2020中考数学压轴题解题技巧
- 格式:docx
- 大小:220.54 KB
- 文档页数:6
2020中考数学拔高压轴30练,附答题技巧何时注意分类讨论分类讨论在数学题中经常以最后压轴题的方式出现,稍不注意就会出现解答不全面的问题。
以下几点是需要大家注意分类讨论的:1、熟知直角三角形的直角,等腰三角形的腰与角以及圆的对称性,根据图形的特殊性质,找准讨论对象,逐一解决。
在探讨等腰或直角三角形存在时,一定要按照一定的原则,不要遗漏,最后要综合。
2、讨论点的位置一定要看清点所在的范围,是在直线上,还是在射线或者线段上。
3、图形的对应关系多涉及到三角形的全等或相似问题,对其中可能出现的有关角、边的可能对应情况加以分类讨论。
4、代数式变形中如果有绝对值、平方时,里面的数开出来要注意正负号的取舍。
5、考查点的取值情况或范围。
这部分多是考查自变量的取值范围的分类,解题中应十分注意性质、定理的使用条件及范围。
6、函数题目中如果说函数图象与坐标轴有交点,那么一定要讨论这个交点是和哪一个坐标轴的哪一半轴的交点。
7、由动点问题引出的函数关系,当运动方式改变后(比如从一条线段移动到另一条线段)时,所写的函数应该进行分段讨论。
值得注意的是:在列出所有需要讨论的可能性之后,要仔细审查是否每种可能性都会存在,是否有需要舍去的。
最常见的就是一元二次方程如果有两个不等实根,那么我们就要看看是不是这两个根都能保留。
压轴题解题技巧纵观全国各地的中考数学试卷,数学综合题关键是第22题和23题,我们不妨把它分为函数型综合题和几何型综合题。
(一)函数型综合题是先给定直角坐标系和几何图形,求(已知)函数的解析式(即在求解前已知函数的类型),然后进行图形的研究,求点的坐标或研究图形的某些性质。
初中已知函数有:①一次函数(包括正比例函数)和常值函数,它们所对应的图像是直线;②反比例函数,它所对应的图像是双曲线;③二次函数,它所对应的图像是抛物线。
求已知函数的解析式主要方法是待定系数法,关键是求点的坐标,而求点的坐标基本方法是几何法(图形法)和代数法(解析法)。
中考数学压轴题解题技巧湖北竹溪城关中学明道银解中考数学压轴题秘诀(一)数学综合题关键是第24题和25题,我们不妨把它分为函数型综合题和几何型综合题。
(一)函数型综合题:是先给定直角坐标系和几何图形,求(已知)函数的解析式(即在求解前已知函数的类型),然后进行图形的研究,求点的坐标或研究图形的某些性质。
初中已知函数有:①一次函数(包括正比例函数)和常值函数,它们所对应的图像是直线;②反比例函数,它所对应的图像是双曲线;③二次函数,它所对应的图像是抛物线。
求已知函数的解析式主要方法是待定系数法,关键是求点的坐标,而求点的坐标基本方法是几何法(图形法)和代数法(解析法)。
此类题基本在第24题,满分12分,基本分2-3小题来呈现。
(二)几何型综合题:是先给定几何图形,根据已知条件进行计算,然后有动点(或动线段)运动,对应产生线段、面积等的变化,求对应的(未知)函数的解析式(即在没有求出之前不知道函数解析式的形式是什么)和求函数的定义域,最后根据所求的函数关系进行探索研究,一般有:在什么条件下图形是等腰三角形、直角三角形、四边形是菱形、梯形等或探索两个三角形满足什么条件相似等或探究线段之间的位置关系等或探索面积之间满足一定关系求x的值等和直线(圆)与圆的相切时求自变量的值等。
求未知函数解析式的关键是列出包含自变量和因变量之间的等量关系(即列出含有x、y的方程),变形写成y=f(x)的形式。
