圆中多解问题
- 格式:docx
- 大小:126.01 KB
- 文档页数:3
专题三圆中的多解探究学习单
一、学习目标:
利用圆的基本性质解决圆中的多解问题
二、学习重点和难点
重点:圆的基本性质的灵活运用
难点:圆中的多解问题,学生易漏掉答案。
三、学习过程:
1、类型一:已知点P到⊙O上的点的最短距离为3cm,最长距离为9cm,则⊙O的半径为.
2、类型二:在半径为5的⊙O中,弦AB的长为5,则弦AB所对的圆周角的度数为.
3、类型三:如图,△ABC是⊙O的内接三角形,AD是⊙O的直径,且AD=6,∠ABC =∠CAD.求弦AC所对的弧长.
4、类型四:已知,⊙O的半径是5,弦AB∥CD,AB=8,CD=6,求AB与CD之间的距离.
5、类型5:已知⊙O的半径为1,弦AB=,AC=1,求∠BAC的度数.
6、类型6:已知在圆内接△ABC 中,AB=AC,圆心O到BC的距离为3,圆的半径为7,求腰AB的长.
7、知识拓展:如图,AB是⊙O的直径,弦BC=2cm,F是弦BC的中点,∠ABC=60º.若动点E以2cm/s的速度从A点出发沿着A→B→A的方向运动,设运动时间为t(s)(0≤t<3),连结EF,当△BEF是直角三角形时,求t的值.
四、课堂小结。
圆中的多解问题
1、:已知⊙O的弦AB所对的圆心角等于140O,则弦AB所对的圆周角的度数为__________.
2、已知⊙O是∆ABC的外接圆,OD⊥BC且交BC于点D,∠BOC=40O,则∠BAC为多少度?
3、如图,已知AB是⊙O的直径,AC是弦,AB=2,CO⊥AB, 在图中画出弦AD,使AD=1,并求∠CAD的度数。
4、:点p到⊙O的最大距离为6cm,最小距离为2cm,求⊙的半径。
5、:⊙O的半径为5,已知平面上一点P到圆周上的点的最短距离为3,则到圆周上的点的最长距离为___________.
6、(2007南京中考)如图,点A是半径为12cm⊙O上的一个定点,动点P从A点出发,以2πcm/s的速度沿圆周逆时针运动,当点P回到A时立即停止运动。
如果∠POA=90O,求点P的运动时间。
7、如图:点p是半径为5的⊙O内一点,且OP=4,在⊙O中,过点P
的所有弦中,
(1)存在长为8的弦吗?猜一猜!(2)存在长为4的弦吗?为什么?
B A
8、已知点P到圆周上的点的最长距离为7,最短距离为3,此圆的半径是___________.
9、、已知⊙O的半径是6cm,
⊙O的弦AB=6cm,
则弦AB所对的圆周角等于_______ 。
10、已知圆形下水道的横截面直径为100cm,如果水面宽AB为80cm,求下水道中水的最大深度。
11、已知半径为5cm的⊙O内有两条平行弦AB、CD,且AB=6cm,CD=8cm,求AB、CD间的距离。
12、在半径为1的⊙O中,AE为直径,点B、C在圆O上,ΔABE和ΔACE
均为直角三角形,弦AB、AC的长分别为3和2,则∠BAC等于________。
教法研究新课程NEW CURRICULUM现代教育中,学生综合能力发展与学生未来发展有着紧密联系。
因此,根据我国初中数学教学现状,对各种教学方法的应用情况进行深入了解,以圆的解题方式为例,可以更好地促使初中数学教学水平不断提高。
一、初中数学圆的两解和多解题型随着初中数学教育改革的不断推进,学生各方面的能力得到一定提高。
对初中数学中圆的相关知识进行分析发现,常见的两解和多解问题主要有如下几种题型:1.两平行弦之间的距离例1.已知圆的半径是4,弦AB长为7,CD长为9,其中,AB 和CD平行,求弦AB和CD之间的距离是多少?变式训练:(1)已知圆的半径是4,弦AB长为7,CD长为9,且AB和CD平行,求弦AC的距离是多少?(2)已知圆的两弦AB、CD的长是方程x2-42x+432=0的两个根,且AB和CD平行,同时两弦之间的距离是4,求圆的半径长为多少。
