高中三角函数知识点总结
- 格式:docx
- 大小:161.94 KB
- 文档页数:4
高中三角函数知识点归纳总结(通用10篇)高中数学三角函数知识点总结:三倍角公式篇一sin3α=4sinα·sin(π/3+α)sin(π/3-α)cos3α=4cosα·cos(π/3+α)cos(π/3-α)tan3a = tan a · tan(π/3+a)· tan(π/3-a)高中数学三角函数知识点总结:三倍角公式推导篇二sin3a=sin(2a+a)=sin2acosa+cos2asina高中数学三角函数知识点总结:半角公式篇三tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.sin^2(a/2)=(1-cos(a))/2cos^2(a/2)=(1+cos(a))/2tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))三角和sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγcos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγtan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)高中数学三角函数知识点总结:辅助角公式篇四Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中sint=B/(A^2+B^2)^(1/2)cost=A/(A^2+B^2)^(1/2)tant=B/AAsinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B降幂公式sin^2(α)=(1-cos(2α))/2=versin(2α)/2cos^2(α)=(1+cos(2α))/2=covers(2α)/2tan^2(α)=(1-cos(2α))/(1+cos(2α))高中数学三角函数知识点总结:和差化积篇五sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2]cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2]cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2]tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)高中三角函数知识点归纳篇六1.做高中数学题的时候千万不能怕难题!有很多人数学分数提不动,很大一部分原因是他们的畏惧心理。
高中三角函数知识点整理三角函数是数学中重要的概念,存在于高中数学课程中,是几何、代数、微积分等领域的基础知识。
下面整理了高中三角函数的重要知识点,希望对学生们的学习有帮助。
一、三角函数的基本概念1.弧度制:角的度量单位,一个角所对应的弧长等于半径的长度时,这个角的大小为1弧度。
2.角的三要素:顶点,始边,终边,顶点为角的端点,始边为角的起始边,终边为角的结束边。
3.弧度与角度的转换:角度数×π/180=弧度。
4.等角:具有相同角度的两个角是等角。
5. 正弦:给定一个锐角∠A,对于 A 的任何弧 B,就有 sin A = sin B。
二、正弦、余弦和正切函数1. 正弦函数:在数轴上,根据半径 r 的终端点 (x, y),它的正弦函数值定义为 y / r,可以表示为sinθ。
2. 余弦函数:在数轴上,根据半径 r 的终端点 (x, y),它的余弦函数值定义为 x / r,可以表示为cosθ。
3. 正切函数:在数轴上,根据半径 r 的终端点 (x, y),它的正切函数值定义为 y / x,可以表示为tanθ。
4.三角函数的性质:正弦和余弦函数的值在-1到1之间,正切函数的值没有限制。
三、三角函数的基本性质1.三角函数的周期性:正弦和余弦函数周期为2π,正切函数周期为π。
2.函数图像:正弦函数和余弦函数的图像为曲线,正切函数的图像为直线。