一般有直接法(直接列出含有x和y的方程)和复合法(列出含有x和y和第三个变量的方程,然后求出第三个变量和x之间的函数关系式,代入消去第三个变量,得到y=f(x)的形式),当然还有参数法,这个已超出初中数学教学要求。
找等量关系的途径在初中主要有利用勾股定理、平行线截得比例线段、三角形相似、面积相等方法。
求定义域主要是寻找图形的特殊位置(极限位置)和根据解析式求解。
而最后的探索问题千变万化,但少不了对图形的分析和研究,用几何和代数的方法求出x的值。
2020年中考数学压轴的五种策略备考是一种经历,也是一种体验。
每天进步一点点,基础扎实一点点,通过考试就会更容易一点点。
中考数学压轴题是很多同学的弱项,下面小编就来给大家分享2020年中考数学压轴的五种策略,希望对大家有所帮助。
2020年中考数学压轴的五种策略1.学会运用数形结合思想数形结合思想是指从几何直观的角度,利用几何图形的性质研究数量关系,寻求代数问题的解决方法(以形助数),或利用数量关系来研究几何图形的性质,解决几何问题(以数助形)的一种数学思想。
数形结合思想使数量关系和几何图形巧妙地结合起来,使问题得以解决。
纵观近几年全国各地的中考压轴题,绝大部分都是与平面直角坐标系有关,其特点是通过建立点与数即坐标之间的对应关系,一方面可用代数方法研究几何图形的性质,另一方面又可借助几何直观,得到某些代数问题的解答。
2.学会运用函数与方程思想从分析问题的数量关系入手,适当设定未知数,把所研究的数学问题中已知量和未知量之间的数量关系,转化为方程或方程组的数学模型,从而使问题得到解决的思维方法,这就是方程思想。
用方程思想解题的关键是利用已知条件或公式、定理中的已知结论构造方程(组)。
这种思想在代数、几何及生活实际中有着广泛的应用。
直线与抛物线是初中数学中的两类重要函数,即一次函数与二次函数所表示的图形。
因此,无论是求其解析式还是研究其性质,都离不开函数与方程的思想。
例如函数解析式的确定,往往需要根据已知条件列方程或方程组并解之而得。
3.学会运用分类讨论的思想分类讨论思想可用来检测学生思维的准确性与严密性,常常通过条件的多变性或结论的不确定性来进行考察,有些问题,如果不注意对各种情况分类讨论,就有可能造成错解或漏解,纵观近几年的中考压轴题分类讨论思想解题已成为新的热点。
在解答某些数学问题时,有时会遇到多种情况,需要对各种情况加以分类,并逐类求解,然后综合得解,这就是分类讨论法。
分类讨论是一种逻辑方法,是一种重要的数学思想,同时也是一种重要的解题策略,它体现了化整为零、积零为整的思想与归类整理的方法。
中考数学压轴题解题技巧(中考高分必备)数学综压轴题是为考察考生综合运用知识的能力而设计的,集中体现知识的综合性和方法的综合性,多数为函数型综合题和几何型综合题。
函数型综合题:是给定直角坐标系和几何图形,先求函数的解析式,再进行图形的研究,求点的坐标或研究图形的某些性质。
求已知函数的解析式主要方法是待定系数法,关键是求点的坐标,而求点的坐标基本方法是几何法(图形法)和代数法(解析法)。
几何型综合题:是先给定几何图形,根据已知条件进行计算,然后有动点(或动线段)运动,对应产生线段、面积等的变化,求对应的(未知)函数的解析式,求函数的自变量的取值范围,最后根据所求的函数关系进行探索研究。
一般有:在什么条件下图形是等腰三角形、直角三角形,四边形是平行四边形、菱形、梯形等,或探索两个三角形满足什么条件相似等,或探究线段之间的数量、位置关系等,或探索面积之间满足一定关系时求x的值等,或直线(圆)与圆的相切时求自变量的值等。
求未知函数解析式的关键是列出包含自变量和因变量之间的等量关系(即列出含有x、y的方程),变形写成y=f(x)的形式。