2.弦所对的圆周角例2.在半径长度为7的圆中弦AB的长度5,求弦AB所对的圆周角的弧度是多少?变式训练:(1)已知圆的弦长与圆的半径相等,求该弦所对的圆周角的弧度是多少?(2)在圆中内接有三角形ABC,其中,∠AOB的弧度为100,求∠ACB的弧度是多少?3.已知圆的半径和两弦的长度,求两弦的夹角的弧度是多少例3.已知圆的半径是2,弦AB的长度为1.2,弦AC的长度为1.3,求∠BAC的弧度是多少?变式训练:(1)已知圆中两弦AB、AC的长度分别为5.2,圆的半径为5,求∠BAC的弧度是多少?(2)已知圆的两弦AB、AC的长度分别为5.2和5,圆的半径为5,AB的中点为E,AC的中点为F,求∠EOF的弧度是多少?另外还有,点在弧上的位置不确定、点与圆的位置不确定和半径不等的相交两圆的圆心距等情况下出现的两解问题例4.如下图所示,A、B两点在直线MN上,其中AB的长度为15厘米,圆A和圆B的半径一样都是2厘米,圆A正在以速度为2cm/s、自左向右的状态运行,并且圆B的半径真正逐渐增大,它的半径r和时间t的关系式是r=1+t,求圆A在出发多久后,两个圆会出现相切情况。
圆周运动的多解性问题
圆周运动是物体沿着圆形轨道运动的一种运动形式,它是物理学中的一个重要概念,也是许多现实中的运动现象。
圆周运动的多解性问题是指圆周运动的解决方案有多种,可以根据不同的情况来选择最合适的解决方案。
首先,圆周运动的多解性问题可以从物理学的角度来考虑。
圆周运动的物理学解决方案可以分为动力学和动能学两种。
动力学解决方案是指利用力的作用来改变物体的运动状态,从而实现圆周运动;动能学解决方案是指利用物体的动能来改变物体的运动状态,从而实现圆周运动。
其次,圆周运动的多解性问题也可以从数学的角度来考虑。
数学解决方案可以分为几何学和微积分两种。
几何学解决方案是指利用几何学的方法来求解圆周运动的问题;微积分解决方案是指利用微积分的方法来求解圆周运动的问题。
最后,圆周运动的多解性问题还可以从计算机科学的角度来考虑。
计算机科学解决方案可以分为算法学和计算机图形学两种。
算法学解决方案是指利用算法学的方法来求解圆周运动的问题;计算机图形学解决方案是指利用计算机图形学的方法来求解圆周运动的问题。
总之,圆周运动的多解性问题可以从物理学、数学和计算机科
学三个方面来考虑,每个方面都有不同的解决方案,可以根据实际情况选择最合适的解决方案。
多解问题v ,并沿直线匀速穿过圆筒.若子弹一个弹孔,则圆筒运动的角速度为多少?.则圆筒上只的时间内,圆筒转过的角度为ππ+n 2,其中 3,2,1,0=n ,即ωππ+=n v d 2.2所示,周期为T 。
当P 经过图中D 点时,有一质量为m .为使P 、Q 两质点在某时刻的速度相同,则F 的大小的旋转情况可知,只有当P 运动到圆周上的C 点时P 、Q 速度方向才相同,即质点P 转过)43(+n 周)3,2,1,0( =n 经历的时间)3,2,1,0()43( =+=n T n t ①质点P 的速率T R v π2=②在同样的时间内,质点Q立以上三式,解得2,1,0()34(82=+=n T n mR F π3. 如图3所示,在同一竖直平面内,A 物体从物体在b 点相遇,求A 的角速度。
解析:A 、B 两物体在b 点相遇,则要求A 从a 匀速转到b 和B 从O 自由下落到b 用的时间相等。
A 从a 匀速转到b 的时间T n t )43(1+=)3,2,1,0(2)43( =+=n n ωπB 从O 自由下落到b 点的时间g R t 22=由21t t =,解得)3,2,1,0(2)43(2 =+=n R g n πω4。
如图,半径为R 的水平圆盘正以中心O 为转轴匀速转动,从圆板中心O 的正上方h 高处水平抛出一球,此时半径OB 恰与球的初速度方向一致。
要使球正好落在B 点,则小球的初速度及圆盘的角速分别为多少?解析:要使球正好落在B 点,则要求小球在做平抛运动的时间内,圆盘恰好转了n 圈( 3,2,1=n )。
对小球221gt h =①t v R 0= ② 对圆盘)3,2,1(2 ==n t n ωπ ③联立以上三式,解得)3,2,1(2 ==n h g n πωh gR v 20=5。
