2007-2008《高等代数I》秋季学期期末试卷C
- 格式:pdf
- 大小:110.60 KB
- 文档页数:6
高等代数(下)期末考试试卷(C 卷)一. 选择题(每空2分,共12分) 1.( D )下列集合哪一个是R n 的子空间11 1 1 2 1 2 11 2 1(A) {(,0,....,0,)| , ,}(B){( ,,...,)| , 1,...,}(C){( ,,...,)| 1 , }(D){( ,,...,)|0, }n n n n i nn i i i n n i i i a a a a R a a a a a a Z i n a a a a a R a a a a a R ==∈≠∈==∈=∈∑∑2.( B ) 令ξ=(x 1,x 2,x 3)是R 3的任意向量.下列哪一个映射σ是R 3的线性变换31 2 3233231 2312(A) ( ) = , 0(B) ( ) = (2-+ , , -)(C) ( ) =(,, )(D) ( ) =( 1 ,,0)R x x x x x x x x x x x σξξαασξσξσξ+≠++其中是 的固定向量3. (C) 如果1V , 2V 是线性空间V 的两个子空间, 且()1dim 3V =, ()2dim 2V =,()12dim 1V V ?, 那么()12dim V V +为(A) 2 (B) 3 (C) 4 (D) 5 4. (C )若4阶方阵A 的初等因子为()23l +, +3, 2. 则 A 的不变因子是(A) 1,( +3),( +2),()23l +; (B) 1,1, ( +3) ( + 2) ,()()223l l ++; (C )1,1,( +3),()()223l l ++;(D) 1,1,( +2),()()223l l ++;5.( B )设矩阵A 的全部不同特征值为12,,...,s λλλ,则下列哪一说法与A 可对角化不等价(A ) A 有n 个线性无关的特征向量; (B ) ()(1,2,...)()i ii i R E A n i s n λλ-==其中为的重数;(C ) V dim (V )(1,2,...,)iii i i s λλλλ==的特征子空间的维数的重数 ;( D) A 的最小多项式均是数域P 上互素的一次因式的乘积;6.(D ) 在实数域R 中,由全体4阶反对称矩阵所构成的线性空间W 的维数为(A) 10; (B )4; (C) 9; (D )6;.二. 填空题(每空2分,共18分)1、已知a 是数域P 上的一个固定的数,而2{(,,,),2,,}n i W a x x x P i n =∈=是1n P +的一个子空间,则a =_______, dim (W )=________. 2. 设,στ是2P 的两个线性变换,定义如下(,)(2,0)x y x y σ=-+, (,)(3,)x y y x y τ=-+ (,x y P ∀∈)则 (,)x y τσ=_________.3. 已知E A λ-的标准形为1000000(2)λλλ⎛⎫⎪⎪ ⎪-⎝⎭,则A 的特征多项式2(2)E A λλλ-=-,A 的最小多项式为___________。
高代期末考试试卷一、选择题(每题4分,共40分)1. 以下哪个矩阵是可逆的?A. [1 2; 3 4]B. [1 0; 0 0]C. [2 0; 0 2]D. [1 1; 1 1]2. 矩阵A的特征值是λ1和λ2,那么矩阵A^2的特征值是?A. λ1^2, λ2^2B. 2λ1, 2λ2C. λ1, λ2D. λ1+λ2, λ2+λ13. 线性方程组有非零解的条件是?A. 系数矩阵的行列式不等于0B. 系数矩阵的行列式等于0C. 增广矩阵的秩等于系数矩阵的秩D. 增广矩阵的秩不等于系数矩阵的秩4. 以下哪个向量组是线性无关的?A. [1, 0], [0, 1]B. [1, 1], [1, 2]C. [1, 2], [2, 4]D. [1, 2, 3], [4, 5, 6]5. 矩阵A的秩是3,那么矩阵A的零空间的维数是?A. 0B. 1C. 2D. 36. 