四边形复习2
- 格式:doc
- 大小:53.50 KB
- 文档页数:2
四边形专题复习课2:判定条件已知四边形ABCD,有以下四个条件:①AB∥CD;②AB=CD;③BC∥AD;④BC=AD.从这四个条件中任选两个,能使四边形ABCD成为平行四边形的选法种数共有种如图,已知四边形ABCD是平行四边形,下列结论中不正确的是()A.当AB=BC时,它是菱形 B.当AC⊥BD时,它是菱形C.当∠ABC=90°时,它是矩形 D.当AC=BD时,它是正方形3、在△ABC中,点D、E、F分别在边AB、BC、CA上,且DE∥CA,DF∥BA.下列四种说法:①四边形AEDF是平行四边形;②如果∠BAC=90°,那么四边形AEDF是矩形;③如果AD平分∠BAC,那么四边形AEDF是菱形;④如果AD⊥BC且AB=AC,那么四边形AEDF是菱形.其中,正确的有(只填写序号)在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.(1)线段BD与线段CD有什么数量关系,并说明理由;(2)当△ABC满足什么条件时,四边形AFBD是矩形?并说明理由;(3)当△ABC满足什么条件时,四边形AFBD是正方形?并说明理由.如图,以△ABC三边向外分别作等边△ACD、△ABE、△BCF,判断四边形ADFE的形状;(2)在(1)中,是否存在平行四边形ADFE?若存在,写出△ABC应满足的条件;若不存在,请说明理由;(3)△ABC满足什么条件时,四边形ADFE是矩形?(4)△ABC满足什么条件时,四边形ADFE是菱形?(5)△ABC满足什么条件时,四边形ADFE是正方形?如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC,设MN交∠BCA 的平分线于点E,交∠BCA的外角平分线于点F.(1)探究:线段OE与OF的数量关系并加以证明;(2)当点O在边AC上运动时,四边形BCFE会是菱形吗?若是,请证明;若不是,则说明理由;(3)当点O运动到何处,且△ABC满足什么条件时,四边形AECF是正方形?观察探究,完成证明和填空.如图,四边形ABCD中,点E、F、G、H分别是边AB、BC、CD、DA的中点,顺次连接E、F、G、H,得到的四边形EFGH叫中点四边形.(1)求证:四边形EFGH是平行四边形;(2)如图,当四边形ABCD变成等腰梯形(AC=BD)时,它的中点四边形是菱形,请你探究并填空:例3、在□ABCD中,AC、BD交于点O,过点O作直线EF、GH,分别交平行四边形的四条边于E、G、F、H四点,连接EG、GF、FH、HE.(1)如图①,试判断四边形EGFH的形状,并说明理由;(2)如图②,当EF⊥GH时,四边形EGFH的形状是;(3)如图③,在(2)的条件下,若AC=BD,四边形EGFH的形状是;(4)如图④,在(3)的条件下,若AC⊥BD,试判断四边形EGFH的形状,并说明理由.中点四边形:顺次连接 A 四边中点所得的四边形是 BA:任意四边形; B:; A: B:矩形A:平行四边形; B:; A: B:菱形A:矩形; B:; A: B:正方形A:菱形; B:;A:正方形; B:;1、如图,在平行四边形ABCD中,E为BC的中点,连接AE并延长交DC的延长线于点F.(1)求证:AB=CF;(2)当BC与AF满足什么数量关系时,四边形ABFC是矩形,并说明理由.2、如图.在△ABC中,D是AB的中点.E是CD的中点,过点C作CF∥AB交AE 的延长线于点F,连接BF.(1)求证:DB=CF;(2)如果AC=BC.试判断四边形BDCF的形状.并证明你的结论.3、如图,矩形ABCD的对角线相交于点O,DE∥CA,AE∥BD.(1)求证:四边形AODE是菱形;(2)将题设中“矩形ABCD”这一条件改为“菱形ABCD”,其余条件不变,则四边形AODE是4、如图,已知菱形ABCD,AB=AC,E、F分别是BC、AD的中点,连接AE、CF.(1)证明:四边形AECF是矩形;(2)若AB=8,求菱形的面积.5、如图.矩形ABCD的对角线相交于点O.DE∥AC,CE∥BD.(1)求证:四边形OCED是菱形;(2)若∠ACB=30°,菱形OCED的而积为86、如图,已知E、F分别是▱ABCD的边BC、AD上的点,且BE=DF.(1)求证:四边形AECF是平行四边形;(2)若BC=10,∠BAC=90°,且四边形AECF是菱形,求BE的长.7、如图,已知平行四边形ABCD,过A点作AM⊥BC于M,交BD于E,过C点作CN⊥AD于N,交BD于F,连接AF、CE.(1)求证:四边形AECF为平行四边形;(2)当AECF为菱形,M点为BC的中点时,求AB:AE的值.8、如图,点O是线段AB上的一点,OA=OC,OD平分∠AOC交AC于点D,OF平分∠COB,CF⊥OF于点F.(1)求证:四边形CDOF是矩形;(2)当∠AOC多少度时,四边形CDOF是正方形?并说明理由.9、已知:如图,在矩形ABCD中,M,N分别是边AD、BC的中点,E,F分别是线段BM,CM的中点.(1)求证:△ABM≌△DCM;(2)判断四边形MENF是什么特殊四边形,并证明你的结论;(3)当AD:AB= 时,四边形MENF是正方形(只写结论,不需证明)10、将平行四边形纸片ABCD按如图方式折叠,使点C与A重合,点D落到D′处,折痕为EF.(1)求证:△ABE≌△AD′F;(2)连接CF,判断四边形AECF是什么特殊四边形?证明你的结论.11、已知:如图,在▱ABCD中,E、F分别为边AB、CD的中点,BD是对角线,AG ∥DB交CB的延长线于G.(1)求证:△ADE≌△CBF;(2)若四边形BEDF是菱形,则四边形AGBD是什么特殊四边形?并证明你的结论.13、在▱ABCD中,E、F分别是AB、CD的中点,连接AF、CE.(1)求证:△BEC≌△DFA;(2)连接AC,当CA=CB时,判断四边形AECF是什么特殊四边形?并证明你的结论.14、已知:如图,在正方形ABCD中,点E、F分别在BC和CD上,AE=AF.(1)求证:BE=DF;(2)连接AC交EF于点O,延长OC至点M,使OM=OA,连接EM,FM,判断四边形AEMF是什么特殊四边形?并证明你的结论15、已知:如图,在平行四边形ABCD中,AE是BC边上的高,将△ABE沿BC方向平移,使点E与点C重合,得△GFC.(1)求证:BE=DG;(2)若∠B=60°,当AB与BC满足什么数量关系时,四边形ABFG是菱形?证明你的结论.16、已知:如图,在正方形ABCD中,G是CD上一点,延长BC到E,使CE=CG,连接BG并延长交DE于F.(1)求证:△BCG≌△DCE;(2)将△DCE绕点D顺时针旋转90°得到△DAE′,判断四边形E′BGD是什么特殊四边形,并说明理由17、如图,在Rt△ABC中,∠ABC=90°,∠BAC=60°,D为AC的中点,以BD为折痕,将△BCD折叠,使得C点到达C1点的位置,连接AC1.求证:四边形ABDC1是菱形.18、如图,在四边形ABCD中,AB=BC,对角线BD平分∠ABC,P是BD上一点,过点P作PM⊥AD,PN⊥CD,垂足分别为M,N.(1)求证:∠ADB=∠CDB;(2)若∠ADC=90°,求证:四边形MPND是正方形.19、如图,在△ABC中,AB=BC=1,∠ABC=120°,将△ABC绕点B顺时针旋转30°得△A1BC1.A1B交AC于点E,A1C1分别交AC,BC于点D,F.(1)试判断四边形BC1DA 的形状,并说明理由;(2)求ED的长.。
2022年人教版中考数学一轮复习:四边形综合专项练习题21.如图,已知四边形ABCD是平行四边形,从①AB=AD,②AC=BD,③∠ABC=∠ADC中选择一个作为条件,补充后使四边形ABCD成为菱形,则其选择是(限填序号).2.如图1,平行四边形纸片ABCD的面积为120,AD=15.今沿两对角线将四边形ABCD剪成甲、乙.丙、丁四个三角形纸片.若将甲、丙合并(AD、CB重合)形成一个对称图形戊,如图2所示.则图形戊的两条对角线长度之和为.3.如图,菱形ABCD的两条对角线AC,BD交于点O,BE⊥AD于点E,若AC=8,BD=6,则BE的长为.4.如图,在▱ABCD中,∠A=70°,DB=DC,CE⊥BD于E,则∠BCE=.5.如图,在菱形ABCD中,AB=BD,点E、F分别在AB、AD上,且AE=DF,连接BF与DE交于点H,若CG=1,则S=.四边形BCDG6.如图,正方形瓷砖图案是四个全等且顶角为45°的等腰三角形.已知该瓷砖的面积是1m2,则中间小正方形的面积为m2.7.如图所示,在Rt△ABC外作等边△ADE,点E在AB边上,AC=5,∠ABC=30°,AD=3.将△ADE沿AB方向平移,得到△A′D′E′,连接BD′.给出下列结论:①AB=10;②四边形ADD′A′为平行四边形;③AB平分∠D′BC;④当平移的距离为4时,BD′=3.其中正确的是(填上所有正确结论的序号).8.如图,菱形ABCD的对角线AC,BD相交于点O,P为AB边上一动点(不与点A,B重合),PE⊥OA于点E,PF⊥OB于点F,若AB=4,∠BAD=60°,则EF的最小值为.9.如图,在正方形ABCD中,点E为BC边上一点,且CE=2BE,点F为对角线BD上一点,且BF=2DF,连接AE交BD于点G,过点F作FH⊥AE于点H,若HG=2cm,则正方形ABCD 的边长为cm.10.把图1中的菱形沿对角线分成四个全等的直角三角形,将这四个直角三角形分别拼成如图2,图3所示的正方形,则图1中菱形的面积为.11.如图,在正方形ABCD内有一点P,若AP=4,BP=7,DP=9,则∠APB的度数为.12.如图是两个边长分别为2a,a的正方形,则△ABC的面积是.13.如图,点P是正方形ABCD内一点,连接AP、BP、DP,若AP=1,PD=,∠APB=135°,则正方形ABCD的面积为.14.如图,正三角形ABC与正方形CDEF的顶点B,C,D三点共线,动点P沿着CA由C向A 运动.连接EP,若AC=10,CF=8.则EP的最小值是.15.如图,正方形ABCD中,H为CD上一动点(不含C、D),连接AH交BD于G,过点G作GE⊥AH交BC于E,过E作EF⊥BD于F,连接AE,EH.下列结论:①AG=EG;②∠EAH=45°;③BD=2GF;④GE平分∠FEC.正确的是(填序号).16.如图,平面内三点A、B、C,AB=4,AC=3,以BC为对角线作正方形BDCE,连接AD,则AD的最大值是.17.如图,在正方形ABCD中,点E在对角线AC上,EF⊥AB于点F,EG⊥BC于点G,连接FG,若AB=8,则FG的最小值为.18.如图,正方形ABCD的边长为2,点E是BC的中点,连接AE与对角线BD交于点G,连接CG并延长,交AB于点F,连接DE交CF于点H,连接AH.以下结论:①CF⊥DE;②=;③GH=;④AD=AH,其中正确结论的序号是.19.如图,矩形ABCD中,对角线AC、BD交于点O,AE⊥BD于E,若∠DAE=3∠BAE.则的值为.20.将矩形ABCD按如图所示的方式折叠,BE、EG、FG为折痕,若顶点A、C、D都落在点O 处,且点B、O、G在同一条直线上,同时点E、O、F在另一条直线上.(1)的值为.(2)若AD=4,则四边形BEGF的面积为.参考答案1.解:①∵四边形ABCD是平行四边形,AB=AD,∴平行四边形ABCD是菱形;②∵四边形ABCD是平行四边形,AC=BD,∴平行四边形ABCD是矩形;③∵四边形ABCD是平行四边形,∴∠ABC=∠ADC,因此∠ABC=∠ADC时,四边形ABCD还是平行四边形;故答案为:①.2.解:如图,连接AD、EF,则可得对角线EF⊥AD,且EF与平行四边形的高相等.∵平行四边形纸片ABCD的面积为120,AD=1520,∴BC=AD=15,EF×AD=×120,∴EF=8,又BC=15,∴则图形戊中的四边形两对角线之和为20+3=23,故答案为23.3.解:∵四边形ABCD是菱形,∴AO=CO=4,BO=DO=3,AC⊥BD,∴AD===5,=AD×BE=×AC×BD,∵S菱形ABCD∴BE=,故答案为:.4.解:∵四边形ABCD是平行四边形,∴∠BCD=∠A=70°,∵DB=DC,∴∠DBC=∠BCD=70°,∵CE⊥BD,∴∠CEB=90°,∴∠BCE=20°.故答案为:20°.5.解:过点C作CM⊥GB于M,CN⊥GD,交GD的延长线于N.∵四边形ABCD为菱形,∴AB=AD=CD=BC,∵AB=BD,∴AB=BD=AD=CD=BC,∴△ABD为等边三角形,△BCD是等边三角形,∴∠A=∠BDF=60°,∠ADC=60°,在△ADE和△DBF中,,∴△ADE≌△DBF(SAS),∴∠ADE=∠DBF,∵∠FBC =60°+∠DBF ,∠NDC =180°﹣(120°﹣∠ADE )=60°+∠ADE ,∴∠NDC =∠FBC ,在△CDN 和△CBM 中,,∴△CDN ≌△CBM (AAS ),∴CM =CN ,在Rt △CBM 与Rt △CDN 中,,∴Rt △CBM ≌Rt △CDN (HL ),∴S 四边形BCDG =S 四边形CMGN .S 四边形CMGN =2S △CMG ,∵∠CGM =60°,∴GM =CG =,CM =CG =,∴S 四边形BCDG =S 四边形CMGN =2S △CMG =2×××=, 故答案为:.6.