2016-2017《创新设计》同步人教A版选修1-22.1.1
- 格式:docx
- 大小:758.74 KB
- 文档页数:13
1.1.1变化率问题1.1.2导数的概念明目标、知重点1.了解导数概念的实际背景.2.会求函数在某一点附近的平均变化率.3.会利用导数的定义求函数在某点处的导数.1.函数的变化率函数y=f(x)在x=x0处的瞬时变化率称为函数y=f(x)在x=x0处的导数,记作f′(x0)或y′|x=x0,即f′(x0)=limΔx→0ΔyΔx=limΔx→0f(x0+Δx)-f(x0)Δx.[情境导学]某市2013年5月30日最高气温是33.4℃,而此前的两天5月29日和5月28日最高气温分别是24.4℃和18.6℃,短短两天时间,气温“陡增”14.8℃,闷热中的人们无不感叹:“天气热得太快了!”但是,如果我们将该市2013年4月28日最高气温3.5℃和5月28日最高气温18.6℃进行比较,可以发现二者温差为15.1℃,甚至超过了14.8℃,而人们却不会发出上述感慨,这是什么原因呢?显然原因是前者变化得“太快”,而后者变化得“缓慢”,那么在数学中怎样来刻画变量变化得快与慢呢? 探究点一 平均变化率的概念 思考1 气球膨胀率很多人都吹过气球.回忆一下吹气球的过程,可以发现,随着气球内空气容量的增加,气球的半径增加得越来越慢.从数学的角度,如何描述这种现象呢?答 气球的半径r (单位:dm)与体积V (单位:L)之间的函数关系是r (V )= 33V4π,(1)当空气容量V 从0增加到1 L 时,气球半径增加了 r (1)-r (0)≈0.62 (dm),气球的平均膨胀率为r (1)-r (0)1-0≈0.62(dm/L).(2)当空气容量V 从1 L 增加到2 L 时,气球半径增加了r (2)-r (1)≈0.16 (dm), 气球的平均膨胀率为r (2)-r (1)2-1≈0.16(dm/L).可以看出,随着气球体积逐渐变大,它的平均膨胀率逐渐变小了. 结论 当空气容量从V 1增加到V 2时,气球的平均膨胀率是r (V 2)-r (V 1)V 2-V 1.思考2 高台跳水人们发现,在高台跳水运动中,运动员相对于水面的高度h (单位:m)与起跳后的时间t (单位:s)存在函数关系 h (t )=-4.9t 2+6.5t +10.计算运动员在时间段①0≤t ≤0.5,②1≤t ≤2内的平均速度v ,并思考平均速度有什么作用? 答 ①在0≤t ≤0.5这段时间里, v =h (0.5)-h (0)0.5-0=4.05(m/s);②在1≤t ≤2这段时间里,v =h (2)-h (1)2-1=-8.2(m/s).由以上计算体会到平均速度可以描述运动员在某段时间内运动的快慢.思考3 什么是平均变化率,平均变化率有何作用?思考1和思考2中的平均变化率分别表示什么?答 如果上述两个思考中的函数关系用y =f (x )表示,那么思考中的变化率可用式子f (x 2)-f (x 1)x 2-x 1表示,我们把这个式子称为函数y =f (x )从x 1到x 2的平均变化率,平均变化率可以描述一个函数在某个范围内变化的快慢.思考1中的平均变化率表示在空气容量从V 1增加到V 2时,气球半径的平均增长率.思考2中的平均变化率表示在时间从t 1增加到t 2时,高度h 的平均增长率.思考4 平均变化率也可以用式子Δy Δx 表示,其中Δy 、Δx 的意义是什么?Δy Δx 有什么几何意义?答 Δx 表示x2-x 1是相对于x 1的一个“增量”;Δy 表示f (x 2)-f (x 1).Δx 、Δy 的值可正可负,Δy 也可以为零,但Δx 不能为零. 观察图象可看出,ΔyΔx 表示曲线y =f (x )上两点(x 1,f (x 1))、(x 2,f (x 2))连线的斜率.小结 平均变化率为Δy Δx =f (x 2)-f (x 1)x 2-x 1,其几何意义是:函数y =f (x )的图象上两点(x 1,f (x 1))、(x 2,f (x 2))连线的斜率.例1 已知函数f (x )=2x 2+3x -5.(1)求当x 1=4,x 2=5时,函数增量Δy 和平均变化率ΔyΔx ;(2)求当x 1=4,x 2=4.1时,函数增量Δy 和平均变化率Δy Δx; (3)若设x 2=x 1+Δx .分析(1)(2)题中的平均变化率的几何意义. 解 f (x )=2x 2+3x -5, ∴Δy =f (x 1+Δx )-f (x 1)=2(x 1+Δx )2+3(x 1+Δx )-5-(2x 21+3x 1-5) =2[(Δx )2+2x 1Δx ]+3Δx =2(Δx )2+(4x 1+3)Δx =2(Δx )2+19Δx .Δy Δx =2(Δx )2+19Δx Δx=2Δx +19. (1)当x 1=4,x 2=5时,Δx =1,Δy =2(Δx )2+19Δx =2+19=21,ΔyΔx =21.(2)当x 1=4,x 2=4.1时Δx =0.1, Δy =2(Δx )2+19Δx =0.02+1.9=1.92. ΔyΔx=2Δx +19=19.2. (3)在(1)题中Δy Δx =f (x 2)-f (x 1)x 2-x 1=f (5)-f (4)5-4,它表示抛物线上点P 0(4,39)与点P 1(5,60)连线的斜率. 在(2)题中,Δy Δx =f (x 2)-f (x 1)x 2-x 1=f (4.1)-f (4)4.1-4,它表示抛物线上点P 0(4,39)与点P 2(4.1,40.92)连线的斜率. 反思与感悟 求平均变化率的主要步骤: (1)先计算函数值的改变量Δy =f (x 2)-f (x 1). (2)再计算自变量的改变量Δx =x 2-x 1. (3)得平均变化率Δy Δx =f (x 2)-f (x 1)x 2-x 1.跟踪训练1 (1)计算函数h (x )=-4.9x 2+6.5x +10从x =1到x =1+Δx 的平均变化率,其中Δx 的值为①2;②1;③0.1;④0.01.(2)思考:当|Δx |越来越小时,函数h (x )在区间[1,1+Δx ]上的平均变化率有怎样的变化趋势? 解 (1)∵Δy =h (1+Δx )-h (1) =-4.9(Δx )2-3.3Δx , ∴ΔyΔx=-4.9Δx -3.3. ①当Δx =2时,ΔyΔx =-4.9Δx -3.3=-13.1;②当Δx =1时,ΔyΔx =-4.9Δx -3.3=-8.2;③当Δx =0.1时,ΔyΔx =-4.9Δx -3.3=-3.79;④当Δx =0.01时,ΔyΔx=-4.9Δx -3.3=-3.349.(2)当|Δx |越来越小时,函数f (x )在区间[1,1+Δx ]上的平均变化率逐渐变大,并接近于-3.3. 探究点二 函数在某点处的导数思考1 物体的平均速度能否精确反映它的运动状态?答 不能,如高台跳水运动员相对于水面的高度h 与起跳时间t 的函数关系h (t )=-4.9t 2+6.5t +10,易知h (6549)=h (0),v =h (6549)-h (0)6549-0=0,而运动员依然是运动状态.思考2 观察跟踪训练1,当Δx =0.000 01时,ΔyΔx =?这个平均速度能描述物体的运动状态吗? 答ΔyΔx=-4.9Δx -3.3=-3.300 049,说明当时间间隔非常小的时候平均速度约等于一个常数,这个常数就是x =1这一时刻的速度.思考3 什么叫做瞬时速度?它与平均速度的区别与联系是什么?平均变化率与瞬时变化率的关系如何?答 可以使用瞬时速度精确描述物体在某一时刻的运动状态.如求t =2时的瞬时速度,可考察在t =2附近的一个间隔Δt ,当Δt 趋近于0时,平均速度v 趋近于lim Δt→h (2+Δt )-h (2)Δt ,这就是物体在t =2时的瞬时速度.类似可以得出平均变化率与瞬时变化率的关系,我们把函数y =f (x )在x =x 0处的瞬时变化率lim Δx→0f (x 0+Δx )-f (x 0)Δx =lim Δx →0ΔyΔx叫做函数y =f (x )在x =x 0处的导数.思考4 导数或瞬时变化率反映函数变化的什么特征?答 导数或瞬时变化率可以反映函数在一点处变化的快慢程度. 小结 1.函数的瞬时变化率: 函数y =f (x )在x =x 0处的瞬时变化率是lim Δx→0f (x 0+Δx )-f (x 0)Δx =lim Δx →0ΔyΔx.2.函数在某点处的导数:我们称函数y =f (x )在x =x 0处的瞬时变化率为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即 f ′(x 0)=lim Δx→0f (x 0+Δx )-f (x 0)Δx =lim Δx →0ΔyΔx.例2 利用导数的定义求函数f (x )=-x 2+3x 在x =2处的导数. 解 由导数的定义知,函数在x =2处的导数f ′(2)=lim Δx→f (2+Δx )-f (2)Δx ,而f (2+Δx )-f (2)=-(2+Δx )2+3(2+Δx )-(-22+3×2)=-(Δx )2-Δx ,于是f ′(2)=lim Δx →0-(Δx )2-ΔxΔx =lim Δx →0(-Δx -1)=-1.反思与感悟 求一个函数y =f (x )在x =x 0处的导数的步骤如下: (1)求函数值的变化量Δy =f (x 0+Δx )-f (x 0);(2)求平均变化率Δy Δx =f (x 0+Δx )-f (x 0)Δx ;(3)取极限,得导数f ′(x 0)=lim Δx→0ΔyΔx. 跟踪训练2 求函数f (x )=3x 2-2x 在x =1处的导数. 解 Δy =3(1+Δx )2-2(1+Δx )-(3×12-2×1) =3(Δx )2+4Δx ,∵Δy Δx =3(Δx )2+4Δx Δx=3Δx +4, ∴y ′|x =1=lim Δx→0ΔyΔx =lim Δx →0(3Δx +4)=4. 