找等量关系的途径在初中主要有利用勾股定理、平行线截得比例线段、三角形相似、面积相等方法。
求函数的自变量的取值范围主要是寻找图形的特殊位置(极端位置)和根据解析式求解。
而最后的探索问题千变万化,但少不了对图形的分析和研究,用几何和代数的方法求出x的值。
解中考压轴题技能:中考压轴题大多是以坐标系为桥梁,运用数形结合思想,通过建立点与数即坐标之间的对应关系,一方面可用代数方法研究几何图形的性质,另一方面又可借助几何直观,得到某些代数问题的解答。
关键是掌握几种常用的数学思想方法。
一是运用函数与方程思想。
以直线或抛物线知识为载体,列(解)方程或方程组求其解析式、研究其性质。
二是运用分类讨论的思想。
对问题的条件或结论的多变性进行考察和探究。
三是运用转化的数学的思想。
由已知向未知,由复杂向简单的转换。
初中中考各类压轴题答题技巧一、数学压轴题类型1. 函数综合题初中中考的函数综合题常常把一次函数、二次函数甚至反比例函数揉在一起考。
对于这种题,你得先把函数的基本性质搞清楚。
像二次函数的对称轴公式、顶点坐标公式,这些都是最基础的,要像背九九乘法表一样熟练。
别一看到题目就慌,先把题目里给出的函数表达式看明白,看看是要你求最值呢,还是求与坐标轴的交点。
要是求最值,那就赶紧把顶点坐标求出来,往往答案就在那里等着你呢。
2. 几何综合题几何压轴题有时候是三角形、四边形、圆各种图形组合在一起。
比如说三角形全等和相似,这可是经常用到的知识点。
看到三角形相关的条件,先在脑海里过一遍全等和相似的判定条件。
对于圆的问题,什么切线的性质、圆周角定理之类的,可不能忘。
在做几何题的时候,辅助线就像一把神奇的钥匙,有时候一条合适的辅助线就能让整个题目变得超级简单。
你可以多尝试从特殊点、特殊线去作辅助线,比如中点、角平分线之类的。
3. 动点问题动点问题最让人头疼了,因为点在动,情况就一直在变。
这时候你要抓住不变的量。
比如说有些线段的长度虽然点在动,但它们之间的比例关系可能是不变的。
还有就是要学会用含未知数的式子表示线段的长度,这样就能建立方程来求解了。
有时候还可以通过找特殊时刻的情况,来推测整个运动过程中的规律。
二、答题技巧通用部分1. 读题要仔细很多时候,答案就藏在题目里。
那些看似不起眼的条件,可能就是解题的关键。
别走马观花地读题,要一个字一个字地看,把所有的条件都找出来,还可以在题目上做一些小标记,提醒自己哪些是重点。
2. 大胆假设如果一时没有思路,那就大胆假设一些情况。
比如说假设某个点的坐标,或者假设某个图形的形状。
然后根据假设去推导,如果推导过程中出现矛盾,那就说明假设不成立,再换一个假设。
有时候通过这种不断试错的方式,就能找到正确的解题方向。
3. 检查很重要做完题可别着急交卷,一定要检查。
检查的时候可以换一种思路重新做一遍,或者把答案代入题目中看看是否符合所有的条件。
人教部编版初中数学中考压轴题全面总结及攻破技巧中考数学压轴题作为考试中的难点,确实给很多考生带来了不小的挑战。
以下是对人教部编版初中数学中考压轴题的全面总结及攻破技巧:一、压轴题概述数学压轴题常常涵盖多个知识点,并需要学生具备一定的数学思维和分析问题的能力。
其目的是为了筛选出基础扎实、思维活跃的优秀学生。
二、常见类型及解题技巧1. 函数型压轴题:这类题目常涉及到一次函数、二次函数或反比例函数等。
解题时,要理解函数的性质,如函数的增减性、极值点等。
同时,要学会利用数形结合的方法,将函数问题转化为几何问题。
2. 三角形型压轴题:三角形与勾股定理、中线定理等知识点常结合在一起。