解:如图,作大正方形的对角线,作小正方形的对角线并延长交大正方形各边于中点, 设小正方形的边长为xm , 则大正方形的边长为x +x x =(1)xm , ∵瓷砖的面积是1m 2,∴大正方形的边长为1m ,即(1)x =1, 解得x =﹣1, ∴中间小正方形的面积为()2=3﹣2, 故答案为:3﹣2.7.解:∵∠ACB=90°,AC=5,∠ABC=30°,∴AB=2AC=10,故①正确;由平移的性质得:A'D'=AD,A'D'∥AD,∴四边形ADD′A′为平行四边形,故②正确;当平移的距离为4时,EE'=4,∴BE'=AB﹣AE﹣EE'=10﹣3﹣4=3,由平移的性质得:∠A'D'E'=∠A'E'D'=∠AED=60°,A'D'=D'E'=DE=AD=3,∴BE'=D'E',∴∠E'BD'=∠E'D'B=∠A'E'D'=30°,∴∠A'D'B=60°+30°=90°,∴BD'=A'D'=3,故④正确;由④得:当平移的距离为4时,∠E'BD'=∠ABC=30°,故③错误;故答案为:①②④.8.解:连接OP,∵四边形ABCD是菱形,∴AC⊥BD,∠CAB=DAB=30°,∵PE⊥OA于点E,PF⊥OB于点F,∴∠EOF=∠OEP=∠OFP=90°,∴四边形OEPF是矩形,∴EF=OP,∵当OP取最小值时,EF的值最小,∴当OP⊥AB时,OP最小,∵AB=4,∴OB=AB=2,OA=AB=2,∴S=OA•OB=AB•OP,△ABO∴OP==,∴EF的最小值为,故答案为:.9.解:如图,过F作FI⊥BC于I,连接FE,FA,∴FI∥CD,∵CE=2BE,BF=2DF,∴设BE=EI=IC=a,CE=FI=2a,AB=3a,∴则FE=FC=FA=a,∴H为AE的中点,∴AH=HE=AE=a,∴AG=AH+GH=a+2,∵四边形ABCD是正方形,∴BE∥AD,∴==,∴GE=AG=(a+2),∵GE=HE﹣GH=a﹣2,∴(a+2)=a﹣2,解得,a=,∴AB=3a=.故答案为:.10.解:设图1中分成的直角三角形的长直角边为a,短直角边为b,,得,∴图1中菱形的面积为:×4=48,故答案为48.11.解:∵四边形ABCD为正方形,∴∠ABC=90°,BA=BC,∴△BAP绕点A逆时针旋转90°可得△ADE,连接PE,由旋转的性质得,ED=BP=7,AE=AP=4,∠PBE=90°,∠AED=∠APB,∴△APE为等腰直角三角形,∴PE=AP=4,∠AEP=45°,在△PED中,∵PD=9,ED=7,PE=4,∴DE2+PE2=DP2,∴△PED为直角三角形,∠PED=90°,∴∠AED=90°+45°=135°,∴∠APB=135°,故答案为:135°.12.解:∵两个正方形的边长分别为2a,a,∴△ABC的的高为:2a+a,底边为:BC=a,∴△ABC的面积是:(2a+a)•a=a2.故答案为:a2.13.解:如图,将△APB绕点A逆时针旋转90°得到△AHD,连接PH,过点A作AE⊥DH交DH的延长线于E,∴△APB≌△AHD,∠PAH=90°,∴PB=DH,AP=AH=1,∠APB=∠AHD=135°,∴PH=AP=,∠APH=∠AHP=45°,∴∠PHD=90°,∴DH===2,∵∠AHD=135°,∴∠AHE=45°,∵AE⊥DH,∴∠AHE=∠HAE=45°,∴AE=EH,AH=AE,∴AE=EH=,∴DE=,∵AD2=AE2+DE2=13,∴正方形的面积为13,故答案为:13.14.解:如图,过点E作EP⊥AC,交FC于点G,当EP⊥AC时,EP取得最小值,∵正三角形ABC与正方形CDEF的顶点B,C,D三点共线,∴∠ACB=60°,∠FCD=90°,∴∠ACF=30°,∴∠CGP=∠EGF=60°,∵∠F=90°,∴∠FEG=30°,设PG=x,则CG=2x,∴FG=CF﹣CG=8﹣2x,∴EG=2FG=2(8﹣2x),∵FG=EF,∴8﹣2x=8×,∴x=4﹣,∴EP=EG+PG=2(8﹣2x)+x=16﹣3x=4+4.故答案为:4+4.15.解:连接GC,延长EG交AD于点L,∵四边形ABCD为正方形,∴AD∥CB,AD=CD,∠ADG=∠CDG=45°,∵DG=DG,∴△ADG≌△CDG(SAS),∴AG=GC,∠HCG=∠DAG,∵∠HCG+∠GCB=90°,∴∠DAG+∠GCB=90°,∵GE⊥AH,∴∠AGL=90°,∴∠ALG+∠LAG=90°,∵AD∥CB,∴∠ALG=∠GEC,∴∠GEC+∠LAG=90°,∴∠GEC=∠GCE,∴GE=GC,∴AG=EG,故①正确;∵GE⊥AH,∴∠AGE=90°,∵AG=EG,∴∠EAH=45°,故②正确;连接AC交BD于点O,则BD=2OA,∵∠AGF+∠FGE=∠GEF+∠EGF=90°,∴∠AGF=∠GEF,∵AG=GE,∠AOG=∠EFG=90°,∴△AOG≌△GFE(AAS),∴OA=GF,∵BD=2OA,∴BD=2GF,故③正确.过点G作MN⊥BC于点N,交AD于点M,交BC于点N,∵G是动点,∴GN的长度不确定,而FG=OA是定值,∴GE不一定平分∠FEC,故④错误;故答案为:①②③.16.解:将△ABD绕点D顺时针旋转90°,得△MCD,如图:由旋转不变性可得:CM=AB=4,AD=MD,且∠ADM=90°,∴△ADM是等腰直角三角形,∴AD=AM,AD最大,只需AM最大,而在△ACM中,AM<AC+CM,∴当且仅当A、C、M在一条直线上,即不能构成△ACM时,AM最大,且最大值为AC+CM =AC+AB=7,此时AD=AM=,故答案为:.17.解:连接BE,如图:∵四边形ABCD是正方形,∴∠ABC=90°,又EF⊥AB于点F,EG⊥BC,∴四边形FBGE是矩形,∴FG=BE,所以当BE最小时,FG就最小,根据垂线段最短,可知当BE⊥AC时,BE最小,当BE⊥AC时,在正方形ABCD中,△AEB是等腰直角三角形,在Rt△ABE中,根据勾股定理可得2BE2=AB2=64,解得BE=4,∴FG最小为4;故答案为4.18.解:∵四边形ABCD是边长为2的正方形,点E是BC的中点,∴AB=AD=BC=CD=2,BE=CE=,∠DCE=∠ABE=90°,∠ABD=∠CBD=45°,∴△ABE≌△DCE(SAS),∴∠CDE=∠BAE,DE=AE,∵AB=BC,∠ABG=∠CBG,BG=BG,∴△ABG≌△CBG(SAS),∴∠BAE=∠BCF,∴∠BCF=∠CDE,又∵∠CDE+∠CED=90°,∴∠BCF+∠CED=90°,∴∠CHE=90°,∴CF⊥DE,故①正确;∵CD=2,CE=,由勾股定理得,DE===5,=CD×CE=DE×CH,∵S△DCE∴CH=2,∵∠CHE=∠CBF,∠BCF=∠ECH,∴△ECH∽△FCB,∴=,∴=,∴CF=5,∴HF=CF﹣CH=3,∴=,故②正确;如图,过点A作AM⊥DE于点M,∵DC=2,CH=2,由勾股定理得,DH===4,∵∠CDH+∠ADM=90°,∠DAM+∠ADM=90°,∴∠CDH=∠DAM,又∵AD=CD,∠CHD=∠AMD=90°,∴△ADM≌△DCH(AAS),∴CH=DM=2,AM=DH=4,∴MH=DM=2,又∵AM⊥DH,∴AD=AH,故④正确;∵DE=5,DH=4,∴HE=1,∴ME=HE+MH=3,∵AM⊥DE,CF⊥DE,∴∠AME=∠GHE,∵∠HEG=∠MEA,∴△MEA∽△HEG,∴=,∴=,∴HG=,故③错误.综上,正确的有:①②④.故答案为:①②④.19.解:∵四边形ABCD是矩形,∴∠BAD=90°,OA=AC,OB=BD,AC=BD,∴OA=OB,∴∠OAB=∠OBA,∵∠DAE=3∠BAE,∴∠BAE=×90°=22.5°,∵AE⊥BD,∴∠OAB=∠OBA=90°﹣22.5°=67.5°,∴∠OAE=67.5°﹣22.5°=45°,∴△AOE是等腰直角三角形,∴OA=OE,设OE=a,则OB=OA=a,∴BE=OB﹣OE=(﹣1)a,BD=2OB=2a,∴DE=BD﹣BE=2a﹣(﹣1)a=(+1)a,∴==,故答案为:.20.解:(1)由折叠可得,AE=OE=DE,CG=OG=DG,∴E,G分别为AD,CD的中点,设CD=2a,AD=2b,则AB=OB=2a,DG=OG=CG=a,BG=3a,BC=AD=2b,∵∠C=90°,在Rt△BCG中,CG2+BC2=BG2,∴a2+(2b)2=(3a)2,∴b=a,∴===,由折叠可得:∠ABE=∠EBG,∠AEB=∠BEO,∠DEG=∠GEO,∵∠AEB=∠BEO+∠DEG=∠GEO=180°,∴∠BEG=90°,∵∠A=∠BEG=90°,∠ABE=∠EBG,∴△ABE∽△EBG,∴==,故答案为:;(2)∵AD=BC=2b=4,∴b=2,a=2,∴AB=OB=4,CG=2,AE=OE=2,∴BG=6,∵∠OBF =∠CBG ,由折叠可得∠BOF =∠BCG =90°, ∴△BOF ∽△BCG , ∴=, 即=,∴OF =,∴S 四边形EBFG =S △BEG +S △BFG =×6×2+×6×=9. 故答案为:9.。
方法技巧训练(二) 几何中与中点有关的计算与证明方法指导1 有关中点的常见考法 (1)直角三角形斜边上的中线如图,在Rt △ABC 中,点D 是斜边AB 的中点,则BD =12AB,AD =CD =DB.反过来,在△ABC 中,点D 在AB 边上,若AD=BD =CD =12AB,则有∠ACB =90°.解题通法:直角+中点⇒直角三角斜边上的中线.(1)图 (2)图 (3)图(2)等腰三角形“三线合一”如图,在△ABC 中,若AB =AC,通常取底边BC 的中点D,则AD ⊥BC,且AD 平分∠BAC.解题通法:事实上,在△ABC 中:①AB =AC ;②AD 平分∠BAC ;③BD =CD ;④AD ⊥BC.对于以上四条语句,任意选择两个作为条件,就可以推出另两条结论,即“知二得二”.(3)线段垂直平分线如图,直线l 是线段BC 的垂直平分线,则可以在直线l 上任意取一点A,得到AB =AC,即△ABC 是等腰三角形. 解题通法:遇到垂直平分线⇒线段相等⇒等腰三角形. (4)倍长中线在△ABC 中,M 为BC 的中点.①如图1,连接AM 并延长至点E,使得AM =ME,连接CE,则△ABM ≌△ECM.②如图2,点D 在AB 边上,连接DM 并延长至点E,使得ME =DM,连接CE,则△DMB ≌△EMC.解题通法:遇到三角形一边上的中点,常常倍长中线,利用“8”字形全等将题中条件集中,以达到解题的目的.图1 图2(5)构造三角形的中位线在△ABC 中,D 为AB 边的中点.①如图1,取AC 边上的中点E,连接DE,则DE ∥BC,且DE =12BC.②如图2,延长BC 至点F,使得CF =BC,连接CD,AF,则DC ∥AF,且DC =12AF.解题通法:三角形的中位线从位置关系和数量关系两个方面将图形中分散的线段关系集中起来,通常需要再找一个中点来构造中位线,或倍长某段线段构造中位线.拓展:如果已知中点的边不在一个三角形中,则需先添加辅助线构造中点,然后构造三角形的中位线解题.如在四边形ABCD 中,点E,H 分别为AB,CD 边的中点,则先连接AC,然后取AC 边的中点F,连接EF,FH,则EF 为△ABC 的中位线,FH 为△ACD 的中位线.图1 图2(6)中点四边形如图,在四边形ABCD中,点E,F,G,H分别是四边形的边AB,BC,CD,AD的中点.结论:①连接EF,FG,GH,EH,则中点四边形EFGH是平行四边形.②若对角线AC和BD相等,则中点四边形EFGH是菱形.③若对角线AC与BD互相垂直,则中点四边形EFGH是矩形.④若对角线AC与BD互相垂直且相等,则中点四边形EFGH是正方形.方法指导2中考数学中涉及“一半”的相关内容①直角三角形斜边中线等于斜边的一半;②30°角所对的直角边等于斜边的一半;③三角形的中位线平行于第三边,且等于第三边的一半;④圆周角的度数等于它所对弧圆心角度数的一半.题组11.如图,在△ABC中,E为BC边的中点,CD⊥AB,AB=2,AC=1,DE=32,则∠CDE+∠ACD=(C)A.60°B.75°C.90°D.105°2.如图,在△ABC中,D是BC上一点,AB=AD,E,F分别是AC,BD的中点,EF=2,则AC的长是(B) A.3 B.4 C.5 D.63.如图,在四边形ABCD中,∠DAB=90°,∠DCB=90°,E,F分别是BD,AC的中点,AC=6,BD=10,则EF的长为(B) A.3 B.4 C.5 D.74.