ABC ∠=︒,18045CBD OBA ABC ∠=︒-∠-∠=∴︒, Rt BCD ∴是等腰直角三角形, BD CD ∴=,设BD CD a ==,则3OD OB BD a =+=+,(3,)C a a ∴+,将(3,)C a a +代入()40y x x =>得:43a a=+, 解得1a =或40a =-<(不符题意,舍去),(4,1)C ∴,由两点之间的距离公式得:22(40)(13)25AC =-+-=, 故选:B .【点睛】本题考查了反比例函数的几何应用、等腰直角三角形的判定与性质、两点之间的距离公式等知识点,熟练掌握等腰直角三角形的判定与性质是解题关键.4.B解析:B 【分析】利用反比例函数图象上点的坐标特征得到2(a-b )=-2,3(a-c )=-2,则a-b=-1<0,a-c=-23<0,再消去a 得到-b+c=-13<0,然后比较a 、b 、c 的大小关系.【详解】∵点A (a-b ,2),B (a-c ,3)在函数2y -x=的图象上, ∴2(a-b )=-2,3(a-c )=-2, ∴a-b=-1<0,a-c=-23<0, ∴a <b ,a <c ,∵-b+c=-13<0, ∴c <b , ∴a <c <b . 故选B . 【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数y=kx(k 为常数,k≠0)的图象是双曲线,图象上的点(x ,y )的横纵坐标的积是定值k ,即xy=k .5.A解析:A 【分析】根据反比例函数的图象与性质,可得该反比例函数图象的两个分支分别位于第二、四象限,从而可确定1-3m 的取值,进而求出m 的取值范围. 【详解】解:∵120x x <<时,12y y <, ∴反比例函数图象位于第二、四象限, ∴1-3m <0, 解得:13m >, 故选:A . 【点睛】此题主要考查了反比例函数的图象与性质,熟练掌握相关性质是解答此题的关键.6.B解析:B 【分析】根据平移和平行四边形的性质将点D 也用a 、b 表示,再根据反比例函数图象上的点的横纵坐标的乘积相等列式算出a 、b ,再由点坐标求出k 的值. 【详解】解:∵()3,0A ,()0,4B ,∴A 可以看作由B 向右平移3个单位,向下平移4个单位得到的,根据平行四边形的性质,D 也可以看作由C 向右平移3个单位,向下平移4个单位得到的,∵(),C a b ,∴()3,4D a b +-,∵7.5a b +=,∴(),7.5C a a -,()3,3.5D a a +-,∵C 、D 都在反比例函数图象上,∴它们横纵坐标的乘积相等,即()()()7.53 3.5a a a a -=+-,解得 1.5a =, ∴()1.57.5 1.59k =⨯-=.故选:B .【点睛】本题考查反比例函数与几何图形的结合,解题的关键是根据题目条件,用同一个未知数设出反比例函数图象上的点,然后用反比例函数图象上点的性质列式求解.7.C解析:C【分析】分别根据反比例函数及一次函数图象的特点对四个选项进行逐一分析即可.【详解】解:A.∵由反比例函数的图象在一、三象限可知,k >0∴0k -<∴一次函数y kx k =-的图象经过一、三、四象限.故本选项错误;B.∵由反比例函数的图象在二、四象限可知,k 0<∴0k ->∴一次函数y kx k =-的图象经过一、二、四象限.故本选项错误;C.∵由反比例函数的图象在二、四象限可知,k 0<∴0k ->∴一次函数y kx k =-的图象经过一、二、四象限.故本选项正确;D.∵由反比例函数的图象在二、四象限可知,k 0<∴0k ->∴一次函数y kx k =-的图象经过一、二、四象限.故本选项错误.故选:C【点睛】本题考查的是反比例函数、一次函数图象,解答此题的关键是先根据反比例函数所在的象限判断出k 的符号,再根据一次函数的性质进行解答.8.D解析:D【分析】先根据四个选项的共同点确定k的符号,再根据各函数图象的性质确定图象所在的象限即可.【详解】解:A、反比例函数图象位于一、三象限,0k>,则一次函数图象应该交y轴于正半轴,故本选项错误;B、反比例函数图象位于二、四象限,k0<,则一次函数图象应该交y轴于负半轴,故本选项错误;C、反比例函数图象位于二、四象限,k0<,则一次函数应该是个减函数,故本选项错误;D、反比例函数图象位于一、三象限,0k>,则一次函数图象应该交y轴于正半轴,故本选项正确;故选:D.【点睛】此题考查反比例函数的图象性质和一次函数的图象性质,解题关键是由k的取值确定函数所在的象限.9.C解析:C【分析】由二次函数的图像性质分析a,b,c的符号,从而判断bc和abc的符号,然后结合反比例函数和一次函数图像性质进行判断即可.【详解】解:由题意可知,二次函数开口向上,∴a>0由二次函数对称轴在y轴右侧,∴b<0由二次函数与y轴交于原点上方,∴c>0∴bc<0,abc<0∴一次函数图像经过一、三、四象限,反比例函数图像经过二四象限故选:C.【点睛】本题考查一次函数、二次函数、反比例函数的图像性质,掌握函数图像性质,利用数形结合思想解题是关键.10.B解析:B【分析】分别利用一次函数、正比例函数、反比例函数的增减性分析得出答案.【详解】解:①y=﹣3x+2,当x>1时,函数值y随自变量x增大而减小,故此选项不符合题意;②y=3x,当x>1时,函数值y随自变量x增大而减小,故此选项不符合题意;③y=﹣5x,当x>1时,函数值y随自变量x增大而增大,故此选项符合题意;④y=3x,当x>1时,函数值y随自变量x增大而增大,故此选项符合题意;故选:B.【点睛】此题考查一次函数、正比例函数、反比例函数,正确把握相关性质是解题关键.11.B解析:B【分析】先根据反比例函数kyx=的图象过二、四象限可知0k<,再根据一次函数的性质进行判断即可.【详解】解:反比例函数kyx=的图象过二、四象限,k∴<,∴一次函数y kx k=+中,0k<,∴此函数的图象过二、三、四象限.故选:B.【点睛】本题考查的是反比例函数及一次函数的性质,根据反比例函数的图象判断出k的取值范围是解答此题的关键.12.A解析:A【分析】过点A作AM⊥OB于M,FN⊥OB于N,,设OA=5k,通过解直角三角形得出AM=4k,OM=3k,m=12k2,,再根据S四边形OAFN=S梯形AMNF+S△AOM=S△AOF+S△OFN得到S梯形AMNF=S△AOF=12,得出12(4k+2k)⋅3k=12,得到k2的值,再求m得值即可.【详解】解:过点A作AM⊥OB于M,FN⊥OB于N,设OA=5k,∵45sin AOB ∠= ∴AM=4k,OM=3k,m=12k 2,∵四边形OACB 是平行四边形,F 为BC 的中点,∴FN=2k ,ON=6k ,∵S △AOM =S △OFN ,S 四边形OAFN =S 梯形AMNF +S △AOM =S △AOF +S △OFN ,∴S 梯形AMNF =S △AOF =12, ∴12(4k+2k)⋅3k=12, ∴k 2=43, ∴m=12k 2=16.故选A.【点睛】本题考查反比例函数的性质、平行四边形的性质、三角形的面积、梯形的面积等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.二、填空题13.【分析】根据反比例函数图象经过第二四象限关于x 的一元二次方程ax2-2x+3=0有实数解列出不等式求出a 的取值范围从而确定出a 的值再根据概率公式计算即可【详解】解:∵反比例函数图象经过第二四象限∴3 解析:25【分析】根据反比例函数图象经过第二、四象限,关于x 的一元二次方程ax 2-2x+3=0有实数解,列出不等式求出a 的取值范围,从而确定出a 的值,再根据概率公式计算即可.【详解】解:∵反比例函数图象经过第二、四象限,∴3a-7<0,解得73a < 关于x 的一元二次方程ax 2-2x+3=0有实数解,则△=4-12a≥0,且a≠0,解得:,a≤13,且(a≠0),综上,a≤13,且(a≠0), ∴ a 可取-1,-14, ∴使以x 为自变量的反比例函数37a y x-=经过二、四象限,且关于x 的一元二次方程ax 2-2x+3=0有实数解的概率是25. 故答案为:25. 【点睛】 本题考查了概率公式,用到的知识点是反比例函数图象的性质、根的判别式、概率公式,熟记性质以及判别式求出a 的值是解题的关键.14.【分析】根据一次函数和反比例函数的解析式即可求得点ABC 的坐标(用k 表示)再讨论再由AB =BC 即可解题【详解】点是和的交点解得:(舍去)代入可得:点的坐标为又点是和的交点解得:(舍去)代入可得:则点【分析】根据一次函数和反比例函数的解析式,即可求得点A 、B 、C 的坐标(用k 表示),再讨论再由AB =BC 即可解题.【详解】点B 是y kx =和9y x=的交点, 9y kx x∴==, 解得:1x =,2x = ∴代入可得:k =∴点B 的坐标为, 又点A 是y kx =和1y x=的交点, 1y kx x∴==, 解得:1x =,2x =代入可得:y =A 的坐标为, BD x ⊥轴,∴点C 的坐标为⎛⎭,BA BC =,则22BA BC =,222⎛∴+=⎝⎭,解得:7k=..【点睛】本题考查了点的坐标的计算,考查了一次函数和反比例函数交点的计算,本题中用k表示点A、B、C坐标是解题的关键.15.y=【分析】作DF⊥x轴于点F先求出AB两点的坐标故可得出OB=6OA=2再根据AAS定理得出△OAB≌△FDA可得出OF的长进而得出D点坐标把D点坐标代入反比例函数的解析式求出k的值即可求得解析式解析:y=16x【分析】作DF⊥x轴于点F,先求出A、B两点的坐标,故可得出OB=6,OA=2,再根据AAS定理得出△OAB≌△FDA可得出OF的长,进而得出D点坐标,把D点坐标代入反比例函数的解析式求出k的值即可求得解析式.【详解】解:作DF⊥x轴于点F.在y=-3x+6中,令x=0,则y=6,即B(0,6),令y=0,则x=2,即A(2,0),则OB=6,OA=2,∵∠BAD=90°,∴∠BAO+∠DAF=90°,∵Rt△ABO中,∠BAO+∠DAF=90°,∴∠DAF=∠OBA,在△OAB与△FDA中,DAF OBABOA AFDAB AD∠∠⎧⎪∠∠⎨⎪⎩===∴△OAB≌△FDA(AAS),∴AF=OB=6,DF=OA=2,∴OF=8,∴D(8,2),∵点D在反比例函数y=kx(k≠0)的图象上,∴k=8×2=16,∴反比例函数解析式为y=16x , 故答案为y=16x.【点睛】本题考查的是待定系数法求反比例函数的解析式,正方形的性质,根据题意作出辅助线,构造出直角三角形是解答此题的关键.16.(22)或(-2-2)【分析】先求得反比例函数的解析式为设C 点的坐标为()根据AC=BC 得出方程求出即可【详解】由图象可知:点A 的坐标为(-1-4)代入得:所以这个反比例函数的解析式是设C 点的坐标为解析:(2,2)或(-2,-2)【分析】先求得反比例函数的解析式为4y x =,设C 点的坐标为(x ,4x ),根据AC=BC 得出方程,求出x 即可.【详解】由图象可知:点A 的坐标为(-1,-4),代入k y x=得:4k xy ==, 所以这个反比例函数的解析式是4y x =, 设C 点的坐标为(x ,4x), ∵A (-1,-4),B (-4,-1),AC=BC , 即()()2222441441x x x x ⎛⎫⎛⎫--+--=--+-- ⎪ ⎪⎝⎭⎝⎭, 解得:2x =±,当2x =时,422y ==, 当2x =-时,422y ==--,所以点C的坐标为(2,2)或(-2,-2).故答案为:(2,2)或(-2,-2).【点睛】本题考查了等腰三角形的性质、用待定系数法求反比例函数的解析式、反比例函数图象上点的坐标特征等知识点,能求出反比例函数的解析式是解此题的关键.17.【分析】直接利用反比函数图象的分布得出m+2<0进而得出答案;【详解】解:∵反比例函数图象分布在第二象限∴m+2<0解得:m<-2;故答案为:m<-2【点睛】本题考查了反比例函数图象上的性质正确掌握解析:2m<-【分析】直接利用反比函数图象的分布得出m+2<0,进而得出答案;【详解】解:∵反比例函数图象分布在第二象限,∴m+2<0,解得:m<-2;故答案为:m<-2.【点睛】本题考查了反比例函数图象上的性质,正确掌握反比例函数的增减性是解题的关键.18.【分析】根据题意把所给点的横纵坐标代入反比例函数的解析式求出a与b的值比较大小即可【详解】解:点A(1a)在反比例函数的图像上则有点B (3b)在反比例函数的图像上则有所以故答案为:【点睛】本题主要考解析:b a<【分析】根据题意把所给点的横纵坐标代入反比例函数的解析式,求出a与b的值,比较大小即可.【详解】解:点A(1,a)在反比例函数4yx=的图像上,则有441a==,点B(3,b)在反比例函数4yx=的图像上,则有43b=,所以b a<.故答案为:b a<.【点睛】本题主要考查反比例函数图象上点的坐标特征,注意掌握所有在反比例函数上的点的横纵坐标的积等于比例系数.19.70【分析】根据点关于y轴对称的特点写出B点坐标再把两点坐标分别代入所求关系式即可解答【详解】解:根据点A在双曲线y=上得到2ab=1即ab =根据AB两点关于y轴对称得到点B(﹣ab)根据点B在直线解析:70【分析】根据点关于y 轴对称的特点写出B 点坐标,再把两点坐标分别代入所求关系式即可解答.【详解】解:根据点A 在双曲线y =12x 上,得到2ab =1,即ab =12, 根据A 、B 两点关于y 轴对称,得到点B (﹣a ,b ).