最新解方程例2例3
- 格式:pdf
- 大小:1.79 MB
- 文档页数:16
二元一次方程解法大全摘要Ideal isthe b eac on. Without ideal, there is no secure direction ; without di recti on , thereis no life20XX年XX月二元一次方程解法大全1、直接开平方法:直接开平方法就是用直接开平方求解二元一次方程的方法。
用直接开平方法解形如(X -ID) 2二n(n20)的方程,其解为x二土根号下n+m.例1・解方程(1) (3x+l)2=7 (2) 9x2— 2 4x+16二1 1分析:(1)此方程显然用直接开平方法好做,(2)方程左边是完全平方式(3x-4)2,右边=11>0,所以此方程也可用直接开平方法解。
(1 )解:(3 x +1) 2=7X•••(3x+l) 2 =5・・.3x+l二土(注意不要丢解)X 二・•・原方程的解为x 1 = x2=(2)解:9 x 2-24x4- 1 6=11••• (3x-4)2 二1 1••• 3x-4 =±x 二••・原方程的解为X 1 =, x2=2.配方法:用配方法解方程a x2+ b x+c = O(aHO)先将常数c移到方程右边:ax2+bx= — c将二次项系数化为l:x2+x=-方程两边分别加上一次项系数的一半的平方:x 2+x+()2二一+()2方程左边成为一个完全平方式:(x+) 2 =当b"2-4ac20 时,x+=±•・.x二(这就是求根公式)例2.用配方法解方程3x^2-4x-2= 0 (注:X"2是X的平方)解:将常数项移到方程右边3x*2-4x=2将二次项系数化为1 :x2-x=方程两边都加上一次项系数一半的平方:x2-x+ () 2 =+()2配方:(X-) 2=直接开平方得浪-二土.°.x =•••原方程的解为xl二,x2二.3.公式法:把一元二次方程化成一般形式,然后计算判别式△二b2- 4 a c的值,当b 2-4 a cNO 时,把各项系数a, b, c的值代入求根公式x=[-b±(b*2-4ac)* (l/2)]/(2a ), (L2-4acM 0 )就可得到方程的根。
人教版小学五年级数学上学期第五单元《解方程(例2、3)》同步检测题及答案1.解方程,带“※”的要检验。
0.45x=9 x÷6=12 12.5-x=7.8 ※36÷x=2.5 2.找钥匙。
3.下面的解方程对吗?如果不对,请改正。
4.5÷x=9解:4.5÷x÷4.5=9÷4.5x=2()4.小猫钓鱼。
(将序号填在相应的篮子里)①32÷x=4 ②10.6-x=4.2 ③4x=25.6④16÷x=2.5 ⑤x÷0.2=40 ⑥6x=485.看图列方程,并求出方程的解。
(1)(2)6.当x等于多少时,36÷x的结果是4.5?参考答案1. x=20 x=72 x=4.7 x=14.4 检验:方程左边=36÷x=36÷14.4=2.5=方程右边,所以x=14.4是方程的解2.3. ×解:4.5÷x×x=9×x 9x=4.5 9x÷9=4.5÷9 x=0.54. ①⑤⑥②③④5. (1)5x=18.5 x=3.7 (2)2x=50+20 x=356. 36÷x=4.5 x=8人教版小学五年级数学上学期第五单元《解方程(例2、3)》同步检测题及答案1.解方程,带☆的要检验。
x+5.9=8.6 x-3.5=11.8 0.09x=6.3x÷1.2=4.5 ☆7.8-x=6.2 ☆5.4÷x=9 2.下面的解方程对吗?请把不对的改正过来。
(1) 3.6x=36解:3.6x÷3.6=36÷36x=1()(2) 0.8÷x=8解:0.8÷x÷0.8=8÷0.8x=10()3.看图列方程,并求解。
4.用方程表示下面的数量关系,并求出方程的解。
(1)x加上14.3等于31.8。
第五单元解方程经典例题例1甲、乙两城相距315 km,一辆汽车由甲城开往乙城,同时一辆摩托车由乙城开往甲城。
汽车每小时行驶60 km,3小时后两车相距15 km。
摩托车每小时行驶多少千米?练习1甲、乙两城相距102 km.一辆轿车由甲城开往乙城,同时一辆客车由乙城开往甲城。
轿车每小时行驶65km.0.8小时后两车相距18km。
客车每小时行驶多少千米?例2妈妈买回一些苹果,按计划天数吃,若每天吃6个,则少8个;若每天吃4个,则多4个。
妈妈买回多少个苹果?练习2实验小学五(2)班的同学准备合买一个足球。
若每人拿2.5元,则少4元;若每人拿2.8元,则多8元。
五(2)班一共有多少人?例3乐乐今年8岁,爸爸今年34岁,乐乐多少岁时,爸爸的年龄是乐乐的3倍?练习3陈明今年7岁,王老师今年43岁。
陈明多少岁时,王老师的年龄是陈明的4倍?例4用一根绳子测量一口井的深度,若把绳子折成三折后垂到井底,则绳子的长度超过井口4m;若把绳子折成四折后垂到井底,则绳子的长度超过并口1m。
求井的深度和绳子的长度各是多少米。
练习4用一根绳子测量桥面到水面的距离,若把绳子对折后垂到水面,则绳子的长度超过桥面3m;若把绳子折成三折后垂到水面,则绳子的长度超过桥面0.2m。
