信号与系统第一次作业
- 格式:ppt
- 大小:558.00 KB
- 文档页数:1
福师《信号与系统》在线作业一试卷总分:100 测试时间:--一、单选题(共25 道试题,共50 分。
)1. 周期矩形脉冲的谱线间隔与( )。
A. 脉冲幅度有关B. 脉冲宽度有关C. 脉冲周期有关D. 周期和脉冲宽度有关满分:2 分2. 单位序列响应h(n)=2u(n)的系统是( )系统。
A. 因果及稳定B. 非因果及稳定C. 因果及非稳定D. 非因果及非稳定满分:2 分3. 一个含有3个电容、2个电感和3个电阻的系统,以下叙述正确的是( )。
A. 一定是2阶系统B. 一定是5阶系统C. 至多是2阶系统D. 至多是5阶系统满分:2 分4. f(t)的频宽是200Hz,那么f(-2t-6)的奈奎斯特频率为( )。
A. 400HzB. 200HzC. 800HzD. 100Hz满分:2 分5. 激励为x(n)时,响应y(n)=x(n)sin(2πn/7+π/6)的系统是( )系统。
A. 线性且时不变B. 非线性且时不变C. 线性且时变D. 非线性且时变满分:2 分6. 在变换域中解差分方程时,首先要对差分方程两端进行( )。
A. 傅立叶变换B. 拉普拉斯变换C. Z变换D. 以上答案都不正确满分:2 分7. 一个含有5个电容、1个电感和2个电阻的系统,以下叙述正确的是( )。
A. 一定是3阶系统B. 一定是6阶系统C. 至多是3阶系统D. 至多是6阶系统满分:2 分8. 信号f(t)=Acos(2000πt)+Bsin(200πt)的归一化功率等于( )。
A. A+BB. (A+B)/2C. A*A+B*BD. (A*A+B*B)/2满分:2 分9. 信号f(t)=Sa(100t)+Sa(50t)的最低抽样率等于( )。
A. 100/πB. π/100C. 100D. 1/100满分:2 分10. 某系统的系统函数为H(z)=z/[(z-4)*(z-1)],若该系统是稳定系统,则其收敛区为( )。
A. |z|<1B. |z|>4C. 1<|z|<4D. 以上答案都不对满分:2 分11. 信号f(t)=Sa(100t)+Sa(50t)的奈奎斯特间隔等于( )。
2014年9月份考试信号与系统第一次作业一、单项选择题(本大题共100分,共 40 小题,每小题 2.5 分)1. 已知 f(t),为求f(t0-at) 应按下列哪种运算求得正确结果?(式中t,a都为正值)()。
A.B. f(at) 右移t0 C. f(at) 左移t/a D. f(-at) 右移t/a2. 系统函数H(s)与激励信号X(s)之间是()。
A. 反比关系 B. 无关系C. 线性关系D. 不确定3. 下列论断正确的为()。
A. 两个周期信号之和必为周期信号; B. 非周期信号一定是能量信号; C. 能量信号一定是非周期信号; D. 两个功率信号之和仍为功率信号。
4. 序列f(n)=cos(πn2)[ξ(n−2)−ξ(n−5)]的正确图形是()A.B.C.D.5. 已知某系统的系统函数为H(s),唯一决定该系统单位冲激响应h(t)函数形式的是( ) A. H(s)的零点 B. H(s)的极点 C. 系统的输入信号 D. 系统的输入信号与H(s)的极点6. 信号f 1(t ),f 2(t )波形如图所示,设f (t )=f 1(t )∗f 2(t ),则f (0)为( )A. 1B. 2C. 3D. 47. 某信号的频谱密度函数为则f(t) =( )。
A.B.C.D.8. 积分 (t −2)δt t0−ⅆt 等于( )A.B.C.D.9. 积分 e −2t t−∞δ(τ)ⅆτ等于( ) A.B.C.D.10. 信号f 1(t ),f 2(t )波形如图所示,设f (t )=f 1(t )∗f 2(t ),则f (0)为( )A. 0B. 1C. 2D. 311. 信号f 1(t ) 和 f 2(t )分别如图(a )和图(b)所示,已知 [f 1(t )]=F 1(jω),则f2(t)的傅里叶变换为()A.B.C.D.12. f(5-2t)是如下运算的结果————————() A. f(-2t)右移5B. f(-2t)左移5C. f(-2t)右移5/2D. f(-2t)左移5/213. 图(b)中与图(a)所示系统等价的系统是()A.B.C.D.14. 若系统的起始状态为0,在x(t)的激励下,所得的响应为———() A. 强迫响应 B. 稳态响应 C. 暂态响应 D. 零状态响应15. 