根据点B 在直线y =x +6上,得到a +b =6, ∴22a b a b b a ab++= =2()2a b ab ab+- =2162212-⨯=36112-=70.故答案为:70.【点睛】此题考查了反比例函数、一次函数图象上点的坐标特征,能够根据解析式求得点的坐标之间的关系式;熟悉两个点关于y 轴对称的点的坐标关系:纵坐标不变,横坐标互为相反数;能够把要求的代数式变成和或积的形式.20.【分析】确定使函数的图象经过第一三象限的k 的值然后确定使方程有实数根的k 值找到同时满足两个条件的k 的值即可【详解】解:这6个数中能使函数y =的图象经过第一第三象限的有12这2个数∵关于x 的一元二次方 解析:16【分析】确定使函数的图象经过第一、三象限的k 的值,然后确定使方程有实数根的k 值,找到同时满足两个条件的k 的值即可.【详解】解:这6个数中能使函数y =k x的图象经过第一、第三象限的有1,2这2个数, ∵关于x 的一元二次方程x 2﹣kx +1=0有实数根,∴k 2﹣4≥0,解得k ≤﹣2或k ≥2,能满足这一条件的数是:﹣3、﹣2、2这3个数,∴能同时满足这两个条件的只有2这个数,∴此概率为16, 故答案为:16. 三、解答题21.(1)y =2x ;(2)B (2,1),0<x <1或x >2;(3)(﹣2,0)或(8,0) 【分析】(1)先把点A (1,a )代入y =﹣x +3中求出a 得到A (1,2)然后把A 点坐标代入y =k x中求出k 得到反比例函数的表达式; (2)先解方程组23y x y x ⎧=⎪⎨⎪=-+⎩得B (2,1),然后在第一象限内写出一次函数图象在反比例函数图象下方所对应的自变量的范围即可;(3)先确定C (3,0),设P (x ,0),利用三角形面积公式得到12×|3﹣x |×2=5,解方程可得到P 的坐标.【详解】解:(1)把点A (1,a )代入y =﹣x +3,得a =2,∴A (1,2)把A (1,2)代入反比例函数y =k x , ∴k =1×2=2;∴反比例函数的表达式为y =2x; (2)解方程组23y x y x ⎧=⎪⎨⎪=-+⎩得12x y =⎧⎨=⎩或21x y =⎧⎨=⎩, ∴B (2,1),∴当x >0时,不等式3k x x -+<的解集为0<x <1或x >2; (3)当y =0时,﹣x +3=0,解得x =3,∴C (3,0),设P (x ,0),∴PC=|3﹣x|,∴S△APC=12×|3﹣x|×2=5,∴x=﹣2或x=8,∴P的坐标为(﹣2,0)或(8,0).【点睛】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了待定系数法求函数解析式.22.8【分析】根据矩形的性质得到BE=OA=5,AB=2,求得B(2,5),设双曲线BC的解析式为y=kx,代入B点坐标,得到k=10,然后求出D点横坐标,最后用OD-OE即可求解.【详解】∵四边形AOEB是矩形∴BE=OA=5,AB=2∴B(2,5)设双曲线的解析式为y=kx,将点B的坐标代入,5=k2∴k=10∴y=10x∵CD为1∴当y=1时,x=10∴OD=10∴DE的长=OD-OE=10−2=8∴B、C之间的水平距离DE的长度为8米.【点睛】本题考查反比例函数的应用,矩形的性质,解题突破口是设双曲线BC的解析式为y=kx.23.(1)1400m;(2)1400yx=;(3)小芳的骑车速度至少为175/m min.【分析】(1)直接利用反比例函数图象上点的坐标得出小芳家与学校之间的距离;(2)利用待定系数法求出反比例函数解析式;(3)利用y=8进而得出骑车的速度.【详解】(1)小芳家与学校之间的距离是:101401400⨯=(m);(2)设k y x=,当140x =时,10y =, 解得:1400k =, 故y 与x 的函数表达式为:1400y x=; (3)当8y =时,175x =, 0k >,∴在第一象限内y 随x 的增大而减小,∴小芳的骑车速度至少为175/m min .【点睛】此题主要考查了反比例函数的应用,正确得出函数关系式是解题关键.24.(1)65,2,3(答案不唯一);(2)见解析;(3)m =﹣4或﹣2或2. 【分析】(1)根据“和谐三数组”的定义可以先写出后2个数,取倒数求和后即可写出第一个数,进而可得答案; (2)根据一元二次方程根与系数的关系求出1211+x x ,然后再求出31x ,只要满足1211+x x =31x 即可; (3)先求出三点的纵坐标y 1,y 2,y 3,然后由“和谐三数组”可得y 1,y 2,y 3之间的关系,进而可得关于m 的方程,解方程即得结果.【详解】解:(1)∵115236+=, ∴65,2,3是“和谐三数组”; 故答案为:65,2,3(答案不唯一); (2)证明:∵1x ,2x 是关于x 的方程ax 2+bx +c = 0 (a ,b ,c 均不为0)的两根, ∴12b x x a +=-,12c x x a⋅=, ∴12121211bx x b a c x x x x ca -++===-⋅, ∵3x 是关于x 的方程bx +c =0(b ,c 均不为0)的解, ∴3c x b=-,∴31b x c =-,∴1211+x x =31x , ∴x 1 ,x 2,x 3可以构成“和谐三数组”;(3)∵A (m ,y 1) ,B (m + 1,y 2) ,C (m +3,y 3)三个点均在反比例函数4y x =的图象上, ∴14y m =,241y m =+,343y m =+, ∵三点的纵坐标y 1,y 2,y 3恰好构成“和谐三数组”, ∴123111y y y =+或213111y y y =+或312111y y y =+, 即13444m m m ++=+或13444m m m ++=+或31444m m m ++=+, 解得:m =﹣4或﹣2或2.【点睛】本题是新定义试题,主要考查了一元二次方程根与系数的关系、反比例函数图象上点的坐标特征和对新知“和谐三数组”的理解与运用,正确理解题意、熟练掌握一元二次方程根与系数的关系与反比例函数的图象与性质是解题的关键.25.(1)12y x =;(2)18 【分析】(1)根据点A 、B 都在反比例函数图象上,得到关于a 的方程,求出a ,即可求出反比例函数解析式;(2)根据点A 、B 都在一次函数y kx b =+的图象上,运用待定系数法求出直线解析式,进而求出点C 坐标,求出CD 长,即可求出ACD △的面积.【详解】解:(1)∵点()3,A a ,点(142,2)B a -在反比例函数m y x =的图象上, ∴3(142)2a a ⨯=-⨯.解得4a =.∴3412m =⨯=.∴反比例函数的表达式是12y x =. (2)∵4a =,∴点A ,点B 的坐标分别是(3,4),(6,2).∵点A ,点B 在一次函数y kx b =+的图象上,∴43,26.k b k b =+⎧⎨=+⎩解得36.b ⎨⎪=⎩ ∴一次函数的表达式是263y x =-+. 当0x =时,6y =.∴点C 的坐标是()0,6.∴6OC =.∵点D 是点C 关于原点O 的对称点,∴2CD OC =.作AE y ⊥轴于点E ,∴3AE =. 12ACD S CD AE =⋅ CO AE =⋅63=⨯18=【点睛】本题为一次函数与反比例函数综合题,难度不大,解题关键是根据点A 、B 都在反比例函数图象上,得到关键a 的方程,求出a ,得到点A 、B 坐标.26.(1)一次函数的解析式为y =2x +12;(2)(﹣3,6).【分析】(1)直接把(3,18),(﹣2,8)代入一次函数y =kx +b 中可得关于k 、b 的方程组,再解方程组可得k 、b 的值,进而求出一次函数的解析式;(2)联立一次函数解析式和反比例函数解析式可得2x 2+12x ﹣m =0,再根据题意得到△=0时,两函数图像只有一个交点,解方程即可得到结论.【详解】解:(1)把(3,18),(﹣2,8)代入一次函数y =kx +b (k ≠0),得31828k b k b +=⎧⎨-+=⎩,12b ⎨=⎩∴一次函数的解析式为y =2x +12;(2)∵一次函数y =kx +b (k ≠0)的图象与反比例函数y =m x(m ≠0)的图象只有一个交点, ∴212y x m y x =+⎧⎪⎨=⎪⎩只有一组解, 即2x 2+12x ﹣m =0有两个相等的实数根,∴△=122﹣4×2×(﹣m )=0,∴m =-18.把m =-18代入求得该方程的解为:x =-3,把x =-3代入y =2x +12得:y =6,即所求的交点坐标为(-3,6).【点睛】本题主要考查了用待定系数法确定一次函数的解析式,运用判别式△求两个不同函数的交点坐标;特别地,小题(2)联立一次函数解析式和反比例函数解析式,运用只有一个交点时△=0的知识点,是解答本小题关键所在.。
专题26.27《反比例函数》全章复习与巩固(巩固篇)(专项练习)一、单选题(本大题共10小题,每小题3分,共30分)1.在反比例函数6y x=的图象上的点是()A .()2,3B .()4,2C .()6,1-D .()2,3-2.已知点A (﹣2,m ),B (2,m ),C (4,m +12)在同一个函数的图象上,这个函数可能是()A .y =xB .y =﹣2xC .y =x 2D .y =﹣x 23.若两个点()1,1x ,()2,3x -均在反比例函数2k y x-=的图象上,且12x x <,则k 的值可以是()A .1B .2C .3D .44.已知抛物线221y x x m =--++与x 轴没有交点,则函数my x=和函数y mx m =-的大致图像是()A .B .C .D .5.已知点A (﹣2,y 1),B (﹣1,y 2),C (3,y 3)都在反比例函数y =3x的图象上,则y 1,y 2,y 3的大小关系正确的是()A .y 1<y 2<y 3B .y 3<y 2<y 1C .y 3<y 1<y 2D .y 2<y 1<y 36.如图,在平面直角坐标系中,菱形ABCD 的边BC 与x 轴平行,A 和B 两点的纵坐标分别为4和2,函数(0,0)k y k x x=>>的图象经过A 、B 两点.若菱形ABCD 的面积为则k 的值为()A .4B .8C .16D .7.如图,点A 是反比例函数y 1=1x(x >0)图象上一点,过点A 作x 轴的平行线,交反比例函数2ky x=(x >0)的图象于点B ,连接OA 、OB ,若△OAB 的面积为1,则k 的值是()A .3B .4C .5D .68.如图,在同一平面直角坐标系中,一次函数y 1=kx+b (k 、b 是常数,且k≠0)与反比例函数y 2=cx(c 是常数,且)的图象相交于A (﹣3,﹣2),B (2,3)两点,则不等式y 1>y 2的解集是()A .﹣3<x <2B .x <﹣3或x >2C .﹣3<x <0或x >2D .0<x <29.对于反比例函数2y x=-,下列说法不正确的是()A .图象分布在第二、四象限B .当0x >时,y 随x 的增大而增大C .图象经过点(1,-2)D .若点()11,A x y ,()22,B x y 都在图象上,且12x x <,则12y y <10.如图,在平面直角坐标系中,一次函数443y x =+的图象与x 轴、y 轴分别相交于点B ,点A ,以线段AB 为边作正方形ABCD ,且点C 在反比例函数(0)ky x x=<的图象上,则k 的值为()A .12-B .42-C .42D .21-二、填空题(本大题共8小题,每小题4分,共32分)11.已知直线y =kx 与双曲线y =6k x+的一个交点的横坐标是2,则另一个交点坐标是_____.12.已知点A (1,2)在反比例函数ky x=的图象上,则当1x >时,y 的取值范围是______.13.已知点A (381a a --,)在第二象限,且a 为整数,反比例函数ky x=经过该点,则k 的值为_________.14.在平面直角坐标系中,点A (﹣2,1),B (3,2),C (﹣6,m )分别在三个不同的象限.若反比例函数y =kx(k ≠0)的图象经过其中两点,则m 的值为_____.15.在平面直角坐标系xOy 中,反比例函数ky x=的图象经过点(4,)P m ,且在每一个象限内,y 随x 的增大而增大,则点P 在第______象限.16.如图,在平面直角坐标系中,等腰直角三角形ABC 的斜边BC x ⊥轴于点B ,直角顶点A 在y 轴上,双曲线()0ky k x=≠经过AC 边的中点D ,若BC =k =______.17.如图,平面直角坐标系中,菱形ABCD 在第一象限内,边BC 与x 轴平行,A ,B 两点的纵坐标分别为6,4,反比例函数y =kx(x >0)的图象经过A ,B 两点,若菱形ABCD的面积为k 的值为_____.18.如图,小华设计了一个探究杠杆平衡条件的实验:在一根匀质的木杆中点O 左侧固定位置B 处悬挂重物A ,在中点O 右侧用一个弹簧秤向下拉,改变弹簧秤与点O 的距离x(cm),观察弹簧秤的示数y(N)的变化情况,实验数据记录如下:则y 与x 之间的函数关系为______.三、解答题(本大题共6小题,共58分)19.(8分)如图,在平面直角坐标系xOy 中,一次函数152y x =+和2y x =-的图象相交于点A ,反比例函数ky x=的图象经过点A .(1)求反比例函数的表达式;(2)设一次函数152y x =+的图象与反比例函数k y x =的图象的另一个交点为B ,连接OB ,求ABO ∆的面积.20.