3.函数值的变化:正弦函数和余弦函数的值在一个周期内从-1到1变化,正切函数在不同区间内的值无限制变化。
4. 正弦函数和余弦函数的图像对称:sin(-θ) = -sinθ,cos(-θ) = cosθ。
5. 周期性的性质:sin(θ + 2πn) = sinθ,cos(θ + 2πn) =cosθ,n为整数。
6. 三角函数的诱导公式:sin(α + β) = sinαcosβ +cosαsinβ,cos(α + β) = cosαcosβ - sinαsinβ。
高中数学知识点总结一、三角函数【1】以角α的顶点为坐标原点,始边为x 轴正半轴建立直角坐标系,在角α的终边上任取一个异于原点的点),(y x P ,点P 到原点的距离记为r ,则sin α=r y ,cos α=r x ,tg α=x y ,ctg α=y x ,sec α=x r ,csc α=yr。
【2】同角三角函数平方关系:1cos sin 22=+αα,αα22sec 1=+tg ,αα22csc 1=+ctg ;同角三角函数倒数关系:1=⋅ααctg tg ,1csc sin =⋅αα,1sec cos =⋅αα;同角三角函数相除关系:αααcos sin =tg ,αααsin cos =ctg 。
【3】函数B x A y ++=)sin(ϕω),(其中00>>ωA 的最大值是B A +,最小值是A B -,周期是ωπ2=T ,频率是πω2=f ,相位是ϕω+x ,初相是ϕ;对称轴是直线)(2Z k k x ∈+=+ππϕω,图象与直线B y =的交点都是该图象的对称中心。
【4】三角函数的单调区间:x y sin =的递增区间是⎥⎦⎤⎢⎣⎡+-2222ππππk k ,)(Z k ∈,递减区间是⎥⎦⎤⎢⎣⎡++23222ππππk k ,)(Z k ∈;x y cos =的递增区间是[]πππk k 22,-)(Z k ∈,递减区间是[]πππ+k k 22,)(Z k ∈,tgx y =的递增区间是⎪⎭⎫ ⎝⎛+-22ππππk k ,)(Z k ∈,ctgx y =的递减区间是()πππ+k k ,)(Z k ∈。
【5】=±)sin(βαβαβαsin cos cos sin ±=±)cos(βαβαβαsin sin cos cos =±)(βαtg βαβαtg tg tg tg ⋅± 1【6】二倍角公式是:sin2α=ααcos sin 2⋅cos2α=αα22sin cos -=1cos 22-α=α2sin 21-tg2α=αα212tg tg -【7】三倍角公式是:sin3α=αα3sin 4sin 3-cos3α=ααcos 3cos 43-【8】半角公式是:sin2α=2cos 1α-±cos2α=2cos 1α+±tg2α=ααcos 1cos 1+-±=ααsin cos 1-=ααcos 1sin +。
高中数学必修三角函数知识点归纳总结经典一、正弦函数、余弦函数、正切函数的定义1. 正弦函数:在单位圆上,对于任意角度θ,都存在一个点P(x,y),其中x=cosθ,y=sinθ。
则y=sinθ称为角θ的正弦函数。
2. 余弦函数:在单位圆上,对于任意角度θ,都存在一个点P(x,y),其中x=cosθ,y=sinθ。
则x=cosθ称为角θ的余弦函数。
3. 正切函数:在单位圆上,对于任意角度θ,都存在一个点P(x,y),其中x=cosθ,y=sinθ。
则y/x=tanθ称为角θ的正切函数。
二、基本性质1.周期性:正弦函数、余弦函数、正切函数的周期都是2π。
2.奇偶性:正弦函数是奇函数,余弦函数是偶函数,正切函数是奇函数。
3.值域:正弦函数和余弦函数的值域为[-1,1],正切函数的值域为R。
三、基本公式1. 正弦函数的基本公式:sin(θ±α) = sinθcosα ±cosθsinα2. 余弦函数的基本公式:cos(θ±α) = cosθcosα ∓ sinθsinα3. 正切函数的基本公式:tan(θ±α) =(tanθ±tanα)/(1∓tanθtanα)四、三角函数的图像与性质1.正弦函数图像的性质:周期为2π,在(0,0)处取得最小值-1,在(π/2,1)、(3π/2,-1)处取得最大值1,是一个奇函数。