求绳子的长度和桥面到水面的距离。
5李白在街上行走,提着酒壶去买酒,遇到店,就把酒壶中的酒加一倍,赏花就把酒壶中的酒喝去一斗。
每次都是遇到店后又赏花,一共3次,恰好喝完了酒壶中所有的酒,求酒壶中原有多少斗酒。
6有甲、乙两根彩带,甲彩带长100m,乙彩带长45m,将这两根彩带剪去同样的长度后,甲彩带所剩的长度比乙彩带所剩长度的4倍多4m,甲彩带还剩多少米?7有三堆西瓜,共有49个,如果第一堆增加1个,第二堆减少2个,第三堆减少一半,那么这三堆西瓜的个数就相等了。
这三堆西瓜原来各有多少个?列方程解决环形跑道问题典型例题1甲、乙两人在周长为400m的环形跑道上同时从同一地点背向跑步,5分钟后两人第二次相遇。
一元二次方程基本解法,“降次”化为两个一元一次0有4种解法:1、直接开平方法;2、配方法;3、公式法;4、因式分解法。
1、直接开平方法:直接开平方法就是用直接开平方求解一元二次方程的方法。
用直接开平方法解形如(x-m)2=n (n≥0)的方程,其解为x=m±√n. 0例1.解方程(1)(3x+1)2=7 (2)9x2-24x+16=11 0分析:一、此方程显然用直接开平方法好做,0二、左边是完全平方式(3x-4)2,右边=11>0,所以也可用直接开平方法解。
(1)解:(3x+1)2=7 ∵(3x+1)2=7 ∴3x+1=±√7 (注意不要丢解)∴x=(﹣1±√7﹚/3 ∴原方程的解为x1=﹙√7﹣1﹚/3,x2=(﹣√7-1﹚/3(2)解:9x2-24x+16=11 ∴(3x-4)2=11 ∴3x-4=±√11 ∴x=(4±√11)/3∴原方程的解为x1=﹙4﹢√11﹚/3 , x2=(4﹣√11﹚/3 02.配方法:用配方法解方程ax2+bx+c=0 (a≠0) 先将常数c移到方程右边:ax2+bx=-c 将二次项系数化为1:x2+b/ax=- c/a 方程两边分别加上一次项系数的一半的平方:x2+b/ax+( b/2a)2=- c/a+( b/2a)2; 方程左边成为一个完全平方式:(x+b/2a )2= -c/a﹢﹙b/2a﹚²当△=b²-4ac≥0时,x+b/2a =±√﹙﹣c/a﹚﹢﹙b/2a﹚²∴x={﹣b±[√﹙b²﹣4ac﹚]﹜/2a (这就是求根公式) 0例2.用配方法解方程3x²-4x-2=0 0解:将常数项移到方程右边3x²-4x=2 将二次项系数化为1:x²-﹙4/3﹚x= 2/3方程两边都加上一次项系数一半的平方:x²-﹙4/3﹚x+( 2/3)²=2/3 +(2/3 )²配方:(x-2/3)²= 2/3 +(2/3 )²直接开平方得:x-2/3=±√[2/3+(2/3 )² ] =±√10 /3 ∴x= 2/3±√10 /3∴原方程的解:x1=2/3﹢√10 /3 , x2=2/3﹣√10 /3 . 0 3.公式法:把一元二次方程化成一般形式,然后计算判别式△=b²-4ac的值,当b²-4ac≥0时,把各项系数a, b, c的值代入求根公式x=[-b±√(b²-4ac)]/(2a) , (△=b²-4ac≥0)就可得到方程的根。
二元一次方程【优秀6篇】作为一名默默奉献的教育工作者,编写教学设计是必不可少的,借助教学设计可以更大幅度地提高学生各方面的能力,从而使学生获得良好的发展。
那么问题来了,教学设计应该怎么写?牛牛范文的小编精心为您带来了6篇二元一次方程,希望能够对困扰您的问题有一定的启迪作用。
元一次方程教学设计篇一一、教材分析本课内容是在学生掌握了二元一次方程组有关概念之后的学习内容,用代入消元法解二元一次方程组是学生接触到的解方程组的第一种方法,是解二元一次方程组的方法之一,消元体现了“化未知为已知”的重要思想,它是学习本章的重点和难点。
学完以后可以帮助我们解决一些实际的问题,也是为了今后学习函数、线性方程组及高次方程组奠定了基础。
二、教学目标1、使学生学会用代入消元法解二元一次方程组。
2、理解代入消元法的基本思想;了解化“未知为已知”的转化过程,体会化归思想。
三、教学重难点1、重点:用代入法解二元一次方程组。
2、难点:在“消元”的过程中能够判断消去哪个未知数,使得解方程组的运算转为较简便的过程。
四、教学过程(1)复习引入在上节课中我们学习了二院一次方程组的有关概念,并学习了二元一次方程组的概念还学会判断一组值是否是二元一次方程组的解的问题,同学们还记得二元一次方程组和二元一次方程组的解的概念吗?追问二元一次方程组既然有解那么它们的解又怎么求呢?设计意图:让学生复习巩固二元一次方程组和二元一次方程组解的概念,追问其他一个抛砖引玉的效果,激起学生的学习兴趣,引出课题。
(2)探究新知此过程通过播放洋葱视频中的代入消元法片段视频,播放致列出二元一次方程组和一元一次后点击暂停,先让学生考虑想清楚两个问题。
一个问题是为什么能用一元一次方程解决的实际问题我们要用二元一次方程组来解决?第二个问题观察二元一次方程组和一元一次方程组之间有何异同?学生想清楚这两个问题后,渗透消元的思想,然后继续播放视频让学生知道二元一次方程组完整的解题过程,并在每一步做出相应的解释,怎么变化而来。