如图,在钝角△ABC中,已知∠A为钝角,边AB,AC的垂直平分线分别交BC于点D,E.若BD2+CE2=DE2,则∠A的度数为135°.5.(青岛)如图,已知正方形ABCD的边长为5,点E,F分别在AD,DC上,AE=DF=2,BE与AF相交于点G,点H为BF的中点,连接GH,则GH的长为342.题组26.如图,在△ABC 中,两条中线BE,CD 相交于点O,则S △DOE ∶S △DCE =(B)A .1∶4B .1∶3C .1∶2D .2∶37.(陕西)如图,在菱形ABCD 中,点E,F,G,H 分别是边AB,BC,CD 和DA 的中点,连接EF,FG,GH 和HE.若EH =2EF,则下列结论正确的是(D)A .AB =2EF B .AB =2EFC .AB =3EFD .AB =5EF8.(苏州)如图,在△ABC 中,延长BC 至D,使得CD =12BC,过AC 中点E 作EF ∥CD(点F 位于点E 右侧),且EF =2CD,连接DF.若AB =8,则DF 的长为(B)A .3B .4C .2 3D .3 29.如图,在△ABC 中,AB =10,AC =6,则BC 边上的中线AD 的取值范围是2<AD <8.10.(武汉)如图,在△ABC 中,∠ACB =60°,AC =1,D 是边AB 的中点,E 是边BC 上一点.若DE 平分△ABC 的周长,则DE 的长是32.11.(1)如图1,在四边形ABCD 中,F,E 分别是BC,AD 的中点,连接FE 并延长,分别与BA,CD 的延长线交于点M,N,已知∠BME =∠CNE,求证:AB =CD ;(提示:取BD 的中点H,连接FH,HE 作辅助线)(2)如图2,在△ABC 中,点O 是BC 边的中点,D 是AC 边上一点,E 是AD 的中点,直线OE 交BA 的延长线于点G.若AB =DC =5,∠OEC =60°,求OE 的长度.图1 图2解:(1)证明:连接BD,取DB 的中点H,连接EH,FH. ∵F,E 分别是BC,AD 的中点, ∴EH ∥AB,EH =12AB,FH ∥CD,FH =12CD.∴∠BME =∠HEF,∠CNF =∠HFE.∵∠BME =∠CNE, ∴∠HEF =∠HFE.∴HE =HF.∴AB =CD.(2)连接BD,取DB 的中点H,连接EH,OH. ∵O,E 分别是BC,AD 的中点,∴EH 平行且等于12AB,OH 平行且等于12CD.∵AB =CD,∴HO =HE.∴∠HEO =∠HOE =∠OEC. ∵∠OEC =60°,∴∠HEO =∠HOE =60°. ∴△OEH 是等边三角形. ∵AB =DC =5,∴OE =52.。
备战2021年九年级中考复习数学高分冲刺训练——几何综合:《四边形综合》(二)1.如图,矩形ABCD中,AB=6cm,AD=8cm,点P从点A出发,以每秒一个单位的速度沿A→B→C的方向运动;同时点Q从点B出发,以每秒2个单位的速度沿B→C→D的方向运动,当其中一点到达终点后两点都停止运动.设两点运动的时间为t秒.(1)当t=时,两点停止运动;(2)设△BPQ的面积面积为S(平方单位)①求S与t之间的函数关系式;②求t为何值时,△BPQ面积最大,最大面积是多少?2.共顶点的正方形ABCD与正方形AEFG中,AB=13,AE=5.(1)如图1,求证:DG=BE;(2)如图2,连结BF,以BF、BC为一组邻边作平行四边形BCHF.①连结BH,BG,求的值;②当四边形BCHF为菱形时,直接写出BH的长.3.如果将(1)中的条件“▱ABCD”改为“四边形ABCD的对角线AC⊥BD”(如图②).试探索:S1:S2与S4:S3之间的关系;(3)如果将(2)中的对角线AC⊥BD的条件去掉(如图③),试探索S1,S2,S3,S4之间的关系.4.如图1,在等腰直角△ABC和△DCE中,AC=BC,DC=EC,∠ACB=∠DCE=90°.(1)求证:△ACD≌△BCE;(2)如图2,将△DCE绕点C顺时针旋转n°(0<n<45),使点A、D、E在同一直线上,AF平分∠BAE交CE延长线与F,探究AB、DE、EF之间的数量关系;(3)如图3,在正方形ABCD中,CD=.若点P满足PD=1,且∠BPD=90°,请直接写出点A到BP的距离.5.如图,△ABC是一块铁皮余料.已知底边BC=160cm,高AD=120cm.在铁皮余料上截取一个矩形EFGH,使点H在AB上,点G在AC上,点E,F在BC上,AD交HG 于点M.(1)设HG=ycm,HE=xcm,试确定用x表示y的函数表达式.(2)当x为何值时,矩形EFGH的面积S最大?(3)以面积最大时的矩形EFGH为侧面,围成一个无底圆桶,怎样围,圆桶的体积较大?请说明理由,(接缝处忽略不计,结果可保留π)6.类比、转化、从特殊到一般等思想方法,在数学学习和研究中经常用到,请利用上述有关思想,解答下列问题.如图1,在▱ABCD中,E是BC的中点,AE与BD相交于点F.若△BEF的面积为2,求四边形CDFE的面积.【类比延伸】如图2,在▱ABCD中,E是BC的一点,且BE:BC=m:n(n>m>0),AE与BD相交于点F.求△ABF的面积与四边形CDFE的面积的比.(用含m、n的代数式表示)【拓展迁移】如图3,在▱ABCD中,E是BC的一点,且BE:BC=,点G是线段CD的中点,AE 与BD相交于点F.则△ABF的面积与四边形CGFE的面积的比等于.(直接写出答案)7.,四边形OBCD是矩形,O,B,D三点的坐标分别是(0,0),(b,0),(0,d),求点C 的坐标.(2)如图(2),四边形ABCD是菱形,C,D两点的坐标分别是(c,0),(0,d),点A,B在坐标轴上,求A,B两点的坐标.(3)如图(3),四边形OBCD是正方形,O,D两点的坐标分别是(0,0),(0,d),求B,C两点的坐标.8.如图,四边形ABCD是正方形,E是正方形ABCD内一点,F是正方形ABCD外一点,连结BE、CE、DE、BF、CF、EF.(1)若∠EDC=∠FBC,ED=FB,试判断△ECF的形状,并说明理由.(2)在(1)的条件下,当BE:CE=1:2,∠BEC=135°时,求BE:BF的值.(3)在(2)的条件下,若正方形ABCD的边长为(3+)cm,∠EDC=30°,求△BCF的面积.9.如图,矩形OABC在平面直角坐标系中,若OA、OC的长满足方程x2﹣(2+2)x+4=0的两根.(1)求B、C两点的坐标.(2)把△ABC沿AC对折,点B落在点B′处,线段AB′与x轴交于点D,求直线BB′的解析式.(3)在直线BB′上是否存在点P,使△ADP为直角三角形?若存在,请直接写出P点坐标;若不存在,请说明理由.10.四边形ABCD是正方形(提示:正方形四边相等,四个角都是90°)(1)如图1,若点G在BC边上时(不与点B、C重合),连接AG,作BF⊥AG于点F,DE⊥AG于点E,求证:△ABF≌△DAE;(2)直接写出(1)中,线段EF与AF、BF的等量关系是;(3)①如图2,若点G在CD边上时(不与点C、D重合),连接AG,作BF⊥AG于点F,DE⊥AG于点E,则图中全等三角形是,线段EF与AF、BF的等量关系是;②如图3,若点G在CD延长线上任意一点,连接AG,作BF⊥AG于点F,DE⊥AG于点E,线段EF与AF、BF的等量关系是;(4)若点G是BC延长线上任意一点,连接AG,作BF⊥AG于点F,DE⊥AG于点E,请画图、探究线段EF与AF、BF的等量关系.参考答案1.解:(1)∵四边形ABCD是矩形,∴AD=BC=8cm,AB=CD=6cm,∴BC+AD=14cm,∴t=14÷2=7,故答案为7.(2)①当0<t<4时,S=(6﹣t)×2t=﹣t2+6t.当4≤t<6时,S=(6﹣t)×8=﹣4t+24.当6<t≤7时,S=(t﹣6)(2t﹣8)=t2﹣10t+24.②当0<t<4时,S=(6﹣t)×2t=﹣t2+6t=﹣(t﹣3)2+9,∵﹣1<0,∴t=3时,△PBQ的面积最大,最小值为9.当4≤t<6时,S=(6﹣t)×8=﹣4t+24,∵﹣4<0,∴t=4时,△PBQ的面积最大,最大值为8,当6<t≤7时,S=(t﹣6)(2t﹣8)=t2﹣10t+24=(t﹣5)2﹣1,t=7时,△PBQ的面积最大,最大值为3,综上所述,t=3时,△PBQ的面积最大,最大值为9.2.(1)证明:∵四边形ABCD和四边形AEFG是正方形,∴AD=AB=CB,AG=AE,∠DAB=∠GCE=90°,∴∠DAB﹣∠GAF=∠GCE﹣∠GAF,即∠DAG=∠BAE,在△DAG和△BAE中,,∴△DAG≌△BAE(SAS),∴DG=BE;(2)解:①连接GH,延长HF交AB于N,设AB与EF的交点为M,如图2所示:∵四边形BCHF是平行四边形,∴HF∥BC,HF=BC=AB,∵BC⊥AB,∴HF⊥AB,∴∠HFG=∠FMB,又AG∥EF,∴∠GAB=∠FMB∴∠HFG=∠GAB,在△GAB和△GFH中,,∴△GAB≌△GFH(SAS),∴GH=GB,∠HGF=∠BGA,∴∠HGF﹣∠BGF=∠BGA﹣∠BGF,∴∠HGB=∠AGF=90°,∴△GHB为等腰直角三角形,∴BH=BG,∴=;②分两种情况:a、如图3所示:连接AF、EG交于点O,连接BE,∵四边形BCHF为菱形,∴CB=FB,∵AB=CB,∴AB=FB=13,∴点B在AF的垂直平分线上,∵四边形AEFG是正方形,∴AF=EG,OA=OF=OG=OE,AF⊥EG,AE=FE=AG=FG,∴点G、点E都在AF的垂直平分线上,∴点B、E、G在一条直线上,∴BG⊥AF,∵AE=5,∴AF=EG=AE=10,∴OA=OG=OE=5,∴OB===12,∴BG=OB+OG=12+5=17,由①得:BH=BG=17;b、如图4所示:连接AF、EG交于点O,连接BE,同上得:点B、E、G在一条直线上,OB=12,BG=OG+OB﹣OG=12﹣5=7,由①得:BH=BG=7;综上所述,BH的长为17或7.3.解:(1)∵四边形ABCD是平行四边形,∴OA=OC,∵△AOB,△BOC的边OA,OC上的高相同,∴S1=S2,同理S2=S3,S3=S4,S4=S1,∴S1=S2=S3=S4;(2)∵AC⊥BD,垂足为O,∴S1=OAOB,S2=OBOC,S3=OCOD,S4=ODOA,∴S1S3=S2S4,∴;(3)设点B到线段AC所在直线的距离为h1,点D到线段AC所在直线的距离为h2,∴S1=OAh1,S2=OCh1,S3=OCh2,S4=OAh2,∴S1S3=S2S4;4.(1)证明:如图1中,∵∠ACB=∠DCE=90°,∴∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE.(2)结论:AB﹣DE=EF,理由:如图2中,∵CD=CE,∠DCE=90°,∴∠CED=45°,DE=CE,∵CA=CB,∠ACB=90°,∴∠CAB=45°,AB=CA,∵∠CED=∠F+∠EAF,∴∠F=45°﹣∠EAF,∵∠CAF=∠CAB﹣∠F AB=45°﹣∠F AB,∵∠EAF=∠F AB,∴∠CAF=∠F,∴CA=CF,∵EF=CF﹣CE=CA﹣CE,∴EF=CA﹣CE=AB﹣DE.∴AB﹣DE=EF.(3)如图3中,以D为圆心1为半径作⊙D,过点B作⊙D的切线BP、BP′,连接BD,作AE⊥BP′于E,AF⊥BP于F.∵四边形ABCD是正方形,CD=BC=AB=AD=,∴BD=DC=2,∠ABC=90°,在Rt△PBD中,∵∠BPD=90°,BD=2,DP=1,∴∠PBD=30°,同理∠P′BD=30°,∴∠ABE=∠CBP=15°,在△ABE和△BAF中,,∴△ABE≌△BAF,∴∠ABE=∠OAB=15°,∴∠AOE=∠FOB=30°,∴AO=OB=2AE,设AE=a,则AO=OB=2a,EO=a,∴EB=AF=2a+a,∵AB2=AE2+BE2,∴2=a2+(2a+a)2,∴a=(负根已经舍弃),∴AE=,AF=BE=2a+a=.故答案为或.5.解:(1)∵四边形GHEF为矩形,∴GH∥FE,∴△AHG∽△ABC,∵AM和AD分别是△AHG和△ABC的高,∴,∴,∴y =﹣x +160;(2)∵S =xy ,∴S =﹣+160x =﹣(x 2﹣120x )=﹣(x 2﹣120x +3600﹣3600)=﹣(x ﹣60)2+4800.∴当x =60cm 时,Smax =4800cm 2;(3)围圆柱形铁桶有两种情况:当x =60cm 时,y =﹣×60+160=80cm .第一种情况:以矩形EFGH 的宽HE =60cm 作铁桶的高,长HG =80cm 作铁桶的底面周长.则底面半径R =cm ,铁桶体积V 1=π()260=(cm 3),第二种情况:以矩形EFGH 的长HG =80cm 作铁桶的高,宽HE =60cm 作铁桶的底面周长,则底面半径r =cm ,铁桶体积V 2=π()280=(cm 3).因为V 1>V 2.