例3 将原油精炼为汽油、柴油、塑胶等各种不同产品,需要对原油进行冷却和加热.如果在第x h 时,原油的温度(单位:℃)为y =f (x )=x 2-7x +15(0≤x ≤8).计算第2 h 和第6 h 时,原油温度的瞬时变化率,并说明它们的意义.解 在第2 h 和第6 h 时,原油温度的瞬时变化率就是f ′(2)和f ′(6). 根据导数的定义,Δy Δx =f (2+Δx )-f (2)Δx=(2+Δx )2-7(2+Δx )+15-(22-7×2+15)Δx=4Δx +(Δx )2-7Δx Δx =Δx -3,所以,f ′(2)=lim Δx→0ΔyΔx =lim Δx →0(Δx -3)=-3. 同理可得,f ′(6)=5.在第2 h 和第6 h 时,原油温度的瞬时变化率分别为-3与5.它说明在第2 h 附近,原油温度大约以3 ℃/h 的速率下降;在第6 h 附近,原油温度大约以5 ℃/h 的速率上升. 反思与感悟 (1)本题中,f ′(x 0)反映了原油温度在时刻x 0附近的变化情况. (2)函数的平均变化率和瞬时变化率的关系:平均变化率Δy Δx =f (x 0+Δx )-f (x 0)Δx ,当Δx 趋于0时,它所趋于的一个常数就是函数在x 0处的瞬时变化率,即求函数的瞬时变化率是利用平均变化率“逐渐逼近”的方法求解.另外,它们都是用来刻画函数变化快慢的,它们的绝对值越大,函数变化得越快.跟踪训练3 高台跳水运动中,运动员相对于水面的高度h (单位:m)与起跳后的时间t (单位:s)之间的关系式为h (t )=-4.9t 2+6.5t +10,求运动员在t =6598 s 时的瞬时速度,并解释此时的运动状况.解 令t 0=6598,Δt 为增量.则h (t 0+Δt )-h (t 0)Δt=-4.9×⎝⎛⎭⎫6598+Δt 2+6.5×⎝⎛⎭⎫6598+Δt +10+4.9×⎝⎛⎭⎫65982-6.5×6598-10Δt=-4.9Δt ⎝⎛⎭⎫6549+Δt +6.5Δt Δt =-4.9⎝⎛⎭⎫6549+Δt +6.5, ∴lim Δt→0h (t 0+Δt )-h (t 0)Δt =lim Δt →0[-4.9⎝⎛⎭⎫6549+Δt +6.5]=0, 即运动员在t 0=6598s 时的瞬时速度为0 m/s.说明此时运动员处于跳水运动中离水面最高的点处.1.如果质点M 按规律s =3+t 2运动,则在一小段时间[2,2.1]中相应的平均速度是( ). A .4 B .4.1 C .0.41 D .3 答案 B解析 v =(3+2.12)-(3+22)0.1=4.1.2.函数f (x )在x 0处可导,则lim h →0f (x 0+h )-f (x 0)h ( )A .与x 0、h 都有关B .仅与x 0有关,而与h 无关C .仅与h 有关,而与x 0无关D .与x 0、h 均无关 答案 B3.已知函数f (x )=2x 2-1的图象上一点(1,1)及邻近一点(1+Δx,1+Δy ),则ΔyΔx 等于( )A .4B .4xC .4+2ΔxD .4+2(Δx )2 答案 C解析 Δy =f (1+Δx )-f (1)=2(1+Δx )2-1-1 =2(Δx )2+4Δx ,∴ΔyΔx =2Δx +4.4.已知函数f (x )=1x,则f ′(1)=________. 答案 -12解析 f ′(1)=lim Δx→f (1+Δx )-f (1)Δx=lim Δx →011+Δx-1Δx=lim Δx →-11+Δx (1+1+Δx )=-12.[呈重点、现规律]利用导数定义求导数三步曲:(1)求函数的增量Δy =f (x 0+Δx )-f (x 0); (2)求平均变化率Δy Δx =f (x 0+Δx )-f (x 0)Δx ;(3)取极限,得导数f ′(x 0)=lim Δx→0ΔyΔx. 简记为一差,二比,三趋近.特别提醒 ①取极限前,要注意化简ΔyΔx ,保证使Δx →0时分母不为0.②函数在x 0处的导数f ′(x 0)只与x 0有关,与Δx 无关. ③导数可以描述任何事物的瞬时变化率,应用非常广泛.一、基础过关1.函数y =x 2-2x +1在x =-2附近的平均变化率为( ) A .-6 B .Δx -6 C .-2 D .Δx -2答案 B解析 设y =f (x )=x 2-2x +1=(x -1)2,Δy =f (-2+Δx )-f (-2)=(-2+Δx -1)2-(-2-1)2=(-3+Δx )2-9=(Δx )2-6Δx , 所以ΔyΔx=Δx -6,所以函数y =x 2-2x +1在x =-2附近的平均变化率为Δx -6. 2.函数y =1在[2,2+Δx ]上的平均变化率是( ) A .0 B .1 C .2 D .Δx 答案 A 解析Δy Δx =1-1Δx=0.3.如果某物体的运动方程为s =2(1-t 2)(s 的单位为m ,t 的单位为s),那么其在1.2 s 末的瞬时速度为( ). A .-4.8 m /s B .-0.88 m/s C .0.88 m /s D .4.8 m/s答案 A解析 物体运动在1.2 s 末的瞬时速度即为s 在1.2处的导数,利用导数的定义即可求得. 4.一质点按规律s (t )=2t 3运动,则t =1时的瞬时速度为( ) A .4 B .6 C .24 D .48 答案 B解析 ∵s ′(1)=lim t →1s (t )-s (1)t -1=lim t →12t 3-2t -1=lim t →12(t 2+t +1)=6. 5.已知函数y =2+1x ,当x 由1变到2时,函数的增量Δy =________.答案 -12解析 Δy =⎝⎛⎭⎫2+12-(2+1)=-12.6.甲、乙两厂污水的排放量W 与时间t 的关系如图所示,治污效果较好的是( ) A .甲 B .乙 C .相同 D .不确定 答案 B解析 在t 0处,虽然W 1(t 0)=W 2(t 0), 但是,在t 0-Δt 处,W 1(t 0-Δt )<W 2(t 0-Δt ), 即⎪⎪⎪⎪W 1(t 0)-W 1(t 0-Δt )Δt <⎪⎪⎪⎪W 2(t 0)-W 2(t 0-Δt )Δt ,所以,在相同时间Δt 内,甲厂比乙厂的平均治污率小.所以乙厂治污效果较好. 7.利用定义求函数y =-2x 2+5在x =2处的瞬时变化率.解 因为在x =2附近,Δy =-2(2+Δx )2+5-(-2×22+5)=-8Δx -2(Δx )2,所以函数在区间[2,2+Δx ]内的平均变化率为Δy Δx =-8Δx -2(Δx )2Δx =-8-2Δx .故函数y =-2x 2+5在x =2处的瞬时变化率为lim Δx →0(-8-2Δx )=-8.二、能力提升8.过曲线y =x 2+1上两点P (1,2)和Q (1+Δx,2+Δy )作曲线的割线,当Δx =0.1时,割线的斜率k =______,当Δx =0.001时,割线的斜率k =________. 答案 2.1 2.001解析 ∵Δy =(1+Δx )2+1-(12+1) =2Δx +(Δx )2,∴ΔyΔx =2+Δx ,∴割线斜率为2+Δx ,当Δx =0.1时,割线PQ 的斜率k =2+0.1=2.1. 当Δx =0.001时,割线PQ 的斜率k =2+0.001=2.001.9.一做直线运动的物体,其位移s 与时间t 的关系是s =3t -t 2,则物体的初速度是________. 答案 3解析 v 初=s ′|t =0=li m Δt→s (0+Δt )-s (0)Δt=li m Δt →(3-Δt )=3. 10.求y =x 在x 0到x 0+Δx 之间的平均变化率. 解 因为Δy =x 0+Δx -x 0,所以y =x 在x 0到x 0+Δx 之间的平均变化率为Δy Δx =x 0+Δx -x 0Δx =1x 0+Δx +x 0.11.求函数y =f (x )=2x 2+4x 在x =3处的导数. 解 Δy =2(3+Δx )2+4(3+Δx )-(2×32+4×3) =12Δx +2(Δx )2+4Δx =2(Δx )2+16Δx ,∴Δy Δx =2(Δx )2+16Δx Δx=2Δx +16. ∴y ′|x =3=lim Δx→0ΔyΔx =lim Δx →0(2Δx +16)=16. 12.若函数f (x )=ax 2+c ,且f ′(1)=2,求a 的值. 解 ∵f (1+Δx )-f (1)=a (1+Δx )2+c -a -c =a (Δx )2+2a Δx .∴f ′(1)=lim Δx →0f (1+Δx )-f (1)Δx =lim Δx →0a (Δx )2+2a ΔxΔx=lim Δx →(a Δx +2a )=2,即2a =2,∴a =1. 三、探究与拓展13.已知f (x )=x 2,g (x )=x 3,求满足f ′(x )+2=g ′(x )的x 的值. 解 由导数的定义知, f ′(x )=lim Δx →0(x +Δx )2-x 2Δx =2x ,g′(x)=limΔx→0(x+Δx)3-x3Δx=3x2.∵f′(x)+2=g′(x),∴2x+2=3x2.即3x2-2x-2=0,解得x=1-73或x=1+73.。