一辆实验小车可沿水平地面(图中纸面)上的长直轨道匀速向右运动,一台发出细光束的激光器装在小转台M 上,到轨道的距离MN 为d=10m ,转台匀速转动,使激光束在水平面内扫描,扫描一周的时间为T=60s,光束转动方向如图箭头所示.当光束与MN 的夹角为45°时,光束正好射到小车上,如果再经过△t=2.5s 光束又射到小车上,则小车的速度为多少?(结果保留二位数字)[分析]激光器扫描一周的时间T=60s ,那么光束在△t=2。
专题14 圆中的两解及多解问题(分类讨论思想)归类集训(解析版)类型一讨论弦上某点或端点的位置1.在半径为10的⊙O中,弦AB的长为16,点P在弦AB上,且OP的长为8,AP长为 .思路引领:作OC⊥AB于点C,根据垂径定理求出OC的长,根据勾股定理求出PC的长,分当点P在线段AC上和当点P在线段BC上两种情况计算即可.解:作OC⊥AB于点C,∴AC=12AB=8,由勾股定理得,OC=OA2―AC2=6,∴PC=OP2―OC2=27,当点P在线段AC上时,AP=AC﹣PC=8﹣27,当点P在线段BC上时,AP=8+27,故答案为:8﹣27或8+27.总结提升:本题考查的是垂径定理的应用和勾股定理的应用,正确作出辅助线构造直角三角形、运用分情况讨论思想是解题的关键.2.(2021•无棣县模拟)已知⊙O的直径CD=10cm,AB是⊙O的弦,AB⊥CD,垂足为M,且AB=8cm,则AC的长为( )A.25cm B.43cm C.25cm或45cm D.23cm或43cm思路引领:分两种情况,根据题意画出图形,先根据垂径定理求出AM的长,连接OA,由勾股定理求出OM的长,进而可得出结论.解:连接AC,AO,∵⊙O的直径CD=10cm,AB⊥CD,AB=8cm,∴AM=12AB=12×8=4(cm),OD=OC=5(cm),当C点位置如图1所示时,∵OA=5cm,AM=4cm,CD⊥AB,∴OM=OA2―AM2=52―42=3(cm),∴CM=OC+OM=5+3=8(cm),∴AC=AM2+CM2=42+82=45(cm);当C点位置如图2所示时,同理可得:OM=3cm,∵OC=5cm,∴MC=5﹣3=2(cm),在Rt△AMC中,AC=AM2+CM2=42+22=25(cm);综上所述,AC的长为45cm或25cm,故选:C.总结提升:本题考查的是垂径定理和勾股定理等知识,根据题意画出图形,利用垂径定理和勾股定理求解是解答此题的关键.3.(2020•黑龙江)在半径为5的⊙O中,弦AB垂直于弦CD,垂足为P,AB=CD=4,则S△ACP = .思路引领:如图1,作OE⊥AB于E,OF⊥CD于F,连接OD、OB,如图,根据垂径定理得到AE=BE=12AB=2,DF=CF=12CD=2,根据勾股定理在Rt△OBE中计算出OE=1,同理可得OF=1,接着证明四边形OEPF为正方形,于是得到PA=PC=1,根据三角形面积公式求得即可.解:作OE⊥AB于E,OF⊥CD于F,连接OD、OB,则AE=BE=12AB=2,DF=CF=12CD=2,如图1,在Rt△OBE中,∵OB=5,BE=2,∴OE=OB2―BE2=1,同理可得OF=1,∵AB⊥CD,∴四边形OEPF为矩形,∴PE=PF=1,∴PA=PC=1,∴S△APC=12×1×1=12;如图2,同理:S△APC=12×3×3=92;如图3,同理:S△APC=12×1×3=32;故答案为:12或32或92.总结提升:本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理.类型二圆心在两弦之间或者两弦之外4.(2021•商河县校级模拟)一下水管道的截面如图所示.已知排水管的直径为100cm,下雨前水面宽为60cm.一场大雨过后,水面宽为80cm,求水面上升多少?思路引领:分两种情形分别求解即可解决问题.