2013高考理科数学密破仿真预测卷03
- 格式:doc
- 大小:737.50 KB
- 文档页数:15
绝密★启用前2013年高考命题预测卷(1年仅此1卷)理科数学(必修+选修Ⅱ、IV )本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1-2页;第Ⅱ卷3-6页。
考试时间:2013年4月21日,下午15:00-17:00,共120分钟,满分150分。
考试结束后,将本试卷和答题纸一并交回。
注意事项:答题前,考生必须将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内.第Ⅰ卷回答本卷时请注意:1.选择题必须用2B 铅笔填涂;2.保持卡面清洁,不要折叠、不要弄破、不准使用涂改液、刮纸刀.一、选择题(本大题包括12小题,每小题5分,共60分,每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项填涂在答题卡上) 1.设复数i 2321+-=ω,则ω+1等于A .ω-B .2ωC .ω1-D .21ω2.设集合{}{}31,,31,M x x n n N y y n n ==+∈==-∈Z Z ,若00,x M y N ∈∈,则00x y 与,M N 的关系是A .M y x ∈00B .N y x ∈00C .N M y x ∈00D .N M y x ∉003.已知非零向量a 、b 满足向量+a b 与向量-a b 的夹角为2π,那么下列结论中 一定成立的是 A .=a bB .||||=a bC .⊥a bD .ab4.已知一个几何体是由上下两部分构成的组合体,其三视图如下,若图中圆的 半径为1,等腰三角形的腰长为5,则该几何体的体积是A .43πB .2πC .83πD .103π5.已知实数[0,8]x ∈,执行如右图所示的程序框图,则输出的x 不小于54的概 率为A .14 B .12 C .34 D .54 6.函数()295y x =--的图象上存在不同的三点到原点的距离构 成等比数列,则以下不可能成为该等比数列的公比的数是 A .34B .2C .3D .57.若2sin cos 0αα+=,则2sin cos 2cos sin 2αααα+=+ A .255±B .455±C .52±D .54±8.设22(13)40a x dx =-+⎰,则二项式26()ax x+展开式中不含3x 项的系数和是A .160-B .161C .160D .161-9.椭圆2222+1(0)x y a b a b=>>的离心率为33,若直线kx y =与其一个交点的横坐标为b ,则k 的值为A .1±B .2±C .33±D . 3± 10.已知函数1π()cos ,[,]222f x x x x π=+∈-,01sin 2x =,0π[,]22x π∈-,那么下面四个命题中真命题的序号是1p :()f x 的最大值为0()f x 2p :()f x 的最小值为0()f x 3p :()f x 在0[,]2x π-上是增函数 4p :()f x 在0π[,]2x 上是增函数 A .1p ;3p B .1p ;4p C .2p ;3p D .2p ;4p 11.如图,当参数λ分别取λ1,λ2时,函数y =x1+λx(x ≥0)的部分图像分 别对应曲线C 1和C 2,则A .λ1<λ2<0B .0<λ2<λ1C .0<λ1<λ2D .λ2<λ1<012.某人设计一项单人游戏,规则如下:先将一棋子放在如图所示正方形ABCD的顶点A 处,然后通过掷骰子来确定棋子沿正方形的边按逆时针方向行走的单位,如果掷出的点数为i (6,2,1 =i ),则棋子就按逆时针方向行走i 个单位,一直循环下去.小明抛掷了三次骰子后,棋子都恰好又回到点A 处。
2013届高考理科数学模拟试题(必修+选修)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,第I 卷第1至2页,第II 卷第3至第4页。
考试结束,务必将试卷和答题卡一并上交。
参考公式:如果事件互斥,那么)()()(B P A P B A P +=+ 球的表面积公式:24R S π=如果事件相互独立,那么)()()(B P A P B A P ⋅=⋅ 球的体积公式:334R V π=如果事件A 在一次试验中发生的概率是p ,那么在n 次独立 (其中R 表示球的半径)重复试验中事件A 恰好发生k 次的概率:k n kk n n p p C k P --=)1()(),,2,1,0(n k =第I 卷考生注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写 清楚,并贴好条形码。
请认真核准该条形码上的准考证号、姓名和科目。
2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干 净后,再选涂其他答案标号。
在试题卷上作答无效.........。
一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项 是符合题目要求的。
1、已知集合{}0232=+-=x x x A ,{}24log ==x x B ,则=B A U ( ) A .{}2,1,2- B .{}2,1 C .{}2,2- D .{}22、若2tan =α,则ααααcos 2sin cos sin 2+-的值为 ( )A .0B .43 C .1 D .453、下列判断正确的是 ( ) A .若命题p 为真命题,命题q 为假命题,则命题“q p ∧”为真命题 B .命题“若0=xy ,则0=x ”的否命题为“若0=xy ,则0≠x ” C .“21sin =α”是“ 6πα=”的充分不必要条件D .命题“R x ∈∀,02>x ”的否定是“R x ∈∃0,020≤x ”4、若b a 、是任意实数,且b a >,则下列不等式成立..的是 ( ) A .22b a > B .1<a bC .0)lg(>-b aD .b a )31()31(< 5、函数4log )(2-+=x x x f 的零点所在的区间是 ( )A .)1,21( B .)2,1( C .)3,2( D .)4,3(6、曲线x e y x 2+=在点)1,0(处的切线方程为 ( ) A .1+=x yB .1-=x yC .13+=x yD .1+-=x y7、将函数x x x f 2sin 2cos )(-=的图像向左平移8π个单位后得到函数)(x F 的图像,则下列说法中正确的是( )A .函数)(x F 是偶函数,最小值是2-B .函数)(x F 是奇函数,最小值是2-C .函数)(x F 是偶函数,最小值是2-D .函数)(x F 是奇函数,最小值是2-8、在二项式n xx )1(2-的展开式中,所有二项式系数的和是32,则展开式中各项系数的和为( )A .0B .1C .32D .32- 9、已知函数x x x f sin cos )(=,R x ∈,给出下列四个命题:①若)()(21x f x f -=,则21x x -=;②)(x f 的最小正周期是π2;③)(x f 在区间]4,4[ππ-上是增函数;④)(x f 的图象关于直线43π=x 对称;⑤当]3,6[ππ-∈x 时,)(x f 的值域为]43,43[-;其中正确的命题为 ( )A .①②④B .③④⑤C .②③D .③④10、已知函数0,20,2)(<⎩⎨⎧+-≥=x x x x f ,则满足不等式)2()3(2x f x f <-的x 的取值范围为 ( )A .)0,3(-B .)1,3(-C .)0,3[-D .)3,3(-- 11、函数b a y x +=的图象如图1所示,则函数ax b y ++=1的大致图象为 ( )A B C D图112、函数()y f x =定义在R 上,且满足:①()f x 是偶函数;②(1)f x -是奇函数,且当01x <≤时3()log f x x =,则方程()4(1)f x f +=在区间(2,10)-内的所有实数之和为 ( )A .22B .24C .26D .28第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清 楚,然后贴好条形码。