以下哪个矩阵是对称矩阵?A. [1 2; 3 4]B. [1 3; 3 1]C. [2 1; 1 2]D. [1 0; 0 1]7. 以下哪个矩阵是正交矩阵?A. [1 0; 0 1]B. [1/√2 1/√2; -1/√2 1/√2]C. [1 1; 1 1]D. [1 2; 3 4]8. 以下哪个矩阵是幂等矩阵?A. [1 0; 0 1]B. [1 1; 1 1]C. [0 1; 1 0]D. [1 2; 3 4]9. 以下哪个矩阵是投影矩阵?A. [1 0; 0 0]B. [1 1; 1 1]C. [1 0; 0 1]D. [0 1; 1 0]10. 以下哪个矩阵是单位矩阵?A. [1 0; 0 1]B. [1 1; 1 1]C. [0 1; 1 0]D. [1 2; 3 4]二、填空题(每题4分,共20分)1. 矩阵的迹是其对角线元素的______。
2. 矩阵的转置是将矩阵的行和列进行______。
3. 矩阵的行列式可以通过______展开来计算。
高等代数期末试题及答案1. 选择题1.1 题目:解线性方程组已知线性方程组:\[\begin{cases}2x - 3y + z = 7 \\4x + y - 2z = -1 \\3x - 2y + 2z = 5\end{cases}\]其中,x、y、z为实数。
求解该线性方程组的解。
1.1 答案:解线性方程组的步骤如下:通过高斯消元法,将方程组化为行简化阶梯形式:\[\begin{cases}x - \frac{12}{7}z = 5 \\y - \frac{5}{7}z = 2 \\0 = 0\end{cases}\]由最后一行可以看出,方程存在自由变量z。
令z为任意实数,可以得到:\[\begin{cases}x = 5 + \frac{12}{7}z \\y = 2 + \frac{5}{7}z \\z = z\end{cases}\]因此,该线性方程组的解为:\[\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 5 +\frac{12}{7}z \\ 2 + \frac{5}{7}z \\ z \end{pmatrix}\]2. 填空题2.1 题目:求行列式的值计算行列式的值:\[D = \begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{vmatrix}\]2.1 答案:计算行列式的值,可以通过按任意行或列展开的方法来求解。
选择第一行进行展开计算:\[D = 1 \cdot \begin{vmatrix} 5 & 6 \\ 8 & 9 \end{vmatrix} - 2 \cdot\begin{vmatrix} 4 & 6 \\ 7 & 9 \end{vmatrix} + 3 \cdot \begin{vmatrix} 4 & 5 \\ 7 & 8 \end{vmatrix}\]计算上述三个二阶行列式的值,得到:\[D = 1 \cdot (5 \cdot 9 - 6 \cdot 8) - 2 \cdot (4 \cdot 9 - 6 \cdot 7) + 3\cdot (4 \cdot 8 - 5 \cdot 7) = 0\]因此,行列式的值为0。
高等代数(下)期末考试试卷(C 卷)一. 选择题(每空2分,共12分) 1.( D )下列集合哪一个是R n 的子空间11 1 1 2 1 2 11 2 1(A) {(,0,....,0,)| , ,}(B){( ,,...,)| , 1,...,}(C){( ,,...,)| 1 , }(D){( ,,...,)|0, }n n n n i nn i i i n n i i i a a a a R a a a a a a Z i n a a a a a R a a a a a R ==∈≠∈==∈=∈∑∑2.( B ) 令ξ=(x 1,x 2,x 3)是R 3的任意向量.