(8分)如图,正比例函数y kx =的图像与反比例函数()80y x x=>的图像交于点(),4A a .点B 为x 轴正半轴上一点,过B 作x 轴的垂线交反比例函数的图像于点C ,交正比例函数的图像于点D .(1)求a 的值及正比例函数y kx =的表达式;(2)若10BD =,求ACD △的面积.21.(10分)某蔬菜生产基地的气温较低时,用装有恒温系统的大棚栽培一种新品种蔬菜.如图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度y(℃)与时间x (h)之间的函数关系,其中线段AB、BC表示恒温系统开启阶段,双曲线的一部分CD表示恒温系统关闭阶段.请根据图中信息解答下列问题:(1)求这天的温度y与时间x(0≤x≤24)的函数关系式;(2)求恒温系统设定的恒定温度;(3)若大棚内的温度低于10℃时,蔬菜会受到伤害.问这天内,恒温系统最多可以关闭多少小时,才能使蔬菜避免受到伤害?22.(10分)如图,直线y1=﹣x+4,y2=34x+b都与双曲线y=kx交于点A(1,m),这两条直线分别与x轴交于B,C两点.(1)求y与x之间的函数关系式;(2)直接写出当x>0时,不等式34x+b>kx的解集;(3)若点P在x轴上,连接AP把△ABC的面积分成1:3两部分,求此时点P的坐标.23.(10分)在平面直角坐标系xOy中,函数kyx=(0x>)的图象G经过点A(4,1),直线14l y x b=+∶与图象G交于点B,与y轴交于点C.(1)求k的值;(2)横、纵坐标都是整数的点叫做整点.记图象G在点A,B之间的部分与线段OA,OC,BC围成的区域(不含边界)为W.①当1b=-时,直接写出区域W内的整点个数;②若区域W内恰有4个整点,结合函数图象,求b的取值范围.24.(12分)背景:点A在反比例函数kyx=(0k>)的图象上,AB x⊥轴于点B,AC y⊥轴于点C,分别在射线AC,BO上取点D,E,使得四边形ABED为正方形,如图1,点A在第一象限内,当4AC =时,小李测得3CD =.探究:通过改变点A 的位置,小李发现点D ,A 的横坐标之间存在函数关系,请帮助小李解决下列问题.(1)求k 的值;(2)设点A ,D 的横坐标分别为x ,z ,将z 关于x 的函数称为“Z 函数”.如图2,小李画出了0x >时“Z 函数”的图象.①求这个“Z 函数”的表达式.②过点(3,2)作一直线,与这个“Z 函数”图象仅有一个交点,求该交点的横坐标.参考答案1.A【分析】分别计算出各选项纵横坐标的乘积,判断是否等于6即可得解.解:A.23=6⨯,点(2,3)在反比例函数6y x=的图象上,故此选项符合题意;B.42=86⨯≠,点(4,2)不在反比例函数6y x=的图象上,故此选项不符合题意;C.61=66-⨯-≠,点(-6,1)不在反比例函数6y x=的图象上,故此选项不符合题意;D.23=66-⨯-≠,点(-2,3)不在反比例函数6y x=的图象上,故此选项不符合题意;故选:A【点拨】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.2.C【分析】根据正比例函数和反比例函数还有二次函数的图象的对称性进行分析即可.解:∵A (﹣2,m ),B (2,m ),∴点A 与点B 关于y 轴对称;由于y =x ,y =2x的图象关于原点对称,因此选项A 、B 错误;∵m +12>m ,y =a x 2的图象关于y 轴对称由B (2,m ),C (4,m +12)可知,在对称轴的右侧,y 随x 的增大而增大,对于二次函数只有a >0时,在对称轴的右侧,y 随x 的增大而增大,∴C 选项正确,故选:C .【点拨】考核知识点:正比例函数和反比例函数还有二次函数的图象.理解正比例函数和反比例函数还有二次函数的图象的对称性是关键.3.A【分析】根据点()1,1x ,()2,3x -均在反比例函数2k y x-=的图象上,推出121k x -=,223k x --=,得到12x k =-,223k x -=,根据12x x <,得到223k k --<,求得k <2,推出k 的值可能是1,解:∵点()1,1x ,()2,3x -均在反比例函数2k y x-=的图象上,∴121k x -=,223k x --=,∴12x k =-,223k x -=,∵12x x<,∴223kk--<∴k<2,∴k的值可能是1,故选:A【点拨】本题主要考查了反比例函数,解题的关键是熟练掌握待定系数法求函数解析式,解不等式,反比例函数的图象和性质.4.C【分析】由已知可以得到m的取值范围,再根据反比例函数和一次函数的图象与性质即可得到解答.解:∵抛物线y=−x2−2x+m+1与x轴没有交点,∴方程−x2−2x+m+1=0没有实数根,∴Δ=4+4×1×(m+1)=4m+8<0,∴m<−2,∴−m>2,故函数y=mx的图象在第二、四象限,函数y=mx−m.故选:C.【点拨】本题考查函数的综合应用,熟练掌握二次函数与一元二次方程的关系、反比例函数与一次函数的图象与性质是解题关键.5.D【分析】把点A(-2,y1),B(-1,y2),C(3,y3)代入反比例函数的关系式求出y1,y2,y3,比较得出答案.解:把点A(﹣2,y1),B(﹣1,y2),C(3,y3)代入反比例函数3yx=的关系式得,y1=﹣1.5,y2=﹣3,y3=1,∴y2<y1<y3,故选:D.【点拨】本题考查反比例函数图象上点的坐标特征,把点的坐标代入函数关系式是常用的方法.6.D【分析】过点A 作AM x ⊥轴于点,M 交BC 于点,E 过点B 作BN x ⊥轴于点,N 求出2AE =,再由菱形的性质求出AD =,可得点A 的坐标,从而可得结论.解:过点A 作AM x ⊥轴于点M ,交BC 于点,E 过点B 作BN x ⊥轴于点N ,如图,∵BC //x 轴,∴,AE BC ⊥∴∠90,BEM EMN MNB ︒=∠=∠=∴四边形BEMN 是矩形,∴ME BN=∵,A B 点的纵坐标分别为4和2,∴4,2,AM BN ==∴2,ME =∴422,AE AM EM =-=-=∵四边形ABCD 是菱形,∴AD AE⊥∴2ABCD S AD AE AD =⋅==菱形,∴AD =,∵D 点在y 轴上,∴4)A∴4k ==故选:D【点拨】本题考查了菱形的性质以及反比例函数图象上点的坐标特征,熟记菱形的面积公式是解题的关键.7.A【分析】延长BA ,与y 轴交于点C ,由AB 与x 轴平行,得到BC 垂直于y 轴,利用反比例函数k 的几何意义表示出三角形AOC 与三角形BOC 面积,由三角形BOC 面积减去三角形AOC 面积表示出三角形AOB 面积,将已知三角形AOB 面积代入求出k 的值即可.解:延长BA ,与y 轴交于点C ,∵AB //x 轴,∴BC ⊥y 轴,∵A 是反比例函数y 1=1x (x >0)图象上一点,B 为反比例函数y 2=k x(x >0)的图象上的点,∴S △AOC =12,S △BOC =2k ,∵S △AOB =1,即2211k -=,解得:k =3,故选:A .【点拨】本题考查了反比例函数k 的几何意义,熟练掌握反比例函数k 的几何意义是解本题的关键.8.C【分析】一次函数y1=kx+b 落在与反比例函数y 2=c x 图象上方的部分对应的自变量的取值范围即为所求.解:∵一次函数y1=kx+b (k 、b 是常数,且k≠0)与反比例函数y 2=c x(c 是常数,且c≠0)的图象相交于A (﹣3,﹣2),B (2,3)两点,∴不等式y1>y2的解集是﹣3<x <0或x >2,故选C .【点拨】本题考查了反比例函数与一次函数的交点问题,利用数形结合是解题的关键.9.D【分析】根据反比例函数图象的性质对各选项分析判断后利用排除法求解.解:A.k=−2<0,∴它的图象在第二、四象限,故本选项正确;B.k=−2<0,当x>0时,y随x的增大而增大,故本选项正确;C.∵221-=-,∴点(1,−2)在它的图象上,故本选项正确;D.若点A(x1,y1),B(x2,y2)都在图象上,,若x1<0<x2,则y2<y1,故本选项错误.故选:D.【点拨】本题考查了反比例函数的图象与性质,掌握反比例函数的性质是解题的关键.10.D【分析】过点C作CE⊥x轴于E,证明△AOB≌△BEC,可得点C坐标,代入求解即可;解:∵当x=0时,04=4y=+,∴A(0,4),∴OA=4;∵当y=0时,4043x=+,∴x=-3,∴B(-3,0),∴OB=3;过点C作CE⊥x轴于E,∵四边形ABCD是正方形,∴∠ABC=90°,AB=BC,∵∠CBE+∠ABO=90°,∠BAO+∠ABO=90°,∴∠CBE=∠BAO.在△AOB和△BEC中,CBE BAO BEC AOB BC AB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AOB ≌△BEC ,∴BE=AO=4,CE=OB=3,∴OE=3+4=7,∴C 点坐标为(-7,3),∵点A 在反比例函数(0)k y x x=<的图象上,∴k=-7×3=-21.故选D .【点拨】本题考查了一次函数与坐标轴的交点、待定系数法求函数解析式、正方形的性质,以及全等三角形的判定与性质,解答此题的关键是正确作出辅助线及数形结合思想的运用.11.(-2,-4)【分析】根据交点的横坐标是2,得到622k k +=,求得k 值,确定一个交点坐标为(2,4),根据图像的中心对称性质,确定另一个交点坐标即可.解:∵交点的横坐标是2,∴622k k +=,解得k =2,故函数的解析式为y =2x ,y =8x ,当x =2时,y =4,∴交点坐标为(2,4),根据图像的中心对称性质,∴另一个交点坐标为(-2,-4),故答案为:(-2,-4).【点拨】本题考查了反比例函数与正比例函数的交点问题,函数图像的中心对称问题,熟练掌握交点的意义,灵活运用图像的中心对称性质是解题的关键.12.0<y <2【分析】根据图象结合反比例函数k y x =的图象性质,分析其增减以及其过点的坐标解答即可.解:点A (1,2)在反比例函数k y x =的图象上,∴反比例函数k y x=的图象在第一象限,k =2∴y 随x 的增大而减小;∴当x >1时,y 的取值范围时0<y <2;故答案为:0<y <2.【点拨】本题考查的是反比例函数图象上点的坐标特点,掌握数形结合的思想以及反比例函数的图象成为解答本题的关键.13.-2【分析】根据第二象限的符号特征,且a 为整数,求出a =2,得A (-2,1),将A (-2,1)代入k y x=,得k 的值.解:∵点A (3a −8,a −1)在第二象限,且a 为整数,∴38010a a -<->ìïíïî,解得1<a <83,∴a =2,∵3×2-8=-2,2-1=1,∴A (-2,1),∵反比例函数k y x=经过点A ,∴将A (-2,1)代入k y x =,得21k -=,∴k =-2,故答案为:-2.【点拨】本题考查了第二象限的符号特征和反比例函数,解题的关键是掌握第二象限的符号特征.14.-1.【分析】根据已知条件得到点(2,1)A -在第二象限,求得点(6,)C m -一定在第三象限,由于反比例函数(0)k y k x =≠的图象经过其中两点,于是得到反比例函数(0)k y k x =≠的图象经过(3,2)B ,(6,)C m -,于是得到结论.解: 点(2,1)A -,(3,2)B ,(6,)C m -分别在三个不同的象限,点(2,1)A -在第二象限,∴点(6,)C m -一定在第三象限,(3,2)B 在第一象限,反比例函数(0)k y k x=≠的图象经过其中两点,∴反比例函数(0)k y k x=≠的图象经过(3,2)B ,(6,)C m -,326m ∴⨯=-,1m ∴=-,故答案为:1-.【点拨】本题考查了反比例函数图象上点的坐标特征,正确的理解题意是解题的关键.15.四【分析】直接利用反比例函数的性质确定m 的取值范围,进而分析得出答案.解:∵反比例函数k y x=(k ≠0)图象在每个象限内y 随着x 的增大而增大,∴k <0,又反比例函数k y x =的图象经过点(4,)P m ,∴40m k =<∴0m <∴(4,)P m 在第四象限.故答案为:四.【点拨】此题主要考查了反比例函数的性质,正确记忆点的坐标的分布是解题关键.16.32-【分析】根据ABC 是等腰直角三角形,BC x ⊥轴,得到AOB 是等腰直角三角形,再根据BC =A 点,C 点坐标,根据中点公式求出D 点坐标,将D 点坐标代入反比例函数解析式即可求得k .解:∵ABC 是等腰直角三角形,BC x ⊥轴.∴90904545ABO ABC ∠=︒-∠=︒-︒=︒;2AB =.∴AOB 是等腰直角三角形.∴BO AO =.故:A ,(C .(D .将D 点坐标代入反比例函数解析式.3222D D k x y =⋅=-⨯-.故答案为:32-.【点拨】本题考查平面几何与坐标系综合,反比例函数解析式;本体解题关键是得到AOB 是等腰直角三角形,用中点公式算出D 点坐标.17.12【分析】过点A 作x 轴的垂线,交CB 的延长线于点E ,根据A ,B 两点的纵坐标分别为6,4,可得出横坐标,即可表示AE ,BE 的长,根据菱形的面积为AE 的长,在Rt △AEB 中,计算BE 的长,列方程即可得出k 的值.