[学习目标] 1.通过实例了解结构图;运用结构图梳理已学过的知识,以及整理收集到的资料信息.2.结合作出的结构图与他人交流,体会结构图在揭示事物联系中的作用.知识点一结构图结构图是一种描述系统结构的图示.一般由构成系统的若干要素和表达各要素之间关系的连线(或方向箭头)构成,连线通常按照从上到下、从左到右的方向(方向箭头按照箭头所指的方向表示),各要素之间是从属关系或逻辑的先后关系.思考1如何确定结构图中各元素之间的关系?答案上下位元素之间是从属或逻辑先后关系.同一元素的下位元素间一般是并列关系.思考2如何画结构图?答案(1)整体把握,理清要素间的逻辑先后关系或上下从属关系;(2)对主要脉络进行细化,分解成若干步骤;(3)将步骤进行总结归纳,将提炼出的要素填入矩形框中;(4)按其内在的逻辑顺序,用连线(或方向箭头)连接.知识点二常见的结构图题型一知识结构图例1画出《数学必修2》中“点、线、面之间的位置关系”这一节的知识结构图.解反思与感悟(1)理解线面之间关系的相互转化是解决本题的关键,也是空间问题向平面问题转化的关键所在.(2)知识结构图能帮助我们清晰地认识所学知识,掌握各知识点间的联系.跟踪训练1(1)设计一个结构图,来表示“推理与证明”这一章的知识结构.(2)画出“数列”一章的知识结构图.解(1)如图所示.(2)如图所示.题型二组织结构图例2某学校设了下面的部门:校长室下设学校办公室、总务处、政教处、教导处、工会办公室,总务处下设保卫科、会计室、校产办公室、水电办公室,保卫科下设门卫、综合办公室,政教处下设政教办公室、学生心理咨询办公室、法制安全教育办公室,教导处下设教研组、教导服务组、教学科研室,教研组下设数学、物理、化学、语文、英语、历史、地理、政治、生物、体育、音乐、信息技术教研组,另外数学分为文科、理科两个教研组,试画出该校部门设置的组织结构图.解该学校部门设置的组织结构图如图所示.反思与感悟画组织结构图时先理清各大部门的并列关系,再理清大部门与各小部门的从属关系即可,一般常用树形结构图表示.上位要素与下位要素题干中一般会给出,不必自己去梳理,比知识结构图容易画.跟踪训练2 某公司的组织结构是:总经理之下设执行经理、人事经理和财务经理.执行经理领导生产经理、工程经理、品质管理经理和物料经理.生产经理领导线长,工程经理领导工程师,工程师管理技术员,物料经理领导计划员和仓库管理员.根据上述描述,用框图表示这家公司的组织结构.解题型三其它结构图例3某银行代缴费用包括代缴公用事业费和手机充值缴费,其中代缴公用事业费包含水费、电费、煤气费和固定电话费;手机充值缴费包含手机充值、实时查询缴费和实时账单缴费,试画出结构图.解缴费结构图如图所示:反思与感悟画结构图的具体步骤:(1)从头到尾抓住主要脉络,分解成若干步;(2)将每一步提炼成简炼的语言放在矩形框内;(3)各步按逻辑顺序排列并用线段相连.要注意实际问题的逻辑顺序和概念上的从属关系.根据所给的信息画出结构图.跟踪训练3 一家新技术公司计划研制一个名片管理系统,希望系统能够具备以下功能:(1)用户管理:能够修改密码,显示用户信息,修改用户信息;(2)用名登录;(3)名片管理:能够对名片进行删除、添加、修改、查询;(4)出错信息处理.根据以上要求画出该系统的结构图.解结构图如图所示.1.阅读下边的程序框图,运行相应的程序,则输出i的值为()A.3 B.4 C.5 D.6答案 B解析本小题考查程序框图等基础知识,考查分析问题、解决问题的能力,难度较小.由a =1,i=0→i=0+1=1,a=1×1+1=2→i=1+1=2,a=2×2+1=5→i=2+1=3,a=3×5+1=16→i=3+1=4,a=4×16+1=65>50,∴输出4.2.执行如图所示的程序框图,输出的S值为()A.2 B.4 C.8 D.16答案 C解析初始:k=0,S=1,第一次循环:由0<3,得S=1×20=1,k=1;第二次循环:由1<3,得S=1×21=2,k=2;第三次循环:由2<3,得S=2×22=8,k=3.经判断此时要跳出循环.因此输出的S值为8.3.如图所示,程序框图(算法流程图)的输出结果是()A.3 B.4 C.5 D.8答案 B解析由程序框图依次可得,x=1,y=1→x=2,y=2→x=4,y=3→x=8,y=4→输出y =4.4.执行如图所示的程序框图,若输入n的值为6,则输出s的值为()A.105 B.16C.15 D.1答案 C解析i=1,s=1;i=3,s=3;i=5,s=15,i=7时,输出s=15.1.在结构图中会出现“树”形结构,也会出现一些“环”形结构.一般来说,包含从属关系的结构图呈“树”形结构,包含逻辑先后关系的结构图则可能呈“环”形结构.2.对于包含从属关系的系统,由于其中至少包含一个“上位”或“下位”要素,因此也可以先将系统的主体要素及其之间的关系表示出来,然后确定主体要素的下位要素(即从属于主体要素的要素),再逐步细化各层要素,直到将整个系统表示出来为止.一、选择题1.下列结构图中要素之间表示从属关系的是()答案 C解析A、D是逻辑关系,呈现了知识的先后关系,B是结构图但不是从属关系,对于C而言,显然合情推理和演绎推理是推理的下位要素.2.下列关于函数、函数的定义域、函数的值域、函数的对应法则的结构图正确的是()答案 A解析从知识结构划分:函数包括函数的定义域、函数的值域、函数的对应法则.3.如图是《集合》的知识结构图,如果要加入“子集”,则应该放在()A.“集合的概念”的下位B.“集合的表示”的下位C.“基本关系”的下位D.“基本运算”的下位答案 C解析子集是集合与集合之间的基本关系,故应为“基本关系”的下位.4.如图所示是数列一章的知识结构图,下列说法正确的是()A.“概念”与“分类”是从属关系B.“等差数列”与“等比数列”是从属关系C.“数列”与“等差数列”是从属关系D.“数列”与“等差数列”是从属关系,但“数列”与“分类”不是从属关系答案 C解析画某一章节的知识结构图时,首先应对本章节的知识有全面的把握,然后明确各知识点之间在逻辑上的先后顺序、概念上的从属关系.按从上到下、从左到右的顺序画图,在A、B、C、D四个选项中只有C正确.5.如图是一商场某一个时间制订销售计划时的局部结构图,则“计划”受影响的主要要素有()A.1个B.2个C.3个D.4个答案 C解析影响“计划”的主要要素应是三个“上位”要素.二、填空题6.下面关于结构图的说法正确的是________.①结构图只能是从左向右分解;②结构图只能是从上向下分解;③结构图只能是从下向上分解;④结构图一般呈“树”形结构;⑤结构图有时呈“环”形结构.答案④⑤解析结构图呈“树”形或“环”形结构.7.按边对三角形进行分类的结构图为则①处应填入________.答案等边三角形解析等腰三角形又可分为“等边三角形”和“腰和底边不相等的三角形”两类.8.某期货商会组织结构图如图所示,其中理事会的上一级是________.答案会长办公会和会员代表大会9.如图所示:则“函数的应用”包括的主要内容有:________.答案函数与方程,函数模型及其应用解析从题图中可以看出,“函数应用”包括“函数与方程”和“函数模型及其应用”两部分主要内容.10.某市质量技术监督局质量认证审查流程图如图所示,从图中可得在审查过程中可能不被通过审查的环节有________处.答案 3解析这是一个实际问题,观察流程图可知有3处判断框,即3处环节可能不被审查通过.三、解答题11.某地行政服务中心办公分布结构如下:(1)服务中心管理委员会全面管理该中心工作,下设办公室、综合业务处、督查投诉中心,三部门设在一楼,其余局、委办理窗口分布如下:(2)二楼:公安局、民政局、财政局;(3)三楼:工商、地税、国税、技监、交通局;(4)四楼:城建局、人防办、计生局、规划局;(5)五楼:其余部门办理窗口.试绘制该服务中心的结构图.解该中心的结构图为:12.某大学的学校组织结构图如图所示,由图回答下列问题.(1)学生工作处的下位要素是什么?(2)学生工作处与其下位要素是什么关系?解(1)由题图可知学生工作处的下位要素包括工业工程系、城建环保工程系、电气工程系、计算机工程系、机械工程系、汉教部.(2)学生工作处与其“下位”要素的关系是从属关系.13.某公司进行人事调整:设总经理一名,配有经理助理一名;设副经理两名,直接对总经理负责;设有6个部门,其中副经理A管理生产部、安全部和质量部,副经理B管理销售部、财务部和保卫部;生产车间由生产部和安全部共同管理,公司配有质检中心和门岗.请根据以上信息设计并画出该公司人事调整后的人事结构图.解人事结构图:。
明目标、知重点1.直观了解并掌握微积分基本定理的含义.2.会利用微积分基本定理求函数的积分.1.微积分基本定理如果f(x)是区间[a,b]上的连续函数,并且F′(x)=f(x),那么ʃb a f(x)d x=F(b)-F(a).2.定积分和曲边梯形面积的关系设曲边梯形在x轴上方的面积为S上,x轴下方的面积为S下,则(1)当曲边梯形的面积在x轴上方时,如图(1),则ʃb a f(x)d x=S上.(2)当曲边梯形的面积在x轴下方时,如图(2),则ʃb a f(x)d x=-S下.(3)当曲边梯形的面积在x轴上方、x轴下方均存在时,如图(3),则ʃb a f(x)d x=S上-S下,若S上=S下,则ʃbaf(x)d x=0.[情境导学]从前面的学习中可以发现,虽然被积函数f(x)=x3非常简单,但直接用定积分的定义计算ʃ10 x3d x的值却比较麻烦.有没有更加简便、有效的方法求定积分呢?另外,我们已经学习了两个重要的概念——导数和定积分,这两个概念之间有没有内在的联系呢?我们能否利用这种联系求定积分呢?探究点一微积分基本定理问题你能用定义计算ʃ211x d x吗?有没有更加简便、有效的方法求定积分呢?思考1如下图,一个做变速直线运动的物体的运动规律是y=y(t),并且y(t)有连续的导数,由导数的概念可知,它在任意时刻t的速度v(t)=y′(t).设这个物体在时间段[a,b]内的位移为s,你能分别用y(t),v(t)表示s吗?答由物体的运动规律是y=y(t)知:s=y(b)-y(a),通过求定积分的几何意义,可得s=ʃb a v(t)d t=ʃb a y′(t)d t,所以ʃb a v(t)d t=ʃb a y′(t)d t=y(b)-y(a).其中v(t)=y′(t).小结(1)一般地,如果f(x)是区间[a,b]上的连续函数,并且F′(x)=f(x),那么ʃb a f(x)d x=F(b)-F(a).