初中数学破题致胜微方法(等腰直角三角形中的手拉手模型)等腰直角三角形手拉手的旋转1
- 格式:doc
- 大小:177.50 KB
- 文档页数:5
初中必会几何模型(口诀突破):手拉手模型(或旋转型)教材知识:三角形全等知识中,教材对全等三角形的图形变换概括为三种:平移型、翻折型、旋转型。
一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,即平移、翻折、旋转前后的图形全等.归纳模型:三种变换中以旋转型为考试的热点和难点,这种变换我们往往也称为手拉手模型。
因为这种图形变换都是以等腰三角形的顶点为旋转点,进行适当旋转而成。
然后,连接对应点构造新的三角形,证明三角形全等即可解决。
划重点,上口诀:等腰图形有旋转,辨清共点旋转边。
关注三边旋转角,全等思考边角边。
模型变换:如图,△ABC是等腰三角形、△ADE是等腰三角形,AB=AC,AD=AE,∠BAC=∠DAE=a。
结论:连接BD、CE,则有△BAD≌△CAE。
模型证明:图②图③同理可证。
模型分析:(1)这个图形是由两个共顶点且顶角相等的等腰三角形构成.在相对位置变化的同时,始终存在一对全等三角形。
(2)如果把小等腰三角形的腰长看作小手,大等腰三角形的腰长看作大手,两个等腰三角形有公共顶点,类似大手拉着小手,所以把这个模型称为手拉手模型。
(3)手拉手模型常和旋转结合,在考试中作为几何综合题目出现。
模型实例:如图,△ADC与△EDG都为等腰直角三角形,连接AG、CE,相交于点H,问:(1)AG与CE是否相等?(2)AG与CE之间的夹角为多少度?问题解答:模型实练:如图,在直线AB的同一侧作△ABD和△BCE,△ABD和△BCE都是等边三角形、连接AE、CD,二者交点为H.求证:(1)△ABE≌△DBC;(2)AE=DC;(3)∠DHA=60°;(4)△AGB≌△DFB;(5)△EGB≌△CFB(6)连接GF,GF∥AC;(7)连接HB,HB平分∠AHC.。
1 手拉手模型
模型 手拉手
如图,△ABC 是等腰三角形、△ADE 是等腰三角形,AB =AC ,AD
=AE ,∠BAC =∠DAE =α.
结论:连接BD 、CE ,则有△BAD ≌△CAE .
模型分析
如图①,
∠BAD =∠BAC -∠DAC ,∠CAE =∠DAE -∠DAC .
∵∠BAC =∠DAE =α,
∴∠BAD =∠CAE .
在△BAD 和△CAE 中,
AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩
﹐﹐
﹐ 图②、图③同理可证.
(1)这个图形是由两个共顶点且顶角相等的等腰三角形构成.在相对位置变化的同时,始终存在一对全等三角形.
(2)如果把小等腰三角形的腰长看作小手,大等腰三角形的腰长看作大手,两个等腰三角形有公共顶点,类似大手拉着小手,所以把这个模型称为手拉手模型.
(3)手拉手模型常和旋转结合,在考试中作为几何综合题目出现.
模型实例
例1 如图,△ADC 与△EDG 都为等腰直角三角形,连接AG 、CE ,相交于点H ,问:
(1)AG 与CE 是否相等?
(2)AG 与CE 之间的夹角为多少度?