已知信号f(t)的傅里叶变换<mml:math xmlns:mml="/1998/Math/MathML" xmlns:m="/officeDocument/2006/math"><mml:mrow ><mml:mi>F</mml:mi><mml:mo>(</mml:mo><mml:mi>j</mml:mi><mml:mi>&omega ;</mml:mi><mml:mo>)</mml:mo><mml:mo>=</mml:mo><mml:mi>δ</mml:mi ><mml:mo>(</mml:mo><mml:mi>ω</mml:mi><mml:mo>−</mml:mo><m ml:msub><mml:mrow><mml:mi>ω</mml:mi></mml:mrow><mml:mrow><mml:m n>0</mml:mn></mml:mrow></mml:msub><mml:mo>)</mml:mo></mml:mrow></mml: math>,则f(t)为()A.<mml:math xmlns:mml=" /1998/Math/MathML" xmlns:m=" /officeDocument/2006/math"><mml:mact ionactiontype="link"><mml:mrow><mml:mfrac><mml:mrow><mml:mn>1</mml:mn></ mml:mrow><mml:mrow><mml:mn>2</mml:mn><mml:mi>π</mml:mi></mml:mrow></ mml:mfrac><mml:msup><mml:mrow><mml:mi>e</mml:mi></mml:mrow><mml:mrow> <mml:mi>j</mml:mi><mml:msub><mml:mrow><mml:mi>w</mml:mi></mml:mrow><m ml:mrow><mml:mn>0</mml:mn></mml:mrow></mml:msub><mml:mi>t</mml:mi></m ml:mrow></mml:msup></mml:mrow></mml:math>B.<mml:math xmlns:mml=" /1998/Math/MathML" xmlns:m=" /officeDocument/2006/math"><mml:mact ionactiontype="link"><mml:mrow><mml:mfrac><mml:mrow><mml:mn>1</mml:mn></ mml:mrow><mml:mrow><mml:mn>2</mml:mn><mml:mi>π</mml:mi></mml:mrow></ mml:mfrac><mml:msup><mml:mrow><mml:mi>e</mml:mi></mml:mrow><mml:mrow> <mml:mo>−</mml:mo><mml:mi>j</mml:mi><mml:msub><mml:mrow><mml:mi>w</mml:mi></mm l:mrow><mml:mrow><mml:mn>0</mml:mn></mml:mrow></mml:msub><mml:mi>t</m ml:mi></mml:mrow></mml:msup></mml:mrow></mml:math>C.<mml:math xmlns:mml=" /1998/Math/MathML" xmlns:m=" /officeDocument/2006/math"><mml:mact ionactiontype="link"><mml:mrow><mml:mfrac><mml:mrow><mml:mn>1</mml:mn></ mml:mrow><mml:mrow><mml:mn>2</mml:mn><mml:mi>π</mml:mi></mml:mrow></ mml:mfrac><mml:msup><mml:mrow><mml:mi>e</mml:mi></mml:mrow><mml:mrow> <mml:mi>j</mml:mi><mml:msub><mml:mrow><mml:mi>w</mml:mi></mml:mrow><m ml:mrow><mml:mn>0</mml:mn></mml:mrow></mml:msub><mml:mi>t</mml:mi></m ml:mrow></mml:msup><mml:mi>ξ</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mi>t</mml:mi><mml:mo>)</mml :mo></mml:mrow></mml:mrow></mml:math>D.<mml:math xmlns:mml=" /1998/Math/MathML" xmlns:m=" /officeDocument/2006/math"><mml:mact ionactiontype="link"><mml:mrow><mml:mfrac><mml:mrow><mml:mn>1</mml:mn></ mml:mrow><mml:mrow><mml:mn>2</mml:mn><mml:mi>π</mml:mi></mml:mrow></ mml:mfrac><mml:msup><mml:mrow><mml:mi>e</mml:mi></mml:mrow><mml:mrow> <mml:mo>−</mml:mo><mml:mi>j</mml:mi><mml:msub><mml:mrow><mml:mi>w</mml:mi></mm l:mrow><mml:mrow><mml:mn>0</mml:mn></mml:mrow></mml:msub><mml:mi>t</m ml:mi></mml:mrow></mml:msup><mml:mi>ξ</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mi>t</mml:mi><mml:mo>)</mml :mo></mml:mrow></mml:mrow></mml:math>16. 