解答时,除了运用相关定理,还要对三角形进行适当的分类讨论。
3. 动点型压轴题:这类题目涉及到的知识点较多,如函数、几何等。
解答时,要理解动点的含义,通过设定变量,建立方程或方程组解决问题。
4. 几何型压轴题:常涉及多边形、圆、扇形等几何知识。
解答时,要注意利用几何图形的性质,如圆的周长、面积公式,多边形的内角和等。
同时,也要学会使用演绎推理的方法。
三、解题策略1. 强化基础知识:只有对各知识点有深入的理解和掌握,才能灵活应对压轴题的各种变化。
2. 提高数学思维能力:在掌握基础知识的前提下,通过大量练习提高分析问题、解决问题的能力。
3. 学会总结和反思:做完题目后,要及时总结解题方法和思路,找出自己的不足之处并加以改进。
4. 模拟考试中尝试挑战压轴题:在模拟考试中,可以有针对性地挑战压轴题,以提高自信心和应试能力。
四、攻破难点1. 针对难点进行专项训练:如函数中的一次函数与反比例函数的综合应用、几何中的多边形与圆的综合应用等。
通过专项训练,强化对难点的理解和掌握。
2. 学会利用辅助工具:如数轴、坐标系、图形等,这些工具可以帮助理解题意,简化问题。
3. 注重一题多解:尝试从不同的角度和思路去解答同一道题目,拓展解题思路。
4. 寻求老师和同学的帮助:当遇到难以解决的问题时,可以向老师或同学请教,共同探讨解题方法。
2020中考数学压轴题:四大破解方法近几年的中考,一些题型灵活、设计新颖、富有创意的压轴试题涌现出来,其中一类以平移、旋转、翻折等图形变换为解题思路的题目更是成为中考压轴大戏的主角。
不过这些传说中的主角,并没有大家想象的那么神秘,仅仅我们需要找出这些压轴题目的切入点。
切入点一:构造定理所需的图形或基本图形在解决问题的过程中,有时添加辅助线是必不可少的。
对于北京中考来说,只有一道很简单的证明题是能够不用添加辅助线的,其余的全都涉及到辅助线的添加问题。
中考对学生添线的要求还是挺高的,但添辅助线几乎都遵循这样一个原则:构造定理所需的图形或构造一些常见的基本图形。
切入点二:做不出、找相似,有相似、用相似压轴题牵涉到的知识点较多,知识转化的难度较高。
学生往往不知道该怎样入手,这时往往应根据题意去寻找相似三角形。
切入点三:紧扣不变量,并善于使用前题所采用的方法或结论在图形运动变化时,图形的位置、大小、方向可能都有所改变,但在此过程中,往往有某两条线段,或某两个角或某两个三角形所对应的位置或数量关系不发生改变。
切入点四:在题目中寻找多解的信息图形在运动变化,可能满足条件的情形不止一种,也就是通常所说的两解或多解,如何避免漏解也是一个令考生头痛的问题,其实多解的信息在题目中就能够找到,这就需要我们深度的挖掘题干,实际上就是反复认真的审题。
总之,问题的切入点很多,考试时也不是一定要找到那么多,往往只需找到一两个就行了,关键是找到以后一定要敢于去做。
有些同学往往想想觉得不行就放弃了,其实绝绝大部分的题目只要想到上述切入点,认真做下去,问题基本都能够得到解决。
中考数学压轴题解题技巧
1. 哎呀呀,你知道吗,中考数学压轴题其实并不可怕!就像爬山,虽然陡峭,但找对路径就容易多啦!比如遇到那种几何和函数结合的难题,咱别慌,先仔细观察图形,找到关键的线段或角度呀。
2. 嘿,要我说啊,做中考数学压轴题得有耐心!这就好比钓鱼,得沉得住气。
像那种需要分类讨论的题目,一个个情况去分析呀,像搭积木一样,慢慢就把答案堆出来啦!
3. 哇哦,解中考数学压轴题一定要抓住关键信息!这就像在一堆宝藏里找那颗最闪亮的宝石。
比如看到一个条件提及比值,那是不是可以考虑设未知数来求解呢!