解答:
C D E A B 图① C D E A B 图② C
D E A B 图③ C D E G H A O。
手拉手模型手拉手模型,属于初中几何中图形的旋转,是最常见的一类重要模型。
全等型手拉手模型有以下三个主要特征:双等腰、共顶点、顶角相等。
如下左图,△ABC与△ADE都是等腰直角三角形,且具有公共的直角顶点A,顶角都是900。
这两个三角形就像两个人手拉着手一样,所以我们称之为手拉手模型。
如下右图,我们易证△ACE与△ABD全等(SAS)。
实际上以点A为旋转中心,把△ACE顺时针旋转900,就得到了△ABD。
又如下左图,△ABC与△ADE都是等边三角形,且具有公共的顶点A,顶角都是600。
这个图形满足以下三个主要特征:双等腰、共顶点、顶角相等,所以它就属于手拉手模型。
如下右图,我们易证△ACD与△ABE全等(SAS)。
实际上以点A为旋转中心,把△ACD顺时针旋转600,就得到了△ABE。
例 1. 如图,△ABC与△A DE都是等腰直角三角形,其中∠BAC=∠DAE=900,AB=AC,AD=AE。
直线CE交BD于点F,交AB 于点G。
求证:(1)CE=BD;(2)CE⊥BD;(3)A、E、F、D四点共圆;(4)AF平分∠CFD。
解析:图中△ABC与△ADE都是等腰直角三角形,而且他们具有公共顶点A,顶角都是900,所以该图形就是典型的手拉手模型。
简解:(1)易证△ACE≌△ABD(SAS),所以CE=BD;(2)由△ACE≌△ABD可得:∠1=∠2。
再由八字形可得:∠GFB=∠GAC=900,所以CE⊥BD。
(3)由(2)得CE⊥BD,又∠DAE=900,所以∠DAE+∠DFE=1800。
所以A、E、F、D四点共圆。
(4)过A作AM⊥CE于M,作AN⊥BD于N。
由△ACE≌△ABD,可得他们的面积相等,又由全等得CE=BD,所以AM=AN。
所以AF 平分∠CFD。
(或者由A、E、F、D四点共圆,得到∠DFA=∠DEA=450。
所以∠EFA=∠DFA=450。
所以AF平分∠CFD。
)例2. 如下左图,点C、A、E在一条直线上,△ABC与△ADE 都是等边三角形。
模型介绍共顶点模型,亦称“手拉手模型”,是指两个顶角相等的等腰或者等边三角形的顶点重合,两个三角形的两条腰分别构成的两个三角形全等或者相似。
寻找共顶点旋转模型的步骤如下: (1)寻找公共的顶点(2)列出两组相等的边或者对应成比例的边(3)将两组相等的边分别分散到两个三角形中去,证明全等或相似即可。
两等边三角形两等腰直角三角形两任意等腰三角形*常见结论:连接BD 、AE 交于点F ,连接CF ,则有以下结论:(1)BCD ACE≅△△(2)AE BD=(3)AFB DFE∠=∠(4)FC BFE∠平分【专题说明】两个具有公共顶点的相似多边形,在绕着公共顶点旋转的过程中,产生伴随的全等或相似三角形,这样的图形称作共点旋转模型;为了更加直观,我们形象的称其为“手拉手”模型。
【知识总结】【基本模型】一、等边三角形手拉手-出全等图1图2图3图4二、等腰直角三角形手拉手-出全等两个共直角顶点的等腰直角三角形,绕点C旋转过程中(B、C、D不共线)始终有:①△BCD≌△ACE;②BD⊥AE(位置关系)且BD=AE(数量关系);③FC平分∠BFE;图1图2图3图4手拉手模型的定义:两个顶角相等且有共顶点的等腰三角形形成的图形。
手拉手模型特点:“两等腰,共顶点”模型探究:例题精讲考点一:等边三角形中的手拉手模型【例1】.如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正三角形ABC和正三角形CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.有下列结论:①AD=BE;②AP=BQ;③∠AOB=60°;④DC=DP;⑤△CPQ为正三角形.其中正确的结论有_____________.