解:作半径OD⊥AB交AB于C,连接OB,如图所示,由垂径定理得:BC=12AB=30cm,在Rt△OBC中,OC=502―302=40cm,当水位上升到圆心以下,水面宽80cm时,则OC′=502―402=30cm,水面上升的高度为:40﹣30=10cm;当水位上升到圆心以上时,水面上升的高度为:40+30=70cm,综上可得,水面上升的高度为10cm或70cm.总结提升:本题考查的是垂径定理的应用,掌握垂径定理、灵活运用分情况讨论思想是解题的关键.5.(1)半径为1的圆中有一条弦,如果它的长为3,那么这条弦所对的圆周角的度数等于 ;(2)在半径为1的⊙O中,弦AB,AC的长分别为3和2,则∠BAC的度数是 ;(3)已知圆内接△ABC中.AB=AC,圆心O到BC的距离为3cm,圆的半径为7cm,求腰长AB.思路引领:(1)根据垂径定理求得AD的长,再根据三角形函数可得到∠AOD的度数,再根据圆周角定理得到∠ACB的度数,根据圆内接四边形的对角互补即可求得∠AEB的度数;(2)连接OA,过O作OE⊥AB于E,OF⊥AC于F,根据垂径定理求出AE、FA值,根据解直角三角形的知识求出∠OAB和∠OAC,然后分两种情况求出∠BAC即可;(3)可根据勾股定理先求得BD的值,再根据勾股定理可求得AB的值.注意:圆心在内接三角形内时,AD=10cm;圆心在内接三角形外时,AD=4cm.解:(1)如图1,过O作OD⊥AB,则AD=12AB=12×3=32.∵OA=1,∴sin∠AOD=ADOA=32,∠AOD=60°.∵∠AOD=12∠AOB=60°,∠ACB=12∠AOB,∴∠ACB=∠AOD=60°.又∵四边形AEBC是圆内接四边形,∴∠AEB=180°﹣∠ACB=180°﹣60°=120°.故这条弦所对的圆周角的度数等于60°或120度.故答案为:60°或120度.(2)解:有两种情况:①如图2所示:连接OA,过O作OE⊥AB于E,OF⊥AC于F,∴∠OEA=∠OFA=90°,由垂径定理得:AE=BE=32,AF=CF=32,cos∠OAE=AEOA=32,cos∠OAF=AFOA=22,∴∠OAE=30°,∠OAF=45°,∴∠BAC=30°+45°=75°;②如图3所示:连接OA,过O作OE⊥AB于E,OF⊥AC于F,∴∠OEA=∠OFA=90°,由垂径定理得:AE=BE=32,AF=CF=22,cos∠OAE=AEOA=32,cos∠OAF=AFOA=22,∴∠OAE=30°,∠OAF=45°,∴∠BAC=45°﹣30°=15°,故答案为:75°或15°;(3)分圆心在内接三角形内和在内接三角形外两种情况讨论,如图4,假若∠A是锐角,△ABC是锐角三角形,连接OB,作AD⊥BC于D,连接OD,∵AB=AC,∴AD是BC的中垂线,∴OD也是BC的中垂线,∴A、O、D三点共线,∵OD=3cm,OB=7cm,∴AD=10cm,∴BD=OB2―OD2=210cm,∵OD⊥BC,∴BD=CD,∵AB=AC,∴AD⊥BC,∴AB=AD2+BD2=235cm;如图5,若∠A是钝角,则△ABC是钝角三角形,和图4解法一样,只是AD=7﹣3=4cm,∴AB=AD2+BD2=214cm,综上可得腰长AB=235cm或214cm.总结提升:本题主要考查了垂径定理和勾股定理,注意分圆心在内接三角形内和在内接三角形外两种情况讨论,解题的关键是根据题意作出图形,求出符合条件的所有情况.类型三讨论点在优弧上或劣弧上6.(2022秋•双城区期末)已知⊙O的半径为2,弦AB的长为23,则弦AB的中点到这条弦所对的弧的中点的距离为 .思路引领:由垂径定理得出AC,再由勾股定理得出OC,从而得出CD和CE的长.解:如图,∵C是弦AB的中点,AB=23,∴OC⊥AB,AC=12AB=3,∴AD=BD,AE=BE,在Rt△AOC中,OC=22―(3)2=1,∴CD=2﹣1=1cm,CE=2+1=3.故答案为:1或3.总结提升:本题考查了垂径定理和勾股定理,熟练掌握垂径定理和勾股定理是解题的关键.8.