解:过点A 作x 轴的垂线,交CB 的延长线于点E ,∵BC ∥x 轴,∴AE ⊥BC ,∵A ,B 两点在反比例函数y =k x (x >0)的图象,且纵坐标分别为6,4,∴A (6k ,6),B (4k ,4),∴AE =2,BE =4k ﹣6k =k 12,∵菱形ABCD 的面积为∴BC×AE =BC∴AB =BC在Rt △AEB 中,BE 1,∴112k=1,∴k=12,故答案为:12.【点拨】本题考查了反比例函数和几何综合,菱形的性质,勾股定理,掌握数形结合的思想是解题关键.18.300yx=【分析】通过表格我们可以得到表格中每组数据相乘为一个定值300,故我们可以猜想y与x之间是成反比例函数的关系,根据表格中的数据求出反比例函数的解析式,再将其余的点带入验证即可.解:由表格猜想y与x之间的函数关系为反比例函数解:设反比例函数解析式为k yx =把x=10,y=30代入得:k=300∴300 yx =将其余点带入均符合要求∴y与x之间的函数关系式为:300 yx =故答案为:300 yx =【点拨】本题主要考查的是反比例函数的性质以及解析式的求法,正确的掌握反比例函数的性质是解题的关键.19.(1)反比例函数的表达式为8yx-=;(2)ABO∆的面积为15.【分析】(1)联立两一次函数解出A点坐标,再代入反比例函数即可求解;(2)联立一次函数与反比例函数求出B点坐标,再根据反比例函数的性质求解三角形的面积.解:(1)由题意:联立直线方程1522y xy x⎧=+⎪⎨⎪=-⎩,可得24xy=-⎧⎨=⎩,故A点坐标为(-2,4)将A(-2,4)代入反比例函数表达式kyx=,有42k=-,∴8k=-故反比例函数的表达式为8 yx =-(2)联立直线152y x =+与反比例函数8y x=-,1528x y x y ⎧=+⎪⎪⎨⎪=-⎪⎩解得122,8x x =-=-,当8x =-时,1y =,故B (-8,1)如图,过A ,B 两点分别作x 轴的垂线,交x 轴于M 、N 两点,由模型可知S 梯形AMNB =S △AOB ,∴S 梯形AMNB =S △AOB =12121()()2y y x x +-⨯=1(14)[(2)(8)]2+⨯---⨯=156152⨯⨯=【点拨】此题主要考查一次函数与反比例函数综合,解题的关键是熟知一次函数与反比例函数的图像与性质.20.(1)a=2;y=2x ;(2)635【分析】(1)已知反比例函数解析式,点A 在反比例函数图象上,故a 可求;求出点A 的坐标后,点A 同时在正比例函数图象上,将点A 坐标代入正比例函数解析式中,故正比例函数的解析式可求.(2)根据题意以及第一问的求解结果,我们可设B 点坐标为(b ,0),则D 点坐标为(b ,2b),根据BD=10,可求b 值,然后确认三角形的底和高,最后根据三角形面积公式即可求解.解:(1)已知反比例函数解析式为y=8x,点A(a ,4)在反比例函数图象上,将点A 坐标代入,解得a=2,故A 点坐标为(2,4),又∵A 点也在正比例函数图象上,设正比例函数解析为y=kx ,将点A(2,4)代入正比例函数解析式中,解得k=2,则正比例函数解析式为y=2x .故a=2;y=2x .(2)根据第一问的求解结果,以及BD 垂直x 轴,我们可以设B 点坐标为(b ,0),则C 点坐标为(b ,8b)、D 点坐标为(b ,2b),根据BD=10,则2b=10,解得b=5,故点B 的坐标为(5,0),D 点坐标为(5,10),C 点坐标为(5,85),则在△ACD 中,()18105225S ⎛⎫=⨯-⨯- ⎪⎝⎭△ACD =635.故△ACD 的面积为635.【点拨】(1)本题主要考查求解正比例函数及反比例函数解析式,掌握求解正比例函数和反比例函数解析式的方法是解答本题的关键.(2)本题根据第一问求解的结果以及BD 垂直x 轴,利用待定系数法,设B 、C 、D 三点坐标,求出B 、C 、D 三点坐标,是解答本题的关键,同时掌握三角形面积公式,即可求解.21.(1)y 关于x 的函数解析式为210(05)20(510)200(1024)x x y x x x⎧⎪+≤<⎪=≤<⎨⎪⎪≤≤⎩;(2)恒温系统设定恒温为20°C ;(3)恒温系统最多关闭10小时,蔬菜才能避免受到伤害.【分析】(1(2)观察图象可得;(3)代入临界值y =10即可.(1)解:设线段AB 解析式为y =k 1x +b (k ≠0)∵线段AB 过点(0,10),(2,14),代入得110214b k b ⎧⎨+⎩==,解得1210k b ⎧⎨⎩==,∴AB 解析式为:y =2x +10(0≤x <5).∵B 在线段AB 上当x =5时,y =20,∴B 坐标为(5,20),∴线段BC 的解析式为:y =20(5≤x <10),设双曲线CD 解析式为:y =2k x (k 2≠0),∵C (10,20),∴k 2=200.∴双曲线CD 解析式为:y =200x(10≤x ≤24),∴y 关于x 的函数解析式为:()210(05)20(510)2001024x x y x x x⎧⎪+≤<⎪=≤<⎨⎪⎪≤≤⎩;(2)解:由(1)恒温系统设定恒温为20°C ;(3)解:把y =10代入y =200x 中,解得x =20,∴20-10=10.答:恒温系统最多关闭10小时,蔬菜才能避免受到伤害.【点拨】本题为实际应用背景的函数综合题,考查求得一次函数、反比例函数和常函数关系式.解答时应注意临界点的应用.22.(1)3y x =;(2)x >1;(3)P (﹣54,0)或(94,0)分析:(1)求得A (1,3),把A (1,3)代入双曲线y=k x ,可得y 与x 之间的函数关系式;(2)依据A (1,3),可得当x >0时,不等式34x+b >k x的解集为x >1;(3)分两种情况进行讨论,AP 把△ABC 的面积分成1:3两部分,则CP=14BC=74,或BP=14BC=74,即可得到OP=3﹣74=54,或OP=4﹣74=94,进而得出点P 的坐标.解:(1)把A (1,m )代入y 1=﹣x+4,可得m=﹣1+4=3,∴A (1,3),把A (1,3)代入双曲线y=k x,可得k=1×3=3,∴y 与x 之间的函数关系式为:y=3x ;(2)∵A (1,3),∴当x >0时,不等式34x+b >k x的解集为:x >1;(3)y 1=﹣x+4,令y=0,则x=4,∴点B 的坐标为(4,0),把A (1,3)代入y 2=34x+b ,可得3=34+b ,∴b=94,∴y 2=34x+94,令y 2=0,则x=﹣3,即C (﹣3,0),∴BC=7,∵AP 把△ABC 的面积分成1:3两部分,∴CP=14BC=74,或BP=14BC=74∴OP=3﹣74=54,或OP=4﹣74=94,∴P (﹣54,0)或(94,0).点睛:本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.23.(1)4;(2)①3个.(1,0),(2,0),(3,0).②514b -≤<-或71144b <≤.分析:(1)根据点A (4,1)在k y x=(0x >)的图象上,即可求出k 的值;(2)①当1b =-时,根据整点的概念,直接写出区域W 内的整点个数即可.②分a .当直线过(4,0)时,b .当直线过(5,0)时,c .当直线过(1,2)时,d .当直线过(1,3)时四种情况进行讨论即可.(1)解:∵点A (4,1)在k y x=(0x >)的图象上.∴14k =,∴4k =.(2)①3个.(1,0),(2,0),(3,0).②a .当直线过(4,0)时:1404b ⨯+=,解得1b =-b .当直线过(5,0)时:1504b ⨯+=,解得54b =-c .当直线过(1,2)时:1124b ⨯+=,解得74b =d .当直线过(1,3)时:1134b ⨯+=,解得114b =∴综上所述:514b -≤<-或71144b <≤.点睛:属于反比例函数和一次函数的综合题,考查待定系数法求反比例函数解析式,一次函数的图象与性质,掌握整点的概念是解题的关键,注意分类讨论思想在解题中的应用.24.(1)4(2)①4z x x=-;②2,3,4,6【分析】(1)利用待定系数法求解即可;(2)①设点A 坐标为1,x x ⎛⎫ ⎪⎝⎭,继而解得点D 的横坐标为4z x x =-,根据题意解题即可;②分两种种情况讨论,当过点3,2()的直线与x 轴垂直时,或当过点3,2()的直线与x 轴不垂直时,结合一元二次方程求解即可.解:(1)由题意得,1AB AD ==,∴点A 的坐标是(4,1),所以414k =⨯=;故答案为:4(2)①设点A 坐标为1,x x ⎛⎫ ⎪⎝⎭,所以点D 的横坐标为4z x x =-,所以这个“Z 函数”表达式为4z x x=-;②第一种情况,当过点3,2()的直线与x 轴垂直时,3x =;第二种情况,当过点3,2()的直线与x 轴不垂直时,设该直线的函数表达式为'(0)z mx b m =+≠,23m b ∴=+,即32b m =-+,'32z mx m ∴=-+,由题意得,432x mx m x-=-+22432x mx mx x ∴-=-+,2(1)(23)40m x m x ∴-+-+=(a )当1m =时,40x -+=,解得4x =;(b )当1m ≠时,2224(23)4(1)4928200b ac m m m m -=---⨯=-+=,解得12102,9m m ==,当12m =时,()2244020x x x -+=-=,.解得122x x ==;当2109m =时,()2221440,12360,6093x x x x x -+=-+=-=,解126x x ==所以x 的值为2,3,4,6.【点拨】本题考查反比例函数的图象与性质、求一次函数的解析式、解一元二次方程等知识,是重要考点,难度一般,掌握相关知识是解题关键.。
一、选择题1.已知点()11,x y 、()22,x y 、()33,x y 在双曲线5y x=上,当1230x x x <<<时,1y 、2y 、3y 的大小关系是( )A .123y y y <<B .312y y y <<C .132y y y <<D .231y y y <<2.关于反比例函数3y x=,下列说法错误的是( ) A .图象关于原点对称B .y 随x 的增大而减小C .图象分别位于第一、三象限D .若点(,)M a b 在其图象上,则3ab =3.如图,菱形ABCD 的边AD 与x 轴平行,A 、B 两点的横坐标分别为1和3,反比例函数y=3x的图象经过A 、B 两点,则菱形ABCD 的面积是( )A .42B .4C .22D .24.(2017广东省卷)如图,在同一平面直角坐标系中,直线()110y k x k =≠与双曲线()220k y k x=≠相交于A B 、两点,已知点A 的坐标为()1,2,则点B 的坐标为( )A .()1,2--B .()2,1--C .()1,1--D .()2,2--5.反比例函数y=kbx的图象如图所示,则一次函数y=kx+b (k≠0)的图象的图象大致是( )A .B .C .D .6.如图,曲线表示温度T (℃)与时间t (h )之间的函数关系,它是一个反比例函数的图像的一支.当温度T ≤2℃时,时间t 应( )A .不小于23h B .不大于23h C .不小于32h D .不大于32h 7.下列函数中图象不经过第三象限的是( ) A .y =﹣3x ﹣2B .y =2xC .y =﹣2x +1D .y =3x +28.已知反比例函数y=21k x +的图上象有三个点(2,1y ), (3, 2y ),(1-, 3y ),则1y ,2y ,3y 的大小关系是( )A .1y >2y >3yB .2y >1y >3yC .3y >1y >2yD .3y >2y >1y9.如图,在平面直角坐标系中,平行四边形OABC 的顶点A 在反比例函数1k y x=(x>0) 的图像上,顶点B 在反比例函数2k y x=(x>0)的图像上,点C 在x 轴的正半轴上.若平行四边形OABC 的面积为8,则k 2-k 1的值为( )A .4B .8C .12D .1610.如图,点A 是反比例函数2(0)y x x=>的图象上任意一点,AB x 轴交反比例函数3y x =-的图象于点B ,以AB 为边作ABCD ,其中C 、D 在x 轴上,则ABCDS为( )A .2.5B .3.5C .4D .511.给出下列函数:①y =﹣3x +2:②y =3x ;③y =﹣5x:④y =3x ,上述函数中符合条件“当x >1时,函数值y 随自变量x 增大而增大”的是( ) A .①③ B .③④ C .②④ D .②③12.如图, O 为坐标原点,点B 在x 轴的正半轴上,四边形OBCA 是平行四边形,45sin AOB ∠=,反比例函数()0m y m x=>在第一象限内的图像经过点A ,与BC 交于点F ,若点F 为BC 的中点,且AOF 的面积为12,则m 的值为( )A .16B .24C .36D .48二、填空题13.双曲线y =kx经过点A (a ,﹣2a ),B (﹣2,m ),C (﹣3,n ),则m _____n (>,=,<).14.如图,反比例函数y =kx(x >0)经过A ,B 两点,过点A 作AC ⊥y 轴于点C ,过点B 作BD ⊥y 轴于点D ,过点B 作轴BE ⊥x 于点E ,连接AD ,已知AC =2,BE =2,S 矩形BEOD =16,则S △ACD =_____.15.调查显示,某商场一款运动鞋的售价是销量的反比例函数(调查获得的部分数据如下表). 售价x (元/双) 200 240 250 400销售量y (双)30 252415已知该运动鞋的进价为180元/双,要使该款运动鞋每天的销售利润达到2400元,则其售价应定为_______元.16.近视眼镜的度数y (度)与镜片焦距x (米)成反比例,已知400度近视眼镜镜片的焦距为0.25米,则眼镜度数y 与镜片焦距x 之间的函数关系式为________.(无需确定x 的取值范围)17.如果反比例函数y 2mx-=的图象在第一、三象限,那么m 的取值范围是____. 18.如图,过x 轴正半轴上任意一点P 作x 轴的垂线,分别与反比例函数24y x=和12y x =的图象交于点A 和点B .若点C 是y 轴上任意一点,则ABC 的面积为______________.19.如图,直线y =34-x +6与反比例函数y =kx(k >0)的图象交于点M 、N ,与x 轴、y 轴分别交于点B 、A ,作ME ⊥x 轴于点E ,NF ⊥x 轴于点F ,过点E 、F 分别作EG ∥AB ,FH ∥AB ,分别交y 轴于点G 、H ,ME 交HF 于点K ,若四边形MKFN 和四边形HGEK 的面积和为12,则k 的值为_____.20.如图,菱形ABCD 顶点A 在函数y=4x(x>0)的图像上,函数y=kx (k>4,x>0)的图象关于直线AC 对称,且经过点B 、D 两点,若AB=4,∠ADC=150°,则k=______。