下列哪一个映射σ是R 3的线性变换31 2 3233231 2312(A) ( ) = , 0(B) ( ) = (2-+ , , -)(C) ( ) =(,, )(D) ( ) =( 1 ,,0)R x x x x x x x x x x x σξξαασξσξσξ+≠++其中是 的固定向量3. (C) 如果1V , 2V 是线性空间V 的两个子空间, 且()1dim 3V =, ()2dim 2V =,()12dim 1V V ?, 那么()12dim V V +为(A) 2 (B) 3 (C) 4 (D) 5 4. (C )若4阶方阵A 的初等因子为()23l +, +3, 2. 则 A 的不变因子是(A) 1,( +3),( +2),()23l +; (B) 1,1, ( +3) ( + 2) ,()()223l l ++; (C )1,1,( +3),()()223l l ++;(D) 1,1,( +2),()()223l l ++;5.( B )设矩阵A 的全部不同特征值为12,,...,s λλλ,则下列哪一说法与A 可对角化不等价(A ) A 有n 个线性无关的特征向量; (B ) ()(1,2,...)()i ii i R E A n i s n λλ-==其中为的重数;(C ) V dim (V )(1,2,...,)iii i i s λλλλ==的特征子空间的维数的重数 ;( D) A 的最小多项式均是数域P 上互素的一次因式的乘积;6.(D ) 在实数域R 中,由全体4阶反对称矩阵所构成的线性空间W 的维数为(A) 10; (B )4; (C) 9; (D )6;.二. 填空题(每空2分,共18分)1、已知a 是数域P 上的一个固定的数,而2{(,,,),2,,}n i W a x x x P i n =∈=是1n P +的一个子空间,则a =_______, dim (W )=________. 2. 设,στ是2P 的两个线性变换,定义如下(,)(2,0)x y x y σ=-+, (,)(3,)x y y x y τ=-+ (,x y P ∀∈)则 (,)x y τσ=_________.3. 已知E A λ-的标准形为1000000(2)λλλ⎛⎫⎪⎪ ⎪-⎝⎭,则A 的特征多项式2(2)E A λλλ-=-,A 的最小多项式为___________。
《高等代数(二)》期末考试样卷一、选择题(本大题有一项是符合题目要求的)1. 若σ是F 上向量空间V 的一个线性变换,则下列说法∙∙误错的是( )A.)()()(,,βσασβασβα+=+∈∀VB.0)0(=σC.)()(,,ασασαk k F k V =∈∈∀D.0)0(≠σ2.若},,{21s ααα 和},,{21t βββ 是两个等价的线性无关的向量组,则( ) A.t s > B. t s < C. t s = D.以上说法都不对 3.向量空间2F [x]的维数是( )A. 0B. 1C. 2D. 3 4.一个线性变换关于两个基的矩阵是( )A.正定的B.相似的C.合同的D.对称的 5.如果两个向量βα与正交,则下列说法正确的是( ) A. ><βα, > 0 B. ><βα, < 0 C. ><βα, = 0 D. ><βα, ≠ 06.设σ是欧氏空间V 的正交变换, 任意α,β∈V, 下列正确的是( ) A.<α,β > = <σ(α),β> B.<α,β> = <α,σ(β)> C.<α,β> = <σ(α), σ(β)> D. <α,β> = -<σ(α),σ(β)>7.如果n 元齐次线性方程组AX =0的系数矩阵的秩为r,那么它的解空间的 维数为( )A 、n-rB 、nC 、rD 、n+r 8.设21,W W 是向量空间V 的两个子空间,则下列说法正确的是( ) ①21W W +是向量空间V 的子空间 ②21W W +不是向量空间V 的子空间③21W W 是向量空间V 的子空间 ④21W W 不是向量空间V 的子空间 ⑤21W W 是向量空间V 的子空间 ⑥21W W 不一定是向量空间V 的子空间 A. ①③⑤ B. ②④⑥ C. ①③⑥ D. ②④⑤ 9.设σ是数域F 上向量空间V 的线性变换,W 是V 的子空间,如果对于W 中的任意向量ξ,有W ∈)(ξσ,则称W 是σ的 ( )A.非平凡子空间B.核子空间C.不变子空间D.零子空间10.欧氏空间的度量矩阵一定是( )A.正交矩阵B.上三角矩阵C. 下三角矩阵D. 正定矩阵 二、填空题(共10小题,每小题3分,共30分。