2013年⾼考数学(理)押题精粹(课标版)(30道选择题+20道⾮选择题)⼀.选择题(30道)1.设集合,,若,则的值为()A.0 B.1 C. D.2. 已知是实数集,集合,,则 ( )A. B.C. D.3.已知i为虚数单位,则复数等于()A.-1-i B.-1+i C.1+i D.1—i4.复数在复平⾯上对应的点不可能位于A.第⼀象限 B.第⼆象限 C.第三象限 D.第四象限5. “ ”是“⽅程表⽰焦点在y轴上的椭圆”的()A.充分⽽不必要条件 B.必要⽽不充分条件C.充要条件 D.既不充分也不必要条件6.若命题“ R,使得 ”为假命题,则实数m的取值范围是()(A)(B)(C)(D)7.⼀个算法的程序框图如右,则其输出结果是()A.0B.C. D.8.下⾯的程序框图中,若输出的值为,则图中应填上的条件为()A. B. C. D.9.右图是函数在区间上的图象.为了得到这个函数的图象,只需将的图象上所有的点()A.向左平移个单位长度,再把所得各点的横坐标缩短到原来的倍,纵坐标不变B.向左平移个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变C.向左平移个单位长度,再把所得各点的横坐标缩短到原来的倍,纵坐标不变D.向左平移个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变10.已知则的值( )A.随着k的增⼤⽽增⼤B.有时随着k的增⼤⽽增⼤,有时随着k的增⼤⽽减⼩C.随着k的增⼤⽽减⼩D.是⼀个与k⽆关的常数11.关于函数的四个结论:P1:值为 ;P2:最⼩正周期为 ;P3:单调递增区间为 Z;P4:图象的对称中⼼为 Z.其中正确的有( )A.1 个 B.2个 C.3个 D.4个12. 是两个向量,,,且,则与的夹⾓为()(A)(B)(C)(D)13.已知a,b是两个互相垂直的单位向量,且c•a=c•b=1,,则对任意正实数t, 的最⼩值是( )A. B. C. D.14.⼀个⼏何体的三视图如右图所⽰,则它的体积为()A. B.15.正⽅形的边长为 ,中⼼为 ,球与正⽅形所在平⾯相切于点,过点的球的直径的另⼀端点为 ,线段与球的球⾯的交点为 ,且恰为线段的中点,则球的体积为( )A. B. C. D.16.不等式组表⽰⾯积为1的直⾓三⾓形区域,则的值为()A. B. C. D.17.设函数, . 若当时,不等式恒成⽴,则实数的取值范围是().A. B. C. D.18、⼀个盒⼦⾥有3个分别标有号码为1,2,3的⼩球,每次取出⼀个,记下它的标号后再放回盒⼦中,共取3次,则取得⼩球标号值是3的取法有()A.12种B. 15种C. 17种D.19种19、⼆项式的展开式中常数项是()A.28 B.-7 C.7 D.-2820、⾼三毕业时,甲,⼄,丙等五位同学站成⼀排合影留念,已知甲,⼄相邻,则甲丙相邻的概率为() A. B. C. D.⼀、某苗圃基地为了解基地内甲、⼄两块地种植的同⼀种树苗的长势情况,从两块地各随机抽取了10株树苗测量它们的⾼度,⽤茎叶图表⽰上述两组数据,对两块地抽取树苗的⾼度的平均数和中位数进⾏⽐较,下⾯结论正确的是()A. B.C. D.22、公差不为0的等差数列{ }的前21项的和等于前8项的和.若,则k=()A.20 B.21 C.22 D.2323、已知数列为等⽐数列,,,则的值为()A. B. C. D.24. 已知分别是双曲线的左、右焦点,过且垂直于轴的直线与双曲线交于两点,若是锐⾓三⾓形,则该双曲线离⼼率的取值范围是( )A. B. C. D.25.圆-2x+my-2=0关于抛物线=4y的准线对称,则m的值为()A.1B. 2C. 3D. 426.已知抛物线的焦点到准线的距离为 , 且上的两点关于直线对称, 并且 , 那么 =( )A. B. C.2 D.327.如果函数图像上任意⼀点的坐标都满⾜⽅程,那么正确的选项是()(A) 是区间(0,)上的减函数,且(B) 是区间(1,)上的增函数,且(C) 是区间(1,)上的减函数,且(D) 是区间(1,)上的减函数,且28.定义在R上的奇函数,当 ≥0时,则关于的函数(0<<1)的所有零点之和为()(A)1- (B)(C)(D)29.的展开式中, 的系数等于40,则等于( )A. B. C.1 D.30.已知函数 ,,设函数,且函数的零点均在区间内,则的最⼩值为()A. B. C. D.⼆.填空题(8道)31.已知A ,B(0,1)),坐标原点O在直线AB上的射影为点C,则 = .32.在的展开式中,含项的系数是________.(⽤数字作答)33.若实数、满⾜,且的最⼩值为,则实数的值为__34.已知四⾯体的外接球的球⼼在上,且平⾯ , , 若四⾯体的体积为 ,则该球的体积为_____________35.已知是曲线与围成的区域,若向区域上随机投⼀点,则点落⼊区域的概率为.36.公⽐为4的等⽐数列中,若是数列的前项积,则有也成等⽐数列,且公⽐为;类⽐上述结论,相应的在公差为3的等差数列中,若是的前项和,则有⼀相应的等差数列,该等差数列的公差为_____________.37.在中,⾓所对的边分别为 ,且 ,当取值时,⾓的值为_______________38.已知抛物线的准线为 ,过点且斜率为的直线与相交于点 ,与的⼀个交点为 ,若 ,则等于____________三.解答题(12道)39、中,,,分别是⾓的对边,向量, , .(1)求⾓的⼤⼩;(2)若,,求的值.40、已知等差数列的⾸项,公差.且分别是等⽐数列的.(Ⅰ)求数列与的通项公式;(Ⅱ)设数列对任意⾃然数均有 … 成⽴,求 … 的值.41、⼀次考试中,五名同学的数学、物理成绩如下表所⽰:学⽣(1)请在直⾓坐标系中作出这些数据的散点图,并求出这些数据的回归⽅程;(2)要从名数学成绩在分以上的同学中选⼈参加⼀项活动,以表⽰选中的同学的物理成绩⾼于分的⼈数,求随机变量的分布列及数学期望的值.42、⼗⼀黄⾦周,记者通过随机询问某景区110名游客对景区的服务是否满意,得到如下的列联表:性别与对景区的服务是否满意 单位:名男⼥总计满意 50 30 80不满意 10 20 30总计 60 50 110(1)从这50名⼥游客中按对景区的服务是否满意采取分层抽样,抽取⼀个容量为5的样本,问样本中满意与不满意的⼥游客各有多少名?(2)从(1)中的5名⼥游客样本中随机选取两名作深度访谈,求选到满意与不满意的⼥游客各⼀名的概率;(3)根据以上列联表,问有多⼤把握认为“游客性别与对景区的服务满意”有关附:P( )0.050 0.025 0.010 0.0053.841 5.024 6.635 7.87943、如图在四棱锥中,底⾯是边长为的正⽅形,侧⾯底⾯,且 ,设、分别为、的中点.(Ⅰ) 求证: //平⾯;(Ⅱ) 求证:⾯平⾯;(Ⅲ) 求⼆⾯⾓的正切值.44、已知椭圆 : 的焦距为 ,离⼼率为 ,其右焦点为 ,过点作直线交椭圆于另⼀点 .(Ⅰ)若 ,求外接圆的⽅程;(Ⅱ)若过点的直线与椭圆相交于两点、,设为上⼀点,且满⾜(为坐标原点),当时,求实数的取值范围.45. 已知定点A(1,0), B为x轴负半轴上的动点,以AB为边作菱形ABCD,使其两对⾓线的交点恰好落在y轴上.(1) 求动点D的轨迹五的⽅程.(2) 若四边形MPNQ的四个顶点都在曲线E上,M,N关于x轴对称,曲线E在M点处的切线为l,且PQ//l①证明直线PN与QN的斜率之和为定值;②当M的横坐标为,纵坐标⼤于O, =60°时,求四边形MPNQ的⾯积46. 对于函数f(x)(x∈D),若x∈D时,恒有>成⽴,则称函数是D上的J函数.(Ⅰ)当函数f(x)=m lnx是J函数时,求m的取值范围;(Ⅱ)若函数g(x)为(0,+∞)上的J函数,①试⽐较g(a)与 g(1)的⼤⼩;②求证:对于任意⼤于1的实数x1,x2,x3,…,xn,均有g(ln(x1+x2+…+xn))>g(lnx1)+g(lnx2)+…+g(lnxn).47. 设函数,.(Ⅰ)讨论函数的单调性;(Ⅱ)如果存在,使得成⽴,求满⾜上述条件的整数;(Ⅲ)如果对任意的,都有成⽴,求实数的取值范围.48.选修4-1:⼏何证明选讲.如图,过圆E外⼀点A作⼀条直线与圆E交B,C两点,且AB= AC,作直线AF与圆E相切于点F,连接EF交BC于点D,⼰知圆E的半径为2, =30.(1)求AF的长.(2)求证:AD=3ED.49. 在直⾓坐标系中,以原点为极点, 轴的正半轴为极轴建坐标系.已知曲线 ,已知过点的直线的参数⽅程为:,直线与曲线分别交于两点.(1)写出曲线和直线的普通⽅程;(2)若成等⽐数列,求的值.50. 选修4-5:不等式选讲设(1)当,求的取值范围;(2)若对任意x∈R,恒成⽴,求实数的最⼩值.2013年⾼考数学(理)押题精粹(课标版)【参考答案与解析】⼆.选择题(30道)1.【答案】A2.【答案】D【点评】:集合问题是⾼考必考内容之⼀,题⽬相对简单.集合的表⽰法有列举法、描述法、图⽰法三种,⾼考中与集合的运算相结合,不外乎上述⼏种题型。