(2021秋•凉州区校级期末)如图,AB、AC分别与⊙O相切于点B、C,∠A=50°,点P是圆上异于B、C的一动点,则∠BPC的度数是 .思路引领:此题分为两种情况,如图p点的位置有两个,所以∠BPC可能是锐角,也有可能是钝角,分别连接O、C;O、B;B、P1;B、P2;C、P1;C、P2各点.(1)当∠BPC为锐角,也就是∠BP1C时,根据AB,AC与⊙O相切,结合已知条件,在△ABC中,即可得出圆心角∠COB的度数,根据同弧所对的圆周角为圆心角的一半,即可得出∠BP1C的度数;(2)如果当∠BPC为钝角,也就是∠BP2C时,根据⊙O的内接四边形的性质,即可得出∠BP2C的度数.解:分别连接O、C;O、B;B、P1;B、P2;C、P1;C、P2各点,(1)当∠BPC为锐角,也就是∠BP1C时:∵AB,AC与⊙O相切于点B,C两点∴OC⊥AC,OB⊥AB,∵∠A=50°,∴在△ABC中,∠COB=130°,∵在⊙O中,∠BP1C为圆周角,∴∠BP1C=65°,(2)如果当∠BPC为钝角,也就是∠BP2C时∵四边形BP1CP2为⊙O的内接四边形,∵∠BP1C=65°,∴∠BP2C=115°故答案为:65°或115°.总结提升:本题考查圆的切线性质,在解题过程中还要注意对圆的内接四边形、圆周角、圆心角的有关性质的综合应用.类型四弦所对的圆周角7.(2018秋•泗阳县期中)若圆的一条弦把圆分成度数的比为1:3的两条弧,则该弦所对的圆周角等于 .思路引领:圆的一条弦把圆分成度数之比为1:3的两条弧,则所分的劣弧的度数是90°,当圆周角的顶点在优弧上时,这条弦所对的圆周角等于45°,当这条弦所对的圆周角的顶点在劣弧上时,这条弦所对的圆周角等于135°.解:如图,弦AB将⊙O分成了度数比为1:3两条弧.连接OA、OB;则∠AOB=90°;①当所求的圆周角顶点位于D点时,这条弦所对的圆周角∠ADB=12∠AOB=45°;②当所求的圆周角顶点位于C点时,这条弦所对的圆周角∠ACB=180°﹣∠ADB=135°.故答案为:45°,135°.总结提升:本题考查的是圆心角、弧、弦的关系及圆周角定理,在解答此类问题时要注意是在“同圆或等圆中”才适用,这是此类问题的易错点.9.(2020秋•溧阳市期末)已知△ABC是半径为2的圆内接三角形,若BC=23,则∠A的度数为( )A.30°B.60°C.120°D.60°或120°思路引领:首先根据题意画出图形,然后由圆周角定理与含30°角的直角三角形的性质,求得答案.解:如图,作直径BD,连接CD,则∠BCD=90°,∵△ABC是半径为2的圆内接三角形,BC=23,∴BD=4,∴CD=BD2―BC2=2,∴CD=12 BD,∴∠CBD=30°,∴∠A=∠D=60°,∴∠A′=180°﹣∠A=120°,∴∠A的度数为:60°或120°.故选:D.总结提升:此题考查了圆周角定理与含30°角的直角三角形的性质.此题难度适中,注意掌握数形结合思想的应用.类型五讨论圆内接三角形的形状10.(2019•绥化)半径为5的⊙O是锐角三角形ABC的外接圆,AB=AC,连接OB、OC,延长CO交弦AB 于点D.若△OBD是直角三角形,则弦BC的长为 .思路引领:如图1,当∠ODB=90°时,推出△ABC是等边三角形,解直角三角形得到BC=AB=53,如图2,当∠DOB=90°,推出△BOC是等腰直角三角形,于是得到BC=2OB=52.解:如图1,当∠ODB=90°时,即CD⊥AB,∴AD=BD,∴AC=BC,∵AB=AC,∴△ABC是等边三角形,∴∠DBO=30°,∵OB=5,∴BD =32OB =532,∴BC =AB =53,如图2,当∠DOB =90°,∴∠BOC =90°,∴△BOC 是等腰直角三角形,∴BC =2OB =52,综上所述:若△OBD 是直角三角形,则弦BC 的长为53或52,故答案为:53或52.点睛:本题考查了三角形的外接圆与外心,等边三角形的判定和性质,等腰直角三角形的性质,正确的作出图形是解题的关键.101.