4. 呀,可得注意啦,中考数学压轴题中方程思想超重要的!这就如同给了你一把万能钥匙。
像那种给出很多等式的题目,咱就勇敢地设未知数,列方程求解呀!
5. 嘿呀,千万别忘了,做中考数学压轴题思维要灵活!像孙悟空一样会七十二变。
比如遇到一个看似无解的题目,咱换个角度想想,说不定就有新思路啦!
6. 哇,告诉你哦,中考数学压轴题也得注重细节!就跟拼图一样,少一块都不行。
比如计算过程中一个小数点可都不能马虎呀!
总之,中考数学压轴题并不可怕,只要掌握了这些技巧,多练习,咱就一定能拿下它!。
初中数学中考压轴题几何题技巧一、初中数学中考压轴题几何题的难点初中数学中考压轴题里的几何题那可真是让人又爱又恨呀。
几何题的图形千变万化,有时候一个图里好几条辅助线,看得人眼花缭乱。
而且它的知识点融合度特别高,三角形、四边形、圆这些知识都可能搅和在一起,让咱们的小脑袋瓜子转不过来弯。
就像那种把几个几何图形嵌套在一起的题目,要想求出最后的答案,得在各个图形的性质和定理之间跳来跳去,真的超级考验咱们对知识的掌握程度呢。
二、应对几何题的基础准备1. 把定理牢记于心几何定理就像是咱们解题的武器,像勾股定理、三角形全等的判定定理、相似三角形的性质定理等等,这些都得背得滚瓜烂熟。
要是连定理都记不住,在考场上就只能干瞪眼啦。
就好比上战场没带枪一样,只能等着被敌人打败。
2. 多做基础题在挑战压轴题之前,先把基础的几何题做扎实。
通过做基础题可以加深对定理的理解,还能提高咱们画图的能力。
很多时候压轴题的图很复杂,但都是由一些基础图形组合起来的。
做基础题就像是在搭积木,先把小积木块熟悉了,以后搭大城堡就容易多了。
三、几何题的解题技巧1. 巧妙添加辅助线辅助线就像是给题目开了一扇窗。
比如说遇到三角形的中点问题,咱们可以考虑连接中点构造中位线;如果是圆的问题,可能要连接半径或者作切线。
添加辅助线之后,原本复杂的图形就会变得清晰起来,解题的思路也就有了。
我记得有一道题,本来是一个不规则的四边形,怎么看都找不到解题的头绪,后来我试着连接了一条对角线,一下就把它分成了两个三角形,然后利用三角形的知识就顺利解决了。
2. 从问题倒推有时候从题目给出的问题出发,反向思考会更容易找到解题的方向。
比如说题目让求某个线段的长度,那我们就想这个线段可能跟哪些已知的线段或者图形有关系,是在三角形里用勾股定理呢,还是在相似三角形里通过比例关系来求。
这就像是我们要去一个地方,知道目的地了,然后再去找通往目的地的路。
3. 观察图形特点几何题的图形可不是随便画的,每个图形都有它的特点。
2020年中考数学压轴题:复习策略1、选题①中考试题具有良好的教学导向功能,既引导学生学会学习,乐于科学探究,乐于在生活中用数学;又引导我们数学教师积极投身到数学课程改革中去,努力改进初中数学教学,研究如何按照中考试题的要求把握平时练习、复习。
所以能够收集历年来有代表性的中考数学压轴题,并实行分类整理以专题的形式实行复习;②“试题源于课本”已成为历年中考的命题原则,具有良好的导向作用。
所以在最后的复习阶段能够对课本的例、习题或者一些经典的历年试题在认真研究的基础上加以变式再创造,在复习教学中展开陈题新解,以一题多解、一题多变、多题一解等的形式将知识串联,方法归纳,以少胜多,提升学生的解题水平。
2、学生的解题策略在每一次的考试中,我们都会发现有部分基础较好的学生对于压轴题的解答得分率也不高,认真分析、究其原因主要是会而不对,对而不全,全而不美的问题。
所以应该让学生向错误学习,放手让学生自己去搞点讲评,建立错题档案,对于错的题目实行反复训练。
对于综合性的压轴题,让学生总结题目考查了哪些知识点,每个知识点是从哪个角度考查的,题目考查了哪些数学思想方法,本题有哪几种解题方法,解法是什么?当自己出错时,是知识上的错误还是方法上的错误,是解题过程的失误还是心理上的缺陷导致的失误。