2013年数学高考模拟试卷(理科)三本试卷分卷I 和卷II 两部分.考试时间120分钟.满分120分.请考生按规定用笔将所有试题的答案涂、写在答题卡上。
卷1选择题部分 (共50分)一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)(原创)已知集合{}{}21,,1,M y y x x R N y y x x R ==+∈==+∈,则M N =( )(A)[1,)+∞ (B)[1,)-+∞ (C)[1,2) (D)[1,2)-(2) (原创)已知i 是虚数单位,则12i 1i+-的值为 ( )(A)12i 2-+ (B)3-i 2(C)-1+3i 2(D) 3+i(3)(如图所示某程序框图,则输出的n 的值是( )(A) 13 (B)15 (C) 16 (D)14 (4)(原创)已知命题22:90,:60p x q x x -<+->,则q p ⌝⌝是的( ) (A)充分不必要条件 (B)既不充分也不必要条件(C)充要条件(D)必要不充分条件(5)(原创)用a ,b ,c 表示三条不同的直线,γ表示平面,给出下列命题: ①若//,//,//;a b b c a c 则 ②若,,a b b c a c ⊥⊥⊥则; ③若//,//,a b γγ则a//b ;④若,,//.a b a b γγ⊥⊥则参考公式:如果事件A ,B 互斥,那么 P (A +B )=P (A )+P (B )如果事件A ,B 相互独立,那么 P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率是p ,那么n 次独立重复试验中事件A 恰好发生k 次的概率P n (k )=C k n p k (1-p )n -k(k =0,1,2,…,n ) 台体的体积公式V=)(312211S S S S h ++其中S 1,S 2分别表示台体的上、下底面积, h 表示台体的高柱体的体积公式Sh V =其中S 表示柱体的底面积,h 表示柱体的高 锥体的体积公式Sh V 31=其中S 表示锥体的底面积,h 表示锥体的高 球的表面积公式 S =4πR 2球的体积公式3π34R V =其中R 表示球的半径开始p =0,n =20p=p+np p n=+P >100?输出n 结束 (第3题)是 否n=n-1432 2 正视侧视俯视(第13题)(第9题)其中真命题的序号是( )(A) ①③ (B) ①④ (C) ②③ (D) ②④(6)原创)若实数x,y 满足不等式组⎪⎩⎪⎨⎧≥-+≤+-≤,01,032,5y x y x y 则y x z 2+=的最大值是 ( )(A)10 (B) 11 (C)15 (D) 14(7)(原创)若25(21)x +=24100125a a x a x a x +++ ,则135a a a ++的值为( )(A) 121 (B)122 (C)124 (D)120(8)已知六个相同的盒子里各放了一本书,其中三本是语文书,三本是数学书,现在一次打开一个盒子,直到弄清哪三个盒子里放了语文书,则打开的盒子为4个的概率为( ) (A)0.15 (B)0.4 (C)0.3 (D)0.6 (9)(原创)如图,直角梯形ABCD 中,AD ⊥AB, AB//DC , AB=4,AD=DC=2,设点N 是DC 边的中点,点M 是梯形ABCD 内或边界上的一个动点,则AM AN ⋅的最大值是( )(A )4 (B ) 6 (C ) 8 (D )10(10)把已知正整数n 表示为若干个正整数(至少3个,且可以相等)之和的形式,若这几个正整数可以按一定顺序构成等差数列,则称这些数为n 的一个等差分拆.将这些正整数的不同排列视为相同的分拆.如:(1,4,7)与(7,4,1)为12的相同等差分拆.问正整数36的不同等差分拆的个数是( ).(A )20 (B )18 (C )19 (D )21卷II 非选择题部分 (共100分)二、 填空题: 本大题共7小题, 每小题4分, 共28分。
2013山东省高考数学(理科)模拟题3本试卷分第I 卷和第II 卷两部分,共4页。
满分150分。
考试用时120分钟。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答卷前,考生务必用0.5毫米黑色墨水签字笔将自己的姓名、座号、准考证号、县区和科类填写在答题卡和试卷规定的位置上。
2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
3.第II 卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。
不按以上要求作答的答案无效。
4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤。
参考公式:如果事件A B ,互斥,那么球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么 其中R 表示球的半径()()()B P A P B A P ⋅=⋅ 球的体积公式如果事件A 在一次试验中发生的概率是p ,那么 34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径()(1)(012)k k n kk n P k C p p k n -=-= ,,,, 第Ⅰ卷一、选择题(本大题共12小题,每小题5分,共60分) 1、若复数iia 213++(i R a ,∈为虚数单位)是纯虚数,则实数a 的值为 A .6-B .2-C .4D .62、已知{}{}{}1,2,3,4,1,2,2,3U M N ===,则()N M C U ⋃=A .{}1,4B .{}1,3,4C .{}4D .{}23、如图,一个空间几何体的三视图如图所示,其中,主视图中ABC ∆是边长为2的正三角形,俯视图为正六边形,那么该几何体的体积为ABC .3D .324、已知}{n a 为等差数列,若π=++951a a a ,则)cos(82a a +的值为A .21-B .23-C .21D .235、“1m <”是“函数2()f x x x m =++有零点”的A .充分非必要条件B .充要条件C .必要非充分条件D .既不充分也不必要条件6、在边长为1的正三角形ABC 中,,BD xBA CE yCA ==,0,0x y >>,且1x y +=,则CD BE ⋅的最大值为A .58-B .38-C .32- D .34-7.已知,,,a b c d 是实数,且c d >.则“a b >”是“a c b d b c a d ⋅+⋅>⋅+⋅”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件8.半径为1的球面上有A 、B 、C 三点,其中点A 与B 、C 两点间的球面距离均为2π,B 、C 两点间的球面距离均为3π,则球心到平面ABC 的距离为A .1421 B .721 C .7212 D .7213 9.已知函数()2log ,2,22a x x f x bx x x +≥⎧⎪=⎨-<⎪-⎩(,a b 为常数),在R 上连续,则a 的值是 A .2B .1C .3D .410.定义在R 上的函数()f x 满足:,4)1()1(,1)()(=-⋅+=-⋅x f x f x f x f 当]1,0[∈x 时,)(x f 的值域为]2,1[,k a =()[]()min 2,22f x x k k k N ∈+∈,则01lim nn k ka →∞=∑=A .1B .32C .43 D .5411.已知A B P 、、是双曲线22221x y a b -=上的不同三点,且A B 、连线经过坐标原点,若直线PA PB 、的斜率乘积23PA PB k k ⋅=,则该双曲线的离心率e = ABCD12.抛掷一枚骰子,当它每次落地时,向上的点数称为该次抛掷的点数,可随机出现1到6点中的任一个结果,连续抛掷三次,将第一次,第二次,第三次抛掷的点数分别记为c b a ,,,求长度为c b a ,,的三条线段能构成等腰三角形的概率为A .1172B .2372C .2572D .2972第Ⅱ卷二、填空题(本大题共4题,每小题4,共16分) 13、若f (x )在R 上可导,3)2(2)('2++=x f x x f ,则3()dx f x =⎰.14、设面积为S 的平面四边形的第i 条边的边长为(1,2,3,4)i a i =,P 是该四边形内一点,点P 到第i 条边的距离记为i h ,若k a a a a ====43214321,则()k S ih i i 241=∑=,类比上述结论,体积为V 的三棱锥的第i 个面的面积记为(1,2,3,4)i S i =,Q 是该三棱锥内的一点,点Q 到第个面的距离记为i d ,若431241,()1234i i S S S S k id =====∑则等于 。