2.余弦函数图像的性质:周期为2π,在(0,1)处取得最大值1,在(π,-1)处取得最小值-1,是一个偶函数。
3.正切函数图像的性质:周期为π,在(0,0)处取得最小值-∞,在(π/2,∞)处取得最大值∞,是一个奇函数。
五、三角函数的性质1.三角函数的和差化积公式:sin(A±B) = sinAcosB ± cosAsinBcos(A±B) = cosAcosB ∓ sinAsinBtan(A±B) = (tanA±tanB)/(1∓tanAtanB)2.三角函数的倍角公式:sin2θ = 2sinθcosθcos2θ = cos^2θ - sin^2θtan2θ = (2tanθ)/(1-tan^2θ)3.三角函数的半角公式:sin(θ/2) = √[(1-cosθ)/2]cos(θ/2) = √[(1+cosθ)/2]tan(θ/2) = sinθ/(1+cosθ)4.三角函数的积化和差公式:sinA·sinB = (1/2)[cos(A-B)-cos(A+B)]cosA·cosB = (1/2)[cos(A-B)+cos(A+B)]sinA·cosB = (1/2)[sin(A-B)+sin(A+B)]六、三角函数的应用1.解三角形:利用正弦定理、余弦定理和正弦函数、余弦函数的性质,可以解决三角形的边长和角度。
高中数学三角函数知识点总结高中数学中的三角函数是一门重要的数学分支,它是解决各种三角形相关问题的基础。
以下是高中数学三角函数的知识点总结。
一、基本概念1. 角度与弧度:角度是用度(°)来衡量的,弧度是用弧长来衡量的,两者之间的转换关系是π弧度=180°。
2. 正弦定理和余弦定理:正弦定理是指在任意三角形ABC中,a/sinA = b/sinB = c/sinC;余弦定理是指在任意三角形ABC中,c² = a² + b² - 2abcosC。
3. 三角恒等式:包括正弦、余弦和正切的诸多恒等式以及它们的倒数形式。
二、常用三角函数及其性质1. 正弦函数(sin):在单位圆上,给定一个角,将其终边与单位圆交点的纵坐标即为该角的正弦值,其值域为[-1,1]。
2. 余弦函数(cos):在单位圆上,给定一个角,将其终边与单位圆交点的横坐标即为该角的余弦值,其值域为[-1,1]。
3. 正切函数(tan):在单位圆上,给定一个角,将其终边与单位圆交点的纵坐标除以横坐标即为该角的正切值,其定义域为所有不为π/2+kπ(k为整数)的实数。
4. 余切函数(cot)、正割函数(sec)和余割函数(csc):它们分别是tan、cos和sin的倒数函数,它们的定义域和值域分别是tan、cos和sin的值域和定义域的补集。
三、三角函数的图像和性质1. sin和cos的图像:在坐标平面中,将单位圆与x轴交点的横坐标和纵坐标作为y=sin(x)和y=cos(x)的函数图像,它们的图像具有周期性、奇偶性等性质。
2. 周期性:sin和cos的周期为2π,即sin(x+2π)=sin(x)和cos(x+2π)=cos(x)。
3. 奇偶性:sin是奇函数,即sin(-x)=-sin(x);cos是偶函数,即cos(-x)=cos(x)。
4. 其他性质:包括在特定区间的增减性、最大最小值以及特殊角的值等。
(完整版)高中三角函数知识点总结高中三角函数知识点总结1. 基本三角函数概念- 三角函数是以单位圆为基础的函数,包括正弦函数、余弦函数和正切函数。
- 正弦函数(sin):在直角三角形中,对于一个锐角,其对边与斜边的比值称为正弦值。
即:sinA = 对边/斜边。
- 余弦函数(cos):在直角三角形中,对于一个锐角,其邻边与斜边的比值称为余弦值。
即:cosA = 邻边/斜边。
- 正切函数(tan):在直角三角形中,对于一个锐角,其对边与邻边的比值称为正切值。
即:tanA = 对边/邻边。
2. 基本三角函数性质和公式- 三角函数的周期性:正弦函数和余弦函数的周期都是2π;正切函数的周期是π.- 三角函数的奇偶性:正弦函数是奇函数,余弦函数是偶函数,正切函数是奇函数。
- 三角函数的同角关系:sinA/cosA = tanA。
- 三角函数的和差化积公式和积化和差公式:具体公式可根据需要进行查阅。