离散信号f(n)是指()A. n的取值是连续的,而f(n)的取值是任意的信号B. n的取值是离散的,而f(n)的取值是任意的信号C. n的取值是连续的,而f(n)的取值是连续的信号D. n的取值是连续的,而f(n)的取值是离散的信号17. 连续信号f(t)与δ(t−t0)的卷积,即f(t)∗δ(t−t0)=()) C.A. f(t)B. f(t-tδ(t)D.δ(t−t0)18. 信号f(t)=2e−2tξ(t)的拉氏变换及收敛域为()A.B.C.D.19. 若序列f(n)的图形如图(a)所示,那么f(-n+1)的图形为图(b)中的()A.B.C.D.20. 的拉氏反变换为()A.B.C.D.21. 若周期信号 f(t)是时间 t的奇函数,则其三角形傅里叶级数展开式中只含( )。
《信号与系统》第一次作业姓名:学号:1. 判定以下系统是不是为线性系统,其中()y t 、[]y k 为系统的完全响应,(0)x 为系统初始状态,()f t 、[]f k 为系统输入鼓励。
(1)()(0)lg ()=y t x f t 解:在判定具有初始状态的系统是不是线性时,应从三个方面来判定。
一是可分解性,即系统的输出响应可分解为零输入响应与零状态响应之和。
二是零输入线性,系统的零输入响应必需对所有的初始状态呈现线性特性。
三是零状态线性,系统的零状态响应必需对所有的输入信号呈现线性特性。
只有这三个条件都符合,该系统才为线性系统。
()(0)lg ()=y t x f t 不具有可分解性,因此系统是非线性系统。
(2)[](0)[][1]=+-y k x f k f k解:y[k]具有可分解性,零输入响应x(0)是线性的,但零状态响应f[k]f[k-1]是非线性的,因此系统是非线性系统。
2. 判定以下系统是不是为线性非时变系统,什么缘故?其中()f t 、[]f k 为输入信号,()y t 、[]y k 为零状态响应。
(1)()()()=y t g t f t解:在判定系统的时不变特性时,不涉及系统的初始状态,只考虑系统的零状态响应。
系统零状态响应,g(t)f(t)知足均匀性和叠加性,因此系统是线性系统。
因为T{f(t-t0)}=g(t).f(t-to)而 y(t-t0)=g(t-t0).f(t-t0) ≠T{f(t-t0)},故该系统为时变系统。
因此该系统为线性时变系统(2)220[][],(0,1,2,)+===∑k i y k kf i k 解:220[][],(0,1,2,)+===∑k i y k k f i k 为线性时变系统。
3. 已知信号()f t 的波形如题1-3图所示,绘出以下信号的波形。
1t1f(t)-2-1-1题1-3图(1)(36)-+f t解:f(t) ——(波形数轴对称):f(-t)——【波形t轴方向,t值缩小至1/3,f(t)值不变】:f(-3t)——【波形往右横移6】:(36)-+f t最终画出波形图如下:(2)(1)3tf-+解:f(t) ——(波形数轴对称):f(-t)——【波形t轴方向,t值扩大3倍,f(t)值不变】:f(-⅓t)——【波形往右横移1】:(1)3tf-+最终画出波形图如下:4. 已知()(4)2(1)(1)2(1)tf t t t t t e u tδδδ-'=+-+++++,绘出()f t波形。
<信号与系统MATLAB实践> 练习一实验一二. 熟悉简单的矩阵输入1.实验代码>>A=[1,2,3;4,5,6;7,8,9]实验结果A =1 2 34 5 67 8 93.实验代码>>B=[9,8,7;6,5,4;3,2,1]C=[4,5,6;7,8,9;1,2,3]实验结果:B =9 8 76 5 43 2 1C =4 5 67 8 91 2 3 4.>> AA =1 2 34 5 67 8 9>> BB =9 8 76 5 43 2 1C =4 5 67 8 91 2 3三. 根本序列运算1.>>A=[1,2,3],B=[4,5,6]A =1 2 3B =4 5 6 >> C=A+BC =5 7 9 >> D=A-BD =-3 -3 -3 >> E=A.*BE =4 10 18 >> F=A./BF =>> G=A.