量子力学(黑体辐射) 1900年普朗克
- 格式:ppt
- 大小:904.00 KB
- 文档页数:24
黑体辐射1900年普朗克发表的黑体辐射公式在物理学上是一项划时代的成就。
在此以前黑体辐射的波长分布虽然已经有了相当可靠的实验数据,但经典物理学的理论解释却导致了非常尖锐的矛盾。
这一问题在经典物理学的范畴内是无法合理地解决的,普朗克引进了量子化的假设,推导出黑体辐射波长分布公式。
量子化假设已成为当代物理学的基石,对当代科学技术的发展产生了深远的影响。
【实验目的】1、研究物体的辐射面、辐射体温度对物体辐射能力的影响,并分析原因。
2、测量改变测试点与辐射体距离时,物体辐射能量W 和距离L 以及距离的平方的关系,并描绘W -2L 曲线。
3、依据维恩位移定律,测绘物体辐射能量与波长的关系图。
【实验原理】热辐射的真正研究是从基尔霍夫开始的。
1859年他从理论上引入了辐射本领、吸收本领和黑体概念,他利用热力学第二定律证明了一切物体的热辐射本领r (ν,T )与吸收本领α(ν,T )成正比,比值仅与频率ν和温度T 有关,其数学表达式为:),(),(),(T F T T r νναν= (1) 式中F (ν,T )是一个与物质无关的普适函数。
1861年他进一步指出,在一定温度下用不透光的壁包围起来的空腔中的热辐射等同于黑体的热辐射。
1879年,斯特藩从实验中总结出了黑体辐射的辐射本领R 与物体绝对温度T 四次方成正比的结论;1884年,玻耳兹曼对上述结论给出了严格的理论证明,其数学表达式为:4T R T σ= (2)即斯特藩-玻耳兹曼定律,其中4212/10673.5K cm w -⨯=σ为玻耳兹曼常数。
1888年,韦伯提出了波长与绝对温度之积是一定的。
1893年维恩从理论上进行了证明,其数学表达式为:b T =max λ (3)式中b =2.8978×10-3( m.K )为一普适常数,随温度的升高,绝对黑体光谱亮度的最大值的波长向短波方向移动,即维恩位移定律。
1图 1 辐射能量与波长的关系图 l 显示了黑体不同色温的辐射能量随波长的变化曲线,峰值波长λmax与它的绝对温度T成反比。
量子量子(quantum)是现代物理的重要概念。
最早是M·普朗克在1900年提出的。
他假设黑体辐射中的辐射能量是不连续的,只能取能量基本单位的整数倍。
后来的研究表明,不但能量表现出这种不连续的分离化性质,其他物理量诸如角动量、自旋、电荷等也都表现出这种不连续的量子化现象。
这同以牛顿力学为代表的经典物理有根本的区别。
量子化现象主要表现在微观物理世界。
描写微观物理世界的物理理论是量子力学。
量子一词来自拉丁语quantum,意为“有多少”,代表“相当数量的某物质”。
在物理学中常用到量子的概念,指一个不可分割的基本个体。
例如,“光的量子”是光的单位。
而延伸出的量子力学、量子光学等更成为不同的专业研究领域。
其基本概念为所有的有形性质是“可量子化的”。
“量子化”指其物理量的数值是特定的,而不是任意值。
例如,在(休息状态的)原子中,电子的能量是可量子化的。
这决定原子的稳定和一般问题。
在20世纪的前半期,出现了新的概念。
许多物理学家将量子力学视为了解和描述自然的的基本理论。
在量子出现在世界上100多年间,经过普朗克,爱因斯坦,斯蒂芬霍金等科学家的不懈努力,已初步建立量子力学理论。
创始人一个物理量如果存在最小的不可分割的基本单位,则这个物理量是量子化的,并把最小单位称为量子。
量子英文名称量子一词来自拉丁语quantus,意为“有多少”,代表“相当数量的某物质”。