已知等腰△ABC 的三个顶点都在半径为5的⊙O 上,如果底边BC 的长为8,求BC 边上的高.思路引领:从圆心向BC 引垂线,交点为D ,则根据垂径定理和勾股定理可求出,OD 的长,再根据圆心在三角形内部和外部两种情况讨论.解:连接AO 并延长交BC 于D 点,∵AB =AC ,∴AB =AC ,根据垂径定理得AD ⊥BC ,则BD =4,根据勾股定理得OD =3①圆心在三角形内部时,三角形底边BC 上的高=5+3=8;②圆心在三角形外部时,三角形底边BC 上的高=5﹣3=2.所以BC 边上的高是8或2.总结提升:本题综合考查了垂径定理和勾股定理在圆中的应用,因三角形与圆心的位置不明确,注意分情况讨论.类型六讨论点与圆的位置关系12.(2020•南通模拟)若⊙O所在平面内一点P到⊙O上的点的最大距离为a,最小距离为b(a>b),则此圆的半径为 .思路引领:点P可能在圆内,也可能在圆外;当点P在圆内时,直径为最大距离与最小距离的和;当点P在圆外时,直径为最大距离与最小距离的差;再分别计算半径.解:若⊙O所在平面内一点P到⊙O上的点的最大距离为a,最小距离为b,若这个点在圆的内部或在圆上时,圆的直径为a+b,因而半径为a+b 2;当此点在圆外时,圆的直径是a﹣b,因而半径是a―b 2;故答案为:a+b2或a―b2.总结提升:本题考查了点与圆的位置关系,培养学生分类的思想及对点P到圆上最大距离、最小距离的认识.13.已知点P到⊙O的最长距离为6cm,最短距离为2cm.试求⊙O的半径长.思路引领:分两种情况进行讨论:①点P在圆内;②点P在圆外,进行计算即可解:①当P在⊙O外时,如图,∵P当⊙O的最长距离是为6cm,最短距离为2cm,∴PB=6cm,PA=2cm,∴AB=4cm,∴⊙O的半径为2cm';当P在⊙O内时,,此时AB=8cm,⊙O的半径为4cm.即⊙O的半径长为2cm或4cm.解题秘籍:本题考查了点和圆的位置关系,分类讨论是解此题的关键.类型七讨论直线与圆的位置关系14.(2021•崇明区二模)已知同一平面内有⊙O和点A与点B,如果⊙O的半径为3cm,线段OA=5cm,线段OB=3cm,那么直线AB与⊙O的位置关系为( )A.相离B.相交C.相切D.相交或相切思路引领:根据点与圆的位置关系的判定方法进行判断.解:∵⊙O的半径为3cm,线段OA=5cm,线段OB=3cm,即点A到圆心O的距离大于圆的半径,点B到圆心O的距离等于圆的半径,∴点A在⊙O外.点B在⊙O上,∴直线AB与⊙O的位置关系为相交或相切,故选:D.总结提升:本题考查了直线与圆的位置关系,正确的理解题意是解题的关键.15.(2021秋•信都区校级月考)在Rt△ABC中,∠ACB=90°,AC=6,BC=8,若以点C为圆心,r为半径的圆与边AB所在直线相离,则r的取值范围为 ;若⊙C与AB边只有一个公共点,则r的取值范围为 .思路引领:如图,作CH⊥AB于H.利用勾股定理求出AB,再利用面积法求出CH即可判断.解:如图,作CH⊥AB于H.在Rt△ABC中,∵∠ACB=90°,BC=8,AC=6,∴AB=AC2+BC2=62+82=10,∵S△ABC=12•AC•BC=12•AB•CH,∴CH=24 5,∵以点C为圆心,r为半径的圆与边AB所在直线相离,∴r的取值范围为r<24 5,∵⊙C与AB边只有一个公共点,∴r的取值范围为6<r≤8或r=24 5,故答案为:r<245,6<r≤8或r=245.总结提升:本题考查直线与圆的位置关系,解直角三角形等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.16.(衢州中考)如图,已知直线l的解析式是y=43x﹣4,并且与x轴、y轴分别交于A、B两点.一个半径为1.5的⊙C,圆心C从点(0,1.5)开始以每秒0.5个单位的速度沿着y轴向下运动,当⊙C与直线l 相切时,则该圆运动的时间为( )A.3秒或6秒B.6秒C.3秒D.6秒或16秒思路引领:由y=43x﹣4可以求出与x轴、y轴的交点A(3,0)、B(0,﹣4)坐标,再根据勾股定理可得AB=5,当C在B上方,根据直线与圆相切时知道C到AB的距离等于1.5,然后利用三角函数可得到CB,最后即可得到C运动的距离和运动的时间;同理当C在B下方,利用题意的方法也可以求出C 运动的距离和运动的时间.