2013年高考数学理科仿真试题(有答案河南十名校)数学(理科)本试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,考生作答时,将答案答在答题卡上(答题注意事项见答题卡),在本试题卷上答题无效,考试结束后,将本试题卷和答题卡一并交回.第Ⅰ卷选择题一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设复数=a-bi,则a+b=A.1B.3C.-1D.-32.已知全集U={x∈Z|-9x+8<0},M={3,5,6},N={x|-9x+20=0},则集合{2,7}为A.M∪NB.M∩NC.CU(M∪N)D.CU(M∩N)3.设x∈R,向量a=(2,x),b=(3,-2),且a⊥b,则|a-b|=A.5B.C.2D.64.一个几何体的三视图如图所示,则这个几何体的体积为A.B.16C.D.5.将函数f(x)=sin(2x+)的图象向右平移个单位后得到函数y=g (x)的图象,则g(x)的单调递增区间为A.2kπ-,2kπ+](k∈Z)B.2kπ+,2kπ+](k∈Z)C.kπ-,kπ+](k∈Z)D.kπ+,kπ+](k∈Z)6.如果执行下面的程序框图,输出的S=240,则判断框中为A.k≥15?B.k≤16?C.k≤15?D.k≥16?7.已知中心在坐标原点的双曲线C与抛物线=2py(p>0)有相同的焦点F,点A是两曲线的交点,且AF⊥y轴,则双曲线的离心率为A.B.C.D.8.已知实数x,y满足如果目标函数z=5x-4y的最小值为-3,则实数m=A.3B.2C.4D.9.已知四面体ABCD中,AB=AD=6,AC=4,CD=2,AB⊥平面ACD,则四面体ABCD外接球的表面积为A.36πB.88πC.92πD.128π10.设函数f(x)=2-2k(a>0且a≠1)在(-∞,+∞)上既是奇函数又是减函数,则g(x)=的图象是11.若直线y=-nx+4n(n∈N﹡)与两坐标轴所围成封闭区域内(不含坐标轴)的整点的个数为(其中整点是指横、纵坐标都是整数的点),则(a1+a3+a5+…+a2013)=A.1012B.2012C.3021D.400112.定义在实数集R上的函数y=f(x)的图象是连续不断的,若对任意实数x,存在实常数t使得f(t+x)=-tf(x)恒成立,则称f(x)是一个“关于t函数”.有下列“关于t函数”的结论:①f(x)=0是常数函数中唯一一个“关于t函数”;②“关于函数”至少有一个零点;③f(x)=是一个“关于t函数”.其中正确结论的个数是A.1B.2C.3D.0第Ⅱ卷非选择题本卷包括必考题和选考题两部分.第13题-第21题为必考题,每个试题考生都必须作答.第22题-第24题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分.13.已知某化妆品的广告费用x(万元)与销售额y(百万元)的统计数据如下表所示:从散点图分析,y与x有较强的线性相关性,且=0.95x+,若投入广告费用为5万元,预计销售额为____________百万元.14.已知递增的等比数列{}(n∈N﹡)满足b3+b5=40,b3•b5=256,则数列{}的前10项和=_______________.15.在平面直角坐标系xOy中,圆C的方程为-8x+15=0,若直线y =kx-2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,则k的最大值为_________.16.对于(m,n∈N,且m,n>2)可以按如下的方式进行“分解”,例如的“分解”中最小的数是1,最大的数是13.若的“分解”中最小的数是651,则m=___________.三、解答题:解答应写出文字说明。
山东省潍坊市教研室2013届高三高考仿真(三)文科数学本试卷分第I 卷和第Ⅱ卷两部分,共4页.满分150分.考试用时120分钟.考试结束后,将本试卷和答题卡一并交回.注意事项:1.答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、准考证号、县区和科类填写在答题卡和试卷规定的位置上.2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案不能答在试卷上.3.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.4.填空题请直接填写答案,解答题应写出文字说明、演算步骤或推证过程.第I 卷(共60分)一、选择题:本大题共12小题。
每小题5分,共60分.在每小题给出的四个选项中。
只有一项是符合题目要求的.1.已知集合{}{},,A x x B x x a B ==⋂≠∅<2>且A ,那么a 的值可以是A.3B.0C.4D.2 2.复数2a i i+-在复平面内所对应的点在实轴上,那么实数a= A.—2 B.0 C.1 D.23.某几何体的正视图与侧视频如图所示,则该几何体的俯视图不可能是4.下列四类函数中,具有性质“对任意的x >0,y >0,函数()f x 满足()()()f xy f x f y =+”的是A.幂函数B.余弦函数C.指数函数D.对数函数 5.命题“任意20,0x x x -≤>都有”的否定是A.存在20,0x x x -≤>使得B. 20,0x x x -存在>使得> C. 20,0x x x -任意>都有> D. 20,0x x x ≤-任意都有>6.已知变量x,y 满足20,230,0,x y x y x -≤⎧⎪-+≥⎨⎪≥⎩则z=2x+y 的最大值为A.0B.32C.4D.57.在平行四边形ABCD 中,AC 为一条对角线,()()AB 2,4,1,3,AC AD ===则A.(2,4)B.(3,5)C.(—2,—4)D.(—1,—1)8.已知椭圆()222210x y a b a b+=>>的左焦点为F ,右顶点为A ,点B 在椭圆上,且BF x ⊥轴,直线AB 交y 轴于点P ,若2AP PB =,由椭圆的离心率是B. C.13 D. 129.在空间,下列命题正确的是A.若三条直线两两相交,则这三条直线确定一个平面B.若直线m 与平面a 内的一条直线平行,则m//aC.若平面,,P a a l a l βββ⊥⋂=且则过内一点与垂直的直线于平面D.若直线a//b ,且直线,l a l b ⊥⊥则10.如图所示为函数()()2sin 0,2f x x πωϕωϕπ⎛⎫=+≤≤ ⎪⎝⎭>的部分图象,其中A 、B 两点之间的距离为5,那么()3f =A.—1B.12-C.12D.111.已知P 是直线3x+4y+8=0上的动点,PA 、PB 是圆222210x y x y +--+=的两条切线,A 、B 是切点,C 是圆心,则四边形PACB 面积的最小值是B.C.D. 12.已知定义在R 上的函数()()()()311,11y f x f x f x x f x x =+=--≤=满足当<时,,若函数()()log a g x f x x =-恰好有6个零点,则a 有取值范围是 A.[]11,3,553a ⎡⎤∈⎢⎥⎣⎦ B.[]10,5,5a ⎡⎤∈+∞⎢⎥⎣⎦C.[]11,5,775a ⎡⎤∈⎢⎥⎣⎦D.11,75⎛⎫ ⎪⎝⎭第II 卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.13.阅读右边程序框图,若输入n=5,则输出k 的值是______.14.已知数列{}n a 的前n 项和29158n k S n n k a =-+,若它的第项满足<<,则k=______15.已知不等式221+10x bx -+<的解集与不等式ax <的解集相等,则a+b 的值为______.16.