^B1 32 729 >> stem(A)>>stem(B)>> stem(D)>> stem(F)再举例:>> a=[-1,-2,-3] a =-1 -2 -3 >> b=[-4,-5,-6]b =-4 -5 -6 >> c=a+bc =-5 -7 -9 >> d=a-bd =3 3 3 >> e=a.*be =4 10 18 >> f=a./bf =>> g=a.^bg =>> stem(a)>> stem(c)>> stem(e)>> stem(g)2. >>t=0:0.001:10f=5*exp(-t)+3*exp(-2*t);plot(t,f)ylabel('f(t)');xlabel('t');title('(1)');>> t=0:0.001:3;f=(sin(3*t))./(3*t);plot(t,f)ylabel('f(t)');xlabel('t');title('(2)');>> k=0:1:4;f=exp(k); 1 1.52 2.53 3.54 4.550102030405060四. 利用MATLAB求解线性方程组2.>>A=[1,1,1;1,-2,1;1,2,3]b=[2;-1;-1]x=inv(A)*bA =1 1 11 -2 11 2 3b =2-1-1x =4.>> A=[2,3,-1;3,-2,1;1,2,1]b=[18;8;24]x=inv(A)*bA =2 3 -13 -2 11 2 1b =18824x =468实验二二.1.>> k=0:50x=sin(k);stem(x)xlabel('k');ylabel('sinX');title('sin(k)ε(k)');2.>> k=-25:1:25x=sin(k)+sin(pi*k); stem(k,x)xlabel('k');ylabel('f(k)');title('sink+sinπk');3.>> k=3:50x=k.*sin(k);stem(k,x)xlabel('k');ylabel('f(k)');title('ksinkε(k-3)');4.%函数function y=f1(k)if k<0y=(-1)^k;else y=(-1)^k+(0.5)^k; end%运行代码for k=-10:1:10;y4(k+11)=f1(k);endk=-10:1:10;stem(k,y4);xlabel('k');ylabel('f(k)');title('4');七.2.>> f1=[1 1 1 1];f2=[3 2 1];conv(f1,f2)ans =3 5 6 6 3 1 3.函数定义:function [r]= pulse( k )if k<0r=0;elser=1;endend运行代码for k=1:10f1(k)=pulse(k);f2(k)=(0.5^k)*pulse(k);endconv(f1,f2)结果ans =Columns 1 through 10 Columns 11 through 20 Columns 21 through 30 Columns 31 through 394for i=1:10f1(i)=pulse(i);f2(i)=((-0.5)^i)*pulse(i); endconv(f1,f2)结果ans =Columns 1 through 10 Columns 11 through 20 Columns 21 through 30 Columns 31 through 39实验三2.clear;x=[1,2,3,4,5,6,6,5,4,3,2,1];N=0:11;w=-pi:0.01:pi;m=length(x);n=length(w);for i=1:nF(i)=0;for k=1:mF(i)=F(i)+x(k)*exp(-1j*w(i)*k);endendF=F/10;subplot(2,1,1);plot(w,abs(F),'b-');xlabel('w');ylabel('F');title('幅度频谱');grid subplot(2,1,2);plot(w,angle(F),'b-');xlabel('w');X=fftshift(fft(x))/10;subplot(2,1,1);hold on;plot(N*2*pi/12-pi,abs(X),'r.');legend('DIFT算法','DFT算法');subplot(2,1,2);hold on;plot(N*2*pi/12-pi,angle(X),'r.');xlabel('w');ylabel('相位');title('相位频谱');grid三.1.function y=fun1(x)if((-pi<x) && (x<0))y=pi+x;elseif ((0<x) && (x<pi))y=pi-x;elsey=0endclear allclcfor i=1:1000g(i)=fun1(2/1000*i-1);w(i)=(i-1)*0.2*pi;endfor