反比例函数》测试题(含答案)1、选择题(每小题5分,共50分)1、若点(x1.-1)、(x2.-2)、(x3.1)都在反比例函数y= k/x 上,则它们之间的大小关系是()A.x1<x3<x2B.x2<x1<x3C.x1<x2<x3D.x2<x3<x12、若反比例函数y=k/x的图象经过点(m,3m),其中m≠0,则此反比例函数的图象在()A.第一、二象限;B.第一、三象限;C.第二、四象限;D.第三、四象限3、在直角坐标系中,点A是x轴正半轴上的一个定点,点B是双曲线y=3/x上的一个动点,当点B的横坐标逐渐增大时,△OAB的面积将会()A.逐渐增大B.不变C.逐渐减小D.先增大后减小4、函数y=-kx与函数y=k/x的图象的交点个数是()A。
0B。
1C。
2D.不确定5、函数y=6-x与函数y=k/x的图象交于A、B两点,设点A的坐标为(x1,y1),则边长分别为x1、y1的矩形面积和周长分别为()A。
4,12B。
4,6C。
8,12D。
8,66、已知y1+y2=y,其中y1与x成反比例,且比例系数为k1,而y2与x2成正比例,且比例系数为k2,若x=-1时,y=0,则k1,k2的关系是( )A.k1+k2=0B.k1k2=1C.k1-k2=0D.k1k2=-17、正比例函数y=2kx与反比例函数y=k/(x-1)在同一坐标系中的图象不可能是()18、如图,直线y=mx与双曲线y=k/(x-1)交与A、B两点,过点A作AM⊥x轴,垂足为M,连接BM,若S△ABM=2,则k的值是()A、2B、m-2C、mD、49、如图,点A在双曲线y=6/x上,且OA=4,过A作AC⊥x轴,垂足为C,OA的垂直平分线交OC于B,则△ABC的周长为( )A.47B.5C.27D.2210、如图,反比例函数y= k/x的图象经过点(1,2),则k=()。
二、填空题(每小题5分,共20分)11、若y=k/x是反比例函数,且x1y1=x2y2,则k=______。
八年级数学反比例函数单元评价测试题-初中二年级数学试题练习、期中期末试卷、测验题、复习资料-初中数学试卷-试卷下载八年级数学反比例函数单元评价测试题班级___________姓名_____________.考生注意:其中带※的题为升学考试要求而水平考试不要求的题目。
(总分:100分,考试时间:60分钟)一、选择题(本大题8个小题,每小题4分,共32分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个答案是正确的,请选出填在本大题后的表格内。
1、下列函数是反比例函数的是()A、y=B、y=C、y=x2+2xD、y=4x+82、如图,这是()个函数的大致图像。
A、y=-5xB、y=2x+8C、y=D、y=-3、函数的图象上有两点、且,那么下列结论正确的是()A. B. C. D.与之间的大小关系不能确定4、若y与x成正比,y与z的倒数成反比,则z是x的()A.正比例函数B.反比例函数C.二次函数D.z随x增大而增大5、下列函数中y既不是x的正比例函数,也不是反比例函数的是()A.y=-B.10=-x:5yC.y=4D. xy=-26、在第三象限中,下列函数,y随x的增大而减小的有()。
①、y=-②、y=③、y=-2x+5④、y=-5x-6A、1个B、2个C、3个D、4个※7、函数与()的图象的交点个数是()A. 2B.1C. 0D.不确定※8、若点(3,4)是反比例函数图象上一点,则此函数图象必经过点()A.(3,-4)B.(2,-6)C.(4,-3)D. (2,6)(2002年武汉)二、填空题(本大题6个小题,每小题3分,共18分)每小题中,请将答案直接写在题后横线上。
9、一般地,函数是反比例函数,其图象是,当时,图象两支在象限内。
10、反比例函数y=,当y=6时,_________。
11、反比例函数y=(m-2)x2m+1的函数值为时,自变量x的值是_________。
12、反比例函数的图像过点(-3,5),则它的解析式为_________。
一、选择题1.正比例函数1y 的图像与反比例函数2y 的图像相交于点(2,4)A ,下列说法正确的是( )A .反比例函数2y 的解析式是28y x=-B .两个函数图像的另一个交点坐标为(2,4)C .当2x <-或02x <<时,12y y <D .正比例函数1y 与反比例函数2y 都随x 的增大而增大 2.在反比例函数13my x-=图象上有两点()11,A x y ,()22,B x y ,120x x <<,12y y <,则m 的取值范围是( )A .13m >B .13m <C .13m ≥D .13m ≤3.已知点A (x 1,y 1)、B (x 2,y 2)、C (x 3,y 3)是函数y =﹣2x图象上的点,且x 1<0<x 2<x 3,则y 1,y 2,y 3的大小关系是( ) A .y 1>y 2>y 3B .y 1<y 2<y 3C .y 1>y 3>y 2D .无法确定4.已知0k >,函数y kx k =+和函数ky x=在同一坐标系内的图象大致是( ) A . B .C .D .5.若反比例函数()2221m y m x -=-的图象在第二、四象限,则m 的值是( )A .-1或1B .小于12的任意实数 C .-1D .不能确6.下列函数是y 关于x 的反比例函数的是( ) A .y =11x + B .y =21x C .y =﹣12xD .y =﹣2x 7.如图,曲线表示温度T (℃)与时间t (h )之间的函数关系,它是一个反比例函数的图像的一支.当温度T ≤2℃时,时间t 应( )A .不小于23h B .不大于23h C .不小于32h D .不大于32h 8.已知11(,)x y ,22(,)x y , 33(,)x y 是反比例函数2y x=-的图象上的三个点,且120x x <<,30x >,则123,,y y y 的大小关系是( )A .213y y y <<B .312y y y <<C .123y y y <<D .321y y y <<9.如图,已知正比例函数y 1=x 与反比例函数y 2=9x的图像交于A 、C 两点,AB ⊥x 轴,垂足为B , CD ⊥x 轴,垂足为D .给出下列结论:①四边形ABCD 是平行四边形,其面积为18;②AC =32;③当-3≤x<0或x≥3时,y 1≥y 2;④当x 逐渐增大时,y 1随x 的增大而增大,y 2随x 的增大而减小.其中正确的结论有( )A .①④B .①③④C .①③D .①②④10.如图,函数y =kx (k >0)与函数2y x=的图象相交于A ,C 两点,过A 作AB ⊥y 轴于B ,连结BC ,则三角形ABC 的面积为( )A .1B .2C .k 2D .2k 211.如图,点A 是反比例函数2(0)y x x=>的图象上任意一点,AB x 轴交反比例函数3y x =-的图象于点B ,以AB 为边作ABCD ,其中C 、D 在x 轴上,则ABCDS为( )A .2.5B .3.5C .4D .512.已知点11(,)x y ,22(,)x y 均在双曲线1y x=-上,下列说法中错误的是( ) A .若12x x =,则12y y = B .若12x x =-,则12y y =- C .若120x x <<,则12y y <D .若120x x <<,则12y y >二、填空题13.如图,在平面直角坐标系xOy 中,直线y =ax ,y =1a x 与反比例函数y =6x(x >0)分别交于点A ,B 两点,由线段OA ,OB 和函数y =6x(x >0)在A ,B 之间的部分围成的区域(不含边界)为W .(1)当A 点的坐标为(2,3)时,区域W 内的整点为_____个; (2)若区域W 内恰有8个整点,则a 的取值范围为_____.14.如图,在平面直角坐标系中,点(6,0)A 、(3,4)B ,点C 是OB 上一点,D 为AC 的中点,若反比例函数(0)ky x x=>过C 、D 两点,则k 的值为______.15.如图,已知正比例函数11(0)y k x k =≠与反比例函数22(0)k y k x=≠的图像交于两点M ,N ,若点N 的坐标是(1,2)--,则点M 的坐标为________16.在平面直角坐标系中,若直线2y x =-+与反比例函数ky x=的图象有2个公共点,则k 的取值范围是_________.17.如图,一次函数y 1=ax+b 与反比例函数2ky x=的图像交于A(1,4)、B(4,1)两点,若使y 1>y 2,则x 的取值范围是___________.18.如图,点M 是反比例函数ky x=(0k >)的图像上一点,MP x ⊥轴,垂足为点P ,如果MOP △的面积为7,那么k 的值是___________.19.设A (x 1,y 1),B (x 2,y 2)为函数21k y x-=图象上的两点,且x 1<0<x 2,y 1>y 2,则实数k 的取值范围是__.20.如图,已知双曲线(0)ky x x=>经过矩形OABC 边AB 的中点F ,交BC 于点E ,且四边形OEBF 的面积为2,则k =_______.三、解答题21.已知,反比例函数ky x=(k 是常数,且0k ≠)的图象经过点(,3)A b .(1)若4b =,求y 关于x 的函数表达式.(2)若点(3,3)B b b 也在该反比例函数图象上,求b 的值.22.在同一平面直角坐标系中,设一次函数1y mx n =+(m ,n 为常数,且0,m m n ≠≠-)与反比例函数2m ny x+=. (1)若1y 与2y 的图象有交点()1,5,且4n m =, ①求:m 、n 的值;②当15y ≥时,2y 的取值范围;(2)若1y 与2y 的图象有且只有一个交点,求mn的值. 23.如图,直线AC 与函数()0ky x x=<的图象相交于点()1,6A -,与x 轴交于点C ,且45ACO ∠=︒,点D 是线段AC 上一点. (1)求k 的值;(2)若DOC △与OAC 的面积比为2∶3,求点D 的坐标; (3)将OD 绕点O 逆时针旋转90°得到OD ',点D 恰好落在函数()0ky x x=<的图象上,求点D 的坐标.24.如图,在平面直角坐标系xOy 中,直线y =2x +2与函数y =kx(k ≠0)的图象交于A ,B 两点,且点A 的坐标为(1,m ). (1)求k ,m 的值;(2)直接写出关于x 的不等式2x +2>kx的解集; (3)若Q 在x 轴上,△ABQ 的面积是6,求Q 点坐标.25.如图,一次函数y kx b =+与反比例函数my x=的图象交于()(),3,3,1A n B -两点.(1)求一次函数与反比例函数的解析式; (2)根据已知条件,请直接写出不等式mkx b x+>的解集; (3)过点B 作 BC x ⊥轴,垂足为C ,求ABC ∆的面积. 26.阅读理解:材料一:若三个非零实数x ,y ,z 满足:只要其中一个数的倒数等于另外两个数的倒数的和,则称这三个实数x ,y ,z 构成“和谐三数组”.材料二:若关于x 的一元二次方程ax 2+bx +c = 0(a ≠0)的两根分别为1x ,2x ,则有12bx x a +=-,12c x x a⋅=. 问题解决:(1)请你写出三个能构成“和谐三数组”的实数 ;(2)若1x ,2x 是关于x 的方程ax 2+bx +c = 0 (a ,b ,c 均不为0)的两根,3x 是关于x 的方程bx +c =0(b ,c 均不为0)的解.求证:x 1,x 2,x 3可以构成“和谐三数组”; (3)若A (m ,y 1) ,B (m + 1,y 2) ,C (m +3,y 3)三个点均在反比例函数4y x=的图象上,且三点的纵坐标恰好构成“和谐三数组”,求实数m 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由题意可求正比例函数解析式和反比例函数解析式,由正比例函数和反比例函数的性质可分别进行判断求解,即可得出结论. 