解:∵△ABC和△DCE是正三角形,∴AC=BC,DC=CE,∠BCA=∠DCE=60°,∴∠BCA+∠BCD=∠DCE+∠BCD,∴∠ACD=∠BCE,在△ACD和△BCE中∴△ACD≌△BCE(SAS),∴AD=BE,∴①正确;∵△ACD≌△BCE,∴∠CBE=∠CAD,∵∠ACB=∠DCE=60°,∴∠BCD=60°=∠ACB,在△ACP和△BCQ中∴△ACP≌△BCQ(ASA),∴AP=BQ,∴②正确;PC=QC,∴△CPQ为正三角形∴⑤正确∵△ACD≌△BCE,∴∠ADC=∠BEC,∠DCE=60°=∠CAD+∠ADC,∴∠CAD+∠BEC=60°,∴∠AOB=∠CAD+∠BEC=60°,∴③正确;∵△DCE是正三角形,∴DE=DC,∵∠AOB=60°,∠DCP=60°,∠DPC>∠AOB,∴∠DPC>∠DCP,∴DP<DC,即DP<DE,∴④错误;所以正确的有①②③⑤变式训练【变式1-1】.如图,ABD∆,AEC∆都是等边三角形,则BOC∠的度数是()A.135︒B.125︒C.120︒D.110︒解:ABD,AEC∆∆都是等边三角形,∴=,AE ACAD AB∠=∠=︒,60∠==︒,ADB DBADAB CAE=,60∴∠=∠,DAB BAC CAE BAC∴∠+∠=∠+∠,DAC BAE∴∆≅∆,ADC ABE()DAC BAE SAS∴∠=∠,∴∠=∠+∠+∠BOC BDO DBA ABE=∠+∠BDO DBA ADC=∠+∠+∠ADB DBA∴∠的度数是120︒=︒,BOC=︒+︒1206060故选:C.【变式1-2】.如图,△DAC和△EBC均是等边三角形,AE、BD分别与CD、CE交于点M、N,有如下结论:①△ACE≌△DCB;②CM=CN;③AC=DN;④∠DAE=∠DBC.其中正确的有()A.②④B.①②③C.①②④D.①②③④解:∵△DAC和△EBC均是等边三角形,∴AC=DC,BC=CE,∠ACE=∠BCD,∴△ACE≌△DCB,①正确由①得∠AEC=∠CBD,∴△BCN≌△ECM,∴CM=CN,②正确假使AC=DN,即CD=CN,△CDN为等边三角形,∠CDB=60°,又∵∠ACD=∠CDB+∠DBC=60°,∴假设不成立,③错误;∵∠DBC+∠CDB=60°∠DAE+∠EAC=60°,而∠EAC=∠CDB,∴∠DAE=∠DBC,④正确,∴正确答案①②④故选:C.【变式1-3】.如图,△ABC和△ADE都是等边三角形,点D在BC上,DE与AC交于点F,若AB=5,BD=3,则=.解:连接CE,过点F作FM⊥BC于点M,FN⊥CE于点N,∵△ABC和△ADE为等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=60°,∴∠BAD=∠CAE,∴△BAD≌△CAE(SAS),∴BD=CE=3,∠ABD=∠ACE=60°,∵AB=BC=5,∴DC=2,∵∠ACB=∠ACE=60°,FM⊥BC,FN⊥CE,∴FM=FN,=DC•FM,S△FCE=CE•FN,∵S△DFC∴,∴,故答案为:.考点二:等腰直角三角形中的手拉手模型【例2】.如图,ACB ∆和ECD ∆都是等腰直角三角形,90ACB ECD ∠=∠=︒,D 为AB 边上一点,若5AD =,12BD =,则DE 的长为__________解:ACB ∆ 和ECD ∆都是等腰直角三角形,CD CE ∴=,AC BC =,90ECD ACB ∠=∠=︒,ACE BCD ∴∠=∠,在ACE ∆和BCD ∆中,CE CD ACE BCD AC BC =⎧⎪∠=∠⎨⎪=⎩,()ACE BCD SAS ∴∆≅∆,12BD AE ∴==,45CAE CBD ∠=∠=︒,90EAD ∴∠=︒,222212513DE AE AD ∴=+=+=.变式训练【变式2-1】.如图,3AB =,2AC =,连结BC ,分别以AC 、BC 为直角边作等腰Rt ACD ∆和等腰Rt BCE ∆,连结AE 、BD ,当AE 最长时,BC 的长为()A .22B .3C .11D .17解:90ACD BCE ∠=∠=︒ ,ACD ACB BCE ACB ∴∠+∠=∠+∠,即ACE DCB ∠=∠,在ACE ∆和DCB ∆中,AC DC ACE DCB CE CB =⎧⎪∠=∠⎨⎪=⎩,()ACE DCB SAS ∴∆≅∆,AE BD ∴=,AC CD == ,90ACD ∠=︒,2AD ∴==,3AB = ,∴当点A 在BD 上时,BD 最大,最大值为325+=,如图,过C 作CE AD ⊥于E ,由等腰三角形“三线合一”得1DE AE ==,314BE AB AE ∴=+=+=,再由直角三角形斜边中线等于斜边一半得1DE =,BC ∴=.