所以矩形EFGH 的宽HE =60cm 作铁桶的高,长HG =80cm 作铁桶的底面周长围成的圆柱形铁桶的体积较大.6.解:(1)∵点E 是平行四边形ABCD 中BC 边的中点,∴AD =BC =2BE ,BE ∥AD ,∴△BEF ∽△DAF ,∴=,∴=()2=, ∵△BEF 的面积为2,∴S △ABF =2S △BEF =4,S △ADF =4S △BEF =8,∴S △ABD =S △ABF +S △ADF =12,∴S 四边形DCEF =S △BCD ﹣S △BEF =S △ABD ﹣S △BEF =12﹣2=10;(2)【类比延伸】∵在▱ABCD 中,E 是BC 的一点,且BE :BC =m :n ,∴AD =BC ,BE ∥AD ,∴△BEF ∽△DAF ,∴=,∴=()2=,设△BEF 的面积为a ,∴S △ABF =S △BEF =,S △ADF =S △BEF =,∴S △ABD =S △ABF +S △ADF ==a ,∴S 四边形DCEF =S △BCD ﹣S △BEF =S △ABD ﹣S △BEF =a ﹣a =a , ;△ABF 的面积与四边形CGFE 的面积的比=:(a )=; (3)【拓展迁移】设△BEF 的面积为a ,∵由(2)得:m =2.n =3,∴△ABF 的面积=a ,四边形CDFE 的面积=a ,连接CF ,如图所示: ∵△ABF 的面积+△CDF 的面积=△ABD 的面积,∴△CDF 的面积=△ADF 的面积=a ,∵G 是CD 的中点,∴△DGF 的面积=△CDF 的面积=a ,∴四边形CGFE 的面积=a ﹣a =a ,∴△ABF 的面积与四边形CGFE 的面积的比=a :a =, 故答案为:.7.解:(1)如图1中,∵B(b,0),D(0,d),∴OB=b,OD=d,∵四边形OBCD是矩形,∴∠CDO=∠CBO=90°,CD=OB=b,BC=OD=d,∴C(b,d).(2)如图2中,∵四边形ABCD是菱形,∴OA=OC,OB=OD,∵C(c.0),D(0,d),∴OA=OC=c.OB=OD=d,∴A(﹣c,0),B(0,﹣d).(3)如图3中,∵四边形OBCD是正方形,∴OB=BC=CD=OD,∠CDO=∠CBO=90°,∵D(0,d),∴OD=d,∴OB=BC=CD=d,∴B(d,0),C(d,d).8.(1)证明:在正方形ABCD中,CD=CB,∠DCE+∠BE=∠BCD=90°,∵EC⊥CF,∴∠BCF+∠BCE=90°,∴∠BCF=∠DCE,在△BCF和△DCE中,∴△BCF≌△DCE(ASA),∴EC=FC,∴∠ECD=∠BCF,∵∠DCE+∠BCE=90°,∴∠ECF=90°,∴△ECF是等腰直角三角形;(2)解:∵BE:CE=1:2,∴设BE=a,CE=2a,∵△ECF是等腰直角三角形,∴EF=2a,∵∠BEC=135°,∠CEF=45°,∴∠BEF=90°,∴BF==3a,∴BE:BF=1:3;(3)解:如图所示:作FM⊥BC垂足为M,设BF=3b,FC=2b,∵∠EDC=30°,∴∠CBF=30°,在Rt△BFM中,∴MB=×3b=b,MF=b,∴MC==b,∴b+b=3,∴b=2,则FM=×2=3,∴△BCF的面积是:×BC×FM=×(3+)×3=+.9.解:(1)∵x2﹣(2+2)x+4=0,∴(x﹣2)(x﹣2)=0,解得:x1=2,x2=2,∴OA=2,OC=2∴B点坐标为:(2,2),C点坐标为(2,0).(2)∵△ABC≌△AB′C.∴AB=AB′=2,CB′=CB=2,∵A(0,2),C(2,0)∴设B′的坐标为(x,y),则,解得:B′的坐标为(,﹣1),由两点式解出BB′的解析式为y=x﹣4.(3)假如存在设P(a,a﹣4),D(,0),又A(0,2),∴AD2=()2+22=,PD2=(a﹣)2+(a﹣4)2,AP2=a2+(a﹣4﹣2)2=4a2﹣12a+36,①当∠ADP为直角时,AD2+PD2=AP2,解得a=,则P(,1);②当∠APD为直角时,AP2+PD2=AD2,此时无解;③当∠P AD为直角时,AD2+P A2=PD2,解得a=3,则P(3,5);综上可得,P为(3,5)或(,1).10.证明:(1)∵DE⊥AG,BF⊥AG,∴∠BF A=∠DEA=90°.∵∠BAF+∠ABF=90°,∠BAF+∠EAD=90°,∴∠EAD=∠FBA.在△ABF和△DAE中,,∴△ABF≌△DAE.(2)EF+BF=AF.理由:∵△ABF≌△DAE,∴AE=BF.∵AE+EF=AF,∴BF+EF=AF.(3)①由(1)可知:△ABF≌△DAE,∴AE=BF.∵AF+EF=AE,∴AF+EF=BF.②∵BF⊥AG,DE⊥AG,∴∠BF A=∠DEA=90°.∵∠BAF+∠ABF=90°,∠BAF+∠EAD=90°,∴∠EAD=∠FBA.在△ABF和△DAE中,,∴△ABF≌△DAE.∴FB=AE.∵EF=AE+AF,∴AF+BF=EF.(4)如图所示:∵BF⊥AG,DE⊥AG,∴∠BF A=∠DEA=90°.∵∠BAF+∠ABF=90°,∠BAF+∠EAD=90°,∴∠EAD=∠FBA.在△ABF和△DAE中,,∴△ABF≌△DAE.∴FB=AE.∵AE=EF+AF,∴AF+EF=BF.。
中心对称图形——平行四边形压轴题复习(二)1.如图,四边形ABCD是平行四边形,E、F分别为边AB、CD的中点,连接DE、DB、BF.(1)求证:∠DEB=∠BFD;(2)若∠ADB=90°,证明:四边形BFDE是菱形.2.如图,矩形ABCD中,AB=8,AD=6,点O是对角线BD的中点,过点O的直线分别交AB、CD边于点E、F.(1)求证:四边形DEBF是平行四边形;(2)当DE=DF时,求四边形DEBF的面积S四边形DEBF.3.如图1,在正方形ABCD中,点E在AD的延长线上,P是对角线BD上的一点,且点P位于AE的垂直平分线上,PE交CD于点F.(1)猜测PC和PE有什么大小及位置关系,并给出证明.(2)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系.并说明理由.4.如图,在Rt△ABC中,∠BAC=90°,AD是边BC上的中线,过点A作AE∥BC,过点D作DE∥AB,DE与AC,AE分别交于点O,E,连接EC.(1)求证:四边形ADCE是菱形;(2)若AB=AO,OD=1,则菱形ADCE的周长为.5.如图,四边形ABCD是平行四边形,AC,BD相交于点O,∠1=∠2.它是一个矩形吗?为什么?6.如图,在矩形ABCD中,F是CD的中点,连接AF交BC延长线于点E.求证:BC=EC.7.如图,四边形ABCD为矩形,连接对角线AC,分别作∠BAC、∠BCA、∠ACD、∠DAC的角平分线AE、CE、CF、AF.(1)当AB=BC时,求证:四边形AECF是菱形;(2)设AB=4,BC=3,分别作EM⊥AC于点M,FN⊥AC于点N,求MN的长;(3)分别作EG⊥BC于点G,FH⊥CD于点H,当GC=3,HC=4时,求矩形ABCD的面积.8.如图,矩形ABCD中,AB=6,BC=4,过对角线BD中点O的直线分别交AB,CD 边于点E,F.(1)求证:四边形BEDF是平行四边形;(2)当四边形BEDF是菱形时,求DF的长.9.已知P是正方形ABCD边BC上一点,连接AP,作PE⊥AP,且∠DCE=45°.若PE 和CE交于E点,连接AE交CD于F.(1)求证:EP=AP;(2)若正方形的边长为4,CF=3,求CE的长.10.已知在△ABC中,AD平分∠BAC,交BC于点D,点E在边AC上AB=AE,过点E 作EF∥BC,交AD于点F,连接BF.(1)如图1,求证:四边形BDEF是菱形;(2)如图2,当AB=BC时,在不添加辅助线的情况下,请直接写出图中度数等于∠BAD 的2倍的所有的角.11.如图,菱形ABCD的对角线AC,BD相交于点O,E是AD的中点,点F,G在AB 上,EF⊥AB,OG∥EF.(1)OE AE(填<、=、>);(2)求证:四边形OEFG是矩形;(3)若AD=10,EF=4,求OE和BG的长.12.已知,如图,在平行四边形ABCD中,BF平分∠ABC交AD于点F,AE⊥BF于点O,交BC于点E,连接EF.(1)求证:四边形ABEF是菱形;(2)若AE=12,BF=16,CE=5,求四边形ABCD的面积.13.如图,菱形ABCD中,E为AB边上的一点,F为BC延长线上的一点,且∠BED+∠F =180°求证:DE=DF.14.矩形ABCD中,AB=3,BC=4.点E,F在对角线AC上,点M,N分别在边AD,BC上.(1)如图1,若AE=CF=1,M,N分别是AD,BC的中点.求证:四边形EMFN为矩形.(2)如图2,若AE=CF=0.5,AM=CN=x(0<x<2),且四边形EMFN为矩形,求x的值.15.如图,在平行四边形ABCD中,线段AC的垂直平分线交AC于O,分别交BC,AD 于E,F,连接AE,CF.(1)证明:四边形AECF是菱形;(2)在(1)的条件下,如果AC⊥AB,∠B=30°,AE=2,求四边形AECF的面积.参考答案1.(1)证明:∵四边形ABCD是平行四边形,∴DC=AB且DC∥AB,∵E,F分别为边AB、CD上的中点,∴DF=DC,BE=AB,且DF∥BE,∴DF=BE且DF∥BE,∴四边形BFDE是平行四边形,∴∠DEB=∠BFD;(2)证明:∵E为边AB的中点,∴AE=BE,∵∠ADB=90°,∴△ADB为直角三角形∴DE=AB=BE,由(1)得,四边形BFDE是平行四边形,∴平行四边形BFDE是菱形.2.(1)证明:∵四边形ABCD是矩形,∴DC∥AB,∴∠FDO=∠EBO,∵O是BD的中点,∴DO=BO,在△DFO和△BEO中,,∴△DFO≌△BEO(ASA),∴DF=BE,∵DC∥AB(即DF∥BE),∴四边形DEBF是平行四边形;(2)解:∵四边形ABCD是矩形,∴∠A=90°,∵AB=8,AD=6,∴BD===10,∵四边形DEBF是平行四边形,DE=DF,∴四边形DEBF是菱形,∴DE=BE,设DE=BE=x,在Rt△DAE中,AD2+AE2=DE2,即62+(8﹣x)2=x2,解得:x=,即BE=,∴四边形DEBF的面积S四边形DEBF=BE×AD=×6=.3.解:(1)PC=PE,PC⊥PE证明∵点P位于AE的垂直平分线上,∴PA=PE,∵四边形ABCD是正方形,∴AB=AC,∠ADB=∠CDB,∵PD=PD,∴△ABP≌△CBP(SAS)∴PA=PC,∴PC=PE,∵四边形ABCD是正方形,∴AD=CD,∠ADP=∠CBP,∵PB=PB,∴△ADP≌△CDP(SAS),∴∠PAD=∠PCD,∵PA=PE,∴∠PAD=∠E,∴∠PCD=∠E,∵∠PFC=∠DFE,∴△CPF∽△EDF,∴∠CPF=∠FDE,∵四边形ABCD是正方形,,∴∠ADC=90°,∴∠FDE=90°,∴∠CPF=90°,∴PC⊥PE.(2)PA=CE.理由如下:证明:∵点P位于AE的垂直平分线上,∴PA=PE,∵四边形ABCD是菱形,∴AB=AC,∠ADB=∠CDB,∵PD=PD,∴△ABP≌△CBP,∴PA=PC∴PC=PE,∵四边形ABCD是菱形,∴AD=CD,∠ADP=∠CBP,∵PB=PB,∴△ADP≌△CDP,∴∠PAD=∠PCD,∵PA=PE,∴∠PAD=∠PED,∴∠PCD=∠PED,∵∠PFC=∠DFE,∴△CPF∽△EDF,∴∠CPF=∠EDF,∵四边形ABCD是菱形,∠ABC=120°∴∠ADC=∠ABC=120°∴∠EDF=180°﹣∠ADC=60°∴∠CPF=60°∵PE=PC∴△PCE是等边三角形∴CE=PE∴AP=CE.4.(1)证明:∵AE∥BC,DE∥AB,∴四边形ABDE为平行四边形,∴AE=BD,∵AD是边BC上的中线,∴BD=CD,∴AE=CD,∴四边形ADCE是平行四边形,又∵∠BAC=90°,AD是边BC上的中线,∴AD=BC=CD,∴平行四边形ADCE是菱形;(2)解:∵四边形ADCE是菱形,∴AD=AE=CE=CD,AC⊥DE,OA=OC,∵BD=CD,∴OD是△ABC的中位线,∴AB=2OD=2,∴AO=AB=2,∴AD===,∴菱形ADCE的周长=4AD=4,故答案为:4.5.解:四边形ABCD是矩形.理由如下:证明:如图,∵四边形ABCD是平行四边形,∴OC=AC,OB=BD.又∵∠1=∠2,∴OB=OC,∴BD=AC,∴▱ABCD是矩形.6.证明:∵四边形ABCD是矩形,∴AD∥BE,AD=BC,∴∠ADF=∠ECF,∠DAF=∠CEF,∵F是CD的中点,∴DF=CF,∴在△ADF和△ECF中,∴△ADF≌△ECF(AAS).∴AD=EC,而AD=BC∴BC=EC.7.