这个结论叫做微积分基本定理,又叫做牛顿—莱布尼茨公式.(2)运用微积分基本定理求定积分ʃb a f(x)d x很方便,其关键是准确写出满足F′(x)=f(x)的F(x).思考2对一个连续函数f(x)来说,是否存在唯一的F(x),使F′(x)=f(x)?若不唯一,会影响微积分基本定理的唯一性吗?答不唯一,根据导数的性质,若F′(x)=f(x),则对任意实数c,[F(x)+c]′=F′(x)+c′=f(x).不影响,因为ʃb a f(x)d x=[F(b)+c]-[F(a)+c]=F(b)-F(a)例1计算下列定积分:(1)ʃ211x d x;(2)ʃ31(2x-1x2)d x;(3)ʃ-π(cos x-e x)d x.解 (1)因为(ln x )′=1x ,所以ʃ211xd x =ln x |21=ln 2-ln 1=ln 2. (2)因为(x 2)′=2x ,(1x )′=-1x 2,所以ʃ31(2x -1x2)d x =ʃ312x d x -ʃ311x2d x =x 2|31+1x|31 =(9-1)+(13-1)=223.(3)ʃ-π(cos x -e x )d x =ʃ-πcos x d x -ʃ-πe x d x=sin x |0-π-e x |0-π=1eπ-1. 反思与感悟 求简单的定积分关键注意两点:(1)掌握基本函数的导数以及导数的运算法则,正确求解被积函数的原函数,当原函数不易求时,可将被积函数适当变形后再求解;(2)精确定位积分区间,分清积分下限与积分上限. 跟踪训练1 若S 1=ʃ21x 2d x ,S 2=ʃ211xd x ,S 3=ʃ21e x d x ,则S 1,S 2,S 3的大小关系为( )A .S 1<S 2<S 3B .S 2<S 1<S 3C .S 2<S 3<S 1D .S 3<S 2<S 1答案 B 解析 S 1=ʃ21x 2d x =13x 3|21=73, S 2=ʃ211xd x =ln x |21=ln 2<1, S 3=ʃ21e x d x =e x |21=e 2-e =e(e -1)>73. 所以S 2<S 1<S 3,选B. 探究点二 分段函数的定积分例2 已知函数f (x )=⎩⎪⎨⎪⎧sin x ,0≤x ≤π2,1,π2≤x ≤2,x -1,2≤x ≤4.先画出函数图象,再求这个函数在[0,4]上的定积分.解 图象如图.ʃ40f (x )d x =π20⎰sin x d x +π20⎰1d x +42⎰(x -1)d x=(-cos x )|π20+x |2π2+(12x 2-x )|42 =1+(2-π2)+(4-0)=7-π2.反思与感悟 求分段函数的定积分,分段标准是使每一段上的函数表达式确定,按照原分段函数的分段情况即可;对于含绝对值的函数,可转化为分段函数.跟踪训练2 设f (x )=⎩⎪⎨⎪⎧x 2, x ≤0,cos x -1, x >0,求ʃ1-1f (x )d x . 解 ʃ1-1f (x )d x =ʃ-1x 2d x +ʃ10(cos x -1)d x =13x 3|0-1+(sin x -x )|10=sin 1-23. 探究点三 定积分的应用 例3 计算下列定积分: ʃπ0sin x d x ,ʃ2ππsin x d x ,ʃ2π0sin x d x .由计算结果你能发现什么结论?试利用曲边梯形的面积表示所发现的结论.解 因为(-cos x )′=sin x , 所以ʃπ0sin x d x =(-cos x )|π=(-cos π)-(-cos 0)=2; ʃ2ππsin x d x =(-cos x )|2ππ=(-cos 2π)-(-cos π)=-2; ʃ2π0sin x d x =(-cos x )|2π0=(-cos 2π)-(-cos 0)=0.反思与感悟 可以发现,定积分的值可能取正值也可能取负值,还可能是0:定积分的值与曲边梯形面积之间的关系:(1)位于x 轴上方的曲边梯形的面积等于对应区间的积分;(2)位于x 轴下方的曲边梯形的面积等于对应区间的积分的相反数;(3)定积分的值就是位于x 轴上方曲边梯形面积减去位于x 轴下方的曲边梯形面积.跟踪训练3 求曲线y =sin x 与直线x =-π2,x =54π,y =0所围图形的面积(如图所示).解 所求面积为 S =5π4π2-⎰-π2|sin x |d x =-0π2-⎰sin x d x +ʃπ0sin x d x -5π4π⎰sin x d x=1+2+(1-22)=4-22.1.π2π2-⎰(1+cos x )d x 等于( )A .πB .2C .π-2D .π+2 答案 D解析 ∵(x +sin x )′=1+cos x , ∴π2π2-⎰(1+cos x )d x =(x +sin x )|π2π2-=π2+sin π2-⎣⎡⎦⎤-π2+sin ⎝⎛⎭⎫-π2=π+2. 2.若ʃa1(2x +1x)d x =3+ln 2,则a 的值是( )A .5B .4C .3D .2 答案 D 解析 ʃa1(2x +1x)d x =ʃa12x d x +ʃa 11xd x=x 2|a 1+ln x |a 1=a 2-1+ln a =3+ln 2,解得a =2.3.ʃ20(x 2-23x )d x =________. 答案 43解析 ʃ20(x 2-23x )d x =ʃ20x 2d x -ʃ2023x d x =x 33|20-x 23|20=83-43=43. 4.已知f (x )=⎩⎨⎧4x -2π,0≤x ≤π2,cos x ,π2<x ≤π,计算ʃπ0f (x )d x .解 ʃπ0f (x )d x =π20⎰f (x )d x +ππ2⎰f (x )d x=π20⎰(4x -2π)d x +ππ2⎰cos x d x ,取F 1(x )=2x 2-2πx ,则F 1′(x )=4x -2π; 取F 2(x )=sin x ,则F 2′(x )=cos x . 所以π20⎰(4x -2π)d x +ππ2⎰cos x d x =(2x 2-2πx )|π20+sin x |ππ2=-12π2-1,即ʃπ0f (x )d x =-12π2-1. [呈重点、现规律]1.求定积分的一些常用技巧(1)对被积函数,要先化简,再求积分.(2)若被积函数是分段函数,依据定积分“对区间的可加性”,分段积分再求和. (3)对于含有绝对值符号的被积函数,要去掉绝对值符号才能积分.2.由于定积分的值可取正值,也可取负值,还可以取0,而面积是正值,因此不要把面积理解为被积函数对应图形在某几个区间上的定积分之和,而是在x 轴下方的图形面积要取定积分的相反数.一、基础过关1.已知物体做变速直线运动的位移函数s =s (t ),那么下列命题正确的是( ) ①它在时间段[a ,b ]内的位移是s =s (t )|b a ; ②它在某一时刻t =t 0时,瞬时速度是v =s ′(t 0); ③它在时间段[a ,b ]内的位移是s =lim n →∞i =1nb -ans ′(ξi ); ④它在时间段[a ,b ]内的位移是s =ʃba s ′(t )d t .A .①B .①②C .①②④D .①②③④答案 D2.若F ′(x )=x 2,则F (x )的解析式不正确的是( ) A .F (x )=13x 3B .F (x )=x 3C .F (x )=13x 3+1D .F (x )=13x 3+c (c 为常数)答案 B 3.ʃ10(e x +2x )d x 等于( )A .1B .e -1C .eD .e +1 答案 C 解析 ʃ10(e x +2x )d x =(e x +x 2)|10=(e 1+12)-(e 0+02)=e. 4.已知f (x )=⎩⎪⎨⎪⎧x 2,-1≤x ≤0,1,0<x ≤1,则ʃ1-1f (x )d x 的值为( )D .-23答案 B 解析 ʃ1-1f (x )d x =ʃ-1x 2d x +ʃ101d x =x 33|0-1+1=13+1=43,故选B. 5.π20⎰sin 2x2d x 等于( )-1 C .2答案 D 解析 π20⎰sin 2x 2d x =π20⎰1-cos x 2d x =12(x -sin x )|π20=π-24,故选D. 6.若ʃ10(2x +k )d x =2,则k =________.答案 1 解析 ∵ʃ10(2x +k )d x =(x 2+kx )|10=1+k =2,∴k =1. 二、能力提升7.设函数f (x )=ax 2+c (a ≠0),若ʃ10f (x )d x =f (x 0),0≤x 0≤1,则x 0的值为________.答案 33解析 ʃ10(ax 2+c )d x =ax 20+c , ∴a 3=ax 20, ∵a ≠0,∴x 20=13,又0≤x 0≤1,∴x 0=33. 8.设f (x )=⎩⎪⎨⎪⎧lg x ,x >0x +a 03t 2d t ,x ≤0, 若f [f (1)]=1,则a =________. 答案 1解析 因为x =1>0,所以f (1)=lg 1=0.又x ≤0时,f (x )=x +ʃa 03t 2d t =x +t 3|a 0=x +a 3,所以f (0)=a 3.因为f [f (1)]=1,所以a 3=1, 解得a =1.9.设f (x )是一次函数,且ʃ10f (x )d x =5,ʃ10xf (x )d x =176,则f (x )的解析式为________. 答案 f (x )=4x +3解析 ∵f (x )是一次函数,设f (x )=ax +b (a ≠0),则 ʃ10f (x )d x =ʃ10(ax +b )d x =ʃ10ax d x +ʃ10b d x =12a +b =5,ʃ10xf (x )d x =ʃ10x (ax +b )d x =ʃ10(ax 2)d x +ʃ10bx d x =13a +12b =176. 