切实解决会而不对,对而不全,全而不美的问题;3、学生书写的规范性每次考试之后总会发现:有部分学生在解最后一题的压轴题时,解题步骤不规范,导致失分;甚至因为第1小题书写不规范,导致自己在做后面的小题时,抄错而不得分。
所以我们在平时的教学中要讲清楚每一题中每一步的评分标准,要舍得时间让学生在课堂上把一道题解答完整,并认真批改,即时纠错;而最重要的就是要严格要求每一次作业中的书写过程,认为不过关的坚决要求重写,慢慢养成习惯。
杜绝平时因时间不够而重答案轻过程;4、处理好压轴题与其他知识复习的关系因为压轴题的难度较高,所以在专题复习中针对的都是基础较好的学生,而对于基础较差的学生有可能对此失去兴趣,成绩下滑。
中考数学压轴题解题技巧(中考高分必备)数学压轴题是初中数学中覆盖知识面最广,综合性最强的题型。
综合近年来各地中考的实际情况,压轴题多以数学综合题的形式出现,常见题型有两类:函数型压轴题和几何形压轴题。
压轴题考查知识点多,条件也相当隐晦,这就要求学生有较强的理解问题、分析问题、解决问题的能力,对数学知识、数学方法有较强的驾驭能力,并有较强的创新意识和创新能力,当然,还必须具有强大的心理素质。
下面从知识角度和技术角度谈谈中考数学压轴题的解题技巧。
先以2009年河南中考数学压轴题为例:如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(4,0)、C(8,0)、D(8,8).抛物线y=ax2+bx 过A、C两点.(1)直接写出点A的坐标,并求出抛物线的解析式;(2)动点P从点A出发.沿线段AB向终点B运动,同时点Q从点C 出发,沿线段CD向终点D运动.速度均为每秒1个单位长度,运动时间为t秒.过点P作PE⊥AB交AC于点E.①过点E作EF⊥AD于点F,交抛物线于点G.当t为何值时,线段EG最长?②连接EQ.在点P、Q运动的过程中,判断有几个时刻使得△CEQ是等腰三角形?请直接写出相应的t 值.这是一道函数型压轴题。
函数型压轴题主要有:几何与函数相结合型、坐标与几何、方程与函数相结合型。
这些压轴题主要以函数为主线,涉及函数的图象、方程、点的坐标及线段长度、图形面积等问题。
先从知识角度来分析:(1)通过观察图象可以发现,直线AD和x轴平行,直线AB和y轴平行,因此,A点与D点的纵坐标相同,A点与B的横坐标相同,因此A的坐标为(4,8).知道了点A的坐标,加上已知条件点C的坐标,利用待定系数法很容易可以求出抛物线的解析式。
此问在本题中占3分,解决此问的关键在于:①多角度、全方位观察图形;②熟练掌握待定系数法求抛物线解析式。
(2)这是个动态的问题,解决动态问题的一个根本方法就是化动为静,动静结合。
先看第一小问,当t 为何值时,线段EG最长?我们通过观察图形,很容易能够发现t的变化,会导致点P位置的变化,点P位置的变化会引起点E位置的变化,而E点位置的变化直接决定了线段EF位置和长度的变化,而线段EF位置和长度的变化决定了线段EG位置和长度的变化,我们看到,问题最终就是回归到线段EG的长度之上。
如果把整个这个变化的过程当作是一个事件来看的话,事件的起因就是t的变化,而事件的结果就是线段EG的长度发生变化。
换句话说就是因为t 的变化导致线段EG 长度的变化。
那么我们就可以把这个变化过程中的t 当作自变量,线段EG 的长度就是t 的函数。
因此,求当t 为何值时,线段EG 最长?实际上就是求函数取最大值时自变量的值。
因此本问的关键就是如何求线段EG 长关于t 的函数。
而求线段EG 长关于t 的函数,实际上就是把t 看作是一个常数,求线段EG 的长。
通过观察图形,不难发现,求线段EG 的长,可以通过求点E 、G 的纵坐标求得,点E 的纵坐标可以通过点P 的纵坐标求得,点G 的纵坐标需要通过点E 的横坐标求得,而点E 的横坐标可以通过求线段PE 的长度求得。
思路如下图所示:(3)在点P 、Q是等腰三角形,需要分三种情况进行讨论,即点CEQ 形状不断t 的值。