解:(1)∵四边形ABCD为矩形,∴AB∥CD,∴∠BAC=∠DCA,∵AE平分∠BAC,CF平分∠ACD,∴∠EAC=∠FCA,∴AE∥CF,同理,AF∥CE,∴四边形AECF是平行四边形,∵AB=BC,∴∠BAC=∠ACB,∵AE平分∠BAC,CE平分∠ACB,∴∠EAC=∠ECA,∴AE=CE,∴四边形AECF是菱形;(2)过E作EH⊥BC于点H,EG⊥AB于点G,∵∠B=90°,∴四边形BHEG为矩形,∵AE平分∠BAC,CE平分∠ACB,∴EM=EG=EH,∴四边形BHEG是正方形,∴BG=BH,∵EM=EG=EH,AE=AE,CE=CE,∴Rt△AEG≌Rt△AEM(HL),Rt△CEH≌Rt△CEM(HL),∴AM=AG,CM=CH,∵AB=4,BC=3,∴AC=5,设AM=AG=x,CM=CH=y,BH=BG=z,则,解得,,∴AM=3,CM=2,∵由(1)知四边形AECF是平行四边形,∴AF=CE,AF∥CE,∴∠FAN=∠ECM,∵∠ANF=∠CME=90°,∴△ANF≌△CME(AAS),∴AN=CM=2,∴MN=AM﹣AN=3﹣2=1;(3)过E作EK⊥AB于点K,EL⊥AC于点L,如图,∵矩形ABCD中AB∥CD,∴∠BAC=∠ACD,∵AE、CF分别平分∠BAC和∠ACD,∴∠KAE=∠HCF,∵四边形AECF是平行四边形,∴AE=CF,∵∠AKE=∠CHF=90°,∴△AEK≌△CHF(AAS),∴AK=CH=4,∵AE平分∠BAC,CE平分∠ACB,∴EK=EL=EG,∵AE=AE,CE=CE,∴Rt△AEK≌Rt△AEL(HL),Rt△CEG≌Rt△CEL(HL),∴AK=AL=4,CG=CL=3,∴AC=AL+CL=4+3=7,∵EK=EG,∠EKB=∠B=∠EGB=90°,∴四边形BGEK为正方形,∴BG=BK,∴矩形ABCD的面积=AB•BC=24.8.(1)证明:∵四边形ABCD是矩形,O是BD的中点,∴∠A=90°,AD=BC=4,AB∥DC,OB=OD,∴∠OBE=∠ODF,∴△BOE≌△DOF(ASA),∴EO=FO,∴四边形BEDF是平行四边形;(2)解:当四边形BEDF是菱形时,BD⊥EF,设BE=x,则DE=x,AE=6﹣x,在Rt△ADE中,DE2=AD2+AE2,∴x2=42+(6﹣x)2,解得:x=,∵DF=.9(1)证明:连接AC,过P点作PG⊥BC交AC于G点,∵四边形ABCD是正方形,∴∠ACB=45°,∠BCD=90°,∵PG⊥BC,∴∠GPC=90°,∴∠PGC=45°,∴PG=PC,∵∠DCE=45°,∴∠AGP=∠ECP=90°+45°=135°,∵AP⊥PE,∴∠APE=∠GPC=90°,∴∠APG=∠EPC=90°﹣∠GPE,在△PAG和△PEC中∴△PAG≌△PEC(ASA),∴PE=PA;(2)解:延长CB到Q,使BQ=DF,过E作EH⊥BC,EH交BC延长线于H,连接AQ,PF,∵四边形ABCD是正方形,∴∠D=∠DAB=∠ABC=90°,AD=AB,∴∠ABQ=∠D=90°,在△ABQ和△ADF中∴△ABQ≌△ADF(SAS),∴AQ=AF,∠DAF=∠QAB,∵∠APE=90°,AP=PE,∴∠PAE=∠AEP=45°,∴∠AQP=∠QAB+∠BAP=∠DAF+∠BAP=∠DAB﹣∠PAE=90°﹣45°=45°=∠PAE,在△QAP和△FAP中∴△QAP≌△FAP(SAS),∴QP=PE,∵EH⊥BC,∠ABP=90°,∠APE=90°,∴∠ABP=∠H=90°,∠APB=∠PEH=90°﹣∠EPH,在△PEH和△APB中∴△PEH≌△APB(AAS),∴BP=EH,∵∠H=90°,∠DCE=45°,∴∠ECH=45°=∠CEH,∴CH=EH=BP,设EH=CH=BP=x,∴PC=4﹣x,PF=BQ+BP=DF+BP=4﹣3+x=1+x,在Rt△PCF中,由勾股定理得:(1+x)2=(4﹣x)2+32,解之得:x=,即CH=EH=,∴在Rt△CHE中,由勾股定理得:CE=CH=.10.解:(1)证明:∵AD平分∠BAC,∴∠BAD=∠EAD,∵AB=AE,AD=AD,∴△ABD≌△AED(SAS),∴DB=DE,∠BDA=∠EDA.∵EF∥BC,∴∠EFD=∠BDA,∴∠EFD=∠EDF,∴EF=ED,∴EF=BD,∵EF∥BD,∴四边形BDEF为菱形.(2)∵AD平分∠BAC,∴∠BAC=2∠BAD,∵AB=BC,∴∠BAC=∠BCA=2∠BAD,∵EF∥BC,∴∠FEC=∠BCA=2∠BAD,∵∠ABF=∠AEF,∴∠ABF=2∠BAD.所以图中度数等于∠BAD的2倍的所有的角:∠BAC,∠BCA,∠ABF,∠AEF.11.(1)解:∵四边形ABCD是菱形,∴AC⊥BD,∵E是AD的中点,∴OE=AD=AE,故答案为:=;(2)证明:∵四边形ABCD是菱形,∴OB=OD,∵E是AD的中点,∴OE是△ABD的中位线,∴OE∥FG,∵OG∥EF,∴四边形OEFG是平行四边形,∵EF⊥AB,∴∠EFG=90°,∴平行四边形OEFG是矩形;(3)解:∵四边形ABCD是菱形,∴BD⊥AC,AB=AD=10,∴∠AOD=90°,∵E是AD的中点,∴OE=AE=AD=5;由(1)知,四边形OEFG是矩形,∴FG=OE=5,∵AE=5,EF=4,∴AF===3,∴BG=AB﹣AF﹣FG=10﹣3﹣5=2.12.解:(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AFB=∠FBE,∵BF平分∠ABC,∴∠ABF=∠EBF,∴∠AFB=∠ABF,∴AF=AB,∵AE⊥BF,∴∠AOB=∠EOB=90°,OB=OB,∠ABO=∠EBO,∴△ABO≌△EBO(ASA),∴AB=BE,∴AF=BE,又AF∥BE,∴四边形ABEF是平行四边形,∵AB=BE,∴平行四边形ABEF是菱形.(2)如图,作AG⊥BC于点G,∵四边形ABEF是菱形,OA=OE=AE=6,OB=OF=BF=8,∴AB==10,BE=10,设BG=x,则EG=BE﹣BG=10﹣x,∴在Rt△ABG和Rt△AEG中,根据勾股定理,得AG2=AB2﹣BG2=AE2﹣EG2即102﹣x2=122﹣(10﹣x)2解得x=,∴AG==.∴四边形ABCD的面积为:BC•AG=15×=144.13.解:如图,过点D作DN⊥AB于N,DM⊥BC于F,∵四边形ABCD是菱形,∴AB=BC,∵S菱形ABCD=AB×DN=BC×DM,∴DN=DM,∵∠BED+∠F=180°,∠BED+∠AED=180°,∴∠F=∠AED,又∵∠DNE=∠DMF,∴△DNE≌△DMF(AAS)∴DE=DF.14.(1)证明:连接MN,如图1所示:∵四边形ABCD是矩形,∴AD∥BC,AD=BC,∠B=90°,∴∠EAM=∠FCN,AC===5,∵M,N分别是AD,BC的中点,∴AM=DM=BN=CN,AM∥BN,∴四边形ABNM是平行四边形,又∵∠B=90°,∴四边形ABNM是矩形,∴MN=AB=3,在△AME和△CNF中,,∴△AME≌△CNF(SAS),∴EM=FN,∠AEM=∠CFN,∴∠MEF=∠NFE,∴EM∥FN,∴四边形EMFN是平行四边形,又∵AE=CF=1,∴EF=AC﹣AE﹣CF=3,∴MN=EF,∴四边形EMFN为矩形.(2)解:连接MN,作MH⊥BC于H,如图2所示:则四边形ABHM是矩形,∴MH=AB=3,BH=AM=x,∴HN=BC﹣BH﹣CN=4﹣2x,∵四边形EMFN为矩形,AE=CF=0.5,∴MN=EF=AC﹣AE﹣CF=4,在Rt△MHN中,由勾股定理得:32+(4﹣2x)2=42,∴x=2﹣.15.(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠OAF=∠OCE,∵EF是线段AC的垂直平分线,∴OA=OC,EF⊥AC,在△AOF和△COE中,,∴△AOF≌△COE(ASA),∴AF=CE,∴四边形AECF是平行四边形,又∵EF⊥AC,∴四边形AECF是菱形;(2)解:由(1)得:四边形AECF是菱形,EF⊥AC,∴CE=AE=2,OA=OC,OB=OD,∵AC⊥AB,∴EF∥AB,∴∠OEC=∠B=30°,∴OC=CE=1,OE=OC=,∴AC=2OC=2,EF=2OE=2,∴四边形AECF的面积=AC×EF=×2×2=2.。
2022年中考一轮复习数学几何专题:四边形压轴训练(二)1.【实验操作】如图1是一张矩形纸片,点E在边AB上,把△BCE沿着直线CE对折,点B恰好落在对角线AC上的点F处.【性质探究】如图2,连接DF,若点E,F,D在同一直线上.(1)请写出图中与边DC相等的线段并说明理由.(2)若AE=2,求EF的长.【迁移应用】(3)如图3,延长EF交边AD于点G,若DG:AG=n,且AE=2,求BE的长(请用含n的代数式来表示).2.(1)问题提出如图①,△ACB和△DCE均为等边三角形,点A,D,E在同一条直线上,连接BE,线段AD,BE之间的数量关系为,∠AEB的度数为;(2)问题探究如图②,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E 在同一直线上,CM为△DCE中DE边上的高,连接BE.请判断∠AEB的度数及线段CM,AE,BE之间的数量关系,并说明理由;(3)问题解决如图③,在正方形ABCD中,CD=2,若点P满足PD=2,且∠BPD=90°,请直接写出点A到BP的距离.3.定义:在四边形ABCD中,如果∠ABC+∠ADC=90°,那么我们把这样的四边形称为余对角四边形.【问题探索】问题:如图1,已知AC、BD是余对角四边形ABCD的对角线,AC=BC,∠ACB=60°.求证:AD2+DC2=BD2.探索:小明同学通过观察、分析、思考,对上述问题形成了如下想法:因为AC=BC,∠ACB=60°,所以△ABC是等边三角形,将△CBD绕点C顺时针方向旋转60°,得△CAE,连接DE.……请参考小明同学的想法,完成该问题的解答过程.【问题推广】已知AC、BD是余对角四边形ABCD的对角线,AC=k⋅BC,tan∠ACB=.(1)如图2,当k=1时,类比前面问题的解决,探究DA、DB、DC三者之间关系,并说明理由.(2)如图3,当AD=,BD=,DC=5时,则k的值为;【灵活运用】如图4,已知AC、BD是余对角四边形ABCD的对角线,AC=2,BC=,∠ACB=90°,∠ADB=30°,AD=.4.在平面直角坐标系xOy中,A(0,2),B(﹣2,0),连接AB,点C是线段OA上一点,以OC为边作正方形OCDE,如图1.(1)问题发现图1中,线段BE与AC的数量关系是,位置关系是.(2)问题探究如图2,将正方形OCDE绕点O顺时针旋转α(0°<α<360°),连接AC,BE,则(1)中的结论是否仍然成立?请说明理由.(3)拓展应用若OC=1,将正方形OCDE绕点O旋转,当B,E,C三点共线时,请直接写出线段AC 的长.5.如图,四边形ABCD中,AD∥BC,∠A=∠D=90°,点E是AD的中点,连接BE,将△ABE沿BE折叠后得到△GBE,且点G在四边形ABCD内部,延长BG交DC于点F,连接EF.(1)求证:△EGF≌△EDF;(2)求证:BG=CD;(3)若点F是CD的中点,BC=8,求CD的长.6.(1)证明推断:如图(1),在正方形ABCD中,点E,Q分别在边BC,AB上,DQ ⊥AE于点O,点G,F分别在边CD,AB上,GF⊥AE.求证:AE=FG;(2)类比探究:如图(2),在矩形ABCD中,=k(k为常数).将矩形ABCD沿GF折叠,使点A落在BC边上的点E处,得到四边形FEPG,EP交CD于点H,连接AE交GF于点O.试探究GF与AE之间的数量关系,并说明理由;(3)拓展应用:在(2)的条件下,连接CP,当时k=,若tan∠CGP=,GF=2,求CP的长.7.如图1,点E为正方形ABCD内一点,∠AEB=90°,现将Rt△ABE绕点B按顺时针方向旋转90°,得到△CBE′(点A的对应点为点C),延长AE交CE′于点F.(1)如图1,求证:四边形BEFE′是正方形;(2)连接DE,①如图2,若DA=DE,求证:F为CE′的中点;②如图3,若AB=15,CF=3,试求DE的长.8.在平面直角坐标系中,有正方形OBCD和正方形OEFG,E(2,0),B(0,2).(Ⅰ)如图①,求BE的长;(Ⅱ)将正方形OBCD绕点O逆时针旋转,得正方形OB′C′D′.①如图②,当点B′恰好落在线段D'G上时,求B'E的长;②将正方形OB'C'D'绕点O继续逆时针旋转,线段D'G与线段B'E的交点为H,求△GHE与△B'HD'面积之和的最大值,并求出此时点H的坐标(直接写出结果).9.已知,如图①将矩形纸片ABCD沿过点D的直线折叠,使点A落在CD上的点A'处,得到折痕DE,然后把纸片展平;再如图②,将图①中的矩形纸片ABCD沿过点E的直线折叠,点C恰好落在AD上的C'处,点B落在B'处,得到折痕EF,B'C'交AB于点M,C'F交DE于点N,再把纸片展平.(Ⅰ)如图①,填空:若AD=3,则ED的长为;(Ⅱ)如图②,连接EC',△MC′E是否一定是等腰三角形?