3. 三角函数图像和性质- 正弦函数图像:在0到2π的区间内,正弦函数的图像为一条周期性的波浪线,最高点为1,最低点为-1,对应于最大值和最小值,0点对应于零值。
- 余弦函数图像:在0到2π的区间内,余弦函数的图像为一条周期性的波浪线,最高点为1,最低点为-1,对应于最大值和最小值,0点对应于最大值。
- 正切函数图像:在0到π的区间内,正切函数的图像无法在x=π/2和3π/2时定义,其他点对应的图像为一条连续的射线。
4. 三角函数的应用- 三角函数广泛应用于科学和工程领域中的周期性现象的描述和计算,例如电流的正弦波,声波的波动等。
- 在几何学中,三角函数也应用于测量角度和距离等问题的解决。
以上为高中三角函数的基本知识点总结,更详细的内容和公式可以参考相关教材或资料。
三角函数最全知识点总结三角函数是高中数学中的重要内容,主要包括正弦函数、余弦函数、正切函数等。
下面将对这些三角函数的定义、性质以及常用的解题方法进行总结。
一、正弦函数(sin):1. 定义:在单位圆上,任选一点P与x轴正方向的夹角为θ,P点的纵坐标y即为θ的正弦值,记作sinθ。
正弦函数的定义域为实数集,值域为[-1,1]。
2. 周期性:sin(θ+2π)=sinθ,sin(θ+π)=-sinθ。
其中π为圆周率。
3. 奇偶性:sin(-θ)=-sinθ,即正弦函数关于原点对称。
4. 正负性:当θ为锐角时,sinθ>0;当θ为钝角时,sinθ<0。
5. 值域变化:当θ从0增加到π/2时,sinθ从0增加到1,然后再从1减小到0。
二、余弦函数(cos):1. 定义:在单位圆上,任选一点P与x轴正方向的夹角为θ,P点的横坐标x即为θ的余弦值,记作cosθ。
余弦函数的定义域为实数集,值域为[-1,1]。
2. 周期性:cos(θ+2π)=cosθ,cos(θ+π)=-cosθ。
3. 奇偶性:cos(-θ)=cosθ,即余弦函数关于y轴对称。
4. 正负性:当θ为锐角时,cosθ>0;当θ为钝角时,cosθ<0。
5. 值域变化:当θ从0增加到π/2时,cosθ从1减小到0。
三、正切函数(tan):1. 定义:正切值tanθ等于θ的正弦值除以θ的余弦值,即tanθ=sinθ/cosθ。
正切函数的定义域为实数集,值域为实数集。
2. 周期性:tan(θ+π)=tanθ。
3. 奇偶性:tan(-θ)=-tanθ,即正切函数关于原点对称。
4. 正负性:当θ为锐角时,tanθ>0;当θ为钝角时,tanθ<0。
四、反三角函数:1. 反正弦函数:定义域为[-1,1],值域为[-π/2,π/2]。
记作arcsin x或sin⁻¹x。
2. 反余弦函数:定义域为[-1,1],值域为[0,π]。
高中数学三角函数知识点总结高中数学三角函数知识点总结一、锐角三角函数公式sin=的对边/斜边cos=的邻边/斜边tan=的对边/的邻边cot=的邻边/的对边二、倍角公式Sin2A=2SinA?CosACos2A=CosA2-SinA2=1-2SinA2=2CosA2-1tan2A=(2tanA)/(1-tanA2)(注:SinA2是sinA的平方sin2(A))三、三倍角公式sin3=4sinsin(/3+)sin(/3-)cos3=4coscos(/3+)cos(/3-)tan3a=tanatan(/3+a)tan(/3-a)三倍角公式推导sin3a=sin(2a+a)辅助角公式Asin+Bcos=(A2+B2)(1/2)sin(+t),其中sint=B/(A2+B2)(1/2)cost=A/(A2+B2)(1/2)tant=B/AAsin+Bcos=(A2+B2)(1/2)cos(-t),tant=A/B 四、降幂公式sin2=(1-cos(2))/2=versin(2)/2cos2=(1+cos(2))/2=covers(2)/2tan2=(1-cos(2))/(1+cos(2))推导公式tan+cot=2/sin2tan-cot=-2cot21+cos2=2cos21-cos2=2sin21+sin=(sin/2+cos/2)2=2sina(1-sina)+(1-2sina)sina=3sina-4sinacos3a=cos(2a+a)=(2cosa-1)cosa-2(1-sina)cosa=4cosa-3cosasin3a=3sina-