由⎩⎨⎧12a +b =5,13a +12b =176,得⎩⎪⎨⎪⎧a =4,b =3.10.计算下列定积分: (1)ʃ21(e x+1x)d x ;(2)ʃ91x (1+x )d x ;(3)ʃ200(--+1)d x ; (4)ʃ211x (x +1)d x .解 (1)∵(e x +ln x )′=e x +1x ,∴ʃ21(e x +1x)d x =(e x +ln x )|21=e 2+ln 2-e. (2)∵x (1+x )=x +x ,(12x 2+2332x )′=x +x ,∴ʃ91x (1+x )d x =(12x 2+2332x )|91=1723. (3)∵(e -+1)′=--+1, ∴ʃ200(--+1)d x =e -+1|200=1-e. (4)∵1x (x +1)=1x -1x +1, (ln x )′=1x ,(ln(x +1))′=1x +1,∴ʃ211x (x +1)d x =ln x |21-ln(x +1)|21=2ln 2-ln 3. 11.若函数f (x )=⎩⎪⎨⎪⎧x 3,x ∈[0,1],x ,x ∈(1,2],2x ,x ∈(2,3].求ʃ30f (x )d x 的值.解 由定积分的性质,知: ʃ30f (x )d x =ʃ10f (x )d x +ʃ21f (x )d x +ʃ32f (x )d x =ʃ10x 3d x +ʃ21x d x +ʃ322x d x =x 44|10+23x 32|21+2x ln 2|32 =14+432-23+8ln 2-4ln 2=-512+432+4ln 2.12.已知f (a )=ʃ10(2ax 2-a 2x )d x ,求f (a )的最大值.解 ∵(23ax 3-12a 2x 2)′=2ax 2-a 2x ,∴ʃ10(2ax 2-a 2x )d x =(23ax 3-12a 2x 2)|10 =23a -12a 2, 即f (a )=23a -12a 2=-12(a 2-43a +49)+29=-12(a -23)2+29,∴当a =23时,f (a )有最大值29.三、探究与拓展 13.求定积分ʃ3-4|x +a |d x .解 (1)当-a ≤-4即a ≥4时, 原式=ʃ3-4(x +a )d x =(x 22+ax )|3-4=7a -72. (2)当-4<-a <3即-3<a <4时, 原式=ʃ-a-4[-(x +a )]d x +ʃ3-a(x +a )d x=(-x 22-ax )|-a-4+(x 22+ax )|3-a =a 22-4a +8+(a 22+3a +92) =a 2-a +252.(3)当-a ≥3即a ≤-3时,原式=ʃ3-4[-(x +a )]d x =(-x 22-ax )|3-4 =-7a +72.综上,得ʃ3-4|x +a |d x =⎩⎪⎨⎪⎧7a -72(a ≥4)a 2-a +252 (-3<a <4)-7a +72 (a ≤-3).。
1.7.1 定积分在几何中的应用明目标、知重点会应用定积分求两条或多条曲线围成的图形的面积.1.当x ∈[a ,b ]时,若f (x )>0,由直线x =a ,x =b (a ≠b ),y =0和曲线y =f (x )所围成的曲边梯形的面积S =ʃba f (x )d x .2.当x ∈[a ,b ]时,若f (x )<0,由直线x =a ,x =b (a ≠b ),y =0和曲线y =f (x )围成的曲边梯形的面积S =-ʃba f (x )d x .3.当x ∈[a ,b ]时,若f (x )>g (x )>0,由直线x =a ,x =b (a ≠b )和曲线y =f (x ),y =g (x )围成的平面图形的面积S =ʃba [f (x )-g (x )]d x .(如图)探究点一 求不分割型图形的面积思考 怎样利用定积分求不分割型图形的面积?答 求由曲线围成的面积,要根据图形,确定积分上下限,用定积分来表示面积,然后计算定积分即可.例1 计算由曲线y 2=x ,y =x 2所围图形的面积S .解 由⎩⎪⎨⎪⎧y 2=x ,y =x 2得交点的横坐标为x =0及x =1.因此,所求图形的面积为 S =S 曲边梯形OABC —S 曲边梯形OABD =ʃ10x d x -ʃ10x 2d x=23x 32|10-13x 3|10 =23-13=13. 反思与感悟 求由曲线围成图形面积的一般步骤: (1)根据题意画出图形;(2)找出范围,确定积分上、下限; (3)确定被积函数; (4)将面积用定积分表示;(5)用微积分基本定理计算定积分,求出结果.跟踪训练1 求由抛物线y =x 2-4与直线y =-x +2所围成图形的面积.解 由⎩⎪⎨⎪⎧ y =x 2-4y =-x +2得⎩⎪⎨⎪⎧ x =-3y =5或⎩⎪⎨⎪⎧x =2y =0, 所以直线y =-x +2与抛物线y =x 2-4的交点为(-3,5)和(2,0),设所求图形面积为S , 根据图形可得S =ʃ2-3(-x +2)d x -ʃ2-3(x 2-4)d x=(2x -12x 2)|2-3-(13x 3-4x )|2-3 =252-(-253)=1256. 探究点二 分割型图形面积的求解思考 由两条或两条以上的曲线围成的较为复杂的图形,在不同的区间位于上方和下方的曲线不同时,这种图形的面积如何求呢?答 求出曲线的不同的交点横坐标,将积分区间细化,分别求出相应区间曲边梯形的面积再求和,注意在每个区间上被积函数均是由上减下.例2 计算由直线y =x -4,曲线y =2x 以及x 轴所围图形的面积S . 解 方法一 作出直线y =x -4,曲线y =2x 的草图.解方程组⎩⎨⎧y =2x ,y =x -4得直线y =x -4与曲线y =2x 交点的坐标为(8,4). 直线y =x -4与x 轴的交点为(4,0). 因此,所求图形的面积为 S =S 1+S 2 =ʃ42x d x +[]ʃ 842x d x -ʃ 84(x -4)d x=22332x |40+22332x |84-12(x -4)2|84 =403. 方法二 把y 看成积分变量,则 S =ʃ4(y +4-12y 2)d y =(12y 2+4y -16y 3)|40 =403. 反思与感悟 两条或两条以上的曲线围成的图形,一定要确定图形范围,通过解方程组求出交点的坐标,定出积分上、下限,若积分变量选x 运算较繁锁,则积分变量可选y ,同时要更换积分上、下限.跟踪训练2 求由曲线y =x ,y =2-x ,y =-13x 所围成图形的面积.解 画出图形,如图所示.解方程组⎩⎨⎧y =x ,x +y =2,⎩⎪⎨⎪⎧ y =x ,y =-13x ,及⎩⎪⎨⎪⎧x +y =2,y =-13x , 得交点分别为(1,1),(0,0),(3,-1), 所以S =ʃ10[x -(-13x )]d x +ʃ31[(2-x )-(-13x )]d x =ʃ10(x +13x )d x +ʃ31(2-x +13x )d x =(23x 32+16x 2)|10+(2x -12x 2+16x 2)|31 =23+16+(2x -13x 2)|31 =56+6-13×9-2+13 =136. 探究点三 定积分的综合应用例3 在曲线y =x 2(x ≥0)上某一点A 处作一切线使之与曲线以及x 轴所围成的面积为112,试求:切点A 的坐标以及在切点A 处的切线方程. 解 如图,设切点A (x 0,y 0),其中x 0≠0,由y ′=2x ,过点A 的切线方程为 y -y 0=2x 0(x -x 0), 即y =2x 0x -x 20,令y =0,得x =x 02,即C (x 02,0),设由曲线和过点A 的切线与x 轴围成图形的面积为S , 则S =S 曲边△AOB -S △ABC ,∵S 曲边△AOB =ʃx 00x 2d x =13x 3|x 00=13x 30,S △ABC =12|BC |·|AB |=12(x 0-x 02)·x 20=14x 30. ∴S =13x 30-14x 30=112x 30=112.∴x 0=1,从而切点为A (1,1), 切线方程为2x -y -1=0.反思与感悟 本题综合考查了导数的意义以及定积分等知识,运用待定系数法,先设出切点的坐标,利用导数的几何意义,建立了切线方程,然后利用定积分以及平面几何的性质求出所围成的平面图形的面积,根据条件建立方程求解,从而使问题得以解决.跟踪训练3 如图所示,直线y =kx 分抛物线y =x -x 2与x 轴所围图形为面积相等的两部分,求k 的值.解 抛物线y =x -x 2与x 轴两交点的横坐标为x 1=0,x 2=1, 所以,抛物线与x 轴所围图形的面积 S =ʃ10(x -x 2)d x =⎝⎛⎭⎫x 22-13x 3|10=16.又⎩⎪⎨⎪⎧y =x -x 2,y =kx , 由此可得,抛物线y =x -x 2与y =kx 两交点的横坐标为x 3=0,x 4=1-k , 所以,S 2=ʃ1-k 0(x -x 2-kx )d x=⎝⎛⎭⎫1-k 2x 2-13x 3|1-k 0=16(1-k )3. 又知S =16,所以(1-k )3=12,于是k =1- 312=1-342.1.在下面所给图形的面积S 及相应表达式中,正确的有( )S =ʃab [f (x )-g (x )]d xS =ʃ80(22x -2x +8)d x① ②S =ʃ41f (x )d x -ʃ74f (x )d xS =ʃ a 0[g (x )-f (x )]d x +ʃ ba [f (x )-g (x )]d x③ ④A .①③B .②③C .①④D .③④ 答案 D 解析 ①应是S =ʃba [f (x )-g (x )]d x ,②应是S =ʃ8022x d x -ʃ84(2x -8)d x ,③和④正确,故选D.2.