若是,请给出证明;若不是,请说明理由;(Ⅲ)如图②,若AC'=2cm,DC′=4cm,求DN:EN的值.(直接写出结果即可)10.探究:如图1和图2,四边形ABCD中,已知AB=AD,∠BAD=90°,点E、F分别在BC、CD上,∠EAF=45°.(1)①如图1,若∠B、∠ADC都是直角,把△ABE绕点A逆时针旋转90°至△ADG,使AB与AD重合,直接写出线段BE、DF和EF之间的数量关系;②如图2,若∠B、∠D都不是直角,但满足∠B+∠D=180°,线段BE、DF和EF之间的结论是否仍然成立,若成立,请写出证明过程,若不成立,请说明理由.(2)拓展:如图3,在△ABC中,∠BAC=90°,AB=AC=2.点D、E均在边BC 边上,且∠DAE=45°,若BD=1,请直接写出DE的长.11.如图,在平面直角坐标系中,已知矩形OABC的顶点A在x轴上,顶点C在y轴上,OA=8,OC=4,点P为对角线AC上一动点,过点P作PQ⊥PB,PQ交x轴于点Q.(1)tan∠ACB=;(2)在点P从点C运动到点A的过程中,的值是否发生变化?如果变化,请求出其变化范围;如果不变,请求出其值;(3)若将△QAB沿直线BQ折叠后,点A与点P重合,求PC的长.12.如图1,在矩形纸片ABCD中,AB=6,AD=10,折叠纸片使B点落在边AD上的点E 处,折痕为PQ.过点E作EF∥AB交PQ于F,连接BF.(1)求证:四边形PBFE为菱形;(2)当点E在AD边上移动时,折痕的端点P、Q也随之移动.①当点Q与点C重合时(如图2),求菱形PBFE的边长;②若限定P、Q分别在边BA、BC上移动,菱形PBFE的面积有最值吗?若有,请写出,若没有,填“无”.最大值为;最小值为.13.如图,点E是正方形ABCD的边BA延长线上一点,连接DE,过点A作AH∥DE交CD于点H,交BC延长线于点F,点M、N分别是DE、AH的中点,连接AM、DN.(1)求证:四边形AMDN是菱形;(2)若S菱形MADN:S正方形ABCD=1:3,求CF:AB的值.14.矩形ABCD中,AB=CD=3cm,AD=BC=4cm,AC是对角线,动点P从点A出发沿AC方向向点C匀速运动,速度为1cm/s,动点Q从点C出发沿CD方向向点D匀速运动,速度为2cm/s.过点P作BC的垂线段PH,运动过程中始终保持PH与BC互相垂直,连接HQ交AC于点O.若点P和点Q同时出发,设运动时间为t(s)(0<t<1.5),解答下列问题.(1)求当t为何值时,四边形PHCQ为矩形;(2)是否存在一个时刻,使HQ与AC互相垂直?如果存在,请求出t值;如果不存在,请说明理由;(3)是否存在一个时刻,使矩形ABCD的面积是四边形PHCQ面积的,如果存在,请求出t值;如果不存在,请说明理由;(4)如果△COQ是等腰三角形,请直接写出所有符合题意的时刻:.15.问题情景:如图1,我们把对角线互相垂直的四边形叫做“垂美四边形”,按照此定义,我们学过的平行四边形中的菱形、正方形等都是“垂美四边形”,“筝形”也是“垂美四边形”.概念理解:(1)如图2,已知等腰梯形ABCD是“垂美四边形”,AB=6,CD=8,求AD的长.性质探究:(2)如图3,已知四边形ABCD是“垂美四边形”,试探究其两组对边AB,CD与BC,AD之间的数量关系,并写出证明过程.问题解决:(3)如图4,分别以Rt△ABC的直角边AC和斜边AB为边向外作正方形ACFG与正方形ABDE,连接CE,BG,GE,CE与BG交于点O,已知AC=3,AB=5,求△OGE 的中线OH的长.。
第六章多边形、平行四边形回顾与思考一、学生知识状况分析学生的知识技能基础:学生在前面的学习中已经掌握了全等三角形的性质和判定,在本章前几节课中,又对平行四边形的判定、性质做了进一步学习,通过一定题量的练习,学生已经对有关内容得以掌握。
在本章后面几节课中,又学习了三角形中位线的定义和性质,并探索了连接四边形各边中点所成的四边形的形状等结论,学生在初一时已经掌握了三角形内角和定理,本章学生也掌握了多边形的内角和、外角和公式,对如何探究内角和、外角和的问题有了一定的认识。
学生的能力基础:在相关知识的学习过程中,学生对推理证明的基本要求、基本步骤和基本方法已经掌握,已经能利用平行四边形的判定和性质解决特殊四边形的有关命题,并且也能利用有关知识对探究型题目加以分析和证明。
学生活动经验基础:在相关知识的学习过程中,已经经历了“探索——发现——猜想——证明”的过程,体会了合情推理与演绎推理在获得结论中各自发挥的作用。
掌握了简单证明的方法,解决了简单的现实问题,同时在以前的数学学习中学生已经经历很多合作学习的过程,具有一定的合作学习经验和合作与交流的能力。
二、教学任务分析本章的定理较多,在系统掌握平行四边形的性质及判定等的基础上,学生还学习了多边形的内角和、外角和公式,为了让学生进一步掌握这些定理,并能熟练应用,为此,本节课的教学目标是:(1)能够熟练掌握平行四边形的判定和性质定理,并能够应用数学符号语言表述证明过程。
(2)掌握多边形内角和、外角和定理,进一步了解转化的数学思想。
(3)会熟练应用所学定理进行证明。
体会证明中所运用的归类、类比、转化等数学思想,通过复习课对证明的必要性有进一步的认识。
(4)学会对证明方法的总结。
(5)通过讨论交流,进一步发展学生的合作交流意识。
三、教学过程分析本节课设计了五个教学环节:第一环节:教师和学生一起回顾本章的主要内容;第二环节:随堂练习,巩固提高;第三环节:回顾小结,共同提升;第四环节:分层作业,拓展延伸;第五环节:课后反思。
2020初中数学中考一轮复习能力达标训练:四边形2(附答案)1.如图,ABCD 的对角线AC 、BD 交于点O ,顺次联结ABCD 各边中点得到的一个新的四边形,如果添加下列四个条件中的一个条件:①AC ⊥BD ;②ABO CBO C C =;③DAO CBO ∠=∠;④DAO BAO ∠=∠,可以使这个新的四边形成为矩形,那么这样的条件个数是()A .1个;B .2个;C .3个;D .4个.2.一个正五边形和一个正六边形按如图方式摆放,它们都有一边在直线l 上,且有一个公共顶点O ,则∠AOB 的度数是( )A .74°B .84°C .86°D .94°3.四边形ABCD 是菱形,对角线AC ,BD 相交于点O ,且AB =5,AO =4,BD 是( ) A .3 B .4 C .5 D .64.如图,菱形ABCD 中,sin ∠BAD =45,对角线AC ,BD 相交于点O ,以O 为圆心,OB 为半径作⊙O 交AD 于点E ,已知DE =1cm ;菱形ABCD 的周长为( )A .4cmB .5cmC .8cmD .10cm5.如图,AC ,BD 是四边形ABCD 的对角线,点E ,F 分别是AD ,BC 的中点,点M ,N 分别是AC ,BD 的中点,连接EM ,MF ,FN ,NE ,要使四边形EMFN 为正方形,则需添加的条件是( )A .AB CD =,AB CD ⊥B .AB CD =,AD BC = C .AB CD =,AC BD ⊥ D .AB CD =,//AD BC6.某学生在计算四个多边形的内角和时,得到下列四个答案,其中错误的是( ) A .1080° B .540° C .1900° D .1800°7.如图,在矩形ABCD 中,点M 从点B 出发沿BC 向点C 运动,点E 、F 别是AM 、MC 的中点,则EF 的长随着M 点的运动( )A .不变B .变长C .变短D .先变短再变长 8.如图,四边形ABCD 是菱形,对角线AC ,BD 相交于点O ,DH ⊥AB 于点H ,连接OH ,∠CAD =20°,则∠DHO 的度数是( )A .20°B .25°C .30°D .40°9.如图,一根竹竿AB ,斜靠在竖直的墙上,P 是AB 中点,''A B 表示竹竿AB 端沿墙上、下滑动过程中的某个位置,则在竹竿AB 滑动过程中OP ( )A .下滑时,OP 增大B .上升时,OP 减小C .只要滑动,OP 就变化D .无论怎样滑动,OP 不变10.如图,△ABC 中,∠BAC =60°,∠B =45°,AB =2,点D 是BC 上的一个动点,点D 关于AB ,AC 的对称点分别是点E ,F ,四边形AEGF 是平行四边形,则四边形AEGF 面积的最小值是 ( )A .1BC D11.如图,正方形ABCD 的边长为2,E 、F 分别为BC ,CD 的中点,连接AE ,BF 交于点G ,将△BCF 沿BF 对折,得到△BPF ,延长FP 交AD 于点M ,交BA 的延长线于点Q .连接BM ,下列结论中:①AE =BF ; ②AE ⊥BF ;③AQ =12;④∠MBF =60°.正确的结论是_____(填正确结论的序号).12.如图,E 、F 、G 、H 分别是四边形ABCD 各边的中点,若对角线AC 、BD 的长都是20cm ,则四边形EFGH 的周长是______.13.在△ABC 中,∠C =90°,AC =4,BC =3,如图1,四边形DEFG 为△ABC 的内接正方形,则正方形DEFG 的边长为_____.如图2,若三角形ABC 内有并排的n 个全等的正方形,它们组成的矩形内接于△ABC ,则正方形的边长为_____.14.如图,在ABC △中,BC a =,1B ,2B ,3B ,4B 是AB 边的五等分点,1C ,2C ,3C ,4C 是AC 边的五等分点,则11223344B C B C B C B C +++=________.15.如图,将边长为3cm 的正方形ABCD 绕顶点B 逆时针旋转30°得到正方形EBCF ,则两个图形重叠部分(阴影部分)的面积为______cm 2.16.如图,将一张长方形的纸片ABCD 沿AF 折叠,点B 到达点B '的位置.已知AB BD ',20ADB ∠=︒,则DAF ∠=_____.17.如图,正方形网格中的每一个小正方形的边长都是1,线段AB 的端点都在格点上; (1)在图中画出面积为10的等腰ABC ∆,且以BC 为腰,点C 在格点上;(2)在图中画出以AB 为一条对角线的矩形AMBN ,且点M 、N 在格点上、tan 2BAN ∠=;连接CM ,直接写出CM 的长为 .18.如图,三角形ABC 的面积为1,将三角形ABC 沿着过AB 的中点D 的直线折叠,使点A 落在BC 边上的1A 处,折痕为DE ,若此时点E 是AC 的中点,则图中阴影部分的面积为______________.19.有一个18边形,它共有______条对角线.若有一个多边形有35条对角线,则它为______边形.20.如图,已知在长方形ABCD中,将△ABE沿着AE折叠至△AEF的位置,点F在对角线AC上,若BE=3,EC=5,则线段CD的长是__________.21.如图,是斜边上的中线,过点垂直于的直线交于,交延长线于.(1)求证:;(2)求证:.22.如图,ABCD是平行四边形,E、F是对角线AC上的两点,若∠ABF=∠CDE=90°.(1)求证:四边形BEDF是平行四边形;(2)若AB=AD=8,BF=6,求AE的长.=,23.已知:如图,在ABCD中,E,F分别是BC和AD边上的点,且BE DF=.连接AE,CF.求证:AE CF24.如图,平行四边形ABCD 中,AB =4cm ,BC =6cm ,∠B =60°,G 是CD 的中点,E 是边AD 上的动点,EG 的延长线与BC 的延长线交于点F ,连接CE ,DF .(1)求证:四边形CEDF 是平行四边形;(2)①AE 为何值时四边形CEDF 是矩形?为什么?②AE 为何值时四边形CEDF 是菱形?为什么?25.已知:将▱ABCD 纸片折叠,使得点C 落在点A 的位置,折痕为EF ,连接CE .求证:四边形AFCE 为平行四边形.26.如图,在正方形网格中每个小正方形的边长为1,请按要求画出下列图形,所画图形的各个顶点均在所给小正方形的顶点上.(1)在网格中画出线段AC ,使得AC=AB ;(2)在(1)的条件下画出以线段AC 为一边,周长为10+27.如图所示,ABC ∆中,90C ∠=︒,D ,E 分别为BC ,AC 上一点,BD CE =,AE BC =,求证:AD .28.在正方形ABCD 的外侧作等腰ABE ∆,已知EAB α∠=,连接ED 交等腰ABE ∆底边上的高AF 所在的直线于点G .(1)如图1,若30α=,求AGD ∠的度数;(2)如图2,若90180α<<,BE =14DE =,则此时AE 的长为 .参考答案1.C【解析】【分析】根据顺次连接四边形的中点,得到的四边形形状和四边形的对角线位置、数量关系有关,利用三角形中位线性质可得:当对角线垂直时,所得新四边形是矩形.逐一对四个条件进行判断.【详解】解:顺次连接四边形的中点,得到的四边形形状和四边形的对角线位置、数量关系有关,利用三角形中位线性质可得:当对角线垂直时,所得新四边形是矩形.①∵AC⊥BD,∴新的四边形成为矩形,符合条件;②∵四边形ABCD是平行四边形,∴AO=OC,BO=DO.