i=1001:10000g(i)=0;w(i)=(i-1)*0.2*pi;endG=fft(g)/1000;subplot(1,2,1);plot(w(1:50),abs(G(1:50)));xlabel('w');ylabel('G');title('DFT幅度频谱'); subplot(1,2,2);plot(w(1:50),angle(G(1:50)))xlabel('w');ylabel('Fi');title('DFT相位频谱');0102030400.511.522.53wGDFT 幅度频谱010203040-3.5-3-2.5-2-1.5-1-0.5wF iDFT 相位频谱2.function y=fun2(x) if x<1 && x>-1 y=cos(pi*x/2); elsey=0; endfor i=1:1000g(i)=fun2(2/1000*i-1); w(i)=(i-1)*0.2*pi; endfor i=1001:10000 g(i)=0;w(i)=(i-1)*0.2*pi; endG=fft(g)/1000; subplot(1,2,1);plot(w(1:50),abs(G(1:50)));xlabel('w');ylabel('G');title('幅度频谱');subplot(1,2,2);plot(w(1:50),angle(G(1:50)))xlabel('w');ylabel('Fi');title('相位频谱');0102030400.10.20.30.40.50.60.7wGDFT 幅度频谱010203040-4-3-2-1123wF iDFT 相位频谱3.function y=fun3(x) if x<0 && x>-1 y=1;elseif x>0 && x<1 y=-1; elsey=0 endfor i=1:1000g(i)=fun3(2/1000*i-1); w(i)=(i-1)*0.2*pi; endfor i=1001:10000 g(i)=0;w(i)=(i-1)*0.2*pi;G=fft(g)/1000; subplot(1,2,1);plot(w(1:50),abs(G(1:50)));xlabel('w');ylabel('G');title('DFT 幅度频谱'); subplot(1,2,2);plot(w(1:50),angle(G(1:50)))xlabel('w');ylabel('Fi');title('DFT 相位频谱');0102030400.10.20.30.40.50.60.70.8wGDFT 幅度频谱010203040-4-3-2-1123wF iDFT 相位频谱练习二实验六一.用MA TLAB 语言描述如下系统,并求出极零点、 1.>> Ns=[1]; Ds=[1,1];sys1=tf(Ns,Ds) 实验结果: sys1 =-----s + 1>> [z,p,k]=tf2zp([1],[1,1])z =Empty matrix: 0-by-1p =-1k =12.>>Ns=[10]Ds=[1,-5,0]sys2=tf(Ns,Ds)实验结果:Ns =10Ds =1 -5 0sys2 =10---------s^2 - 5 s>>[z,p,k]=tf2zp([10],[1,-5,0]) z =Empty matrix: 0-by-1p =5k =10二.系统的系统函数如下,用MATLAB描述如下系统。
第1次作业一、单项选择题(本大题共100分,共40小题,每小题2.5分)1.序列f (n)=cos( Ji n2) [ (n~2)- I (n~5)]的正确图形是()A.B.C.D.2.已知某系统的系统函数为II(s),唯一决定该系统单位冲激响应h(t)函数形式的是()A.H(s)的零点B.H(s)的极点C.系统的输入信号D.系统的输入信号与H(s)的极点3.2人⑷1 ■—1 0 1 f信号fl(t),f2(t)波形如图所示,设f (t)=fl(t)*f2(t),则班0)为()A. 1B. 2C. 3D. 44.积分 / 0-1(1-2) 5 uBt 等于()A.-25(0B.—2 E(f)C.E(f — 2)D.28(Z - 2)5.积分f -°°tc-2t S ( T ) T等于()A.5(t)B.s(t)6(t) + £(t)6.信号fl(t),f2(t)波形如图所示,设f (t)二fl(t)*f2(t),则班0)为()7.信号fl(t)和f2(t)分别如图(a)和图(b)所示,已知[fl (t)]二Fl (j 3),则f2(t)的傅里叶变换为()A.B.Fi3)严C.F](-j3)"t D.F](j3)R8. f (5-2t)是如下运算的结果-------------------- ()A. f (-2t)右移5 B.f (-2t)左移5 C. f (-2t)右移5/2 D. f (-2t)左移5/29.图(b)中与图(a)所示系统等价的系统是()°_也⑷]- 低5}怙3(nj—B.C.D.°~T片⑹+対«亍和硏10.若系统的起始状态为0,在X (t)的激励下,所得的响应为------------ ()A.