【详解】解:∵正比例函数y 1的图象与反比例函数y 2的图象相交于点A (2,4),∴正比例函数12y x =,反比例函数28y x=, ∴两个函数图象的另一个交点为(−2,−4), ∴A ,B 选项错误;∵正比例函数12y x =中,y 随x 的增大而增大, 反比例函数28y x=中,在每个象限内y 随x 的增大而减小, ∴D 选项错误;∵当x <−2或0<x <2时,y 1<y 2, ∴选项C 正确; 故选:C . 【点睛】本题考查了反比例函数与一次函数的交点问题,熟练运用反比例函数与一次函数的性质解决问题是本题的关键.2.A解析:A 【分析】根据反比例函数的图象与性质,可得该反比例函数图象的两个分支分别位于第二、四象限,从而可确定1-3m 的取值,进而求出m 的取值范围. 【详解】解:∵120x x <<时,12y y <, ∴反比例函数图象位于第二、四象限, ∴1-3m <0, 解得:13m >,故选:A . 【点睛】此题主要考查了反比例函数的图象与性质,熟练掌握相关性质是解答此题的关键.3.C解析:C 【分析】根据反比例函数图象上点的坐标特征得到y 1=12x -,y 2=22x -,y 3=32x -,然后根据x 1<0<x 2<x 3比较y 1,y 2,y 3的大小. 【详解】点(x 1,y 1),(x 2,y 2),(x 3,y 3)都是2y x=-的图象上的点, ∴y 1=12x -,y 2=22x -,y 3=32x -, 而x 1<0<x 2<x 3, ∴y 1>y 3>y 2. 故选:C . 【点睛】本题考查了反比例函数图象上点的坐标特征:熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.4.D解析:D 【解析】根据题意,在函数y=kx+k 和函数ky x=中, 有k >0,则函数y=kx+k 过一二三象限.且函数ky x=在一、三象限, 则D 选项中的函数图象符合题意; 故选D .5.C解析:C 【分析】根据反比例函数的定义列出方程221m -=-且210m -<求解即可. 【详解】 解:22(21)m y m x -=-是反比例函数,∴221m -=-,210m -≠,解之得1m =±.又因为图象在第二,四象限, 所以210m -<,解得12m <,即m 的值是1-. 故选:C .【点睛】 对于反比例函数()0ky k x=≠.(1)0k >,反比例函数图像分布在一、三象限;(2)k 0< ,反比例函数图像分布在第二、四象限内. 6.C解析:C 【分析】直接利用反比例函数的定义分别判断得出答案. 【详解】 解:A 、y =11x +是y 与x+1成反比例,故此选项不合题意; B 、y =21x,是y 与x 2成反比例,不符合反比例函数的定义,故此选项不合题意; C 、y =﹣12x,符合反比例函数的定义,故此选项符合题意; D 、y =﹣2x是正比例函数,故此选项不合题意. 故选:C . 【点睛】本题考查了反比例函数的定义,正确把握定义是解题的关键.7.C解析:C 【分析】本题首先利用待定系数法确定反比例函数解析式,继而根据题目已知列不等式关系,最后求解不等式解答本题. 【详解】假设反比例函数关系式为:=kT t(其中k 为常数且不为零,t 为正数), 由图可知点(1,3)在反比例函数上,故将点代入函数可得:3k =,故3T t=. ∵2T ≤,∴32t≤,解上述不等式得:32t ≥,即时间t 不小于32h . 故选:C .【点睛】 本题考查反比例函数的性质,待定系数法求比例系数k 是解题第一步,后续不等式求解,需要注意如果涉及负数需要变号.8.B解析:B【分析】 先根据反比例函数2y x=-的系数20-<判断出函数图象在二、四象限,在每个象限内,y 随x 的增大而增大,再根据120x x <<,30x >,判断出1y 、2y 、3y 的大小.【详解】 解:反比例函数2y x=-中,20k =-<, ∴此函数的图象在二、四象限,在每一象限内y 随x 的增大而增大,∵120x x <<,30x >30y ,210y y >>,∴312y y y <<,故选:B .【点睛】本题考查了二次函数图象上点的坐标特征.用到的知识点为:k 0<时,反比例函数k y x=图象的分支在二、四象限,在第四象限的函数值总小于在第二象限的函数值;在同一象限内,y 随x 的增大而增大. 9.C解析:C【分析】先求出AC 两点的坐标,再根据平行四边形的判定定理与函数图象进行解答即可.【详解】解:∵正比例函数y 1=x 与反比例函数y 2=9x的图象交于A 、C 两点, ∴A (3,3)、C (-3,-3),AB ⊥x 轴,垂足为B ,CD ⊥x 轴,垂足为D ,∴AB=CD ,AB ∥CD ,∴四边形ABCD 是平行四边形.∴S ▱ABCD =3×6=18,故①正确;②∵A (3,3)、C (-3,-3),∴AC=22(33)(33)62+++=,故本小题错误;③由图可知,-3≤x <0或x≥3时,y 1≥y 2,故本小题正确;④当x 逐渐增大时,y 1随x 的增大而增大,在每一象限内y 2随x 的增大而减小 故本小题错误.故选:C .【点睛】本题考查的是反比例函数综合题,涉及到平行四边形的判定、一次函数及反比例函数的特点等知识,难度适中.10.B解析:B【分析】设点A 坐标2,x x ⎛⎫ ⎪⎝⎭,根据点A ,C 关于原点对称,可得出点C 坐标,最后根据三角形的面积计算即可.【详解】设点A 坐标2,x x ⎛⎫ ⎪⎝⎭,则点C 坐标2,x x ⎛⎫--⎪⎝⎭, ∵AB ⊥y 轴,∴()114222ABC A C S AB y y x x=⋅-=⋅=, 故选B .【点睛】本题考查反比例函数图象上点的坐标特征,熟练掌握双曲线是关于原点对称,两个分支上的点也是关于原点对称是解题的关键.11.D解析:D【分析】过点B 作BH ⊥x 轴于H ,根据坐标特征可得点A 和点B 的纵坐标相同,由题意可设点A 的坐标为(2a,a ),点B 的坐标为(3a -,a ),即可求出BH 和AB ,最后根据平行四边形的面积公式即可求出结论.【详解】解:过点B 作BH ⊥x 轴于H∵四边形ABCD 为平行四边形∴//AB x 轴,CD=AB∴点A 和点B 的纵坐标相同由题意可设点A 的坐标为(2a ,a ),点B 的坐标为(3a -,a ) ∴BH=a ,CD=AB=2a -(3a -)=5a ∴ABCD S =BH·CD=5故选D .【点睛】此题考查的是反比例函数与几何图形的综合题,掌握利用反比例函数求几何图形的面积是解决此题的关键.12.D解析:D【分析】先把点A (x 1,y 1)、B (x 2,y 2)代入双曲线1y x =-,用y 1、y 2表示出x 1,x 2,据此进行判断.【详解】∵点(x 1,y 1),(x 2,y 2)均在双曲线1y x =-上, ∴111y x =-,221y x =-. A 、当x 1=x 2时,-11x =-21x ,即y 1=y 2,故本选项说法正确; B 、当x 1=-x 2时,-11x =21x ,即y 1=-y 2,故本选项说法正确; C 、因为双曲线1y x=-位于第二、四象限,且在每一象限内,y 随x 的增大而增大,所以当0<x 1<x 2时,y 1<y 2,故本选项说法正确; D 、因为双曲线1y x=-位于第二、四象限,且在每一象限内,y 随x 的增大而增大,所以当x 1<x 2<0时,y 1>y 2,故本选项说法错误;故选:D .【点睛】 本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.二、填空题13.24<a≤5或≤a<【分析】(1)把A点坐标代入y=ax得出直线直线y=ax 和的解析式作出函数图象再根据定义求出区域W的整点个数便可;(2)直线y=ax关于y=x对称当区域W内恰有8个整点则在直线y解析:2 4<a≤5或15≤a<14【分析】(1)把A点坐标代入y=ax,得出直线直线y=ax和1y xa=的解析式,作出函数图象,再根据定义求出区域W的整点个数便可;(2)直线y=ax,1y xa=关于y=x对称,当区域W内恰有8个整点,则在直线y=x上方与下方各有3个整点,进而求解.【详解】解:(1)如图,∵A(2,3),∴3=2a,∴a=32,∴直线OA:y=32x,直线OB:y=23 x,∴当23x=6x时,解得:x=3,或x=﹣3(负值舍去),∴B(3,2),∴故区域W内的整点个数有(1,1),(2,2)共2个,故答案为:2;(2)∵直线y=ax,1y xa=关于y=x对称,∵y=6x与y=x66),∴在W区域内有点(1,1),(2,2),∴区域W内恰有8个整点,∴在直线y=x上方与下方各有3个整点即可,∵(2,3),(3,2)在y=6x上,∴整点为(1,2),(2,1),(1,3),(3,1),(1,4),(4,1),当点(1,4)在y=ax上时,a=4,当点(1,5)在y=ax上时,a=5,∴4<a≤5;当点(1,4)在1y xa=上时,a=14,当点(1,5)在1y xa=上时,a=15,∴1 5≤a<14;故答案为:4<a≤5或15≤a<14.【点睛】本题主要考查了一次函数与反比例函数图象的交点,主要考查了待定系数法求函数解析式,函数图象与性质,新定义,最后一问关键是读懂新定义,找到关键点求出a的值.14.【分析】首先求出直线OB的解析式设点C的坐标为D点坐标为分别代入求出k的值即可【详解】解:设直线OB的解析式为∵∴解得:∴直线的解析式为设则即则经检验t=是原方程的解故答案为:【点睛】此题主要考查了解析:16 3【分析】首先求出直线OB 的解析式,设点C 的坐标为(6,8)C t t ,D 点坐标为6608,22t t D ++⎛⎫⎪⎝⎭,分别代入(0)k y x x =>,求出k 的值即可. 【详解】解:设直线OB 的解析式为y kx =,∵(3,4)B∴3=4k ,解得:43k = ∴直线OB 的解析式为43y x = 设(6,8)C t t ,则6608,22t t D ++⎛⎫ ⎪⎝⎭即(33,4)t t +, 则86433k t t k t t ⎧=⎪⎪⎨⎪=⎪+⎩, 16313k t ⎧=⎪⎪∴⎨⎪=⎪⎩. 经检验,t=13是原方程的解. 故答案为:163. 【点睛】此题主要考查了求反比例函数解析式,设出点C 的坐标,求出点D 的坐标是解答此题的关键. 15.(12)【分析】直接利用正比例函数与反比例函数的性质得出MN 两点关于原点对称进而得出答案【详解】解:∵正比例函数y =k1x (k1≠0)与反比例函数y =(k2≠0)的图象交于MN 两点∴MN 两点关于原点解析:(1,2)【分析】直接利用正比例函数与反比例函数的性质得出M ,N 两点关于原点对称,进而得出答案.【详解】解:∵正比例函数y =k 1x (k 1≠0)与反比例函数y =2k x(k 2≠0)的图象交于M ,N 两点, ∴M ,N 两点关于原点对称,∵点N 的坐标是(﹣1,﹣2),∴点M 的坐标是(1,2).故答案为:(1,2).【点睛】此题主要考查了反比例函数与正比例函数的交点问题,正确得出M ,N 两点位置关系是解题关键.16.且【分析】联立两函数解析式消去y 得到关于x 的一元二次方程由两函数在同一直角坐标系中的图象有两个公共点得到根的判别式大于0列出关于k 的不等式求出不等式的解集即可得到k 的范围【详解】联立两解析式得:消去 解析:1k <且0k ≠【分析】联立两函数解析式,消去y 得到关于x 的一元二次方程,由两函数在同一直角坐标系中的图象有两个公共点得到根的判别式大于0,列出关于k 的不等式,求出不等式的解集即可得到k 的范围.【详解】 联立两解析式得:2y x k y x =-+⎧⎪⎨=⎪⎩, 消去y 得:220x x k -+=,∵两个函数在同一直角坐标系中的图象有两个公共点,∴24440b ac k =-=->,即1k <,则当k 满足1k <且0k ≠时,这两个函数在同一直角坐标系中的图象有两个公共点. 故答案为:1k <且0k ≠.【点睛】本题考查了一次函数与反比例函数的交点问题,把两函数图象的交点问题转化成一元二次方程根的问题是解题的关键.17.x <0或1<x <4【分析】根据图形找出一次函数图象在反比例函数图象上方的x 的取值范围即可【详解】解:根据图形当x <0或1<x <4时一次函数图象在反比例函数图象上方y1>y2故答案为:x <0或1<x <解析:x <0或1<x <4【分析】根据图形,找出一次函数图象在反比例函数图象上方的x 的取值范围即可.【详解】解:根据图形,当x <0或1<x <4时,一次函数图象在反比例函数图象上方,y 1>y 2. 故答案为:x <0或1<x <4.【点睛】本题考查了反比例函数一次函数的交点问题,要注意y 轴左边的部分,一次函数图象在第二象限,反比例函数图象在第三象限,这也是本题容易忽视而导致出错的地方. 18.14【分析】根据点是反比例函数()的图像上一点可得到M 点的坐标;轴垂足为点可知P 点横坐标等于M 点横坐标;再通过的面积建立等式即可计算得到答案【详解】∵是反比例函数()的图像上一点设横坐标∴∵轴垂足为 解析:14【分析】根据点M 是反比例函数k y x=(0k >)的图像上一点,可得到M 点的坐标;MP x ⊥轴,垂足为点P ,可知P 点横坐标等于M 点横坐标;再通过MOP △的面积建立等式,即可计算得到答案.【详解】 ∵M 是反比例函数k y x =(0k >)的图像上一点 设M 横坐标x a = ∴,k M a a ⎛⎫ ⎪⎝⎭∵MP x ⊥轴,垂足为点P∴P 点横坐标等于M 点横坐标∴(),0P a∴=a OP ,k MP a= 又∵MP x ⊥轴,垂足为点P∴=90MPO ∠∴MOP △为直角三角形 ∴11222k k S OP MP a a =⨯=⨯=△MOP ∵7S =△MOP ∴=72k ∴14k = 故答案为:14.