4sina=4sina(3/4-sina)=4sina[(3/2)-sina]=4sina(sin60-sina)=4sina(sin60+sina)(sin60-sina)=4sina*2sin[(60+a)/2]cos[(60-a)/2]*2sin[(60-a)/2]cos[(60-a)/2]=4sinasin(60+a)sin(60-a)cos3a=4cosa-3cosa=4cosa(cosa-3/4)=4cosa[cosa-(3/2)]=4cosa(cosa-cos30)=4cosa(cosa+cos30)(cosa-cos30)=4cosa*2cos[(a+30)/2]cos[(a-30)/2]*{-2sin[(a+30)/2]sin[(a-30)/2]}=-4cosasin(a+30)sin(a-30)=-4cosasin[90-(60-a)]sin[-90+(60+a)]=-4cosacos(60-a)[-cos(60+a)]=4cosacos(60-a)cos(60+a)上述两式相比可得tan3a=tanatan(60-a)tan(60+a)五、半角公式tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.sin2(a/2)=(1-cos(a))/2cos2(a/2)=(1+cos(a))/2tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))六、三角和sin(++)=sincoscos+cossincos+coscossin-sinsinsincos(++)=coscoscos-cossinsin-sincossin-sinsincos tan(++)=(tan+tan+tan-tantantan)/(1-tantan-tantan-tantan)七、两角和差cos(+)=coscos-sinsincos(-)=coscos+sinsinsin=sincoscossintan(+)=(tan+tan)/(1-tantan)tan(-)=(tan-tan)/(1+tantan)八、和差化积sin+sin=2sin[(+)/2]cos[(-)/2]sin-sin=2cos[(+)/2]sin[(-)/2]cos+cos=2cos[(+)/2]cos[(-)/2]cos-cos=-2sin[(+)/2]sin[(-)/2]tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB) tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB) 九、积化和差sinsin=[cos(-)-cos(+)]/2coscos=[cos(+)+cos(-)]/2sincos=[sin(+)+sin(-)]/2cossin=[sin(+)-sin(-)]/2十、诱导公式sin(-)=-sincos(-)=costan(—a)=-tansin(/2-)=coscos(/2-)=sinsin(/2+)=coscos(/2+)=-sinsin(-)=sincos(-)=-cossin(+)=-sincos(+)=-costanA=sinA/cosAtan(/2+)=-cottan(/2-)=cottan(-)=-tantan(+)=tan诱导公式记背窍门:奇变偶不变,符号看象限十一、万能公式sin=2tan(/2)/[1+tan(/2)]cos=[1-tan(/2)]/1+tan(/2)]tan=2tan(/2)/[1-tan(/2)]十二、其它公式(1)(sin)2+(cos)2=1(2)1+(tan)2=(sec)2(3)1+(cot)2=(csc)2(4)对于任意非直角三角形,总有tanA+tanB+tanC=tanAtanBtanC证:A+B=-Ctan(A+B)=tan(-C)(tanA+tanB)/(1-tanAtanB)=(tan-tanC)/(1+tantanC)整理可得tanA+tanB+tanC=tanAtanBtanC得证同样可以得证,当x+y+z=n(nZ)时,该关系式也成立由tanA+tanB+tanC