定义:若存在常数k ,使得对定义域D 内的任意两个()()1,212121(),x x x x f x kx kx f x +≤+<均有成立,则称函数在定义域D 上满足K 条件.若函数[]2012ln ,1,2012y x x =∈满足K 条件,则常数的最大值为__________.三、解答题:本大题共6小题,共74分.17.(本不题满分12分)已知等差数列{}315,5,225.n n a a S ==的前n 项和为S 且(I )求数列{}n a 的通项n a ;(II )设{}22,T n an n n b n b n =+求数列的前项和.18.(本小题满分12分)在△ABC 中,角A ,B ,C 的对边分别为a,b,c,且A ,B ,C 成等差数列.(I)若3,a b ==,求c 的值及△ABC 的面积;(II)设2cos sin ,m A C m =求的最大值.19.(本小题满分12分)如图,AC 是圆O 的直径,点B 在圆O 上,BAC=30BM AC AC M EA ABC ∠⊥⊥,交于点,平面,FC//EA,AC=4,EA=3,FC=1.(I )证明:EM BM ⊥;(II )求平面BEF 与平面ABC 所成的锐二面角的余弦值.20.(本小题满分12分)在某体育项目的选拔比赛中,A 、B 两个代表队进行对抗赛,每队三名队员,A 队队员是123A A A 、、,B 队队员是123B B B 、、。
2013届高考猜题、押题卷理数试卷命题人:高三数学备课组组长胡国书本试题考试时间为120分钟,满分为150分一.选择题(本大题共10小题;每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合},1|{},lg |{2+=∈==∈=x y R y N x y R x M 则集合N M =( )A .),0(+∞B .[)+∞,1C .),(+∞-∞D .(]1,02.在下列各数中,与sin2009°的值最接近的数是( ) A .21B .23C .21-D .23-3.已知α、β、γ为互不重合的三个平面,命题:p 若αβ⊥,βγ⊥,则//αγ;命题:q 若α上存在不共线的三点到β的距离相等,则//αβ。
对以上两个命题,下列结论中正确的是( ) A .命题“p 且q ”为真 B .命题“p 或q ⌝”为假C .命题“p 或q ”为假D .命题“p ⌝且q ⌝”为假4. 若6260126(1)mx a a x a x a x +=++++ ,且12663a a a +++= , 则实数m 的值为( ) A. 1或3B. -3C. 1D. 1或 -35.设f (x )是定义在正整数集上的函数,且f (k )满足:当“f (k )≥k 2成立时,总可推出f (k +1)≥(k +1)2成立”.那么下列命题总成立的是 ( )A .若f (3)≥9成立,则当k ≥1,均有f (k )≥k 2成立B .若f (5)≥25成立,则当k <5,均有f (k )≥k 2成立C .若f (7)<49成立,则当k ≥8,均有f (k )<k 2成立D .若f (4)=25成立,则当k ≥4,均有f (k )≥k 2成立6.已知函数f (x )=ax 2+bx +c 的图像过点(-1,3)和(1,1),若0<c <1,则实数a 的取值范围是( ) A .[2,3]B .[1,3]C .(1,2)D .(1,3)7.在平面直角坐标系中,i ,j分别是与x 轴、y 轴正方向同向的单位向量,O 为坐标原点,设向量OA =2i +j ,OB =3i +k j,若A ,O ,B 三点不共线,且△AOB 有一个内角为直角,则实数k 的所有可能取值的个数是 ( )A .1B .2C .3D .48.曲线422=+y x 与曲线22cos 22sin x y θθ=-+⎧⎨=+⎩ ([0,2)θπ∈)关于直线l 对称,则直线l的方程为 ( ) A .2-=x y B .0=-y xC .02=-+y xD .02=+-y x9.如图是函数y =sin x (0≤x ≤π)的图象,A (x ,y )是图象上任意一点,过点A 作x 轴的平行线,交其图象于另一点B (A ,B 可重合).设线段AB 的长为f (x ),则函数f (x )的图象是( )10.如图,正六边形ABCDEF 的两个顶点A 、D 为椭圆的两个焦点,其余4个顶点在椭圆上,则该椭圆的离心率是 ( )A .2 B . 14+C .2D .3-1二、填空题(本大题共5小题,每小题5分,共25分,将答案填写在题中横线上.) 11.定义max{a ,b }=⎩⎨⎧<≥)()(b a b b a a ,已知实数x ,y 满足|x |≤2,|y |≤2,设z =max{4x +y ,3x -y },则z 的取值范围是12.为配制某种染色剂,需要加入三种有机染料,两种无机染料和两种添加剂,其中有机染料的添加顺序不能相邻,现要研究所有不同添加顺序对染色效果的影响,总共要进行的试验次数为 (用数字作答)13.根据《中华人民共和国道路交通安全法》规定:车辆驾驶员血液酒精浓度在20—80mg/100ml (不含80)之间,属于酒后驾车,处暂扣一个月以上三个月以下驾驶证,并处200元以上500元以下罚款;血液酒精浓度在80mg/100ml (含80)以上时,属醉酒驾车,处十五日以下拘留和暂扣三个月以上六个月以下驾驶证,并处500元以上2000元以下罚款.据《法制晚报》报道,2010年8月15日至8 月28日,全国查处酒后驾车和醉酒驾车共28800人,如图1是对这28800人酒后驾车血液中酒精含量进行检测所得结果的频率分布直方图,则属于醉酒驾车的人数约为 人.14.关于曲线C :221x y --+=的下列说法:①关于原点对称;②关于直线0x y +=对称;③是封闭图形,面积大于π2;④不是封闭图形,与圆222x y +=无公共点;⑤与曲线D :22||||=+y x 的四个交点恰为正方形的四个顶点,其中正确的序号是 .15.如图所示,一个粒子在第一象限及坐标轴上运动,在第一秒内它从原点运动到点(0,1),然后它接着按图所示在x 轴、y 轴的平行方向来回运动(即(0,0)→(0,1)y23→(1,1)→(1,0)→(2,0)→…)且每秒移动一个单位长度.(i )粒子运动到(4,4)点时经过了 秒;(ii )第2009秒时,粒子所处的位置为 .三.解答题(本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤.) 16.(本小题满分12分)已知向量)1,3(=a ,向量)cos ,(sin ααm b -=, (Ⅰ)若b a //,且)2,0[πα∈,求实数m 的最小值及相应的α值;(Ⅱ)若b a ⊥,且0=m , 求)cos()2sin()2cos(απαπαπ-+⋅- 的值.17. (本小题满分12分)一袋子中有大小、质量均相同的10个小球,其中标记“开”字的小球有5个,标记“心”字的小球有3个,标记“乐”字的小球有2个.从中任意摸出1个球确定标记后放回袋中,再从中任取1个球.不断重复以上操作,最多取3次,并规定若取出“乐”字球,则停止摸球.求:(Ⅰ)恰好摸到2个“心”字球的概率; (Ⅱ)摸球次数X 的概率分布列和数学期望.18.(本小题满分12分)如图,在边长为12的正方形A 1 AA ′A 1′中,点B 、C 在线段AA ′上,且AB = 3,BC = 4,作BB 1∥AA 1,分别交A 1A 1′、AA 1′于点B 1、P ;作CC 1∥AA 1,分别交A 1A 1′、AA 1′于点C 1、Q ;将该正方形沿BB 1、CC 1折叠,使得A ′A 1′ 与AA 1重合,构成如图所示的三棱柱ABC —A 1B 1C 1,在三棱柱ABC —A 1B 1C 1中,(Ⅰ)求证:AB ⊥平面BCC 1B 1;(Ⅱ)求面PQA 与面ABC 所成的锐二面角的大小.(Ⅲ)求面APQ 将三棱柱ABC —A 1B 1C 1分成上、下两部分几何体的体积之比.A 1 B 1 C 1A ′1A ′A BCP Q AB CA 1B 1C 1 QP19.(本小题满分12分)据中新网2009年4月9日电,日本鹿儿岛县樱岛昭和火山口当地时间9日下午3点31分发生中等规模爆发性喷火,鹿儿岛市及周边飞扬了大量火山灰.火山喷发停止后,为测量的需要距离喷口中心50米内的圆环面为第1区、50米至100米的圆环面为第2区、100米至150米的圆环面为第3区、……、第50(n -1)米至50n 米的圆环面为第n 区,……,现测得第1区火山灰平均每平方米为1吨、第2区每平方米的平均重量较第1区减少2%、第3区较第2区又减少2%,……,以此类推.