【点睛】本题考察了反比例函数、直角坐标系、直角三角形的知识;求解的关键的熟练掌握反比例函数、直角三角形性质,结合直角坐标系,从而计算得到答案.19.﹣1<k <1【分析】根据函数值的大小关系判别函数的图象位置根据位置判定比例系数的大小再解不等式【详解】因为A (x1y1)B (x2y2)为函数图象上的两点且x1<0<x2y1>y2所以函数图象分支在二解析:﹣1<k <1【分析】根据函数值的大小关系,判别函数的图象位置,根据位置判定比例系数的大小,再解不等式.【详解】因为A (x 1,y 1),B (x 2,y 2)为函数21k y x-=图象上的两点,且x 1<0<x 2,y 1>y 2, 所以函数图象分支在二、四象限所以k 2-1<0解得﹣1<k <1故答案为:﹣1<k <1【点睛】考核知识点:反比例函数的图象.数形结合,熟记反比例函数的性质是关键. 20.2【分析】如果设F (xy )表示点B 坐标再根据四边形OEBF 的面积为2列出方程从而求出k 的值【详解】解:∵双曲线经过矩形边的中点设F (xy )E (ab )那么B (x2y )∵点E 在反比例函数解析式上∴S △C解析:2【分析】如果设F (x ,y ),表示点B 坐标,再根据四边形OEBF 的面积为2,列出方程,从而求出k 的值.【详解】解:∵双曲线(0)k y x x=>经过矩形OABC 边AB 的中点F 设F (x ,y ),E (a ,b ),那么B (x ,2y ),∵点E 在反比例函数解析式上,∴S △COE =12ab=12k , ∵点F 在反比例函数解析式上, ∴S △AOF =12xy=12k ,即xy=k ∵S 四边形OEBF =S 矩形ABCO -S △COE -S △AOF ,且S 四边形OEBF =2,∴2xy-12k-12xy=2, ∴2k-12k-12k=2, ∴k=2.故答案为:2.【点睛】本题的难点是根据点F 的坐标得到其他点的坐标.在反比例函数上的点的横纵坐标的积等于反比例函数的比例系数.三、解答题21.(1)12y x =;(2)13b = 【分析】(1)把A 点代入反比例函数即可求解;(2)把A 、B 两点代入反比例函数列出方程组即可求解;【详解】解:(1)∵4b =,∴A (4,3),把A 点代入反比例函数得:34k =, 即k=12,∴函数解析式为:12y x=; (2)把A 、B 代入反比例函数得:333k b k b b ⎧=⎪⎪⎨⎪=⎪⎩①② 解得:13b =. 【点睛】本题主要考查的是反比例函数的性质,熟练掌握反比例函数的性质是解答本题的关键. 22.(1)①1,4m n ==;②205y <≤;(2)12m n =- 【分析】(1)①将点()1,5代入一次函数解析式得5m n +=,结合4n m =,即可求出m 、n 的值;②由①已经得到一次函数和反比例函数的解析式,根据15y ≥求出x 的取值范围,再根据反比例函数的性质求出2y 的取值范围;(2)根据题意,1y 与2y 的图象有且只有一个交点,即方程m n mx n x +=+有且只有一解,根据根的判别式即可求出结果.【详解】(1)①把()1,5代入1y mx n =+,得5m n +=,∵4n m =,∴1,4m n ==;②由①得:1254,y x y x =+=, ∴当15y ≥时,45x +≥,∴1≥x ,∵反比例函数25y x=在第一象限内y 随着x 的增大而减小, ∴当1≥x 时,2y 的取值范围是205y <≤;(2)令m n mx n x+=+, 得2()0mx nx m n +-+=, 由题意得,22Δ4()(2)0n m m n m n +=+=+=即20m n +=, ∴12m n =-. 【点睛】 本题考查一次函数和反比例函数,以及一元一次方程根的判别式,解题的关键是掌握函数解析式的求解方法,理解函数图象的交点对应方程的解.23.(1)k=-6;(2)(1,4);(3)(3,2)或(2,3)【分析】(1)将点()1,6A -代入反比例函数解析式中即可求出k 的值;(2)过点D 作DM ⊥x 轴于M ,过点A 作AN ⊥x 轴于N ,根据三角形的面积比可得23DM AN =,再根据点A 的坐标即可求出DM ,然后证出ACN 和DCM 都是等腰直角三角形,即可求出OM ,从而求出结论;(3)过点D 作DM ⊥x 轴于M ,过点A 作AN ⊥x 轴于N ,过点D 作D G ⊥x 轴于G ,设点D 的纵坐标为a (a >0),即DM=a ,然后用a 表示出OM ,利用AAS 证出△G D O ≌△MOD ,即可用a 表示出点D 的坐标,将D 的坐标反比例函数解析式中即可求出a 的值,从而求出点D 的坐标.【详解】解:(1)将点()1,6A -代入k y x =中,得61k =- 解得k=-6;(2)过点D 作DM ⊥x 轴于M ,过点A 作AN ⊥x 轴于N∵DOC △与OAC 的面积比为2∶3∴122132OC DM OC AN = ∴23DM AN = ∵()1,6A -∴AN=6,ON=1∴DM=4∵45ACO ∠=︒∴ACN 和DCM 都是等腰直角三角形∴CN=AN=6,CM=DM=4∴OM=CN -CM -ON=1∴点D 的坐标为(1,4);(3)过点D 作DM ⊥x 轴于M ,过点A 作AN ⊥x 轴于N ,过点D 作D G ⊥x 轴于G设点D 的纵坐标为a (a >0),即DM=a∵ACN 和DCM 都是等腰直角三角形∴CN=AN=6,CM=DM=a∴OM=CN -CM -ON=5-a∴点D 的坐标为(5-a ,a )∵∠D GO=∠OMD=∠D OD=90°∴∠G D O +∠D OG=90°,∠MOD +∠D OG=90°,∴∠G D O=∠MOD由旋转的性质可得D O=OD∴△G D O ≌△MOD∴G D =OM=5-a ,OG=DM=a∴D 的坐标为(-a ,5-a )由(1)知,反比例函数解析式为()06y x x=-< 将D 的坐标代入,得 56a a-=-- 解得:122,3a a ==∴点D 的坐标为(3,2)或(2,3).【点睛】此题考查的是反比例函数与几何图形的综合大题,掌握利用待定系数法求反比例函数解析式、等腰直角三角形的判定及性质、全等三角形的判定及性质和旋转的性质是解题关键. 24.(1)m =4,k =4;(2)﹣2<x <0或x >1;(3)(﹣3,0)或(1,0).【分析】(1)将点A 坐标代入直线解析式可求m 的值,再将点A 坐标代入反比例函数解析式可求k 的值;(2)解析式联立成方程组,解方程组求得B 的坐标,然后根据函数的图象即可求得不等式2x +2>k x的解集. (3)由直线解析式求得直线与x 轴的交点坐标,然后设出Q 的坐标,根据三角形面积公式得到12•|a +1|•(2+4)=6,解得a 的值,即可求得点Q 的坐标. 【详解】解:(1)∵点A (1,m )在直线y =2x +2上,∴m =2×1+2=4,∴点A 的坐标为(1,4),代入函数y =k x(k ≠0)中,得4=1k , ∴k =4. (2)解224y x y x =+⎧⎪⎨=⎪⎩得14x y =⎧⎨=⎩或22x y =-⎧⎨=-⎩, ∴B (﹣2,﹣2),∴关于x 的不等式2x +2>k x的解集是﹣2<x <0或x >1. (3)在y =2x +2中令y =0,解得x =﹣1,则直线与x 轴的交点是(﹣1,0). 设点Q 的坐标是(a ,0).∵△ABQ 的面积是6, ∴12•|a +1|•(2+4)=6, 则|a +1|=2,解得a =1或﹣3.则点Q 的坐标是(﹣3,0)或(1,0).【点睛】本题考查了一次函数与反比例函数的交点问题、坐标与图形性质、待定系数法求解析式、三角形的面积公式、解方程(组),解答的关键是熟练运用相关知识,利用数形结合方法求不等式的解集,以及利用Q 点坐标表示△ABQ 的面积.25.(1)3y x=-,2y x =-+;(2)1x <-或03x <<;(3)2ABC S ∆= 【分析】(1)将点B 的坐标代入反比例函数解析式中即可求出m 的值,从而得出反比例函数解析式,再将点A 的坐标代入反比例函数解析式即可求出n 的值,由点A ,点B 的坐标利用待定系数法即可求出一次函数解析式;(2)观察两函数图象,结合点A ,点B 的坐标,即可得出结论;(3)由BC ⊥x 轴结合点B 的坐标可得出BC 的长度,再根据点A 的坐标利用三角形的面积公式即可得出结论.【详解】 ()1将点()3,1B -代入反比例函数解析式中,得13m -=,解得3m =- ∴反比例函数解析式为3y x=- 点A(n,3)在反比例函数的图像3y x =-上 33n∴=-,解得1n =- 即点A 的坐标为()1,3-将点()1,3A -,点()3,1B -,代入一次函数解析式中,得331k b k b -+=⎧⎨+=-⎩,解得12k k =-⎧⎨=⎩∴一次函数解析式为2y x =-+()2观察函数图象发现:当x <-1或0<x <3时,一次函数图象在反比例函数图象上方 ∴不等式mkx b x+>的解集为x <-1或0<x <3; ()3BC x ⊥轴,()3,1B -1,BC ∴=()1,3A -11422ABC S ∆∴=⨯⨯=【点睛】本题考查了反比例函数与一次函数交点问题,待定系数法求函数解析式及三角形的面积公式. 解题的关键是:(1)求出点A 的坐标;(2)结合函数图象解不等式;(3)利用三角形的面积公式求出面积. 解决该题型题目时,求出点的坐标,利用待定系数法求出函数解析式是关键.26.(1)65,2,3(答案不唯一);(2)见解析;(3)m =﹣4或﹣2或2. 【分析】(1)根据“和谐三数组”的定义可以先写出后2个数,取倒数求和后即可写出第一个数,进而可得答案;(2)根据一元二次方程根与系数的关系求出1211+x x ,然后再求出31x ,只要满足1211+x x =31x 即可; (3)先求出三点的纵坐标y 1,y 2,y 3,然后由“和谐三数组”可得y 1,y 2,y 3之间的关系,进而可得关于m 的方程,解方程即得结果.【详解】解:(1)∵115236+=,∴65,2,3是“和谐三数组”; 故答案为:65,2,3(答案不唯一); (2)证明:∵1x ,2x 是关于x 的方程ax 2+bx +c = 0 (a ,b ,c 均不为0)的两根, ∴12b x x a +=-,12c x x a⋅=, ∴12121211bx x b a c x x x x ca -++===-⋅, ∵3x 是关于x 的方程bx +c =0(b ,c 均不为0)的解, ∴3c x b =-,∴31b x c =-, ∴1211+x x =31x , ∴x 1 ,x 2,x 3可以构成“和谐三数组”;(3)∵A (m ,y 1) ,B (m + 1,y 2) ,C (m +3,y 3)三个点均在反比例函数4y x =的图象上, ∴14y m =,241y m =+,343y m =+, ∵三点的纵坐标y 1,y 2,y 3恰好构成“和谐三数组”, ∴123111y y y =+或213111y y y =+或312111y y y =+, 即13444m m m ++=+或13444m m m ++=+或31444m m m ++=+, 解得:m =﹣4或﹣2或2.【点睛】本题是新定义试题,主要考查了一元二次方程根与系数的关系、反比例函数图象上点的坐标特征和对新知“和谐三数组”的理解与运用,正确理解题意、熟练掌握一元二次方程根与系数的关系与反比例函数的图象与性质是解题的关键.。
苏教版初中数学八年级下册《反比例函数》单元检测试卷姓名 班级 得分一、选择题。
1、下列函数中,反比例函数是( ) (A ) 12+=x y (B ) 22x y =(C ) x y 51= (D ) x y =22、某村的粮食总产量为a (a 为常数)吨,设该村的人均粮食产量为y 吨,人口数为x ,则y 与x 之间的函数关系式的大致图像应为( )3、若y 与-3x 成反比例,x 与z4成反比例,则y 是z 的( ) (A )正比例函数 (B )反比例函数 (C )一次函数 (D )不能确定 4、若反比例函数22)12(--=m xm y的图像在第二、四象限,则m 的值是( )(A )-1或1 (B )小于21的任意实数 (C ) -1 (D) 不能确定 5、已知反比例函数的图像经过点(a ,b ),则它的图像一定也经过( ) (A )(-a ,-b ) (B )(a ,-b ) (C )(-a ,b ) (D )(0,0) 6、若M(12-,1y )、N(14-,2y )、P(12,3y )三点都在函数ky x =(k>0)的图象上,则1y 、2y 、3y 的大小关系是( )(A )132y y y >> (B )312y y y >> (C ) 213y y y >> (D )123y y y >>7、如图,A 为反比例函数ky x=图象上一点,AB 垂直x 轴于B 点,若AOB S ∆=5,则k 的值为( ) (A ) 10 (B ) 10- (C ) 5- (D )25-8、在同一直角坐标系中,函数y=kx-k 与(0)ky k x=≠的图像大致是( )9、对于反比例函数xky 2=(0≠k ),下列说法不正确...的是 A. 它的图象分布在第一、三象限 B. 点(k ,k )在它的图象上 C. 它的图象是中心对称图形D. y 随x 的增大而增大10、在同一直角坐标平面内,如果直线1y x k =与双曲线2k y x=没有交点,那么1k 和2k 的关系一定是( )(A) 1k 、2k 异号 (B) 1k 、2k 同号 (C) 1k >0, 2k <0 (D) 1k <0, 2k >0 二、填空题。