=tanAtanBtanC可得出以下结论(5)cotAcotB+cotAcotC+cotBcotC=1(6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot( C/2)(7)(cosA)2+(cosB)2+(cosC)2=1-2cosAcosBcosC(8)(sinA)2+(sinB)2+(sinC)2=2+2cosAcosBcosC(9)sin+sin(+2/n)+sin(+2*2/n)+sin(+2*3/n)++sin[+2*( n-1)/n]=0cos+cos(+2/n)+cos(+2*2/n)+cos(+2*3/n)++cos[+2*(n-1)/n]=0以及sin2+sin2(-2/3)+sin2(+2/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0拓展阅读:学好函数的方法一、学数学就像玩游戏,想玩好游戏,当然先要熟悉游戏规那么而在数学当中,游戏规那么就是所谓的根本定义。
三角函数知识点归纳总结三角函数是高中数学中重要的概念之一,涵盖了正弦函数、余弦函数和正切函数等常用函数。
在此将对三角函数的知识点进行归纳总结,包括定义、性质和应用等方面。
1. 正弦函数(sine function):正弦函数是一个周期函数,用sin表示。
在单位圆上,正弦函数的值等于半径落在单位圆上的点的y坐标。
- 定义:sinθ = y / r,其中θ表示角度,y表示对边的长度,r表示斜边的长度。
- 基本性质:周期为2π,函数值介于-1和1之间,奇函数(满足f(-θ) = -f(θ))。
- 特殊性质:正弦函数在[0, π/2]区间上是递增的,在[π/2, π]区间上是递减的,在[π, 2π]区间上是递增的。
- 应用:电磁波、震动、信号处理等领域。
2. 余弦函数(cosine function):余弦函数是一个周期函数,用cos表示。
在单位圆上,余弦函数的值等于半径落在单位圆上的点的x坐标。
- 定义:cosθ = x / r,其中θ表示角度,x表示邻边的长度,r表示斜边的长度。
- 基本性质:周期为2π,函数值介于-1和1之间,偶函数(满足f(-θ) = f(θ))。
- 特殊性质:余弦函数在[0, π/2]区间上是递减的,在[π/2, π]区间上是递增的,在[π, 2π]区间上是递减的。
- 应用:振动、周期性现象、热传导等领域。
3. 正切函数(tangent function):正切函数是一个周期函数,用tan表示。
正切函数的值等于正弦函数值与余弦函数值的比值。
- 定义:tanθ = y / x,其中θ表示角度,y表示对边的长度,x表示邻边的长度。
- 基本性质:周期为π,正切函数在部分区间上为单调递增或递减函数。
- 特殊性质:正切函数的定义域为除x = (2k+1)π/2(k为整数)之外的实数集,值域为负无穷到正无穷。
- 应用:电路分析、光学、几何等领域。
4. 弧度制度转换关系:角的度量单位有角度和弧度两种。
千里之行,始于足下。
完整版)三角函数知识点总结三角函数是高中数学中的重要部分,它与几何图形的性质、三角形的边角关系、周期函数等有着密切的联系。
以下是三角函数的一些重要的知识点总结:一、三角函数的定义:1. 正弦函数(sin):在直角三角形中,对于一个锐角的角度,正弦函数的值等于对边长度与斜边长度的比值。
2. 余弦函数(cos):在直角三角形中,对于一个锐角的角度,余弦函数的值等于邻边长度与斜边长度的比值。
3. 正切函数(tan):在直角三角形中,对于一个锐角的角度,正切函数的值等于对边长度与邻边长度的比值。
二、三角函数的重要性质:1. 三角函数的周期性:sin、cos、tan函数的周期都是2π。
2. 三角函数的奇偶性:(1)正弦函数是奇函数,即sin(-x)=-sin(x)。
(2)余弦函数是偶函数,即cos(-x)=cos(x)。
(3)正切函数是奇函数,即tan(-x)=-tan(x)。
3. 三角函数的界值:(1)正弦函数的取值范围在[-1, 1]之间,即-1≤sin(x)≤1。
(2)余弦函数的取值范围也在[-1, 1]之间,即-1≤cos(x)≤1。
(3)正切函数的取值范围为全体实数。