(Ⅰ)若第n 区每平方米的重量为a n 千克,请写出a n 的表达式;(Ⅱ)第几区内的火山灰总重量最大?(Ⅲ)该火山这次喷发出的火山灰的总重量为多少万吨(π 取3,结果精确到万吨)?20.(本小题满分13分)已知点(4,0)C 和直线:1l x =,作,PQ l ⊥垂足为Q ,且(2)(2)0.PC PQ PC PQ +⋅-=(Ⅰ)求点P 的轨迹方程;(Ⅱ)过点C 的直线m 与点P 轨迹交于两点1122(,),(,)M x y N x y ,120x x >,点(1,0)B ,若BMN ∆的面积为,求直线m 的方程.21.(本小题满分14分)给出定义在(0,+∞)上的三个函数:f (x )=ln x ,g (x )=x 2-af (x ),h (x )=x -a x ,已知g (x )在x =1处取得极值.(Ⅰ)确定函数h (x )的单调性. (Ⅱ)求证:当1<x <e 2时,恒有x <)(2)(2x f x f -+成立;(Ⅲ)把函数h (x )的图象向上平移6个单位长度得到函数h 1(x )的图象,试确定函数y =g (x )- h 1(x )的图象与X 轴交点个数,并说明理由.2013届高考猜题、押题卷理数试卷参考答案一. 选择题BCCDD CBDAD1. B 解析:易得M=(0,+∞),N=[1, +∞),从而选B.2.C 解析: sin2009°=1sin(5360209)sin 209sin(18029)sin 292⨯+==+=-≈-. 3. C 解析: 命题p ,q 均为假命题,从而选C4. D 解析: 易得01a =,从而66(1)2m +=,则1m =或3m =-5.D 解析:由题意设f (x )满足:“当f (k )≥k 2成立时,总可推出f (k +1)≥(k +1)2成立.”,因此,对于A ,不一定有k =1,2时成立.对于B 、C 显然错误.对于D ,∵f (4)=25>42,因此对于任意的k ≥4,有f (k )≥k 2成立.6.C 解析:.将x =-1,y =3和x =1,y =1代入y =ax 2+bx +c 中得⎩⎪⎨⎪⎧3=a -b +c ,1=a +b +c ,∴b =-1.∴a +c =2.又∵0<c <1,∴0<2-a <1.∴1<a <2.7. B 解析:由题设,OA =(2,1),OB =(3,k ),则AB =(1,k -1).当OA ⊥OB 时,OA ·OB =0⇒k =-6; 当OA ⊥AB 时,OA ·AB =0⇒k =-1;当OB ⊥AB 时,OB ·AB =0⇒k 2-k +3=0(无解). 所以k 的所有可能取值有2个,故选B.8. D 解析: 两圆圆心(0,0)、(2,2)-关于直线l 对称,易求直线为02=+-y x . 9. A 解析: 由条件知,若A (x ,y ),则B (π-x ,y ),∴y =f (x )=|π-x -x |=|π-2x |,图象即为选项A.10.D 解析:连接AE ,则AE ⊥DE .设AD =2c ,则DE =c ,AE =3c .椭圆定义,得2a =AE +ED =3c +c ,所以e =a c=132+=3-1,故选D.二,填空题11,[-7,10] 12,1440 13,4320 14, ①②④⑤ 15, (i )20;(ii )(15,44)11.解析:由题设,z =max{4x +y ,3x -y }=⎪⎪⎩⎪⎪⎨⎧-<--≥+)21(3)21(4x y y x x y y x ,且|x |≤2,|y |≤2.作可行域,由图知,目标涵数z =4x +y 在点(2,2)处取最大值10,在点(-2,1)处取最小值-7.目标函数z =3x -y 点(2,-2)处取最大值8,在点(-2,1)处取最小值-7. 所以z 的取值范围是[-7,10],故选A. 12. 解析】4345A A = 1440.13.解析:4320 醉酒驾车的频率为0.15,从而人数约为4320人. [答案] ①②④⑤14.解析:将(,)x y 替换为(,)x y --,(,)y x --可知①②正确;该曲线与坐标轴无交点可知,该曲线不是封闭曲线,③不正确;方程可变形为222222x y x y xy xy +=≥⇒≥(当且仅当x y ==时取等),与圆无公共点,且与曲线D 有四个交点,④⑤正确. 15.解析:(i )20;(ii )将粒子的运动轨迹定义为数对(i ,j ) 则它的运动整点可排成数表 (0,0)(0,1) (1,1) (1,0)(0,0) (2,1) (2,2) (1,2) (0,2)(0,3) (1,3) (2,3) (3,3) (3,2) (3,1) (3,0)(4,0) (4,1) (4,2) (4,3) (4,4) (3,4) (2,4) (1,4)(0,4)通过推并可知:经过2 = 1×2s ,运动到(1,1)经过6 =2×3s ,运动到(2,2) 经过12 =3×4s ,运动到(3,3)∴经过44×45 = 1980s ,运动到(44,44) 再继续运动29s ,到达点(15,44).三.解答题16.【解析】(Ⅰ)∵b a //,∴)(sin 1cos 3m -⨯-αα= 0, (2分)∴)3sin(2cos 3sin πααα-=-=m , (3分)又∵α∈R ,∴1)3sin(-=-πα时,m min = –2.又)2,0[πα∈,所以πα611=(6分) (Ⅱ)∵b a ⊥,且0=m ,∴0cos sin 3=+αα∴tan α=(9分)∴)cos()2sin()2cos(απαπαπ-+⋅-αααcos )2sin (sin --⋅=ααα2tan 1tan 2tan +⋅=21= (12分)17.解: (Ⅰ)恰好摸到两个“心”字球的取法共有4种情形:开心心,心开心,心心开,心心乐. 则恰好摸到2个“心”字球的概率是53333215331010101010101000P =⨯⨯⨯+⨯⨯=. (4分)(Ⅱ)1,2,3X =,则 121101(1)5C P X C ===,11821110104(2)25C C P X C C ==⋅=,16(3)1(1)(2)25P X P X P X ==-=-==. (8分)故取球次数X 的分布列为1235252525EX =⨯+⨯+⨯=.(12分)18.【解析】(Ⅰ)∵AB = 3,BC= 4,∴AC = 5∵AC 2 = AB 2 + BC 2 ∴AB ⊥BC 又AB ⊥BB 1y且BC ∩BB 1 = B∴AB ⊥面BCC 1B 1 (4分) (Ⅱ)如图,建立空间直角坐标系 则A (3,0,0),P (0,0,3),Q (0,4,4) 设面APQ 的法向量为m= (x ,y ,z )330440x z y z -+=⎧⎨+=⎩⇒m = (1,–1,1) 而面ABC 的法向量可以取n= (0,0,1)∴cos ,m n ==∴面PQA 与面ABC 所成的锐二面角为 (8分) (Ⅲ)∵BP = AB = 3,CQ = AC = 7. ∴S 四边形BCQP =()(37)42022BC BP CQ ⋅++⨯==∴V A —BCQP =13×20×3 = 20又∵V 111ABC A B C -=113412722ABC S AA ⋅=⨯⨯⨯= .∴7220521320205V V -===上下. (12分) 19.解析:(Ⅰ)11)02.01(1000%)21(1000---=-=n n n a (*n N ∈). (2分) (Ⅱ)设第n 区内的面积为b n 平方米,则 )12(2500)1(50502222-=--=n n n b n πππ. (4分)则第n 区内火山灰的总重量为1%)21)(12(2500---==n n n n n b a C π(吨)1)98.0)(12(4--=n n π(万吨)(6分)设第n 区火山灰总重量最大,则⎪⎩⎪⎨⎧+≥--≥----nn n n n n n n )98.0)(12(4)98.0)(12(4)98.0)(32(4)98.0)(12(4121ππππ 解得,21502149≤≤n ∴n =50. 即得第50区火山灰的总重量最大. (8分) (Ⅲ)设火山喷发的火山区灰总重量为S 万吨, 则,21 ++++=n C C C S 设,02.01,21-=+++=q C C C S n n 则124)12(45434--++++=n n q n q q S ππππ① ∴nn q n q q q qS 4)12(4543432ππππ-++++=② 由①-②得nn n q n q q q S q 4)12()(24)1(12πππ--++++=-- ∴nn n q q n q q q q S )1(4)12()1(2)1()1(421-----+-=-πππ(10分)∵0<q <1,∴220.98lim 37124(1)2(1)40.022(0.02)n n qS S q q ππππ→∞⨯==+=+≈--⨯⨯(万吨)因此该火山这次喷发出的火山灰的总重量约为3712万吨. (12分)20. 