故选:D .【变式2-2】.如图,在Rt ABC ∆中,AB AC =,点D 为BC 中点,点E 在AB 边上,连接DE ,过点D 作DE 的垂线,交AC 于点F .下列结论:①AED CFD ∆≅∆;②EF AD =;③BE CF AC +=;④212AEDF S AD =四边形,其中正确的结论是(填序号).解:AB AC = ,90BAC ∠=︒,点D 为BC 中点,12BD CD AD BC ∴===,45BAD CAD C ∠=∠=∠=︒,AD BC ⊥,BC =,DF DE ⊥ ,90EDF ADC ∴∠=∠=︒,ADE CDF ∴∠=∠,AD CD = ,BAD C ∠=∠,()AED CFD ASA ∴∆≅∆,故①正确;当E 、F 分别为AB 、AC 中点时,12EF BC AD ==,故②不一定正确;ADE CDF ∆≅∆ ,AE CF ∴=,BE AE AB += ,BE CF AC ∴+=,故③正确;ADE CDF ∆≅∆ ,ADE CDF S S ∆∆∴=,212ADF CDF ADC AEDF S S S S AD ∆∆∆∴=+==⨯四边形,故④正确;故答案为:①③④.【变式2-3】.如图,△ABC 和△CEF 均为等腰直角三角形,E 在△ABC 内,∠CAE +∠CBE =90°,连接BF .(1)求证:△CAE ∽△CBF .(2)若BE =1,AE =2,求CE 的长.(1)证明:∵△ABC和△CEF均为等腰直角三角形,∴==,∴∠ACB=∠ECF=45°,∴∠ACE=∠BCF,∴△CAE∽△CBF;(2)解:∵△CAE∽△CBF,∴∠CAE=∠CBF,==,又∵==,AE=2∴=,∴BF=,又∵∠CAE+∠CBE=90°,∴∠CBF+∠CBE=90°,∴∠EBF=90°,∴EF2=BE2+BF2=12+()2=3,∴EF=,∵CE2=2EF2=6,∴CE=.考点三:任意等腰三角形中的手拉手模型【例3】.如图,在△AOB和△COD中,OA=OB,OC=OD,OA<OC,∠AOB=∠COD =36°.连接AC,BD交于点M,连接OM.下列结论:①∠AMB=36°,②AC=BD,③OM平分∠AOD,④MO平分∠AMD.其中正确的结论是_____.解:∵∠AOB=∠COD=36°,∴∠AOB+∠BOC=∠COD+∠BOC,即∠AOC=∠BOD,在△AOC和△BOD中,∴△AOC≌△BOD(SAS),∴∠OCA=∠ODB,AC=BD,故②正确;∵∠OAC=∠OBD,由三角形的外角性质得:∠AMB+∠OBD=∠OAC+∠AOB,∴∠AMB=∠AOB=36°,故①正确;法一:作OG⊥AM于G,OH⊥DM于H,如图所示,则∠OGA=∠OHB=90°,∵△AOC≌△BOD,∴OG=OH,∴MO平分∠AMD,故④正确;法二:∵△AOC≌△BOD,∴∠OAC=∠OBD,∴A、B、M、O四点共圆,∴∠AMO=∠ABO=72°,同理可得:D、C、M、O四点共圆,∴∠DMO=∠DCO=72°=∠AMO,∴MO平分∠AMD,故④正确;假设MO平分∠AOD,则∠DOM=∠AOM,在△AMO与△DMO中,,∴△AMO≌△DMO(ASA),∴AO=OD,∵OC =OD ,∴OA =OC ,而OA <OC ,故③错误;变式训练【变式3-1】.如图,等腰ABC ∆中,120ACB ∠=︒,4AC =,点D 为直线AB 上一动点,以线段CD 为腰在右侧作等腰CDE ∆,且120DCE ∠=︒,连接AE ,则AE 的最小值为()A .23B .4C .6D .8解:连接BE 并延长交AC 延长线于F ,120ACB ∠=︒ ,AC BC =,30CAB CBA ∴∠=∠=︒,120DCE ACB ∠=︒=∠ ,ACD BCE ∴∠=∠,AC BC = ,CD CE =,()ACD BCE SAS ∴∆≅∆,30CBE CAD ∴∠=∠=︒,CB 为定直线,30CBE ∠=︒为定值,∴当D 在直线AB 上运动时,E 也在定直线上运动,当AE BE ⊥时,AE 最小,30CAB ABC CBE ∠=︒=∠=∠ ,90AFB ∴∠=︒,∴当E 与F 重合时,AE 最小,在Rt CBF ∆中,90CFB ∠=︒,30CBF ∠=︒,122CF CB ∴==,6AF AC CF ∴=+=,AE ∴的最小值为6AF =,故选:C .