曲线y =cos x (0≤x ≤32π)与坐标轴所围图形的面积是( )A .2B .3 C.52 D .4答案 B 解析 S =π20⎰cos x d x -3π2π2⎰cos x d x=sin x|π20-sin x|3π2π2=sin π2-sin 0-sin 3π2+sin π2=1-0+1+1=3.3.由曲线y =x 2与直线y =2x 所围成的平面图形的面积为________. 答案 43解析 解方程组⎩⎪⎨⎪⎧ y =2x ,y =x 2,得⎩⎪⎨⎪⎧x =0,y =0,⎩⎪⎨⎪⎧x =2,y =4. ∴曲线y =x 2与直线y =2x 交点为(2,4),(0,0). ∴S =ʃ20(2x -x 2)d x =(x 2-13x 3)|2=(4-83)-0=43.4.由曲线y =x 2+4与直线y =5x ,x =0,x =4所围成平面图形的面积是________. 答案193解析 由图形可得 S =ʃ10(x 2+4-5x )d x +ʃ41(5x -x 2-4)d x =(13x 3+4x -52x 2)|10+(52x 2-13x 3-4x )|41 =13+4-52+52×42-13×43-4×4-52+13+4=193. [呈重点、现规律]对于简单图形的面积求解,我们可直接运用定积分的几何意义,此时 (1)确定积分上、下限,一般为两交点的横坐标. (2)确定被积函数,一般是上曲线与下曲线对应函数的差.这样所求的面积问题就转化为运用微积分基本定理计算定积分了.注意区别定积分与利用定积分计算曲线所围图形的面积:定积分可正、可负或为零;而平面图形的面积总是非负的.一、基础过关1.用S 表示图中阴影部分的面积,则S 的值是( )A .ʃca f (x )d x B .|ʃca f (x )d x | C .ʃba f (x )d x +ʃcb f (x )d x D .ʃcb f (x )d x -ʃba f (x )d x答案 D解析 ∵x ∈[a ,b ]时,f (x )<0,x ∈[b ,c ]时,f (x )>0, ∴阴影部分的面积S =ʃcb f (x )d x -ʃba f (x )d x .2.直线l 过抛物线C :x 2=4y 的焦点且与y 轴垂直,则l 与C 所围成的图形的面积等于( ) A.43 B .2 C.83 D.1623答案 C解析 ∵抛物线方程为x 2=4y ,∴其焦点坐标为F (0,1),故直线l 的方程为y =1.如图所示,可知l 与C 围成的图形的面积等于矩形OABF 的面积与函数y =14x 2的图象和x 轴正半轴及直线x =2围成的图形的面积的差的2倍(图中阴影部分的2倍), 即S =4-2ʃ20x24d x =⎪⎪4-2·x 31220=4-43=83.3.若y =f (x )与y =g (x )是[a ,b ]上的两条光滑曲线的方程,则这两条曲线及直线x =a ,x =b 所围成的平面区域的面积为( ) A .∫b a [f (x )-g (x )]d x B .∫b a [g(x)-f(x)]d x C .∫b a |f (x )-g (x )|d xD.||∫ba [f (x )-g (x )]d x答案 C解析 当f (x )>g (x )时, 所求面积为∫b a [f (x )-g (x )]d x ;当f (x )≤g (x )时,所求面积为∫b a [g (x )-f (x )]d x . 综上,所求面积为∫b a |f (x )-g (x )|d x .4.曲线y =x 2-1与x 轴所围成图形的面积等于( ) A.13 B.23 C .1 D.43答案 D解析 函数y =x 2-1与x 轴的交点为(-1,0),(1,0),且函数图象关于y 轴对称,故所求面积为 S =2ʃ10(1-x 2)d x =2(x -13x 3)|10 =2×23=43.5.由曲线y =x 与y =x 3所围成的图形的面积可用定积分表示为________. 答案 ʃ10(x -x 3)d x解析 画出y =x 和y =x 3的草图,所求面积为如图所示阴影部分的面积,解方程组⎩⎨⎧y =xy =x 3得交点的横坐标为x =0及x =1.因此,所求图形的面积为S =ʃ10(x -x 3)d x .6.由y =x 2,y =14x 2及x =1围成的图形的面积S =______.答案 14解析 图形如图所示:S =ʃ10x 2d x -ʃ1014x 2d x=ʃ1034x 2d x=14x 3|10=14. 二、能力提升7.设f (x )=⎩⎪⎨⎪⎧x 2, x ∈[0,1],2-x , x ∈(1,2],则ʃ20f (x )d x等于( )A.34B.45C.56 D .不存在 答案 C解析 数形结合,如图,ʃ20f (x )d x =ʃ10x 2d x +ʃ21(2-x )d x=13x 3|10+(2x -12x 2)|21=13+(4-2-2+12)=56. 8.若两曲线y =x 2与y =cx 3(c >0)围成图形的面积是23,则c 等于( )A.13B.12 C .1 D.23 答案 B解析 由⎩⎪⎨⎪⎧y =x 2y =cx3得x =0或x =1c . ∵0<x <1c 时,x 2>cx 3,∴S =10c ⎰(x 2-cx 3)d x=(13x 3-14cx 4)|10c =13c 3-14c 3=112c 3=23. ∴c 3=18.∴c =12.9.从如图所示的长方形区域内任取一个点M (x ,y ),则点M 取自阴影部分的概率为________.答案 13解析 根据题意得:S 阴=ʃ103x 2d x =x 3|10=1,则点M 取自阴影部分的概率为S 阴S 矩=13×1=13.10.求曲线y =6-x 和y =8x ,y =0围成图形的面积.解 作出直线y =6-x ,曲线y =8x 的草图,所求面积为图中阴影部分的面积.解方程组⎩⎨⎧ y =6-x y =8x得直线y =6-x 与曲线y =8x 交点的坐标为(2,4),直线y =6-x 与x 轴的交点坐标为(6,0).因此,所求图形的面积S =S 1+S 2=ʃ208x d x +ʃ62(6-x )d x=8×2332x |20+(6x -12x 2)|62 =163+[(6×6-12×62)-(6×2-12×22)] =163+8=403. 11.求由抛物线y =-x 2+4x -3及其在点A (1,0)和点B (3,0)处的切线所围成图形的面积. 解 由y ′=-2x +4得在点A 、B 处切线的斜率分别为2和-2,则两直线方程分别为y =2x -2和y =-2x +6,由⎩⎪⎨⎪⎧y =2x -2,y =-2x +6,得两直线交点坐标为C (2,2), ∴S =S △ABC -ʃ31(-x 2+4x -3)d x =12×2×2-⎝⎛⎭⎫-13x 3+2x 2-3x ⎪⎪⎪31=2-43=23. 12.设点P 在曲线y =x 2上,从原点向A (2,4)移动,如果直线OP ,曲线y =x 2及直线x =2所围成的面积分别记为S 1、S 2.(1)当S 1=S 2时,求点P 的坐标;(2)当S 1+S 2有最小值时,求点P 的坐标和最小值.解 (1)设点P 的横坐标为t (0<t <2),则P 点的坐标为(t ,t 2),直线OP 的方程为y =tx .S 1=ʃt 0(tx -x 2)d x =16t 3, S 2=ʃ2t (x 2-tx )d x =83-2t +16t 3. 因为S 1=S 2,所以t =43,点P 的坐标为(43,169).(2)S =S 1+S 2=16t 3+83-2t +16t 3 =13t 3-2t +83,S ′=t 2-2, 令S ′=0得t 2-2=0.因为0<t <2,所以t =2,因为0<t <2时,S ′<0;2<t <2时,S ′>0.所以,当t =2时,S 1+S 2有最小值83-423, 此时点P 的坐标为(2,2).三、探究与拓展13.已知抛物线y =x 2-2x 及直线x =0,x =a ,y =0围成的平面图形的面积为43,求a 的值.解 作出y =x 2-2x 的图象如图.(1)当a <0时,S =ʃ0a (x 2-2x )d x=(13x 3-x 2)|0a =-a 33+a 2 =43, ∴(a +1)(a -2)2=0.∵a <0,∴a =-1.(2)当a >0时,①若0<a ≤2,则S =-ʃa 0(x 2-2x )d x=-(13x 3-x 2)| a 0 =a 2-13a 3=43, ∴a 3-3a 2+4=0即(a +1)(a -2)2=0.∵a >0,∴a =2.②当a >2时,S =-ʃ20(x 2-2x )d x +ʃa 2(x 2-2x )d x=-(13x 3-x 2)|20+(13x 3-x 2)|a 2=-(83-4)+(13a 3-a 2-83+4) =43+(13a 3-a 2-83+4)=43. ∴13a 3-a 2+43=0 ∴a >2不合题意.综上a =-1,或a =2.。