∵C△ABO=C△CBO,∴AB=BC.根据等腰三角形的性质可知BO⊥AC,∴BD⊥AC.所以新的四边形成为矩形,符合条件;③∵四边形ABCD是平行四边形,∴∠CBO=∠ADO.∵∠DAO=∠CBO,∴∠ADO=∠DAO.∴AO=OD.∴AC=BD,∴四边形ABCD是矩形,连接各边中点得到的新四边形是菱形,不符合条件;④∵∠DAO=∠BAO,BO=DO,∴AO⊥BD,即平行四边形ABCD的对角线互相垂直,∴新四边形是矩形.符合条件.所以①②④符合条件.故选:C.【点睛】本题主要考查矩形的判定、平行四边形的性质、三角形中位线的性质.2.B【解析】【分析】利用正多边形的性质求出∠AOE,∠BOF,∠EOF即可解决问题;【详解】由题意:∠AOE=108°,∠BOF=120°,∠OEF=72°,∠OFE=60°,∴∠EOF=180°−72°−60°=48°,∴∠AOB=360°−108°−48°−120°=84°,故选:B.【点睛】此题考查正多边形的性质,三角形内角和定理,解题关键在于掌握各性质定义.3.D【解析】【分析】根据菱形的对角线互相垂直平分,在Rt△AOB中利用勾股定理即可解决问题.【详解】解:∵四边形ABCD是菱形,∴AC⊥BD,BD=2BO,在Rt△ABO中,∵∠AOB=90°,AB=5,AO=4,∴BO3,∴BD=2BO=6.故选D.【点睛】本题考查菱形的性质、勾股定理等知识,解题的关键是菱形的性质的正确应用,记住菱形的对角线互相垂直平分,属于中考常考题型.4.D【解析】【分析】连接BE,根据圆周角定理可得∠AEB=90°,根据三角函数定义设未知数,由AB=AD列方程可得结论.【详解】解:连接BE ,∵BD 是⊙O 的直径,∴∠BED =90°,Rt △ABE 中,sin ∠BAD =4BE 5AB=, 设BE =4x ,AB =5x ,则AE =3x ,∵四边形ABCD 是菱形,∴AB =AD ,∵DE =1,∴5x =1+3x ,x =12, ∴菱形ABCD 的周长=4AB =4×5×12=10cm ,故选D .【点睛】此题主要考查了圆周角定理、菱形的性质以及锐角三角函数关系的应用,正确设未知数是解题关键.5.A【解析】【分析】证出EN 、NF 、FM 、ME 分别是ABD ∆、BCD ∆、ABC ∆、ACD ∆的中位线,得出////EN AB FM ,////ME CD NF ,12EN AB FM ==,12ME CD NF ==,证出四边形EMFN 为平行四边形,当AB CD =时,EN FM ME NF ===,得出平行四边形ABCD 是菱形;当AB CD ⊥时,EN ME ⊥,即90MEN ∠=︒,即可得出菱形EMFN 是正方形.【详解】点E ,F 分别是AD ,BC 的中点,点M ,N 分别是AC ,BD 的中点,EN ∴、NF 、FM 、ME 分别是ABD ∆、BCD ∆、ABC ∆、ACD ∆的中位线, ////EN AB FM ∴,////ME CD NF ,12EN AB FM ==,12ME CD NF ==, ∴四边形EMFN 为平行四边形,当AB CD =时,EN FM ME NF ===,∴平行四边形ABCD 是菱形;当AB CD ⊥时,EN ME ⊥,即90MEN ∠=︒,∴菱形EMFN 是正方形;故选:A .【点睛】本题考查了正方形的判定、平行四边形的判定、菱形的判定以及三角形中位线定理;熟练掌握三角形中位线定理是解题的关键.6.C【解析】【分析】根据多边形的内角和公式可知多边形的内角和一定为180°的倍数,由此即可解答【详解】∵n 边形内角和为(n -2)•180°,∴一定为180°的正整数倍.∴只有选项C 不符合要求.故选C.【点睛】本题考查了多边形的内角和,熟练运用多边形的内角和公式是解决问题的关键.7.A【解析】【分析】由题意得EF 为三角形AMC 的中位线,由中位线的性质可得:EF 的长恒等于定值AC 的一半.【详解】解:∵E,F分别是AM,MC的中点,∴1EF=AC2,∵A、C是定点,∴AC的的长恒为定长,∴无论M运动到哪个位置EF的长不变,故选:C.【点睛】此题考查的是三角形中位线的性质,即三角形的中位线平行且等于第三边的一半.8.A【解析】【分析】先根据菱形的性质得OD=OB,AB∥CD,BD⊥AC,则利用DH⊥AB得到DH⊥CD,∠DHB =90°,所以OH为Rt△DHB的斜边DB上的中线,得到OH=OD=OB,利用等腰三角形的性质得∠1=∠DHO,然后利用等角的余角相等即可求出∠DHO的度数.【详解】解:∵四边形ABCD是菱形,∴OD=OB,AB∥CD,BD⊥AC,∵DH⊥AB,∴DH⊥CD,∠DHB=90°,∴OH为Rt△DHB的斜边DB上的中线,∴OH=OD=OB,∴∠1=∠DHO,∵DH⊥CD,∴∠1+∠2=90°,∵BD⊥AC,∴∠2+∠DCO=90°,∴∠1=∠DCO,∴∠DHO=∠DCA,∵四边形ABCD是菱形,∴DA=DC,∴∠CAD=∠DCA=20°,∴∠DHO=20°,故选:A.【点睛】本题考查菱形的性质,直角三角形斜边中线定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.9.D【解析】【分析】根据直角三角形斜边上的中线等于斜边的一半可得12OP AB=.【详解】解:∵AO⊥BO,点P是AB的中点,∴12 OP AB=∴在滑动的过程中OP的长度不变.故选D【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,熟记性质是解题的关键.10.D【解析】【分析】由对称的性质和菱形的定义证出四边形AEGF 是菱形,得出∠EAF=2∠BAC=120°,当AD ⊥BC 最小时,AD 的值最小,即AE 的值最小,即菱形AEGF 面积最小,求出,即可得出四边形AEGF 的面积的最小值.【详解】由对称的性质得:AE=AD=AF ,∵四边形AEGF 是平行四边形,∴四边形AEGF 是菱形,∴∠EAF=2∠BAC=120°,当AD ⊥BC 最小时,AD 的值最小,即AE 的值最小,即菱形AEGF 面积最小,∵∠ABC=45°,AB=2,∴,∴四边形AEGF 的面积的最小值=212⨯=故选:D【点睛】 本题考查了平行四边形的性质、菱形的判定与性质、对称的性质;熟练掌握平行四边形的性质,证明四边形是菱形是解决问题的关键.11.①②③【解析】【分析】由题意可证△BFC ≌△ABE ,可判断①②,由折叠可判断④,根据勾股定理可求AM=23,DM=43,根据平行线分线段成比例可求AQ=12,可判断③ 【详解】∵四边形ABCD 是正方形,∴AB=BC=AD=CD=2,∠C=∠D=∠ABC=90°,∵CF=BE ,AB=BC ,∠C=∠ABC ,∴△AEB ≌△BCF,∴AE=BF ,∠EAB=∠FBC,∵∠FBC+∠ABF=90°,∴∠EAB+∠ABF=90°,∴∠AGB=90°即AE⊥BF,故①②正确,∵折叠,∴BC=BP,∠CBF=∠PBF,∴AB=BP且BM=BM,∴Rt△ABM≌Rt△BMP,∴AM=MP,∠ABM=∠PBM,∵∠ABM+∠PBM+∠CBF+∠PBF=90°, ∴∠MBF=45°,故④错误,∵在Rt△DMF中,MF2=FD2+DM2.∴(1+AM)2=(2-AM)2+1,∴AM=23,∴DM=4 3 ,∵CD∥BA,∴12 AQ AMDF DM==,∴AQ=1 2故③正确故答案是:①②③【点睛】考查了折叠问题,正方形的性质,勾股定理,灵活运用这些性质解决问题是本题的关键.12.40cm【解析】【分析】利用三角形中位线定理易得所求四边形的各边长都等于AC,或BD的一半,进而求四边形周长即可.【详解】∵E,F,G,H,是四边形ABCD各边中点∴HG=12AC,EF=12AC,GF=HE=12BD∴四边形EFGH的周长是HG+EF+GF+HE=12(AC+AC+BD+BD)=12×(20+20+20+20)=40(cm).故答案为40cm.【点睛】本题考查了三角形的中位线定理,解决本题的关键是找到四边形的四条边与已知的两条对角线的关系.三角形中位线的性质为我们证明两直线平行,两条线段之间的数量关系又提供了一个重要的依据.13.6037;602512n【解析】【分析】(1)根据题意画出图形,作CN⊥AB,再根据GF∥AB,可知△CGF∽△CAB,由相似三角形的性质即可求出正方形的边长;(2)①作CN⊥AB,交GF于点M,交AB于点N,同(1)可知,△CGF∽△CAB,根据对应边的比等于相似比可求出正方形的边长;②方法与①类似;③作CN⊥AB,交GF于点M,交AB于点N,同(1)可知,△CGF∽△CAB,根据对应边的比等于相似比可求出正方形的边长;【详解】解:(1)在图1中,作CN⊥AB,交GF于点M,交AB于点N.在Rt△ABC中,∵AC=4,BC=3,∴AB=5,∴12AB•CN=12BC•AC,∴CN=125,∵GF∥AB,∴△CGF∽△CAB,∴CM:CN=GF:AB,设正方形边长为x,则12x x51255-=∴x=6037;故答案为:60 37(2)①在图2中,作CN⊥AB,交GF于点M,交AB于点N.∵GF∥AB,∴△CGF∽△CAB,∴CM:CN=GF:AB,设每个正方形边长为x,则12x2x 5125 5-=∴x=60 49.②类比①,在图3中,∵△CGF∽△CAB,∴CM:CN=GF:AB,设每个正方形边长为x,则12x3x 5125 5-=∴x=60 61.③在图4中,过点C作CN⊥AB,垂足为N,交GF于点M,∵△CGF ∽△CAB ,∴CM :CN=GF :AB ,设每个正方形边长为x ,则12x nx 51255-=, ∴x=602512n+. 故答案为:60 2512n+ 【点睛】本题主要考查了正方形,矩形的性质和相似三角形的性质.会利用三角形相似中的相似比来得到相关的线段之间的等量关系是解题的关键.14.2a【解析】【分析】可利用三角形中位线定理或梯形中位线定理依次求得33B C ,22B C ,11B C ,44B C ,让它们相加即可. 1C 、2C 、3C 、4C 是AC 边的五等分点; 所以想办法找出中位线,再用中位线定理可解.【详解】根据中位线定理可知:33B C =0.6BC=0.6a ,22B C =2333B C =0.4a, 11B C =0.522B C =0.2a ,44B C =0.8BC=0.8a ,11B C +22B C +33B C +44B C =2a.故填:2a.【点睛】此题考查三角形中位线的定义及性质,解题关键在于利用中位线定理进行解答.15.【解析】【分析】由正方形的性质和旋转的性质可得AB=BG ,由“HL”可证Rt △ABM ≌△GBM ,可得∠ABM=∠GBM=30°,可求【详解】解:如图,设AD 与FG 相交于点M ,连接BM ,∵四边形ABCD 是正方形,∴AB=BC=3cm ,∠ABC=90°,∵正方形ABCD 绕顶点B 逆时针旋转30°得到正方形EBCF ,∴BG=BC ,∠GBC=30°,∴BG=AB ,且BM=BM ,∴Rt △ABM ≌△GBM (HL )∴∠ABM=∠GBM ,∵∠ABM+∠GBM=∠ABC-∠GBC=60°∴∠ABM=∠GBM=30°,∵tan ∠ABM=AM AB∴∴S 阴影=2×S △ABM =2×12×故答案为【点睛】本题考查了旋转的性质,正方形的性质,全等三角形判定和性质等知识,灵活运用相关的性质定理、综合运用知识是解题的关键.16.35°【解析】【分析】根据折叠的性质得到∠B′AF=∠BAF,要AB′∥BD,则要有∠B′AD=∠ADB=20°,从而得到∠B′AB=20°+90°=110°,求出∠BAF即可求解.【详解】解:∵长方形纸片ABCD沿AF折叠,使B点落在B′处,∴∠B′AF=∠BAF,∵AB′∥BD,∴∠B′AD=∠ADB=20°,∴∠B′AB=20°+90°=110°,∴∠BAF=110°÷2=55°.∴∠BAF应为55°,∠=35°.∴DAF【点睛】本题考查了直线平行的判定以及折叠的性质,熟练掌握折叠前后两图形全等,即对应角相等,对应线段相等是解题的关键.17.(1)见解析.【解析】【分析】(1)根据等腰三角形的判定和勾股定理作图即可得;(2)根据矩形的判定和正切函数的定义作图可得.【详解】解:(1)如图所示,△ABC即为所求.(2)如图所示,矩形AMBN 即为所求,其中CM =故答案为.【点睛】本题主要考查作图−应用与设计作图,解题的关键是掌握等腰三角形和矩形的判定与性质及勾股定理的应用.18.12【解析】【分析】作DF ⊥BC 于点F. 又D 、E 分别是AB 、AC 的中点,DE 是三角形的中位线,从而DE ∥BC ,DE=12BC ,进而可求S △A1BD +S △A1CE =2 S △A1DE ,由折叠得:△ADE ≌△A 1DE ,从而可求得结论.【详解】作DF ⊥BC 于点F.