【变式3-2】.如图,在△ABC 中,AB =AC =5,∠BAC =120°,以CA 为边在∠ACB 的另一侧作∠ACM =∠ACB ,点D 为边BC (不含端点)上的任意一点,在射线CM 上截取CE =BD ,连接AD ,DE ,AE .设AC 与DE 交于点F ,则线段CF 的最大值为.解:∵∠BAC=120°,AB=AC,∴∠B=∠ACB=30°.∵∠ACM=∠ACB,∴∠B=∠ACM=30°.在△ABD和△ACE中,,∴△ABD≌△ACE(SAS).∴AD=AE,∠BAD=∠CAE.∴∠CAE+∠DAC=∠BAD+∠DAC=∠BAC=120°.即∠DAE=120°.∵AD=AE,∴∠ADE=∠AED=30°;∵∠ADE=∠ACB=30°且∠DAF=∠CAD,∴△ADF∽△ACD.∴=.∴AD2=AF•AC.∴AD2=5AF.∴AF=.∴当AD最短时,AF最短、CF最长.∵当AD⊥BC时,AF最短、CF最长,此时AD=AB=.∴AF最短==.∴CF最长=AC﹣AF最短=5﹣=.故答案为:.【变式3-3】.【问题背景】(1)如图1,等腰ABC ∆中,AB AC =,120BAC ∠=︒,AQ BC ⊥于点Q ,则BC AB =;【知识应用】(2)如图2,ABC ∆和ADE ∆都是等腰三角形,120BAC DAE ∠=∠=︒,D 、E 、C 三点在同一条直线上,连接BD .求证:ADB AEC ∆≅∆.(3)请写出线段AD ,BD ,CD之间的等量关系,并说明理由.(1)解:AB AC = ,120BAC ∠=︒,AQ BC ⊥,30B C ∴∠=∠=︒,BQ QC =,12AQ AB ∴=,由勾股定理得:2BQ AB ===,BC ∴=,∴BC AB ==(2)证明:BAC DAE ∠=∠ ,BAC BAE DAE BAE ∴∠-∠=∠-∠,即DAB EAC ∠=∠,在ADB ∆和AEC ∆中,AD AE DAB EAC AB AC =⎧⎪∠=∠⎨⎪=⎩,()ADB AEC SAS ∴∆≅∆;(3)解:CD BD =+,理由如下:由(1)可知:DE =,ADB AEC ∆≅∆ ,EC BD ∴=,CD DE EC BD ∴=+=+.实战演练1.风筝为中国人发明,相传墨翟以木头制成木鸟,研制三年有成,是人类最早的风筝起源.如图,小飞在设计的“风筝”图案中,已知AB AD =,B D ∠=∠,BAE DAC ∠=∠,那么AC 与AE 相等.小飞直接证明ABC ADE ∆≅∆,他的证明依据是()A .SSSB .SASC .ASAD .AAS证明:BAE DAC ∠=∠ ,BAE EAC DAC EAC ∴∠+∠=∠+∠,BAC DAE ∴∠=∠,AB AD = ,B D ∠=∠,()ABC ADE ASA ∴∆≅∆,AC AE ∴=,故选:C .2.如图,ABD ∆,AEC ∆都是等边三角形,则BOC ∠的度数是()A .135︒B .125︒C .120︒D .110︒解:ABD ∆ ,AEC ∆都是等边三角形,AD AB ∴=,AE AC =,60DAB CAE ∠=∠=︒,60ADB DBA ∠==︒,DAB BAC CAE BAC ∴∠+∠=∠+∠,DAC BAE ∴∠=∠,()DAC BAE SAS ∴∆≅∆,ADC ABE ∴∠=∠,BOC BDO DBA ABE∴∠=∠+∠+∠BDO DBA ADC =∠+∠+∠ADB DBA=∠+∠6060=︒+︒120=︒,BOC ∴∠的度数是120︒,故选:C .3.如图,点A 是x 轴上一个定点,点B 从原点O 出发沿y 轴的正方向移动,以线段OB 为边在y 轴右侧作等边三角形,以线段AB 为边在AB 上方作等边三角形,连接CD ,随点B 的移动,下列说法错误的是()A .BOA BDC∆≅∆B .150ODC ∠=︒C .直线CD 与x 轴所夹的锐角恒为60︒D .