2.1.1 合情推理明目标、知重点 1.了解合情推理的含义,能利用归纳和类比等进行简单的推理.2.了解合情推理在数学发现中的作用.1.归纳推理和类比推理(1)含义归纳推理和类比推理都是根据已有的事实,经过观察、分析、比较、联想,再进行归纳、类比,然后提出猜想的推理,我们把它们统称为合情推理. (2)合情推理的过程从具体问题出发→观察、分析、比较、联想 →归纳、类比→提出猜想[情境导学]佛教《百喻经》中有这样一则故事.从前有一位富翁想吃芒果,打发他的仆人到果园去买,并告诉他:“要甜的,好吃的,你才买.”仆人拿好钱就去了.到了果园,园主说:“我这里树上的芒果个个都是甜的,你尝一个看.”仆人说:“我尝一个怎能知道全体呢?我应当个个都尝过,尝一个买一个,这样最可靠.”仆人于是自己动手摘芒果,摘一个尝一口,甜的就都买回去.带回家去,富翁见了,觉得非常恶心,一齐都扔了.想一想:故事中仆人的做法实际吗?换作你,你会怎么做?学习了下面的知识,你将清楚是何道理.探究点一归纳推理思考1在日常生活中我们常常遇到这样一些问题:看到天空乌云密布,燕子低飞,蚂蚁搬家等现象时,我们会得出一个判断——天要下雨了;张三今天没来上课,我们会推断——张三一定生病了;谚语说:“八月十五云遮月,来年正月十五雪打灯”等,像上面的思维方式就是推理,请问你认为什么是推理?答根据一个或几个已知的判断来确定一个新的判断的思维过程就叫做推理.思考2观察下面两个推理,回答后面的两个问题:(1)哥德巴赫猜想:6=3+38=3+510=5+512=5+714=7+716=5+11……1 000=29+9711 002=139+863……猜想:任何一个不小于6的偶数都等于两个奇质数之和.(2)铜、铁、铝、金、银等金属都能导电,猜想:一切金属都能导电.问题:①以上两个推理在思维方式上有什么共同特点?②其结论一定正确吗?答①共同特点:部分推出整体,个别推出一般.(这种推理称为归纳推理)②其结论不一定正确.反思与感悟 归纳推理定义:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理,称为归纳推理(简称归纳).例1 已知数列{a n }的第1项a 1=1,且a n +1=a n 1+a n (n =1,2,3,…),试归纳出这个数列的通项公式.解 当n =1时,a 1=1; 当n =2时,a 2=11+1=12; 当n =3时,a 3=121+12=13; 当n =4时,a 4=131+13=14. 通过观察可得:数列的前四项都等于相应序号的倒数,由此归纳出a n =1n.反思与感悟 归纳推理的一般步骤:①通过观察个别情况发现某些相同性质;②从已知的相同性质中推出一个明确表述的一般性命题(猜想).归纳推理在数列中应用广泛,我们可以从数列的前几项找出数列项的规律,归纳数列的通项公式或探求数列的前n 项和公式.跟踪训练1 已知数列{a n }满足a 1=1,a n +1=2a n +1(n =1,2,3,…), (1)求a 2,a 3,a 4,a 5; (2)归纳猜想通项公式a n . 解 (1)当n =1时,知a 1=1, 由a n +1=2a n +1得a 2=3, a 3=7,a 4=15,a 5=31.(2)由a 1=1=21-1,a 2=3=22-1,a 3=7=23-1,a 4=15=24-1,a 5=31=25-1, 可归纳猜想出a n =2n -1(n ∈N *).例2 在法国巴黎举行的第52届世乒赛期间,某商场橱窗里用同样的乒乓球堆成若干堆“正三棱锥”形的展品,其中第1堆只有一层,就一个球;第2,3,4,…堆最底层(第一层)分别按图所示方式固定摆放,从第二层开始,每层的小球自然垒放在下一层之上,第n 堆第n 层就放一个乒乓球,以f (n )表示第n 堆的乒乓球总数,则f (3)=______;f (n )=______(答案用含n 的代数式表示).答案 10n (n +1)(n +2)6解析 观察图形可知:f (1)=1,f (2)=4,f (3)=10,f (4)=20,…,故下一堆的个数是上一堆个数加上下一堆第一层的个数,即f (2)=f (1)+3;f (3)=f (2)+6;f (4)=f (3)+10;…;f (n )=f (n -1)+n (n +1)2.将以上(n -1)个式子相加可得 f (n )=f (1)+3+6+10+…+n (n +1)2=12[(12+22+…+n 2)+(1+2+3+…+n )] =12[16n (n +1)(2n +1)+n (n +1)2] =n (n +1)(n +2)6.反思与感悟 解本例的关键在于寻找递推关系式:f (n )=f (n -1)+n (n +1)2,然后用“叠加法”求通项,而第一层的变化规律,结合图利用不完全归纳法可得,即为正整数前n 项和的变化规律.跟踪训练2 在平面内观察: 凸四边形有2条对角线, 凸五边形有5条对角线, 凸六边形有9条对角线, …由此猜想凸n (n ≥4且n ∈N *)边形有几条对角线? 解 凸四边形有2条对角线,凸五边形有5条对角线,比凸四边形多3条, 凸六边形有9条对角线,比凸五边形多4条, ……于是猜想凸n 边形比凸(n -1)边形多(n -2)条对角线.因此凸n 边形的对角线条数为2+3+4+5+…+(n -2)=12n (n -3)(n ≥4且n ∈N *).探究点二 类比推理阅读下面的推理,回答后面提出的问题:1.科学家对火星进行研究,发现火星与地球有许多类似的特征:(1)火星也是绕太阳运行、绕轴自转的行星;(2)有大气层,在一年中也有季节变更;(3)火星上大部分时间的温度适合地球上某些已知生物的生存等等.科学家猜想:火星上也可能有生命存在.2.根据等式的性质猜想不等式的性质.等式的性质:猜想不等式的性质:(1)a=b⇒a+c=b+c; (1)a>b⇒a+c>b+c;(2)a=b⇒ac=bc; (2)a>b⇒ac>bc;(3)a=b⇒a2=b2等等. (3)a>b⇒a2>b2等等.思考1这两个推理实例在思维方式上有什么共同特点?答类比推理的定义:这种由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理(简称类比).简言之,类比推理是由特殊到特殊的推理.思考2猜想正确吗?答不一定正确.思考3类比圆的特征,填写下表中球的有关特征面图形中的“面”对应空间图形的“体”;平面图形中的“边长”对应空间图形的“面积”;平面图形中的“面积”对应空间图形的“体积”;例3 在平面几何里,有勾股定理:“设△ABC 的两边AB 、AC 互相垂直,则AB 2+AC 2=BC 2”.拓展到空间(如图),类比平面几何的勾股定理,研究三棱锥的侧面面积与底面面积间的关系,可以得出的结论是______________________________________________________.答案 设三棱锥A —BCD 的三个侧面ABC 、ACD 、ADB 两两互相垂直,则S 2△ABC +S 2△ACD +S 2△ADB =S 2△BCD解析 类比条件: 两边AB 、AC 互相垂直――→平面→空间、边垂直→面垂直侧面ABC 、ACD 、ADB 互相垂直.结论:AB 2+AC 2=BC 2――→边长→面积S 2△ABC +S 2△ACD +S 2△ADB =S 2△BCD .反思与感悟 类比推理的一般步骤:①找出两类对象之间可以确切表述的相似性(或一致性);②用一类对象的性质去推测另一类对象的性质,从而得出一个明确的命题(猜想).跟踪训练3 (1)如图所示,在△ABC 中,射影定理可表示为a =b ·cos C +c ·cos B ,其中a ,b ,c 分别为角A ,B ,C 的对边,类比上述定理,写出对空间四面体性质的猜想.解 如图所示,在四面体P -ABC 中,设S 1,S 2,S 3,S 分别表示△P AB ,△PBC ,△PCA ,△ABC 的面积,α,β,γ依次表示面P AB ,面PBC ,面PCA 与底面ABC 所成二面角的大小.我们猜想射影定理类比推理到三维空间,其表现形式应为:S =S 1·cos α+S 2·cos β+S 3·cos γ. (2)已知在Rt △ABC 中,AB ⊥AC ,AD ⊥BC 于D ,有1AD 2=1AB 2+1AC 2成立.那么在四面体A -BCD 中,类比上述结论,你能得到怎样的猜想,说明猜想是否正确并给出理由.解 类比AB ⊥AC ,AD ⊥BC ,可以猜想四面体A -BCD 中,AB ,AC ,AD 两两垂直,AE ⊥平面BCD.则1AE2=1AB2+1AC2+1AD2.猜想正确.如图所示,连接BE,并延长交CD于F,连接AF. ∵AB⊥AC,AB⊥AD,∴AB⊥平面ACD.而AF⊂平面ACD,∴AB⊥AF.在Rt△ABF中,AE⊥BF,∴1AE2=1AB2+1AF2.在Rt△ACD中,AF⊥CD,∴1AF2=1AC2+1AD2.∴1AE2=1AB2+1AC2+1AD2,故猜想正确.1.下列说法正确的是()A.由合情推理得出的结论一定是正确的B.合情推理必须有前提有结论C.合情推理不能猜想D.合情推理得出的结论不能判断正误答案 B解析根据合情推理可知,合情推理必须有前提有结论.2.下图为一串白黑相间排列的珠子,按这种规律往下排起来,那么第36颗珠子应是什么颜色()A.白色B.黑色C.白色可能性大D.黑色可能性大答案 A解析由图知:三白二黑周而复始相继排列,36÷5=7余1.∴第36颗珠子的颜色为白色.3.将全体正整数排成一个三角形数阵:12 345 6789101112131415……………………按照以上排列的规律,第n行(n≥3)从左向右的第3个数为________.答案 n 2-n +62解析 前n -1行共有正整数1+2+…+(n -1)个,即n 2-n 2个,因此第n 行第3个数是全体正整数中第n 2-n 2+3个,即为n 2-n +62.4.古希腊毕达哥拉斯学派的数学家研究过各种多边形数,如三角形数1,3,6,10,…,第n 个三角形数为n (n +1)2=12n 2+12n ,记第n 个k 边形数为N (n ,k )(k ≥3),以下列出了部分k 边形数中第n 个数的表达式:三角形数 N (n,3)=12n 2+12n ,正方形数 N (n,4)=n 2, 五边形数 N (n,5)=32n 2-12n ,六边形数 N (n,6)=2n 2-n ………………………………………可以推测N (n ,k )的表达式,由此计算N (10,24)=____________. 答案 1 000解析 由N (n,4)=n 2,N (n,6)=2n 2-n ,可以推测:当k 为偶数时,N (n ,k )=k -22n 2+4-k2n ,∴N (10,24)=24-22×100+4-242×10=1 100-100=1 000. [呈重点、现规律]1.