解:如图,∵x=0时,y=﹣4,y=0时,x=3,∴A(3,0)、B(0,﹣4),∴AB=5,当C在B上方,直线与圆相切时,连接CD,则C到AB的距离等于1.5,∴CB=1.5÷sin∠ABC=1.5×53=2.5;∴C运动的距离为:1.5+(4﹣2.5)=3,运动的时间为:3÷0.5=6;同理当C在B下方,直线与圆相切时,连接CD,则C运动的距离为:1.5+(4+2.5)=8,运动的时间为:8÷0.5=16.故选:D.总结提升:此题首先注意分类讨论,利用了切线的性质和三角函数等知识解决问题.17.(2018•浦东新区二模)已知l1∥l2,l1、l2之间的距离是3cm,圆心O到直线l1的距离是1cm,如果圆O 与直线l1、l2有三个公共点,那么圆O的半径为 cm.思路引领:根据题意可以画出相应的图形,从而可以解答本题.解:如下图所示,设圆的半径为r如图一所示,r﹣1=3,得r=4,如图二所示,r+1=3,得r=2,故答案为:2或4.总结提升:本题考查直线和圆的位置关系,解答本题的关键是明确题意,画出相应的图形,利用数形结合的思想解答.18.(2021秋•新荣区月考)综合与实践问题情境:数学活动课上,老师出示了一个直角三角板和量角器,把量角器的中心O 点放置在AC 的中点上,DE 与直角边AC 重合,如图1所示,∠C =90°,BC =6,AC =8,OD =3,量角器交AB 于点G ,F ,现将量角器DE 绕点C 旋转,如图2所示.(1)点C 到边AB 的距离为 245 .(2)在旋转过程中,求点O 到AB 距离的最小值.(3)若半圆O 与Rt △ABC 的直角边相切,设切点为K ,求BK 的长.思路引领:(1)如图1,过点C 作CH ⊥AB 于点H ,利用勾股定理求得AB ,再利用AB •CH =AC •BC ,即可求得答案.(2)当CD ⊥AB 时,点O 到AB 的距离最小,再由OH =CH ﹣OC ,即可求得答案.(3)分两种情况:①当半圆O 与BC 相切时,如图2,设切点为K ,连接OK ,运用勾股定理即可求得答案;②当半圆O 与AC 相切时,如图3,设切点为K ,连接OK ,运用勾股定理求得CK ,再利用勾股定理即可求得BK .解:(1)如图1,过点C 作CH ⊥AB 于点H ,∵∠ACB =90°,BC =6,AC =8,∴AB =AC 2+BC 2=62+82=10,∵CH ⊥AB ,∴AB •CH =AC •BC ,∴CH =AC ⋅BC AB=6×810=245,即点C 到边AB 的距离为245,故答案为:245.(2)∵O 为AC 的中点,∴OC =12AC =12×8=4,当CD ⊥AB 时,点O 到AB 的距离最小,∴OH =CH ﹣OC =245―4=45,∴点O 到AB 距离的最小值为45.(3)①当半圆O 与BC 相切时,如图2,设切点为K ,连接OK ,∴∠OKC =90°,在Rt △OCK 中,OK =3,OC =4,∴CK =OC 2―OK 2=42―32=7,∴BK =BC ﹣CK =6―7;②当半圆O 与AC 相切时,如图3,设切点为K ,连接OK ,∴∠OKC =90°,在Rt △OCK 中,OK =3,OC =4,∴CK =OC 2―OK 2=42―32=7,在Rt △BCK 中,BK =BC 2+CK 2=62+(7)2=43;综上所述,BK 的长为7或43.解题秘籍:本题是几何综合题,考查了圆的性质,切线的性质,旋转变换的性质,勾股定理,三角形面积,解题关键是熟练掌握旋转变换的性质等相关知识,运用分类讨论思想解决问题.。
圆中多解问题
Document serial number【KK89K-LLS98YT-SS8CB-SSUT-SST108】