强迫响应B.稳态响应C.暂态响应D.零状态响应11.已知信号f(t)的傅里叶变换F (jo)=8 (G)-G)0),则f(t)为()A.12 兀ejwOtB.12 n e-jwOtC.12 n ejwOt g (t)D.12 n e-jwOt C (t)12.离散信号f(n)是指()A.n的取值是连续的,而f(n)的取值是任意的信号B.n的取值是离散的,而f(n)的取值是任意的信号C.n的取值是连续的,而f(n)的取值是连续的信号D.n的取值是连续的,而f(n)的取值是离散的信号13.连续信号f(t)与5 (t-tO)的卷积,即f(t)*6 (t-tO)=()A.f(t)B.f(t-t0)C.[M_0358B313EDB3D0D4D6B97EE407844428]D.[M_AF1077E401C920A05C155CBlBB3B2274]14.信号f(t)=2e-2tg (t)的拉氏变换及收敛域为()A.丄;止何>2a— 2B.丄,班⑻<-2s+ 2C.护心2D.1s+215.若序列f(n)的图形如图(a)所示,那么f(-n+1)的图形为图(b)中的Il •< 1 -t •> |e::)B.心:|1f /Q •» -1 T 0 1 t 3c.• /(•*•!>11 *•1 •> •: • 1 ■ ■ ■0 13 3D.4…1 卜m :11・▼ ■ ■ ▼ ■ M •> <2 •; 0.2316. 警尸/+6饨⑸>一2的拉氏反变换为()A.[戶+2尹向)B.[戶-2尹]屮)C.80) + 已亠£0)D.17.若周期信号f(t)是吋间t的奇函数,则其三角形傅里叶级数展开式中只含()。
10 级《信号与系统》 第一章作业 物理与电子工程学院 电子系 专业班级班 学号 姓名 题号一 二 三 四 五 六 七 八 九 十 总分 评卷人 分数20 20 10 50 100 评分 承江红一、单项选择题(每小题2分,共20分)1、已知 f(t),为求 f(32t),应按下列哪种运算求得正确结果?答案:_____A. f(2t)左移 3个单位B. f(2t)右移 3 个单位C. f(2t)左移 3/2个单位D. f(2t)右移 3/2 个单位2、下列说法正确的是:__________________A.线性时不变系统一定具备叠加性与均匀性;B.线性时不变系统一定是无记忆系统;C.线性时不变系统一定是稳定系统;D.线性时不变系统一定是可逆系统;3、下列函数式中哪一个是连续时间信号的表示?答案:_____________A.e at sin w tB.cos(n p )C.(0.5) nD. Sin(n w 0)4、下列各式为描述连续时间系统的微分方程,已知系统的激励为 e(t),响应为 r(t)。
其中______ 方程描述的系统是线性时不变系统。
A. ) ( ) 4 5 sin( ( t e t t r + = )B. ) ( ) ( 3 ) ( 2 t e t r dtt dr t = + C. ) 2 ( ) ( t e t r = D. ) ( ) ( 3 ( 2 ) ( 3 ) ( 2 2 2 2 t e dtt e d t r dt t dr dt t r d + = + + ) 5、下列各式为描述离散时间系统的差分方程,已知系统的激励为 y(n),响应为 x(n)。
其中______ 方程描述的系统是线性、时不变、无记忆的系统。
A. )( 3 ) ( n x n y = B. ) 3 cos( ) ( 2 ) ( n n x n y = C. ) ( ( 2 n x n y = ) D. )( ) 1 ( 4 ) ( n x n y n y = - + 6、信号x(n), n=0,1,2,3,…是能量有限的意思是 ( )a) x (n )有限;b) |x (n )|有界;c) ( ) 2 0 n x n ¥= <¥ å ; d) ( ) 0 1 Nn x n N = <¥ å 。
信号与系统MATLAB第一次实验报告一、实验目的1.熟悉MATLAB软件并会简单的使用运算和简单二维图的绘制。
2.学会运用MATLAB表示常用连续时间信号的方法3.观察并熟悉一些信号的波形和特性。
4.学会运用MATLAB进行连续信号时移、反折和尺度变换。
5.学会运用MATLAB进行连续时间微分、积分运算。
6.学会运用MATLAB进行连续信号相加、相乘运算。
7.学会运用MATLAB进行连续信号的奇偶分解。
二、实验任务将实验书中的例题和解析看懂,并在MATLAB软件中练习例题,最终将作业完成。
三、实验内容1.MATLAB软件基本运算入门。
1). MATLAB软件的数值计算:算数运算向量运算:1.向量元素要用”[ ]”括起来,元素之间可用空格、逗号分隔生成行向量,用分号分隔生成列向量。
2.x=x0:step:xn.其中x0位初始值,step表示步长或者增量,xn为结束值。
矩阵运算:1.矩阵”[ ]”括起来;矩阵每一行的各个元素必须用”,”或者空格分开;矩阵的不同行之间必须用分号”;”或者ENTER分开。