∵D 、E 分别是AB 、AC 的中点,∴DE 是△ABC 的中位线,∴DE ∥BC ,DE=12BC , ∵S △A1BD +S △A1CE =111122A B DF AC DF ⋅+⋅ =12BC DF ⋅, =DE DF ⋅,∴ S △A1BD +S △A1CE =2 S △A1DE ,由折叠得:△ADE ≌△A 1DE ,∴S △ADE +S △A1DE =12S △ABC , ∴S 阴影═12S △ABC =11122⨯=, 故答案为:12.【点睛】本题考查了三角形中位线定理,折叠的性质以及三角形的面积等知识,熟练掌握三角形中位线的性质是解答本题的关键.19.135 十【解析】【分析】直接利用多边形对角线条数公式求出即可.【详解】∵n 边形共有()132n n -条对角线, ∴()1118183181513522⨯⨯-=⨯⨯=. ∵()13352n n -=, ∴()370n n -=.∴10n =或7n =-(舍去).故答案为:135;十.【点睛】此题主要考查了一元二次方程的应用以及多边形的对角线,正确利用多边形对角线公式得出等式是解题关键.20.6【解析】【分析】由折叠可得:∠AFE=∠B=90°,依据勾股定理可得:Rt△CEF中,CF==4.设AB= x,则AF=x ,AC=x+4,再根据勾股定理,可得Rt△ABC中,AB2+BC2=AC2,即x2+82=(x+4)2,解方程即可得出AB的长,由矩形的性质即可得出结论.【详解】由折叠可得:AB=AF,BE=FE=3,∠AFE=∠B=90°,∴Rt△CEF中,CF==4.设AB= x,则AF=x ,AC=x+4.∵Rt△ABC中,AB2+BC2=AC2,∴x2+82=(x+4)2,解得:x=6,∴AB=6.∵ABCD是矩形,∴CD=AB=6.故答案为:6.【点睛】本题考查了矩形的性质以及勾股定理的综合运用,解题时,我们常常设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.21.(1)证明见解析;(2)证明见解析.【解析】【分析】(1)根据题意可得∠B+∠A=90°,∠A+∠F=90°,则∠B=∠F,从而得出△ADF∽△EDB;(2)由(1)得∠B=∠F,再CD是Rt△ABC斜边AB上的中线,得出CD=DB,根据等边对等角得∠DCE=∠F,则可证明△CDE∽△FDC,从而得出,,化为乘积式即可CD2=DF•DE.【详解】证明:(1)在中,,∵,∴,∴,∴,∴;(2)由(1)可知,∴,∵是斜边上的中线∴,∴,∴∴,∴,∴.【点睛】本题考查了相似三角形的判定和性质,以及直角三角形斜边上的中线等于斜边的一半.练掌握两角相等的两三角形相似、相似三角形的对应边成比例是解题的关键.22.(1)见解析;(2)14 5.【解析】【分析】(1)由平行四边形的性质得出AB=CD,AB∥CD,证出∠BAC=∠DCA,由ASA证明△ABF≌△CDE,得出BF=DE,∠AFB=∠CED,证出BF∥DE,即可得出结论;(2)连接BD交AC于G,证明四边形ABCD是菱形,得出AC⊥BD,证出四边形BEDF是菱形,得出BE=BF=6,由勾股定理求出AF,由三角形的面积关系求出BG,再由勾股定理求出EG,即可得出结果.【详解】(1)∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠BAC=∠DCA,在△ABF和△CDE中,BAC DCAAB CDABF CDE ∠∠⎧⎪⎨⎪∠∠⎩===,∴△ABF≌△CDE(ASA),∴BF=DE,∠AFB=∠CED,∴BF∥DE,∴四边形BEDF 是平行四边形;(2)连接BD 交AC 于G ,如图所示:∵AB =AD ,∴四边形ABCD 是菱形,∴AC ⊥BD ,∴四边形BEDF 是菱形,∴BE =BF =6,EG =FG ,∵∠ABF =90°,AB =AD =8,BF =6,∴AF =10,∵△ABF 的面积=12AF·BG =12AB×BF , ∴BG =AB BF AF ⨯=245,∴EG 185, ∴AE =AF -2EG =10-2×185=145.【点睛】本题考查了平行四边形的判定与性质、全等三角形的判定与性质、菱形的判定与性质、勾股定理等知识;熟练掌握平行四边形的性质,证明三角形全等是解决问题的关键.23.详见解析【解析】【分析】先根据平行四边形的性质得AD=BC ,AD ∥BC ,则利用BE=DF 得到AF=EC ,则可判断四边形AECF 为平行四边形,从而利用平行四边形的性质得到结论.【详解】 证明:四边形ABCD 为平行四边形,∴AD BC =,//AD BC ,BE DF =,=,∴-=-,即AF ECAD DF BC BEAF EC,而//∴四边形AECF为平行四边形,∴=AE CF【点睛】此题考查平行四边形的性质,解题关键在于掌握判定定理.24.(1)见解析;(2)①当AE=4cm时,四边形CEDF是矩形.理由见解析;②当AE=2时,四边形CEDF是菱形,理由见解析.【解析】【分析】(1)先证△GED≌△GFC,推出DE=CF和DE∥CF,再根据平行四边形的判定推出即可;(2)①作AP⊥BC于P,先证明△ABP≌△CDE,然后求出DE的值即可得出答案;②先证明△CDE是等边三角形,然后求出DE的值即可得出答案.【详解】(1)证明:∵四边形ABCD是平行四边形∴AD∥BF,∴∠DEF=∠CFE,∠EDC=∠FCD,∵G是CD的中点,∴GD=GC,∴△GED≌△GFC,∴DE=CF,DE∥CF,∴四边形CEDF是平行四边形,(2)①当AE=4cm时,四边形CEDF是矩形.理由:作AP⊥BC于P,∵四边形CEDF是矩形,∴∠CED=∠APB=90°,∴AP=CE,又∵ABCD是平行四边形,∴AB=CD=4cm,则△ABP≌△CDE(HL),∴BP=DE,∵AB=4cm,∠B=60°,∴BP=AB×cos60°=4×12=2(cm),∴BP=DE=2cm,又∵BC=AD=6cm,∴AE=AD-DE=6-2=4(cm);.②当AE=2时,四边形CEDF是菱形.理由:∵平行四边形CEDF是菱形,∴DE=CE,又∵∠CDE=∠B=60°,∴△CDE是等边三角形,∵四边形ABCD是平行四边形,∴AB=CD=4cm,DE=CD=4cm,∵BC=AD=6cm,则AE=AD-DE=6-4=2(cm).【点睛】本题考查了平行四边形的判定和性质,等边三角形的判定和性质,全等三角形的判定和性质以及三角函数应用,注意:有一组对边平行且相等的四边形是平行四边形.25.见解析【解析】【分析】由折叠的性质得到∠1=∠2,AF=EFC.根据平行四边形的性质得到AD∥BC.由平行线的性质得到∠3=∠2.根据等腰三角形的性质得到AE=FC.即可得到结论【详解】证明:如图,∵点C与点A重合,折痕为EF,∴∠1=∠2,AF=FC.∵四边形ABCD为平行四边形,∴AD∥BC.∴∠3=∠2.∴∠1=∠3.∴AE=AF.∴AE=FC.又∵AE∥FC,∴四边形AFCE是平行四边形.【点睛】本题考查了折叠的性质、平行四边形的性质与判定、平行线的性质,熟练掌握折叠的性质是解题的关键.26.(1)见解析;(2)见解析.【解析】【分析】(1)由勾股定理可求出AB=5,再画出AC即可;(2)由(1)得AC=5,再画出.【详解】(1)如图所示,(2)如图所示,【点睛】本题考查勾股定理,平行四边形的判定和性质,数形结合的思想等知识,解题的关键是灵活运用所学知识解决问题.27.见解析【解析】【分析】过A 作AG BD ,且AG BD =,连BG ,EG ,则ADBG 为平行四边形.再证明AEG CBE ∆∆≌,则GE =BE ,得△ADF 为等腰直角三角形即可证明结论【详解】证明:过A 作AG BD ,且AG BD =,连BG ,EG ,则四边形ADBG 为平行四边形,∵∠C =90°,∴∠GAE =∠C =90°,在△AEG 和△CBE 中,AG=CE AE=CB GAE C ⎧⎪∠=∠⎨⎪⎩,AEG CBE ∆∆≌,∴GE =BE ,∠GEA =∠EBC ,∴∠GEB =90°.BEG ∴为等腰直角三角形,∴AD BG ==【点睛】 本题考查了等腰直角三角形的性质的运用,平角的性质的运用,平行四边形的判定及性质的运用,全等三角形的判定及性质的运用,解答时证明三角形全等是关键.28.(1)45AGD ∠=;(2)【解析】【分析】(1)先求出EAD 120∠=︒,再根据等腰三角形的性质可得AED ADE 30∠∠==︒,由三线合一可求EAG 15∠=︒,然后根据三角形外角的性质求解即可;(2)如图,过A 作AQ ⊥DE 于Q ,则∠AQP=90°,由AD=AE ,得到DQ=EQ ,∠AEQ=∠ADQ ,同理得到∠3=∠FAB ,根据外角的性质得到∠APQ=∠3-∠AEQ=∠3-∠ADQ ,等量代换得到∠2=∠3-∠AEP ,求得∠2=∠APQ=45°,进而可证∠FEP=∠APQ=45°,由勾股定理求出PE 的长,再根据勾股定理求出AE 的长即可.【详解】解:(1)∵α30=,BAD 90∠=︒,∴EAD 120∠=︒,∵AE AD =,∴AED ADE 30∠∠==︒,∵AE=AB,AF ⊥BE, ∴1EAG EAB 152∠∠==︒, ∴AGD AEG EAG 45∠∠∠=+=;(2)如图,过A 作AQ ⊥DE 于Q ,则∠AQP=90°,∵AD=AE ,∴DQ=EQ ,∠AEQ=∠ADQ ,EQ=12DE=7, ∵AE=AB ,AF ⊥BE ,∴∠3=∠FAB ,EF=12, ∵∠APQ=∠3-∠AEQ=∠3-∠ADQ ,∵∠1+∠FAB=∠FAB+∠ABF=90°,∴∠1=∠ABF=∠AEF ,∴∠2=90°-∠1-∠ADP=90°-(90°-∠3)-∠AEP=∠3-∠AEP ,∴∠2=∠APQ=45°,∵∠1=∠AEF ,∠AEQ=∠ADQ ,∴∠FEP=∠APQ=45°,∴,∴8=,∴PQ=8-7=1,∴=【点睛】本题考查了正方形的性质,等腰三角形的性质,等腰直角三角形的判定和性质,三角形的内角和定理,以及勾股定理,正确的作出辅助线是解题的关键.。
四边形复习2
一、选择题
1、下列说法正确的是()
A.、梯形的两条对角线相等B、有两个内角相等的梯形是等腰梯形
C.、有两条边相等的梯形是等腰梯形;D、两腰相等的梯形一定是等腰梯形
2、四边形四个内角度数之比为2:2:1:3,则此四边形是()
A. 任意四边形
B. 任意梯形
C. 等腰梯形
D. 直角梯形
3、梯形的上底长为6cm,过上底一个顶点引一腰的平行线,交下底所得的三角形的周长是19cm,那么这个梯形的周长为()
A. 31cm
B. 25cm
C. 19cm
D. 28cm
4、等腰梯形两底之差等于一腰长,则腰与上底的夹角为()
A. 60°
B. 120°
C. 135°
D. 150°
5、梯形ABCD中,AD∥BC,设AC,BD交于O点,则图中共有()对面积相等的三角形.
A.2 B.3 C.4 D.5
6、下列四边形中,两条对角线一定不相等的是( )
A.正方形
B.矩形
C.等腰梯形
D.直角梯形
7、下列说法中,正确的是( )。
A.有一组对边平行,另一组对边相等的图形是等腰梯形
B.有一组对角互补的梯形是等腰梯形
C.有一组邻角相等的四边形是等腰梯形
D.有两组邻角分别相等的四边形是等腰梯形。
二、填空题
1、等腰梯形上底的长与腰长相等,而一条对角线与一腰垂直,则梯形上底角的度数是________。
2、以线段a=16、b=13为梯形的两底,以c=10为一腰,则另一腰长d的范围是________。
3、直角梯形的斜腰长为12cm,这条腰和一底所成的角为30°,则另一腰是________。
4、等腰梯形的腰与上底相等且等于下底的一半,则该梯形对角线与下底的夹角为________。
5、直角梯形的一腰与底边夹角为60°,此腰与上底的长都是8cm,则梯形的周长是________。
6、梯形ABCD中,AD∥BC,若∠B=60°,AC⊥AB,那么∠DAC=___________。
三、解答题
1、如图,等腰梯形ABCD中,AD∥BC,AB=CD=12 cm,上底AD=15 cm,∠BAD=120°,求BC的长。
2、如图,梯形ABCD 中,AB ∥CD ,M 是DC 的中点,且AM=BM ,那么,梯形ABCD 是
等腰梯形吗?说说你的理由。
3、如图,梯形ABCD 中,AB ∥DC ,E 是BC 的中点,AE 、DC 的延长线相交于点F ,连结AC 、BF.
(1) 求证:AB=CF ;
(2) 四边形ABFC 是什么四边形,并说明你的理由。
4、如图,等腰梯形ABCD 中,AD ∥BC ,AB=DC ,AC ⊥BD ,过D 点作DE ∥AC 交BC 的延长线于E 点。
(1)请说明四边形ACED 是平行四边形;
(2)若AD=3,BC=7,求梯形ABCD 的面积。
5、如图,△ABC 中,AC AB =,BD 、CE 分别为ABC ∠、ACB ∠的平分线, 请说明四边形EBCD 为等腰梯形。