合情推理主要包括归纳推理和类比推理.数学研究中,在得到一个新结论前,合情推理能帮助猜测和发现结论,在证明一个数学结论之前,合情推理常常能为证明提供思路与方向. 2.合情推理的过程概括为从具体问题出发―→观察、分析、比较、联想―→归纳、类比―→提出猜想一、基础过关1.数列5,9,17,33,x ,…中的x 等于( ) A .47 B .65 C .63 D .128答案 B解析5=22+1,9=23+1,17=24+1,33=25+1,归纳可得:x=26+1=65.2.根据给出的数塔猜测123 456×9+7等于()1×9+2=1112×9+3=111123×9+4=1 1111 234×9+5=11 11112 345×9+6=111 111…A.1 111 110 B.1 111 111C.1 111 112 D.1 111 113答案 B解析由数塔猜测应是各位都是1的七位数,即1 111 111.3.观察(x2)′=2x,(x4)′=4x3,(cos x)′=-sin x,由归纳推理可得:若定义在R上的函数f(x)满足f(-x)=f(x),记g(x)为f(x)的导函数,则g(-x)等于()A.f(x) B.-f(x)C.g(x) D.-g(x)答案 D解析由所给函数及其导数知,偶函数的导函数为奇函数.因此当f(x)是偶函数时,其导函数应为奇函数,故g(-x)=-g(x).4.对命题“正三角形的内切圆切于三边中点”可类比猜想:正四面体的内切球切于四面体各正三角形的()A.一条中线上的点,但不是中心B.一条垂线上的点,但不是垂心C.一条角平分线上的点,但不是内心D.中心答案 D解析由正四面体的内切球可知,内切球切于四个侧面的中心.5.设△ABC的三边长分别为a、b、c,△ABC的面积为S,内切圆半径为r,则r=2Sa+b+c,类比这个结论可知:四面体S-ABC的四个面的面积分别为S1、S2、S3、S4,内切球半径为r,四面体S-ABC的体积为V,则r等于()A.VS1+S2+S3+S4B.2VS1+S2+S3+S4C.3V S 1+S 2+S 3+S 4D.4VS 1+S 2+S 3+S 4 答案 C解析 设四面体的内切球的球心为O ,则球心O 到四个面的距离都是R ,所以四面体的体积等于以O 为顶点,分别以四个面为底面的4个三棱锥体积的和. 则四面体的体积为V 四面体A -BCD =13(S 1+S 2+S 3+S 4)R ,∴R =3VS 1+S 2+S 3+S 4.6.观察下列等式1=1 2+3+4=9 3+4+5+6+7=25 4+5+6+7+8+9+10=49…照此规律,第n 个等式为__________________________. 答案 n +(n +1)+…+(3n -2)=(2n -1)27.在△ABC 中,若∠C =90°,则cos 2A +cos 2B =1,用类比的方法,猜想三棱锥的类似性质,并证明你的猜想.解 由平面类比到空间,有如下猜想:“在三棱锥P -ABC 中,三个侧面P AB ,PBC ,PCA 两两垂直,且与底面所成的角分别为α,β,γ,则cos 2α+cos 2β+cos 2γ=1”. 证明:设P 在平面ABC 的射影为O ,延长CO 交AB 于M ,记PO =h , 由PC ⊥P A ,PC ⊥PB ,得PC ⊥面P AB ,从而PC ⊥PM ,又∠PMC =α, cos α=sin ∠PCO =h PC ,cos β=h P A ,cos γ=h PB .∵V P -ABC =16P A ·PB ·PC =13(12P A ·PB cos α+12PB ·PC cos β+12PC ·P A cos γ)·h , ∴(cos αPC +cos βP A +cos γPB )h =1,即cos 2α+cos 2β+cos 2γ=1.二、能力提升8.把下面在平面内成立的结论类比地推广到空间,结论仍然正确的是( ) A .如果一条直线与两条平行线中的一条相交,则也与另一条相交 B .如果一条直线与两条平行线中的一条垂直,则也与另一条垂直 C .如果两条直线同时与第三条直线相交,则这两条直线相交或平行 D .如果两条直线同时与第三条直线垂直,则这两条直线平行答案 B解析 推广到空间以后,对于A 、C 、D 均有可能异面,故选B.9.在等差数列{a n }中,若a 10=0,则有等式a 1+a 2+…+a n =a 1+a 2+…+a 19-n (n <19,n ∈N *)成立.类比上述性质,相应地在等比数列{b n }中,若b 9=1,则成立的等式是( )A .b 1·b 2·…·b n =b 1·b 2·…·b 17-n (n <17,n ∈N *)B .b 1·b 2·…·b n =b 1·b 2·…·b 18-n (n <18,n ∈N *)C .b 1+b 2+…+b n =b 1+b 2+…+b 17-n (n <17,n ∈N *)D .b 1+b 2+…+b n =b 1+b 2+…+b 18-n (n <18,n ∈N *)答案 A解析 在等差数列{a n }中,由a 10=0,得a 1+a 19=a 2+a 18=…=a n +a 20-n =a n +1+a 19-n =2a 10=0,∴a 1+a 2+…+a n +…+a 19=0,即a 1+a 2+…+a n =-a 19-a 18-…-a n +1,又∵a 1=-a 19,a 2=-a 18,…,a 19-n =-a n +1∴a 1+a 2+…+a n =-a 19-a 18-…-a n +1=a 1+a 2+…+a 19-n .若a 9=0,同理可得a 1+a 2+…+a n =a 1+a 2+…+a 17-n .相应地,等比数列{b n }中有:b 1b 2…b n =b 1b 2…b 17-n (n <17,n ∈N *).10.观察下列等式12=112-22=-312-22+32=612-22+32-42=-10……照此规律,第n 个等式可为________.答案 12-22+32-42+…+(-1)n +1n 2=(-1)n +1·n (n +1)2解析 观察等式左边的式子,每次增加一项,故第n 个等式左边有n 项,指数都是2,且正、负相间,所以等式左边的通项为(-1)n +1n 2.等式右边的值的符号也是正、负相间,其绝对值分别为1,3,6,10,15,21,….设此数列为{a n },则a 2-a 1=2,a 3-a 2=3,a 4-a 3=4,a 5-a 4=5,…,a n -a n -1=n ,各式相加得a n -a 1=2+3+4+…+n ,即a n =1+2+3+…+n =n (n +1)2.所以第n 个等式为12-22+32-42+…+(-1)n +1n 2=(-1)n +1n (n +1)2. 11.根据下列条件,写出数列的前4项,并归纳猜想它的通项公式.(1)a 1=a ,a n +1=12-a n; (2)对一切的n ∈N *,a n >0,且2S n =a n +1.解 (1)由已知可得a 1=a ,a 2=12-a 1=12-a ,a 3=12-a 2=2-a 3-2a ,a 4=12-a 3=3-2a 4-3a. 猜想a n =(n -1)-(n -2)a n -(n -1)a(n ∈N *). (2)∵2S n =a n +1,∴2S 1=a 1+1,即2a 1=a 1+1,∴a 1=1.又2S 2=a 2+1,∴2a 1+a 2=a 2+1,∴a 22-2a 2-3=0,∵对一切的n ∈N *,a n >0,∴a 2=3.同理可求得a 3=5,a 4=7,猜想出a n =2n -1(n ∈N *).12. (1)椭圆C :x 2a 2+y 2b 2=1(a >b >0)与x 轴交于A 、B 两点,点P 是椭圆C 上异于A 、B 的任意一点,直线P A 、PB 分别与y 轴交于点M 、N ,求证:AN →·BM →为定值b 2-a 2.(2)类比(1)可得如下真命题:双曲线x 2a 2-y 2b 2=1(a >0,b >0)与x 轴交于A 、B 两点,点P 是双曲线C 上异于A 、B 的任意一点,直线P A 、PB 分别与y 轴交于点M 、N ,求证:AN →·BM →为定值,请写出这个定值(不要求写出解题过程).解 (1)证明如下:设点P (x 0,y 0),(x 0≠±a ).依题意,得A (-a,0),B (a,0),所以直线P A 的方程为y =y 0x 0+a(x +a ), 令x =0,得y M =ay 0x 0+a .同理得y N =-ay 0x 0-a. 所以y M y N =a 2y 20a 2-x 20. 又点P (x 0,y 0)在椭圆上,所以x 20a 2+y 20b 2=1, 因此y 20=b 2a 2(a 2-x 20). 所以y M y N =a 2y 20a 2-x 20=b 2.因为AN →={a ,y N },BM →=(-a ,y M ),所以AN →·BM →=-a 2+y M y N =b 2-a 2.(2)-(a 2+b 2).三、探究与拓展 13.如图,在长方形ABCD 中,对角线AC 与两邻边所成的角分别为α、β,则cos 2α+cos 2β=1,则在立体几何中,给出类比猜想.解 在长方形ABCD 中,cos 2α+cos 2β=(a c )2+(b c )2=a 2+b 2c 2=c 2c 2=1. 于是类比到长方体中,猜想其体对角线与共顶点的三条棱所成的角分别为α、β、γ,如图.则cos 2α+cos 2β+cos 2γ=1.证明如下:cos 2α+cos 2β+cos 2γ=(m l )2+(n l )2+(g l )2=m 2+n 2+g 2l 2=l 2l 2=1.。