一.填空题(4分*7题=28分)1.设函数⎩⎨⎧>+≤=1,1,)(2x b ax x x x f 在1=x 处可导,则a = , b = . 答案: a =2 ; b =-1 . 2.设函数y =y (x )由xy =e x +y 确定,则dy = .答案: dy x xe e y y x y x d --=++或者dy x x xy xy y d --= 3.⎰10ln xdx = . 答案:-1 . 4.函数f (x )=xe x 的n 阶麦克劳林公式= .答案:132!)!1(1 !21++-+⋅⋅⋅+++=n x n x x n e x n x x x xe θ(0<θ<1), 或者余项为o ( x n ) . 5.求1+-=x xy 的n 阶导数)(n y = . 答案: n n x n n y )1(!)1()(+-=6.由y =x 3, x =2, y =0所围成的图形,绕y 轴旋转所得旋转体的体积= . 答案:π564. 7.向量a =(2,2,2),b =(1,2,4)构成的平行四边形的面积= . 答案: 214二.选择题(4分*3题=12分) 1.设函数⎪⎩⎪⎨⎧≤<-+>=-,01),1ln(,0,)(11x x x e x f x 则x =0是f (x )的( ). A.可去间断点; B.跳跃间断点; C.无穷间断点; D.振荡间断点.答案: B.跳跃间断点.2.设⎪⎩⎪⎨⎧=≠=0,00,1sin )(2x x x x x f ,则)(x f 在0=x 处( ). A 连续,不可导 ; B 不连续,可导; C 连续且可导; D 不连续,不可导 答案: C 连续且可导.3.星形线x =acos 3t , y =asin 3t 所围成图形的面积为( ). A.⎰'2033)cos (sin 2πdt t a t a ; B.⎰'0233)cos (sin 2πdt t a t a ; C.⎰'2033)cos (sin 4πdt t a t a ; D.⎰'0233)cos (sin4πdt t a t a答案: D.三.计算下列各题1.(6分)⎪⎪⎭⎫ ⎝⎛-+→x x x 1)1ln(1lim 0x x x x x ln )1ln(lim 0+-=→ 20)1ln(lim x x x x +-=→ xx x 2111lim 0+-=→ 21)1(21lim 0=+=→x x . 2.(6分) 21)(cos lim x x x → 答案:原式1co s0lim x x x e -→=212lim 220--==→e e x x x3.(7分)设22,t t y te x t+==,求022|=t dx y d . 答案:2220=++==t t t te e t dx dy ,2)()2)(22()(20222-=+++-+==t t t t t t t te e te e t te e dx y d 4.(7分)确定函数f (x )=(x -1)(x +1)3的单调区间和极值.答案:y '=(x +1)3+3(x -1)(x +1)22)1)(21(4+-=x x . 当21<x 时, y '<0; 函数在]21 ,(-∞内单调减少, 当21>x 时, y '>0, 函数在) ,21[∞+内单调增加. f (1/2)=-27/16极小值,无极大值.四.(7分)求与两平面 x -4z =3和2x -y -5z =1的交线平行且过点(-3, 2, 5)的直线的方程. 解 平面x -4z =3和2x -y -5z =1的交线的方向向量就是所求直线的方向向量s ,)34(512 401 )52()4(k j i k j i k j i k i s ++-=---=--⨯-=, 所求直线的方程为 153243-=-=+z y x . 五.计算下列各题1.(7分)⎰+221x x dx解答:设t x tan =原式=⎰t t tdtsec tan sec 22⎰=t tdt2sin cosC t +-=sin 1C x x ++-=212.