在物理学中常用到量子的概念,指一个不可分割的基本个体。
例如,“光的量子”(光子)是光的单位。
而延伸出的量子力学、量子光学等成为不同的专业研究领域。
其基本概念为所有的有形性质是“可量子化的”。
“量子化”指其物理量的数值是特定的,而不是任意值。
例如,在原子中,电子的能量是可量子化的。
这决定原子的稳定和一般问题。
在20世纪的前半期,出现了新的概念。
许多物理学家将量子力学视为了解和描述自然的的基本理论。
历史在经典物理学中,根据能量均分定理:能量是连续变化的,可以取任意值。
量子力学的发展-----从量子论到量子力学摘要:量子论,量子力学,一对相近的名字,也许很多人会说它们是同一个概念,因为我刚听到这两个词的时候就是这么认为的,但是经过了将近半个学期的学习,我慢慢发现它们并不是相同的,我也开始对量子力学有了更加清楚的认识,至少它不是无法理解的,虽然还有很多很多的问题有待我们解决,但是量子力学已深入到物理学中了,并成功解释了许许多多经典物理无法解决的问题.而量子力学究竟是如何发展起来的呢?正文:1900年,普朗克针对经典物理学解释黑体辐射的困难,提出辐射能量量子化的概念,发表了著名的量子假说;然而当时很少有人注意他的文章,更不要说理解它了.而爱因斯坦却认真对待这一革命性的观念,1905年,他针对光电效应的实验事实与经典观念的矛盾,提出光量子的概念;无独有偶, 爱因斯坦的论文同样不受名人重视.在1913年,波尔把普朗克—爱因斯坦的量子化概念用到卢瑟福模型,提出了量子态的观念。
不过,这时的量子论在逻辑和对实际问题的处理都有严重的缺陷,而“物质粒子的波粒两象性”使之更严密。
在此基础之上,海森伯、波恩和薛定谔等人建立了量子力学。
关键词:黑体辐射,光电效应,波粒两象性,薛定谔方程一基本理论分析1、黑体辐射的提出黑体是指能将入射的任何频率的电磁波全都吸收的理想物体,当黑体受热后以电磁波的形式向外辐射能量称为黑体辐射。
1859年,基尔霍夫(G.R.Kirchhoff)证明:黑体与热辐射达到平衡时,辐射能量密度E(ν,T)随频率ν变化曲线的形状与位置只与黑体的绝对温度T有关,而与空腔的形状及组成的物质无关。
1893年,维恩(W.Wien)测得黑体辐射本领R(λ,T)在不同温度T下,随λ的变化规律,如左边的图。
1900年普朗克在维恩、瑞利和金斯的公式之上提出了普朗克公式,而普朗克在研究和分析普朗克公式的形成机制时发现,必须引入不可思议的量子假说才能从理论上推出普朗克公式,量子假说是指辐射黑体中的分子、原子振动可看作线性谐振子,它和周围电磁场交换能量的能量值只能为某一最小能量(称为能量子)的整数倍。
量⼦⼒学:普朗克关于⿊体辐射的研究从⿊体辐射到现在,我们好像刚刚来过!——灵遁者我们不能⼀下⼦解决所有问题,很多问题需要时间,这是⼀个客观的现象。
由研究对象本⾝或时代背景限制所造成。
⽐如要研究⽉⾷,⽇⾷的规律,超新星的爆发,太阳风等现象。
这些现象本⾝不常发⽣,超新星爆发⼀般是⼏⼗年⼀次,那么你如何快速搞清楚呢?⼀个⼈的⼀⽣,也许只能见⼀次吧。
所以书籍和知识传递就变的异常重要。
⼀个⼈的⽣命是有限的,但很多后代的⽣命连续起来,也还是可观的。
我收到了读者的反馈,建议我增加关于⿊体辐射的内容。
其实这些内容,在本书中的章节中,有提到了。
但我还是觉得读者反馈的意见是不错的。
⽐较⿊体辐射是量⼦⼒学的开端事件,所以就有了本章的内容。
我们知道任何物体都具有不断辐射、吸收、发射电磁波的本领。
⿊体辐射能量按波长的分布仅与温度有关。
辐射出去的电磁波在各个波段是不同的,也就是具有⼀定的谱分布。