圆中的多解问题
一、根据点与圆的位置分类
例1、点P 是圆O 所在平面上一定点,点P 到圆上的最大距离和最短距离分别为8和2,则该圆的半径为 。
二、三角形与圆心的位置关系
例2:已知∆ABC 内接于圆O ,∠=︒OBC 35,则∠A 的度数为________。
例3:已知圆内接∆ABC 中,AB=AC ,圆心O 到BC 的距离为3cm ,圆的半径为6cm,求腰长AB 。
三、角与圆心的位置关系
例4:在半径为1的⊙O 中,弦AB 、AC 的长分别为3和2,则∠BAC 的度数是____。
四、圆中两平行弦与圆心的位置关系
例5.圆O 的直径为10cm ,弦AB//CD ,AB=6cm ,CD cm =8,求AB 和CD 的距离。
五、弦所对的圆周角有两种情况
例6:半径为1的圆中有一条弦,如果它的长为3,那么这条弦所对的圆周角的度数等于___________。
练习:
1.AB 是⊙O 的弦,∠AOB =80°则弦AB 所对的圆周角是()。
2.一条弦分圆为1∶5两部分,则这条弦所对的圆周角的度数为()
六、圆与圆的位置关系
例7、已知圆O 1和圆O 2相内切,圆心距为1cm ,圆O 2半径为4cm ,求圆O 1的半径。
例8、两圆相切,半径分别为4cm 和6cm ,求两圆的圆心距。
例9、相交两圆半径分别为5cm 和4cm ,公共弦长6cm ,则两圆的圆心距等于_______
七.弦所对弧的优劣情况不确定
例10.已知横截面直径为100cm 的圆形下水道,如果水面宽AB 为80cm ,求下水道中水的最大深度。
练习:
1.平面内有一点P 到⊙O 上的点的最短距离为3,最长距离为5,则圆的半径为
2.在半径为5cm 的圆内有两条平行弦,一条弦长为6cm ,另一条弦长为8cm ,则两条平行弦之间的距离为_________。
3.过⊙O 内一点M 的最长弦为10cm ,最短弦为8cm ,则OM=cm..
4.在平面直角坐标系中,半径为5的⊙O 与x 轴交于A (-2,0)、B (4,0),则圆心点M 坐标为_________.
5.若O 为△ABC 的外心,且0
60=∠BOC ,求BAC ∠的度数 6.P 为⊙O 外一点,PA 、PB 分别切⊙O 于点A 、B ,∠APB=50°,点C 为⊙O 上一点(不与A 、B )重合,则∠ACB 的度数为。
7.若两个圆相切于A 点,它们的半径分别为10cm 、4cm ,则这两个圆的圆心距为().
A .14cm
B .6cm
C .14cm 或6cm
D .8cm
8.已知⊙A,⊙B相切,圆心距为10cm,其中⊙A的半径为4cm,求⊙B的半径。
9.已知:相交两圆的公共弦的长为6cm ,两圆的半径分别为cm 23,cm 5,求这两个圆的圆心距.
10.一条弦分圆周为3:5两部分,则这条弦所对的圆周角的度数为。
难题:
1.如图,已知⊙O 中,直径MN=10,正方形ABCD 的四个顶点分别在半径OM ,OP 以及⊙O 上,并且
045=∠POM ,求AB 的长.
2、如图,两正方形彼此相邻且内接于半圆,若小正方形的面积为16cm 2,则该半圆的半径为( )
A.(45)+cm
B.9cm
C.45cm
D.62cm
3.如图,P 为⊙O 的弦AB 上的点,PA=6,PB=2,⊙O 的半径为5,则OP=______.
4.已知:如图,AB 是⊙O 的直径,弦CD 交AB 于E 点,BE=1,AE=5,∠AEC=30°,求CD 的长.
5.如图,⊙O 中,直径AB=15cm ,有一条长为9cm 的动弦CD 在上滑动(点C 与A ,点D 与B 不重合),CF ⊥
CD 交AB 于F ,DE ⊥CD 交AB 于E .
(1)求证:AE=BF ;
(2)在动弦CD 滑动的过程中,四边形CDEF 的面积是否为定值若是定值,请给出证明并求这个定值;若不是,请说明理由.
6.在⊙O 中,若圆心角∠AOB=100°,C 是
上一点,则∠ACB 等于(). A .80° B .100° C .130° D .140°。