反比例函数单元测试卷含答案一、选择题1. 反比例函数的一般形式是:A. y = kxB. y = ax + bC. y = k/xD. y = mx + c答案: C2. 当x为0时,反比例函数的值为:A. 0B. 1C. 无定义D. 任意值答案: C3. 若反比例函数的k值为正数,x趋近于无穷大,y会趋近于:A. 正无穷大B. 负无穷大C. 0D. 不存在极限答案: B4. 反比例函数的图像是一条:A. 直线B. 抛物线C. 余弦曲线D. 双曲线答案: D5. 若反比例函数的x值为正数,y值为负数,那么k值是:A. 正数B. 负数C. 零D. 无法确定答案: B二、计算题1. 已知反比例函数y = 5/x,当x = 2时,求y的值。
答案: 2.52. 已知反比例函数y = 3/x,当y = 6时,求x的值。
答案: 0.5三、简答题1. 什么是反比例函数?答案: 反比例函数是一种函数关系,当自变量x的值增大时,因变量y的值会减小,并且二者之间呈现出一种倒数关系。
它的一般形式为y = k/x,其中k为常数。
2. 反比例函数的图像有什么特点?答案: 反比例函数的图像是一条双曲线。
当x趋近于无穷大或无穷小时,函数的值趋近于零。
两支曲线的对称轴为y轴,并在y 轴上有一个渐近线。
3. 如何确定反比例函数的常数k的值?答案: 可以通过已知点的坐标进行求解。
将已知的x和y的值代入反比例函数的一般形式中,解方程得到k的值。
以上就是反比例函数单元测试卷的答案。
希望能对你的学习有所帮助!。
《反比例函数》单元测试卷(一)一、选择题(每题2分,共20分)1.下列函数关系式中,是反比例函数的是( ).(A )6x y =. (B )112+-=x y . (C )x k y = . (D )x y 25-= .2.下列坐标是反比例函数xy 4-=图象上的一个点的坐标是( ). (A )(4,-1). (B )(1,4). (C )(4,1). (D )(-3,33).3.已知反比例函数的图像经过点(a ,b ),则它的图像一定也经过( )(A )(-a ,-b ). (B )(a ,-b ). (C )(-a ,b ). (D )(0,0).4.如果反比例函数xk y =的图像经过点(-2,-5),那么函数的图像应在( ) (A )第一、三象限.(B )第一、二象限. (C )第二、四象限.(D )第三、四象限.5.已知变量y 与x 成反比例,当x =2时,y =―9;那么当y =3时,x 的值是( )(A ) 6 . (B ) ―6 . (C ) 9 . (D ) ―9 .6.当路程s 一定时,速度v 与时间t 之间的函数关系是( )(A )正比例函数.(B )反比例函数. (C ) 一次函数. (D ) 二次函数.7.若反比例函数52)1(--=mx m y 的图像在第二、四象限,则m 的值是( ) (A ) -2或2 (B )小于21 的任意实数. (C ) -2. (D) 1.8.下列函数中,图象位于第二、四象限且在其图象所在象限内,y 的值随着x 的值增大而增大的是( )(A )x y 3=. (B )2+-=x y . (C )x y 1-=. (D )xy 21=.9.若y与-2x成反比例,x 与z6成正比例,则y是z的()(A)正比例函数.(B)反比例函数. (C)一次函数. (D)不能确定.10.已知k > 0,则函数kxy=1与函数xky=2的大致图象是图中的().(A)(B)(C)(D)二、填空题(每题2分,共30分)11.A、B两地全长为42km,一辆汽车以每小时v km从A地开往B地,则所需时间t(h)与汽车速度v(km/h)之间的函数关系式是:________________.12.已知y是x的反比例函数,且当x = 4.5时,y = 2,则函数表达式为:________________.13.已知y-2与x成反比例,当x=4时,y=-1,则y与x间的函数关系式为 .14.函数3xy-=和函数xy3=的图像有个交点.15.右图1是反比例函数xky=的图象,则k与0的大小关系是k0.16.点(3 ,2)在反比例函数xky=的图象上,则当x < 0时,y的值随着x的值增大而______.17.反比例函数xky=的图像经过(-53,5)点、(a,-3)及(10,b)点,则k=,a =,b= .18.已知正比例函数kxy=与反比例函数3yx=的图象都过A(m,1),则m=,正比例图1函数的解析式是 .19已知:22)1(--=mx m y 是反比例函数,则m = ________,此函数的图象在第_______象限.20.如图2,P 是反比函数xy 4-=的图象上的一点, P A ⊥x 轴,则△PAO 的面积是________________.三、解答题(21题8分,22——24题14分,共50分)21.(8分)在某一电路中,保持电压不变,电流I(安培)与电阻R(欧姆)成反比例,当电阻R=6欧姆时,电流I=3安培.(1)求I 与R 之间的函数关系式(2)当电流I=0.5安培时,求电阻R 的值;22.(14分)已知:反比例函数x k y =和一次函数12-=x y ,其中一次函数的图像经过点(k ,5). (1) 试求反比例函数的解析式;(2) 若点A 在第一象限,且同时在上述两函数的图像上,求A 点的坐标.23.(14)某气球内充满了一定质量的气球,当温度不变时,气球内气球的压力p(千帕)是气球的体积V(米2)的反比例函数,其图象如图所示(千帕是一种压强单位)(1)(4分)写出这个函数的解析式;(2)(3分)当气球的体积为0.8立方米时,气球内的气压是多少千帕?(3)(3分)当气球内的气压大于144千帕时,气球将爆炸,为了安全起见,气球的体积应不小于多少立方米?24.(14分)如图,一次函数b kx y +=的图像与反比例函数xm y =的图像相交于A 、B 两点, (1)利用图中条件,求反比例函数和一次函数的解析式(2)根据图像写出使一次函数的值大于反比例函数的值的x 的取值范围. 图2参考答案:一、选择题1.D ;提示:根据反比例函数的概念.2.A ;提示:将点的坐标代入解析式.3.A ;提示:将点的横、纵坐标相乘,结果相同的就是答案.4.A ;提示:根据反比例函数的性质.5.B ;提示:设反比例函数的解析式,代入求出k 值,进而求出结果.6.B ;提示:根据反比例函数的概念.7.C ;提示:根据反比例函数1-=kx y 的形式求出结果.8.C ;提示:根据反比例函数的性质.9.A ;提示:根据正、反比例的解析式.10.D ;提示:根据正、反比例函数的图象与性质.二、填空题11.v t 42=;提示:根据路程、速度与时间的关系.12.x y 9=; 提示:设反比例函数的解析式x ky =,求出k 值.13.212+-=x y ; 提示:设反比例函数的解析式x ky =-2,将点的坐标代入求出k 值.14.0;提示:根据正、反比例函数图象的性质.15.〉;根据反比例函数图象的性质.16. 减小;根据反比例函数的性质.17.-3,1,103-; 提示:将(-53,5)代入反比例函数的解析式,求出k 值,再将另两个点的坐标代入求值. 18.3,3x y =; 提示:将A 点坐标代入反比例函数的解析式,求出m 的值,在代入正比例函数的解析式,分别求值.19.-1,二、四;提示:根据反比例函数的解析式和图象的性质.20.2;提示:根据反比例函数的图象特征.三、解答题21.(1)设I 与R 之间的函数关系式为:Rk I =将R=6,I=3代入,得 63k = =k 18 ∴I 与R 之间的函数关系式为R I 18=(2)当I=0.5时,R185.0= R=36∴R 为36欧姆.22.(1) 一次函数y=2x-1的图象经过点(k,5)5=2k-1K=3反比例函数的解析式为xy 3= (2)根据题意列出方程组,解得x 、y 的值,取第一象限的坐标,∴A 点的坐标为(23 ,2 )23.(1)设函数的解析式为:vk p =,将A(1.5,64)代入,得 5.164k =96=∴k∴函数的解析式为:v p 96=(2)当v=0.8立方米时,8.096=p 120=p∴气球内的气压是120千帕.(3)当p=144时,v 96144=V=32 ∴气球的体积应不小于32立方米. 24. (1)将A(-2,1)代入xm y =,得 m=-2 ∴反比例函数的解析式为x y 2-= xy 2-=的图象讲过点B (1,n ) 则 n=-2将A (-2,1) B (1,-2)代入y=kx+b 中,解得:k=-1,b=-1∴一次函数的解析式为y=-x-1(2)根据图象可知:当x<-2和0<x<1时,一次函数的值大于反比例函数的值.备注:第1、2、5、6、7、9、11、12、13题通过求函数解析式、确定k 值等具体数学问题进一步认识和理解反比例函数的定义,并能够灵活的应用. 第3、4、8、15、16、17、18、19、20题通过不同角度和方式使学生进一步理解反比例函数的图像及其性质,使学生能够将数学知识应用到实际生活中.第10、14题考查反比例函数和正比例函数的定义,让学生能够更好的理解和区分两者的联系和区别.第21、22、23、24题考查反比例函数在实际生活中的应用. 本套题中,简单题为1、2、4、6、8、11、12、14、15、16、17、21题,中等难度题3、5、10、13、18、19、20题,难题为7、9、22、23、24题,易中难的比例约为5:3:2.。
《反比例函数》
一、选择题
1、下列函数是反比例函数的是( )
A 、y=
3
x B 、y=
x
36 C 、y=x 2
+2x D 、y=4x+8
2、如图,这是( )个函数的大致图像。
A 、y=-5x
B 、y=2x+8
C 、y=5
x D 、y=-3
x
3、函数x
y 1-=
的图象上有两点),(11y x A 、),(22y x B 且21x x <,那么下列结论正确的是( )
A.21y y < B .21y y > C.21y y = D.1y 与2y 之间的大小关系不能确定 4、若y 与x 成正比,y 与z 的倒数成反比,则z 是x 的( )
A.正比例函数
B.反比例函数
C.二次函数
D.z 随x 增大而增大 5、下列函数中y 既不是x 的正比例函数,也不是反比例函数的是( )
A.y=-x
91 B.10=-x :5y C.y=421
x D.
5
1xy=-2
6、在第三象限中,下列函数,y 随x 的增大而减小的有( )。
①、y=-3
x ②、y=
x
8 ③、y=-2x+5 ④、y=-5x-6
A 、1个
B 、2个
C 、3个
D 、4个 ※7、函数y kx =-与
y k
x =
(k ≠0)的图象的交点个数是( )
A. 2
B.1
C. 0
D.不确定 ※8、若点(3,4)是反比例函数x
m m y 1
22
++=
图象上一点,则此函数图象必经过点( )
A.(3,-4)
B.(2,-6)
C.(4,-3)
D. (2,6)(2002年武汉)
二、填空题
9、一般地,函数 是反比例函数,其图象是 ,当k <0时,图象两支在 象限内。
10、反比例函数y=x
2
,当y=6时,x =_________。
11、反比例函数y=(m-2)x
2m+1
的函数值为3
1
时,自变量x 的值是_________。
12、反比例函数的图像过点(-3,5),则它的解析式为_________。
※13、若函数y=4x 与y=
x
1的图象有一个交点是(
2
1,2),则另一个交点坐标是 _。
※14、若m <-1,则下列函数①y=x
m (x >0);②y=-mx+1;③y=mx ;④y=(m+1)x 中,随的增大而增
大的是 (填写编号)。
三、解答题
15、(8分)在反比例函数y=x
k 2008
2-图像的每一条曲线上,y 随x 的增大而减小,求k 的取值范围。
16、(8分)反比例函数x
k y =
的图象经过点)3,2(A .
(1)求这个函数的解析式;
(2)请判断点)6,1(B 是否在这个反比例函数的图象上,并说明理由.
17、(8分)如图,点A 是反比例函数`
4x y =
图象上一点,AB ⊥y 轴于点B ,那么△AOB 的面积是多少?
18、(8分)在压力不变的情况下,某物承受的压强P (Pa )是它的受力面积S (m 2
)的反比例函数,其图象如右图所示.
(1)求P 与S 之间的函数关系式;
(2)求当S =0.5m 2
时物体所受的压强P .
※19、(8分)如图,反比例函数x
y 8-=与一次函数2+-=x y 的图象交于A 、B 两点.
(1)求A 、B 两点的坐标; (2)求△AOB 的面积.
※20、(10分)某单位为响应政府发出的全民健身的号召,打算在长和宽分别为20米和11米的矩形大厅内修建一个60平方米的矩形健身房ABCD 。
该健身房的四面墙壁中有两侧沿用大厅的旧墙壁(如图为平面示意图),已知装修旧墙壁的费用为20元/平方米,新建(含装修)墙壁的费用为80元/平方米。
设健身房的高为3米,一面旧墙壁AB 的长为x 米,修建健身房的总投入为y 元。
(1)求y 与x 的函数关系式;
(2)为了合理利用大厅,要求自变量x 必须满足8≤x ≤12.当投入资金为4800元时,问利用旧墙壁的
总长度为多少米?。