这种谱分布与物体本⾝的特性及其温度有关,因⽽被称之为热辐射。
为了研究不依赖于物质具体物性的热辐射规律,物理学家们定义了⼀种理想物体——⿊体(blackbody),以此作为热辐射研究的标准物体。
⿊体的定义就是:在任何条件下,对任何波长的外来辐射完全吸收⽽⽆任何反射的物体,即吸收⽐为1的物体。
在⿊体辐射中,随着温度不同,光的颜⾊各不相同,⿊体呈现由红——橙红——黄——黄⽩——⽩——蓝⽩的渐变过程。
某个光源所发射的光的颜⾊,看起来与⿊体在某⼀个温度下所发射的光颜⾊相同时,⿊体的这个温度称为该光源的⾊温。
“⿊体”的温度越⾼,光谱中蓝⾊的成份则越多,⽽红⾊的成份则越少。
例如,⽩炽灯的光⾊是暖⽩⾊,其⾊温表⽰为4700K,⽽⽇光⾊荧光灯的⾊温表⽰则是6000K。
正是对于⿊体的研究,使⾃然现象中的量⼦效应被发现。
⽽在现实中⿊体辐射是不存在的,只有⾮常近似的⿊体(好⽐在⼀颗恒星或⼀个只有单⼀开⼝的空腔之中)。
理想的⿊体可以吸收所有照射到它表⾯的电磁辐射,并将这些辐射转化为热辐射,其光谱特征仅与该⿊体的温度有关,与⿊体的材质⽆关。
量子假说普朗克最大贡献是在1900年提出了能量量子化,其主要内容是:黑体是由以不同频率作简谐振动的振子组成的,其中电磁波的吸收和发射不是连续的,而是以一种最小的能量单位ε=hν,为最基本单位而变化着的,理论计算结果才能跟实验事实相符,这样的一份能量ε,叫作能量子。
其中v是辐射电磁波的频率,h=6.62559*10^-34Js,即普朗克常数。
也就是说,振子的每一个可能的状态以及各个可能状态之间的能量差必定是hv的整数倍。
受他的启发,爱因斯坦于1905年提出,在空间传播的光也不是连续的,而是一份一份的,每一份叫一个光量子,简称光子,光子的能量E跟光的频率v成正比,即E=hv。
这个学说以后就叫光量子假说。
光子说还认为每一个光子的能量只决定于光子的频率,例如蓝光的频率比红光高,所以蓝光的光子的能量比红光子的能量大,同样颜色的光,强弱的不同则反映了单位时间内射到单位面积的光子数的多少。
普朗克黑体辐射定律:大约是在1894年,普朗克开始把心力全部放在研究黑体辐射的问题上,他曾经委托过电力公司制造能消耗最少能量,但能产生最多光能的灯泡,这一问题也曾在1859年被基尔霍夫所提出:黑体在热力学平衡下的电磁辐射功率与辐射频率和黑体温度的关系。
帝国物理技术学院(Physikalisch-Technischer Reichsanstalt)对这个问题进行了实验研究,但是经典物理学的瑞利-金斯公式无法解释高频率下的测量结果,但这定律却也创造了日后的紫外灾难,威廉·维恩给出了维恩位移定律,可以正确反映高频率下的结果,但却又无法符合低频率下的结果。
这些定律之所以能发起有一小部分是普朗克的贡献,但大多数的教科书却都没有提到他。
普朗克在1899年就率先提出解决此问题的方法,叫做“基础无序原理”(principle of elementary disorder),并把瑞利-金斯定律和维恩位移定律这两条定律使用一种熵列式进行内插,由此发现了普朗克辐射定律,可以很好地描述测量结果,不久后,人们发现他的这项新理论是没有实验证据的,这也让普朗克他在当时感到稍稍的无奈。
黑体辐射与普朗克常数黑体辐射是研究热力学和量子力学的重要问题之一。
在19世纪末,德国物理学家麦克斯·普朗克通过对黑体辐射的研究,引入了一个与物理学的发展密不可分的概念——普朗克常数。
【引子】为了理解普朗克常数的意义,我们首先需要了解黑体辐射的基本原理。
所谓黑体是指完全吸收并不反射任何入射光线的物体,它具有热力学平衡态。