解:(Ⅰ) 由已知(2)(2)0,PC PQ PC PQ +⋅-= 知2240PC PQ -= .所以2PC PQ =设(,)P x y21x =-平方整理得.221.412x y -= (4分) (Ⅱ)由题意可知设直线m 的斜率不为零,且(4,0)C 恰为双曲线的右焦点,设直线m 的方程为4x ty =+,由22221(31)243604124x y t y ty x ty ⎧-=⎪⇒-++=⎨⎪=+⎩(6分) 若2310t -=,则直线m 与双曲线只有一个交点,这与120x x >矛盾,故2310t -≠.由韦达定理可得12212224313631t y y t y y t -⎧+=⎪⎪-⎨⎪=⎪-⎩212121212222222(4)(4)4()16362434141600,3131313x x ty ty t y y t y y t t t t t t t t ∴=++=+++-+=++>⇒<⇒<--- (8分)1222121331ABCS BC y y t t ∆∴=-====--2221911,,4543t t t ⇒==< 或211.42t t ∴=⇒=± (10分) 故直线l 的方程为280280x y x y +-=--=或. (13分)21.解:(Ⅰ)由题设,g (x )=x 2-a ln x ,则g'(x )=2x -xa. 由已知,g'(1)=0,即2-a =0⇒a =2. (2分) 于是h (x )=x -2x ,则h'(x )=1-x1. 由h'(x )= 1-x1>0⇒x >1,所以h (x )在(1,+∞)上是增函数,在(0,1)上是减函数. (4分)(Ⅱ)当1<x <e 2时,0<ln x <2,即0<f (x )<2. 欲证x <)(2)(2x f x f -+,只需证x [2-f (x )]<2+ f (x ),即证f (x )>1)1(2+-x x . 设)(x ϕ=f (x )-1)1(2++x x =ln x -1)1(2+-x x ,则)('x ϕ=x 1-2)1()1(2)1(2+--+x x x =22)1()1(+-x x x . 当1<x <e 2时,)('x ϕ>0,所以)(x ϕ在区间(1,e 2)上为增函数. 从而当1<x <e 2时,)(x ϕ>)1(ϕ=0,即ln x >1)1(2+-x x ,故x <)(2)(2x f x f -+. (8分)(Ⅲ)由题设,h 1(x )=x -2x +6.令g (x )- h 1(x )=0,则x 2-2ln x -(x -2x +6)=0,即2x -2ln x =-x 2+x +6. 设h 2(x )=2x -2ln x ,h 3(x )=-x 2+x +6(x >0),h'2(x )=21-x2=x x 2 ,由x -2>0,得x >4.所以h 2(x )在(4,+∞)上是增函数,在(0,4)上是减函数. (10分)又h 3(x )在(0,21)上是增函数,在(21,+∞)上是减函数. 因为当x →0时,h 2(x )→+∞,h 3(x )→6.又h 2(1)=2,h 3(1)=6,h 2(4)=4-2ln4>0,h 3(4)=-6, 则函数h 2(x )与h 3(x )的大致图象如右:由图可知,当x >0,两个函数图象有2个交点,故函数y =g (x )-h 1(x )与X 轴有2个交点. (14分)。
考试时间:120分钟满分:150分注意事项:1.答题前,务必在试题卷、答题卡规定的地方填写自己的姓名、座位号,并认真核对答题卡上所粘贴的条形码中姓名、座位号与本人姓名、座位号是否一致务必在答题卡背面规定的地方填写姓名和座位号后两位2.答第1卷时,每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号3.答第Ⅱ卷时,必须使用0 5毫米的黑色墨水签字笔在答题卡上书写......,要求字体工整、笔迹清晰作图题可先用铅笔在答题卡规定的位置绘出,确认后再用0 5毫米的黑色墨水签字笔描清楚必须在题号所指示的答题区域作答,超出答题区域书写的答案无效,在试题卷、草稿纸上答题无效.............................4.考试结束,务必将试题卷和答题卡一并上交第Ⅰ卷(共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.2.已知2()2-=-,其中i是虚数单位,则实数a =()a i iA.-2B.-1C.1 D.2【答案】C【解析】解:因为222()221210,221-=-∴--=-∴-==∴=a i i a ai i a a a选C3. ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c ,若a 、b 、c 成等比数列,且2c a =, 则cos B =( ). A. 34B.3C.4D.144、命题p :若,a b R ∈,则1a b +>是1a b +>的充分而不必要条件; 命题q:函数y =的定义域是(][),13,-∞-+∞ ,则( )A 、“p 或q ”为假; B 、“p 且q ”为真; C 、“p 或q ”为真; D 、“p 且q ⌝”为真5. 若实数,x y 满足不等式组020x y x x y k ≥⎧⎪≤⎨⎪++≤⎩(k 为常数),且3x y +的最大值为12, 则实数k =( )A . 0B .24-C .12-D .任意实数 【答案】C【解析】本题考查画不等式组表示的平面区域、结合图求目标函数的最值、考查数形结合的数学数学方法根据已知的不等式组可知020x y x x y k ≥⎧⎪≤⎨⎪++≤⎩作图当直线y=-13x+13z 平移至A (3,3)时z 最大为12,将x=3,y=3代入直线2x+2y+k=0得:6+6+k=0,k=-12故答案为C 。
解决该试题的关键是画出可行域,将目标函数变形,画出其相应的直线,当直线平移至固定点时,z 最大,求出最大值列出方程求出a 的值。
6.将长方体截去一个四棱锥,得到的几何体如右图所示,则该几何体的左视图为( )7.程序框图如图21-1所示,则该程序运行后输出的B 等于( )A .7B .15C .31D .638.由曲线f(x)y 轴及直线y =m(m >0)围成的图形面积为83,则m 的值( )A2 B3 C1 D8 【答案】A【解析】22333200228(()|333m mS m dx mx x m m =-=-=-=⎰,所以m =2.9.在平面直角坐标系xOy 中,已知△ABC 顶点A (-4,0)和C (4,0),顶点B 在椭圆221259xy+=上,则sin sin sin A CB+=( )A .34B .23C .45D .5410.已知12,F F 是双曲线22221,(0)x y a b ab-=>>的左、右焦点,过F 1且垂直于x 轴的直线与双曲线的左支交于A 、B 两点△ABF 2是正三角形,那么双曲线的离心率为 ( )A.BC .2D .3【答案】B【解析】解:由△ABF 2是正三角形,可得∠AF 2F 1=30° 在Rt △AF 1F 2中,F 1F 2=2c ∴AF13c ,AF 2=3c根据双曲线的定义可得,AF 2-AF 13∴故选:B11.在区间[]0,2上任取两个实数,a b ,则函数3()f x x ax b =+-在区间[]1,1-上有且只有一个零点的概率是 A .18B .14C .34D .7812.跳格游戏:如图,人从格子外只能进入第1个格子,在格子中每次可向前跳1格或2格,那么人从格外跳到第8个格子的方法种数为( )A .8种B .13种C .21种D .34种第Ⅱ卷二.填空题:本大题共4小题,每小题4分。