2.矩阵的加法或者减法运算是将矩阵的对应元素分别进行加法或者减法的运算。
3.常用的点运算包括”.*”、”./”、”.\”、”.^”等等。
举例:计算一个函数并绘制出在对应区间上对应的值。
2).MATLAB软件的符号运算:定义符号变量的语句格式为”syms 变量名”2.MATLAB软件简单二维图形绘制1).函数y=f(x)关于变量x的曲线绘制用语:>>plot(x,y)2).输出多个图像表顺序:例如m和n表示在一个窗口中显示m行n列个图像,p表示第p个区域,表达为subplot(mnp)或者subplot(m,n,p)3).表示输出表格横轴纵轴表达范围:axis([xmax,xmin,ymax,ymin])4).标上横轴纵轴的字母:xlabel(‘x’),ylabel(‘y’)5).命名图像就在subplot写在同一行或者在下一个subplot前:title(‘……’)6).输出:grid on举例1:举例2:3.matlab程序流程控制1).for循环:for循环变量=初值:增量:终值循环体End2).while循环结构:while 逻辑表达式循环体End3).If分支:(单分支表达式)if 逻辑表达式程序模块End(多分支结构的语法格式)if 逻辑表达式1程序模块1Else if 逻辑表达式2程序模块2…else 程序模块nEnd4).switch分支结构Switch 表达式Case 常量1程序模块1Case 常量2程序模块2……Otherwise 程序模块nEnd4.典型信号的MATLAB表示1).实指数信号:y=k*exp(a*t)举例:2).正弦信号:y=k*sin(w*t+phi)3).复指数信号:举例:4).抽样信号5).矩形脉冲信号:y=square(t,DUTY) (width默认为1)6).三角波脉冲信号:y=tripuls(t,width,skew)(skew的取值在-1~+1之间,若skew取值为0则对称)周期三角波信号或锯齿波:Y=sawtooth(t,width)5.单位阶跃信号的MATLAB表示6.信号的时移、反折和尺度变换:Xl=fliplr(x)实现信号的反折7.连续时间信号的微分和积分运算1).连续时间信号的微分运算:语句格式:d iff(function,’variable’,n)Function:需要进行求导运算的函数,variable:求导运算的独立变量,n:求导阶数2).连续时间信号的积分运算:语句格式:int(function,’variable’,a,b)Function:被积函数variable:积分变量a:积分下限b:积分上限(a&b默认是不定积分)8.信号的相加与相乘运算9.信号的奇偶分解四、小结这一次实验让我能够教熟悉的使用这个软件,并且能够输入简单的语句并输出相应的结果和波形图,也在一定程度上巩固了c语言的一些语法。
1-1画出下列各信号的波形【式中)()(t t t r ε=】为斜升函数。
(2)∞<<-∞=-t et f t,)( (3))()sin()(t t t f επ=(4))(sin )(t t f ε= (5))(sin )(t r t f = (7))(2)(k t f kε= (10))(])1(1[)(k k f kε-+=解:各信号波形为 (2)∞<<-∞=-t et f t,)((3))()sin()(t t t f επ=(4))(sin )(t t f ε=(5))f=rt)(sin(t(7))t=(kf kε(2)(10))f kεk=(k+-((])11[)1-2 画出下列各信号的波形[式中)()(t t t r ε=为斜升函数]。
(1))2()1(3)1(2)(-+--+=t t t t f εεε (2))2()1(2)()(-+--=t r t r t r t f(5))2()2()(t t r t f -=ε (8))]5()([)(--=k k k k f εε(11))]7()()[6sin()(--=k k k k f εεπ(12))]()3([2)(k k k f k ---=εε解:各信号波形为(1))2()1(3)1(2)(-+--+=t t t t f εεε(2))2()1(2)()(-+--=t r t r t r t f(5))2()2()(t t r t f -=ε(8))]5()([)(--=k k k k f εε(11))]7()()[6sin()(--=k k k k f εεπ(12))]()3([2)(k k k f k ---=εε1-3 写出图1-3所示各波形的表达式。
1-4 写出图1-4所示各序列的闭合形式表达式。
1-5 判别下列各序列是否为周期性的。
如果是,确定其周期。
(2))63cos()443cos()(2ππππ+++=k k k f(5))sin(2cos 3)(5t t t f π+=解:1-6 已知信号)(t f 的波形如图1-5所示,画出下列各函数的波形。