三、三角函数的基本关系与恒等式:1. 余弦与正弦的基本关系:cos(x)=sin(x+π/2)。
2. 正切与正弦、余弦的关系:tan(x)=sin(x)/cos(x)。
3. 三角函数的和差公式:第1页/共2页锲而不舍,金石可镂。
(1)sin(x±y)=sin(x)cos(y)±cos(x)sin(y)。
(2)cos(x±y)=cos(x)cos(y)∓sin(x)sin(y)。
4. 三角函数的倍角公式:(1)sin(2x)=2sin(x)cos(x)。
(2)cos(2x)=cos^2(x)-sin^2(x)。
(3)tan(2x)=(2tan(x))/(1-tan^2(x))。
5. 三角函数的半角公式:(1)sin(x/2)=√[(1-cos(x))/2]。
三角函数知识点总结
一、 任意角和弧度制 1、
任意角:平面内射线绕端点旋转所形成图形。
正角: 旋转;负角: 旋转;零角: 旋转 2、
象限角范围:第一象限: ;第二象限:
第三象限: ;第四象限: 3、 与α(0°≤α<360°)终边相同的角β的集合: 4、
终边在轴上的角的集合:
①在x 轴上: ②在y 轴上: ③在y=x 上: ④在x 轴正半轴上: ⑤在y 轴正半轴上: ⑥在x 轴负半轴上: ⑦在y 轴负半轴上: ⑧在坐标轴上: 5、
弧度制 :长度等于半径的弧长所对圆心角为 ,用 表示。
,23600π=,1800π=1rad =π
180°≈57°18ˊ,1°=180
π≈0.01745(rad )
6、 弧度制下的弧长扇形面积(α是圆心角且为弧度制,r-----是扇形半径)
L= ;S= = 二、 任意角三角函数
1、设α是一个任意角,它的终边上一点p (x,y ), r=22y x +
正弦sin α= ;余弦cos α= ;正切tan α= 2、各象限的符号
sinαcosαtanα
3、特殊三角函数值
三、三角函数有关公式
1、同名三角函数
(1)平方关系:;(2)商数关系:2、诱导公式
记忆口诀:
求任意角三角函数思路:负角化,大角化,化到再求值x
O x
y
O
y
O
______
)
tan(
______
)
cos(
______
)
sin(
=
-
=
-
=
-
x
x
x
π
π
π
______
)
tan(
______
)
cos(
______
)
sin(
=
-
=
-
=
-
x
x
x
_____
)
2
1
cos(=
-α
π
______
)
2
1
sin(=
-α
π
_____
)
tan(
_____
)
cos(
_____
)
sin(
=
+
=
+
=
+
x
x
x
π
π
π
______
)
2
tan(
______
)
2
cos(
______
)
2
sin(
=
+
=
+
=
+
x
k
x
k
x
k
π
π
π
_____
)
2
1
cos(=
+α
π
_____
)
2
1
sin(=
+α
π
四、 三角函数图像与性质
复杂形式的三角函数性质的运用要将其化成“ ”的标准形式,即b )sin(A ++=ϕωx y (或或b )(Acos ++=ϕωx y b )(Atan ++=ϕωx y )然后通过 法,反解x 。
辅助角公式:y=asinx+bcosx= 五、 三角函数变换
1、b )sin(A ++=ϕωx y 中,个常数定义函数图像的影响: (1)振幅变换,是由 (2)振幅变换,是由
(1)振幅变换,是由 (1)振幅变换,是由
x sin =y 换得到b )sin(A ++=ϕωx y : 方法一: 方法二:
2、几种其他变换:
对称变换:y=)(x f 和y=-)(x f 关于 对称;和y=)-(x f 关于 对称 翻折变换:y=)(x f 图像 可得到y=|)(x f |; y=)(x f 图像 可得到y=)||(x f
平移变换:y=)(x f 变换到y=)a (±x f 为 平移;遵循 的原则; y=)(x f 变换到y=b x f ±)(为 平移;遵循 的原则。
伸缩变换:y=)(x f 变换到y=)(ax f 为 伸缩变换; a>1时 ,0<a<1时 y=)(x f 变换到y=a )(x f 为 伸缩变换; a>1时 ,0<a<1时。