(6分)⎰10arctan xdx x答案:原式=⎰=102arctan 21xdxx d x x x x ⎰+⋅-=10221021121arctan 21x d x ⎰+--=10)111(218π10)arctan (218x x --=π.214)41(218-=--=πππ六.(7分)求抛物线y =1-x 2在(0,1)内的一条切线,使它与两坐标轴和抛物线所围图形的面积最小.解: 设抛物线切点为)1,(2x x M -,则该点处的切线方程为 )(2)1(2x X x x Y --=--它与x,y 轴的交点分别为,)0,(212x xA +)1,0(2+xB 所指面积S(x)=x x 2)1(2122+⎰--102d )1(x x 324)1(22-=+x x=')(x S )13()1(22412-⋅+x x x ,,0)(='x S 令得[0,1]上的唯一驻点33=x 0)(,33<'<x S x , 0)(,33>'>x S x ,因此是在[0,1]上唯一极小点.且为最小点. 故所求切线为34332+-=x y .七.(7分)设)(x f 具有连续的导数,dt t f t x x F x )()()(022⎰'-=,当0→x 时, )(x F '与2x 是等价无穷小,求).0(f '解答:⎰⎰⎰'-'='-=x x xdt t f t dt t f x dt t f t x x F 0002222)()()()()( ⎰⎰'='-'+'='x xdt t f x x f x x f x dt t f x x F 0022)(2)()()(2)( 000)(2lim )(lim x dt t f x x x F x x x ⎰'='→→ )0(2)(lim 2)(lim 20"00"00f x f xdt t f x x x '='='=→→⎰ 当0→x 时,2)(x x F ~', 21)0(,1)0(2='='∴f f .。
x ⎩⎰《高等数学(一)》第一学期期末考试试卷本期末试卷满分为80分,占课程总成绩的80,平时成绩占课程总成绩的20。
答题要求:1.请将所有答案统一写在答题纸上,不按要求答题的,责任考生自负。
2.答题纸与试卷一同交回,否则酌情扣分。
试题符号说明:y (n )表示y 的n 阶导数,α~β表示α与β是等价无穷小量。
一.填空题:(满分14分,共7小题,2分/题)1.若f (t )=lim t ⎛1+1⎫2tx⎪,则f '(t )=;x →∞⎝x ⎭2.d ⎰d ⎰f (x )dx =;3.limx →0⎰sin tdt x 2= ;4.设函数y =12x +3,则y (n )(0)=;⎧⎪x =5.设f (t )-π其中f 可导,且f '(0)≠0,则dy=;⎨⎪y =f (x )f (e 3t -1)sin x dx πxf '(x )dx t =06.设有一个原函数,则⎰π=;27.+∞x 4e -x dx =;二.单项选择题:(满分16分,共8小题,2分/题)1.极限lim x →011的结果是()2+3x(A)不存在(B)1/2(C)1/5(D)01=⎛1⎫2.当x →∞时,若ax 2+bx +c o ⎪,则a,b,c 之值一定为()x +1⎝⎭x1-x 2⎨0ππcos xdx <2cos xdx =2(A)(C)a =0,b =1,c =1;(B)a ≠0,b,c 为任意常数;(D)⎧f (x )a =0,b =1,c 为任意常数;a,b,c 均为任意常数;3.设函数F (x )=⎪⎪⎩xf (0)x ≠0其中f (x )在x =0处可导,x =0f '(x )≠0,f (0)=0,则x=0是F (x )的()(A)连续点(B)第一类间断点(C)第二类间断点(D)连续点或间断点不能由此确定4.曲线y =1xex2()(A)仅有水平渐近线;(B)仅有铅直渐近线;(C)既有铅直又有水平渐近线;(D)既有铅直又有斜渐近线;5.设函数f (x )在(-∞,+∞)内连续,其导函数的图形如图所示:则f (x )有()(A)一个极小值点和两个极大值点;(B)两个极小值点和一个极大值点;(C)两个极小值点和两个极大值点;(D)三个极小值点和一个极大值点;6.