13、函数x x y 21-+=的值域是 【答案】(]1,∞-【解析】解:4121lim)2144(lim 222=-=+---→-→xxxx x14、已知α∈(0,),2π且2sin 2α-sin αcos α-3cos 2α=0,则=+++12cos 2sin )4sin(ααπα15.设x ,y R ∈,向量(,1)x =a,(1,)y =b ,(2,4)=-c 且⊥a c ,//b c ,则_______+=a b .【答案】【解析】由02402a c a c x x ⊥⇒⋅=⇒-=⇒= ,由//422b c y y ⇒-=⇒=-,故||a b +==;16、关于函数))(32sin(4)(R x x x f ∈+=π,有下列命题:①由f (x 1) = f (x 2)=0可得x 1-x 2必是π的整数倍; ②若)12,6(,21ππ-∈x x ,且21211),6()(2x x x x f x f <++=则π;③函数的图象关于点)0,6(π-对称;④函数y = f (-x)的单调递增区间可由不等式)(223222Z k k x k ∈+≤+-≤-πππππ求得 。
正确命题的序号是三、解答题:解答应写出文字说明,证明过程或演算步骤。
17、(本小题满分12分)已知ABC ∆的内角为A 、B 、C 的对边分别为c b a ,,,B 为锐角,向量.//)12cos2,2(cos ),3,sin 2(2n m B B n B m 且-=-=(1)求B 的大小;(2)如果2=b ,求ABC S ∆的最大值.18.(本小题满分12分)由于当前学生课业负担较重,造成青少年视力普遍下降,现从某中学随机抽取16名学生,经校医用对数视力表检査得到每个学生的视力状况的茎叶图(以小数点前的一位数字为茎,小数点后的一位数字为叶)如右:(Ⅰ)若视力测试结果不低于5.0,则称为“好视力”,求校医从这16人中随机选取3人,至多有1人是“好视力”的概率;(Ⅱ)以这16人的样本数据来估计整个学校的总体数据,若从该校(人数很多)任选3人,记表示抽到“好视力”学生的人数,求的分布列及数学期望.【答案】解:(Ⅰ)由题意知本题是一个古典概型,设Ai表示所取3人中有i个人是“好视力”,至多有1人是“好视力”记为事件A,包括有一个人是好视力和有零个人是好视力,∴P(A)=P(A0)+P(A1)=31212412331616C C C121 C C140+=19.(本小题满分12分)已知数列{}n a 的前n 项和为n S ,且22(1)n n S a n =-+(n ∈*N ),(1)求证:数列{}n a n是等比数列;(2)设数列{2}n n a 的前n 项和为n T ,1231111...n nA T T T T =++++,试比较n A 与2nna 的大小.【答案】解答: (1)11123a S a ==-得112a =,当2n ≥时,由1n n n a S S -=-得1121n n a a nn -=⨯-,所以{}n a n是首项和公比均为12的等比数列.………………4分(2)由(1)得12n na n=,于是2nn a n ⋅=,(1)123 (2)n n n T n +=++++=.所以1112()1nT nn =-+,于是122(1)11n n A n n =-=++,…………8分而1222n nna n+=,所以问题转化为比较22n n与1n n +的大小,………10分设22()n f n n=,()1n g n n =+,当4n ≥时, ()(4)1f n f ≥=,而()1g n <,所以()()f n g n >. 经验证当1,2,3n =时,仍有()()f n g n >.因此对任意的正整数n ,都有()()f n g n >,即2n nA na <……………….12分20. 如图,在长方体1111ABC D A B C D -中,,E P 分别是11,BC A D 的中点,,M N 分1,AE C D 的中点,1,2AD AA a AB a===(Ⅰ)求证://M N 面11AD D A ; (Ⅱ)求二面角P AE D --的大小。
(Ⅲ)求三棱锥P D E N -的体积。
【答案】解:以D 为原点,1,,D A D C D D 所在直线分别为x 轴,y 轴,z 轴,建立直角坐标系,则:()()()()()11,0,0,,2,0,0,2,0,,0,,0,0,A a B a a C a A a a D a∵,,,E P M N 分别是111,,,BC A D AE C D 的中点 ∴3,2,0,,0,,,,0,0,,,2242aa a a E a P a M a N a ⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭(Ⅱ)过P 作PH AE ⊥,交AE 于H ,取A D 的中点F ,则,0,02aF ⎛⎫⎪⎝⎭∵ 设(),,0H x y ,则,,,,,022a a H P x y a H F x y ⎛⎫⎛⎫=--=-- ⎪ ⎪⎝⎭⎝⎭又,2,02aAE a ⎛⎫=-⎪⎝⎭由0AP AE ⋅=,及H 在直线AE 上,可得: 2204244a a x ay x y a⎧-+-=⎪⎨⎪+=⎩(Ⅲ)设()1111,,n x y z = 为平面D E N 的法向量,则11,n DE n DN ⊥⊥又,2,0,0,,,,0,222a a a D E a D N a D P a ⎛⎫⎛⎫⎛⎫===⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭【解析】本试题主要是考查了立体几何中线面平行的证明,以及二面角的求解和锥体体积的计算的综合运用。
(1)利用线面平行的判定定理可知找到线线平行,从而得到结论。
(2)建立空间直角坐标系,然后表示平面的法向量,运用向量的夹角公式得到二面角的平面角的大小(3)根据锥体体积的公式,利用底面积和高度来求解得到。
21.(本小题满分12分) 已知函数()()()11ln 12212≥+++-=m x x mxx f .(Ⅰ) 若曲线()x f y C =:在点()1,0P 处的切线l 与曲线C 有且只有一个公共点,求m 的值; (Ⅱ) 求证:函数()x f 存在单调递减区间[]b a ,,并求出单调递减区间的长度a b t -= 的取值范围. 【答案】解:(Ⅰ)函数()x f 的定义域为()+∞-,1,(),112++-='x mx x f (),10-='f所以曲线()x f y C =:在点()1,0P 处的切线方程为:1+-=x y 因为切线与曲线有唯一的公共点, 所以方程()01ln 212=++-x x mx有且只有一个实数解,显然0=x 是方程的一个解.令()()1ln 212++-=x x mxx g ,则()111111+⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--=++-='x m x mx x mx x g而当()-∞→-→x g x 时,1,因此()0=x g 在⎪⎭⎫⎝⎛--11,1m 内也有一个解.即当1>m 时,不合题目的条件.综上讨论得1=m .……………………………………………………………………………8分 (Ⅱ)()()(),11122->+--+='x x x m mxx f ()()()01202<--+=⇔<'x m mxx h x f .因为(),044222>+=+-=∆m m m 且对称轴为1121->+-=mx ,()()01121>=---=-m m h ,所以方程()0=x h 在()+∞-,1内有两个不同实根21,x x , 即()()0122<--+=x m mxx h 的解集为()21,x x ,所以函数()x f 的单调递减区间为[]21,x x .()21221124x x x x x x t -+=-=m m m 1422⨯+⎪⎭⎫⎝⎛--=241m+=由于1≥m ,所以54112≤+<m,所以函数()x f y =的递减区间长度t 的取值范围是]5,1(.……………………15分(2))因为()()(),11122->+--+='x x x m mxx f ()()()01202<--+=⇔<'x m mxx h x f .22(本小题14分)离心率为5的椭圆C :)0(12222>>=+b a by ax 的左、右焦点分别为)0,1(1-F 、)0,1(2F ,O 是坐标原点.(1)求椭圆C 的方程;(2)若直线1+=ky x 与C 交于相异两点M 、N ,且OM ∙ON 931-=,求k .(其中O 是坐标原点)【答案】解:(1)依题意得⎪⎪⎩⎪⎪⎨⎧==+=155222c acc b a ----------------3分【解析】本题考查的知识点是直线与圆的位置关系,直线与圆锥曲线的综合应用,其中根据已知条件求出椭圆的标准方程是解答本题的关键.(1)利用椭圆的几何性质可知道参数a,b,c 的值,进而求解得到。