而黑体辐射则是指处于热平衡时的黑体所发射的电磁辐射。
黑体辐射的颜色和亮度与其温度有关,经典物理学无法完全解释其行为。
【黑体辐射的困惑】早期的研究者曾试图用经典力学的理论解释黑体辐射,他们普遍认为电磁辐射是连续的。
然而,根据经典物理学的预测,黑体辐射应该在高频率处无限增加,这与实验观测不符。
这一矛盾被称为“紫外灾难”,为解决该问题,科学家们开始尝试引入量子理论。
【普朗克的突破】在1900年,普朗克通过试图解决黑体辐射问题而得出一种新的理论框架。
他假设电磁辐射的能量不是连续的,而是以一个小的固定单位进行发射,这个单位就是后来被称为普朗克常数的量子。
普朗克的理论提出了能量量子化的观念,即能量是一种粒子化的形式。
根据普朗克的理论,电磁辐射的能量与其频率之间存在一种固定的关系。
而这个关系式就是著名的普朗克辐射定律,它在解释黑体辐射的分布规律上相当成功。
普朗克的突破不仅引起了科学界的极大关注,也为后来量子力学的发展奠定了基础。
【普朗克常数】普朗克常数被定义为一种基本的自然常数,它的数值为 6.62607015×10^-34 J·s。
普朗克常数的大小决定了能量的量子化程度,它在描述微观粒子行为和量子效应中起着关键的作用。
普朗克常数的量纲为动能和动量的积,它在许多物理学公式中起到重要的作用。
例如,在量子力学中,波函数的形式和粒子的能量等都与普朗克常数有关。
此外,普朗克常数也与粒子的波粒二象性、不确定性原理等概念密切相关。
【深入理解普朗克常数】为了更深入地理解普朗克常数的意义,我们可以回顾一下光子的概念。
普朗克黑体辐射量子理论普朗克的假设在热力学中,黑体(Black body),是一个理想化的物体,它能够吸收外来的全部电磁辐射,并且不会有任何的反射和透射。
随着温度上升,黑体所辐射出来的电磁波则称为黑体辐射。
“紫外灾难”:在经典统计理论中,能量均分定律预言黑体辐射的强度在紫外区域会发散至无穷大,这和事实严重违背马克斯·普朗克于1900年建立了黑体辐射定律的公式,并于1901年发表。
其目的是改进由威廉·维恩提出的维恩近似(至于描述黑体辐射的另一公式:由瑞利勋爵和金斯爵士提出的瑞利-金斯定律,其建立时间要稍晚于普朗克定律。
由此可见瑞利-金斯公式所导致的“紫外灾难”并不是普朗克建立黑体辐射定律的动机。
)。
维恩近似在短波范围内和实验数据相当符合,但在长波范围内偏差较大;而瑞利-金斯公式则正好相反。
普朗克得到的公式则在全波段范围内都和实验结果符合得相当好。
在推导过程中,普朗克考虑将电磁场的能量按照物质中带电振子的不同振动模式分布。
得到普朗克公式的前提假设是这些振子的能量只能取某些基本能量单位的整数倍,这些基本能量单位只与电磁波的频率有关,并且和频率成正比。
这即是普朗克的能量量子化假说,这一假说的提出比爱因斯坦为解释光电效应而提出的光子概念还要至少早五年。
然而普朗克并没有像爱因斯坦那样假设电磁波本身即是具有分立能量的量子化的波束,他认为这种量子化只不过是对于处在封闭区域所形成的腔内的微小振子而言的,用半经典的语言来说就是束缚态必然导出量子化。
普朗克没能为这一量子化假设给出更多的物理解释,他只是相信这是一种数学上的推导手段,从而能够使理论和经验上的实验数据在全波段范围内符合。
不过最终普朗克的量子化假说和爱因斯坦的光子假说都成为了量子力学的基石。
爱因斯坦的光电子假设截止电压,最大动能,极限频率,几乎瞬时发射,偏振方向经典理论无法完美解释以上现象1905年,爱因斯坦发表论文《关于光的产生和转化的一个试探性观点》,对于光电效应给出另外一种解释。