解:(1)点A 将A(4,8)、8=16a +4b 得 0=64a +8b 解得a =-12,b =4 ∴抛物线的解析式为:y =-12x 2+4x …………………3分 (2)①在Rt △APE 和Rt △ABC 中,tan ∠PAE =PE AP =BC AB ,即PE AP =48∴PE =12AP =12t .PB=8-t .∴点E的坐标为(4+12t ,8-t ).∴点G 的纵坐标为:-12(4+12t )2+4(4+12t )=-18t 2+8.…………………5分∴EG=-18t 2+8-(8-t )=-18t 2+t .∵-18<0,∴当t =4时,线段EG 最长为2.…………………7分②共有三个时刻.…………………8分t 1=163,t 2=4013,t 3.…………………11分从技术角度来分析:①压轴题的出现是为了让参加中考的学生成绩更有区分度,所以并不是每一个同学都可以把压轴题完整地做出来的。
所以我们告诫所有参加中考的同学,不要一味地把时间都花在压轴题上,一定要保证选择、填空万无一失,前面的解答题尽可能的检查一遍。
如果时间还有剩余,再静下心来攻克压轴题,这是技术方面的一个考虑。
②压轴题并不可怕,所以情绪上要积极自信,没有必要惊慌失措。
③就本题而言,如何才能让自己多拿一些分数呢?ⅰ)做一问是一问。
第一问对绝大多数同学来说,不是问题;第二问的两小问都有难度,但是细心的同学会发现第二小问和第一小问没有特别大的联系,因此如果第一小问不会解,切忌不可轻易放弃第二小问。
事实上中考有较多的压轴题并不是每一问之间都有联系。
ⅱ)过程会多少写多少,因为数学解答题是按步骤给分的,拿第二小问来说,大部分同学都知道有3个时刻,可是因为写不出来相应的t 值,因此就放弃不写了,殊不知,你只要回答有3个时刻就可以多得1分。
和2009河南中考压轴题类似的中考题有很多,多数情况下类似第二问会有这样的问题:记图形中的某个变化三角形的面积为s ,求s 关于t 的函数,并求当t 取何值时s 最大,s 最大值是多少?涉及到等腰三角形的讨论类似的情况有直角三角形的问题。
比如:(2009年济南中考题的最后一题的第三问)若点D 是线段OC 上的一个动点(不与点O 、点C 重合).过点D 作DE PC ∥交x 轴于点E .连接PD 、PE .设CD 的长为m ,PDE △的面积为S .求S 与m 之间的函数关系式.试说明S 是否存在最大值,若存在,请求出最大值;若不存在,请说明理由.(2009年辽宁朝阳中考题最后一题第二问)将ABO △沿着垂直于x 轴的线段CD 折叠,(点C 在x 轴上,点D 在AB 上,点D 不与A ,B 重合)如图②,使点B 落在x 轴上,点B 的对应点为点E .设点C 的坐标为)0,(x ,CDE △与ABO △重叠部分的面积为S .i )试求出S 与x 之间的函数关系式(包括自变量x 的取值范围);ii )当x 为何值时,S 的面积最大?最大值是多少?iii )是否存在这样的点C ,使得ADE △为直角三角形?若存在,直接写出点C 的坐标;若不存在,请说明理由.再以2009年江西中考数学压轴题为例: 如图1,在等腰梯形ABCD 中,BC AD //,E 是AB 的中点,过点E 作BC EF //交CD 于点F .6,4==BC AB ,∠ο60=B .(1)求点E 到BC 的距离;(2)点P 为线段EF 上的一个动点,过P 作PM ⊥EF 交BC 于点M ,过M 作AB MN //交折线ADC 于点N ,连结PN ,设x EP =.①当点N 在线段AD 上时(如图2),⊿PMN 的形状是否发生改变?若不变,求出⊿PMN 的周长;若改变,请说明理由;②当点N 在线段DC 上时(如图3),是否存在点P ,使⊿PMN 为等腰三角形?若存在,请求出所有满足要求的x 的值;若不存在,请说明理由.这是一道几何型压轴题。
常见的几何型压轴题以常见的三角形、四边形(如正方形、等腰梯形等)、圆等知识为考查重点,贯穿几何、代数及三角函数等知识,以证明题、计算题出现。