根据定积分的几何意义,下列各式中正确的是()π⎰-⎰π3⎰-π⎰π222(C)⎰sin xdx =0(D)⎰sin xdx =07.设⎰f (x )dx =sin x +C ,则⎰f (arcsin x )dx =()(A)arcsin x +C (C)1(arcsin x )2+C2(B)sin +C(D)x +C1-x2π2π(A)2cos xdx(B)cos xdx⎰⎰2⎨8.当()时,广义积分e -kx dx 收敛-∞(A)k >0(B)k ≥0(C)k <0(D)k ≤0三.计算题(满分24分,共4小题,6分/题)1.设y =arctane x-ln,求x =1⎛1cos 2x ⎫2.求lim 2-2⎪3.求x →0⎝sin x x ⎭2x +5dxx +2x -34.设f (x )=1+1+x 2⎰1f (x )dx ,求⎰1f (x )dx四.(满分11分)⎧x n sin 1x ≠0n 在什么条件下函数f (x )=⎪⎪⎩x,x =0(1)在x =0处连续;(2)在x =0处可微;(3)在x =0处导函数连续;五.(满分10分)设曲线为y =e -x(x ≥0)(1)把曲线y =e -x 、x 轴、y 轴和直线x =ξ(ξ>0)所围成平面图形绕x 轴旋转一周得一旋转体,求此旋转体的体积V (ξ),并求a 满足V (a )=1lim V (ξ)2ξ→+∞(2)在此曲线上找一点,使过该点的切线与两个坐标轴所夹平面图形的面积最大,并求出该面积e 2x e 2x +1dydx1-x 2六.证明题(满分5分)设函数f(x)在[a,b]上连续,在(a,b)内可导,又b>a>0,证明,在(a,b)内存在ξ,η使得f'(ξ)=2ηf'(η) +b a22007-2008学年第一学期《高等数学(一)》(309010034)期末考试试题(A 卷)参考答案及评分标准考试对象:2007级经济学工商管理类专业及其他专业本期末试卷满分为80分,占课程总成绩的80,平时成绩占课程总成绩的20。
高代一期末考试试题及答案一、选择题1. 设A和B都是n阶方阵,下列哪个条件可以推断出A与B一定可交换?A. AB = BAB. AB = 0C. det(A) = 0D. AB = I (单位矩阵)正确答案:A2. 设A是n阶方阵且可逆,则A^-1的列向量组是否一定线性无关?A. 是B. 否正确答案:A3. 设A是n阶对称矩阵,则A肯定满足的性质是:A. A的特征值为实数B. A的特征向量构成一组正交基C. A一定可以对角化D. A的秩等于n正确答案:A4. 设A是n阶可逆矩阵,下列哪个等式成立?A. (A^-1)^T = AB. (A^T)^-1 = AC. (A^-1)^T = (A^T)^-1D. (A^T)^-1 = (A^-1)^T正确答案:D5. 设A是n阶方阵,则A可能是可逆矩阵的充分必要条件是:A. 行列式det(A)不等于0B. 矩阵A的秩等于nC. 矩阵A有n个互不相同的特征值D. 矩阵A的伴随矩阵可逆正确答案:A二、计算题(请写出详细过程并附上最后计算结果)1. 计算矩阵相乘:A = [1 2 3; 4 5 6],B = [1 -1; 2 -2; 3 -3]解答:A *B = [1*1 + 2*2 + 3*3 1*(-1) + 2*(-2) + 3*(-3);4*1 + 5*2 + 6*3 4*(-1) + 5*(-2) + 6*(-3)]= [14 -14;32 -32]2. 计算矩阵的逆:设A = [1 2; 3 4]解答:计算A的行列式:det(A) = 1*4 - 2*3 = -2计算伴随矩阵:adj(A) = [4 -2;-3 1]计算A的逆:A^-1 = (1/det(A)) * adj(A) = (1/-2) * [4 -2;-3 1]= [-2 1;1.5 -0.5]三、证明题证明:若A是n阶对称矩阵,则A一定可以对角化。
解答:要证明A一定可以对角化,需要证明存在一个可逆矩阵P,使得P^(-1) * A * P = D,其中D是一个对角矩阵。