先从知识角度来分析:(1)求点到直线的距离,一般的方法就是过这个点向直线作垂线段,然后利用勾股定理或者是解直角三角形的方法求垂线段的长度。
(2)①通过观察点N 的不同位置,可以发现⊿PMN 的形状并不发生变化。
不需要说明理由,然后分别去求三角形的三边长,最终求出三角形的周长。
线段PM 的长实际上就是线段EG 的长,第一问已经求出来了,线段MN 的长就是线段AB 的长,问题复杂就复杂在求线段PN 的长上,求线段的长,我们最容易想到也是最常用的方法还是构造直角三角形,然后使用勾股定理,因此过点P P 作PH MN ⊥于H 。
②通过画草图,可以看到当点N 在线段DC 上运动时,PMN △的形状发生改变,但MNC △恒为等边三角形。
和2009河南中考压轴题一样,PMN △为等腰三角形需要讨论三种情况。
详细解题过程如下:解:(1)如图1,过点E 作EG BC ⊥于点G . ····················· 1分∵E 为AB 的中点, ∴122BEAB ==.在Rt EBG △中,60B =︒∠,∴30BEG =︒∠. ············ 2分 ∴112BG BE EG ====, 即点E 到BC ······································· 3分 (2)①当点N 在线段AD 上运动时,PMN △的形状不发生改变. ∵PMEF EG EF ⊥⊥,,∴PM EG ∥. ∵EF BC ∥,∴EP GM =,PM EG ==同理4MNAB ==.····················································································· 4分 如图2,过点P 作PHMN ⊥于H ,∵MN AB ∥,∴6030NMC B PMH==︒=︒∠∠,∠.A D EB FC 图4(备用) ADE BF C 图5(备用) A D E BF C 图1 图2 A D E B F C P NM图3 A D EB FC P N M 图1A D EBFCGA D EFPN∴122PH PM == ∴2330cos =⋅=οPM MH则35422NH MN MH =-=-=.在Rt PNH △中,PN === ∴PMN △的周长=4PM PN MN ++=. ········································· 6分②当点N 在线段DC 上运动时,PMN △的形状发生改变,但MNC △恒为等边三角形. 当PMPN =时,如图3,作PR MN ⊥于R ,则MR NR =.类似①,32MR =. ∴23MNMR ==.······················································································· 7分 ∵MNC △是等边三角形,∴3MC MN ==.此时,6132x EP GM BC BG MC ===--=--=.······································ 8分 当MP MN =时,如图4,这时MC MN MP ===此时,615x EP GM ===--= 当NP NM =时,如图5,30NPM PMN ==︒∠∠.则120PMN =︒∠,又60MNC =︒∠, ∴180PNMMNC +=︒∠∠.因此点P 与F 重合,PMC △为直角三角形. ∴130tan =⋅=οPM MC 此时,6114x EP GM ===--=.综上所述,当2x =或4或(5时,PMN △为等腰三角形.………………..10分从技术角度来分析基本同上,比如求PMN △的周长,即使算不出来线段PN 的长,最起码可以求出另图3A D EBFCPN M图4AD EBF CP MN 图5A D EBF (P ) CMNGGRG外两边的长,只要形成过程,就会给分。