随点B 的移动,线段CD 的值逐渐增大解:A .OBD ∆ 和ABC ∆都是等边三角形,60ABC OBD ODB BOD ∴∠=∠=∠=∠=︒,BO BD =,BC AB =,ABC DBA OBD DBA ∴∠-∠=∠-∠,CBD ABO ∴∠=∠,()BOA BDC SAS ∴∆≅∆,故A 不符合题意;B .BOA BDC ∆≅∆ ,90BDC BOA ∴∠=∠=︒,6090150ODC BDO BDC ∴∠=∠+∠=︒+︒=︒,故B 不符合题意;C .延长CD 交x 轴于点E ,150ODC ∠=︒ ,18030ODE ODC ∴∠=︒-∠=︒,90BOA ∠=︒ ,60BOD ∠=︒,30DOA BOA BOD ∴∠=∠-∠=︒,60DEA DOA ODE ∴∠=∠+∠=︒,∴直线CD 与x 轴所夹的锐角恒为60︒,故C 不符合题意;D .BOA BDC ∆≅∆ ,CD OA ∴=,点A 是x 轴上一个定点,OA ∴的值是一个定值,∴随点B 的移动,线段CD 的值不变,故D 符合题意;故选:D .4.如图,3AB =,2AC =BC ,分别以AC 、BC 为直角边作等腰Rt ACD ∆和等腰Rt BCE ∆,连结AE 、BD ,当AE 最长时,BC 的长为()A .22B .3C .11D .17解:90ACD BCE ∠=∠=︒ ,ACD ACB BCE ACB ∴∠+∠=∠+∠,即ACE DCB ∠=∠,在ACE ∆和DCB ∆中,AC DC ACE DCB CE CB =⎧⎪∠=∠⎨⎪=⎩,()ACE DCB SAS ∴∆≅∆,AE BD ∴=,2AC CD == ,90ACD ∠=︒,222AD AC CD ∴=+=,3AB = ,∴当点A 在BD 上时,BD 最大,最大值为325+=,如图,过C 作CE AD ⊥于E ,由等腰三角形“三线合一”得1DE AE ==,314BE AB AE ∴=+=+=,再由直角三角形斜边中线等于斜边一半得1DE =,2217BC CE BE ∴=+=.故选:D .5.如图,线段OA 绕点O 旋转,线段OB 的位置保持不变,在AB 的上方作等边PAB ∆,若1OA =,3OB =,则在线段OA 旋转过程中,线段OP 的最大值是()A 10B .4C .5D .5解:如图,以AO 为边,在AO 的左侧作等边AOH ∆,连接BH ,AOH ∆ ,ABP ∆是等边三角形,1AO AH OH ∴===,AB AP =,60OAH BAP ∠=∠=︒,OAP HAB ∴∠=∠,在OAP ∆和HAB ∆中,AO AH OAP HAB AP AB =⎧⎪∠=∠⎨⎪=⎩,()OAP HAB SAS ∴∆≅∆,OP BH ∴=,在OPH ∆中,BH OH OB <+,∴当点H 在BO 的延长线上时,BH 的最大值4OH OB =+=,OP ∴的最大值为4,故选:B .6.如图,O 是等边△ABC 内一点,OA =3,OB =4,OC =5,将线段BO 以点B 为旋转中心逆时针旋转60°得到线段BO ′,则∠AOB =150°.解:连接OO ′,如图,∵线段BO 以点B 为旋转中心逆时针旋转60°得到线段BO ′,∴BO ′=BO =4,∠O ′BO =60°,∴△BOO ′为等边三角形,∴∠BOO ′=60°,∵△ABC 为等边三角形,∴BA =BC ,∠ABC =60°,∴∠O ′BO ﹣∠ABO =∠ABC ﹣∠ABO ,即∠O ′BA =∠OBC ,在△O ′BA 和△OBC中,∴△O ′BA ≌△OBC (SAS ),∴O ′A =OC =5,在△AOO ′中,∵OA ′=5,OO ′=4,OA =3,∴OA 2+OO ′2=O ′A 2,∴∠AOO ′=90°,∴∠AOB =60°+90°=150°,故答案为:150°.7.如图,△ABC与△ADE均是等腰直角三角形,点B,C,D在同一直线上,AB=AC=2,AD=AE=3,∠BAC=∠DAE=90°,则CD=﹣.解:∵AB=AC=2,AD=AE=3,∠BAC=∠DAE=90°,∴BC=AB=2,DE=AE=3,∠BAD=∠CAE,∠ABC=45°=∠ACB,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴EC=BD,∠ABD=∠ACE=45°,∴∠ECB=∠ECD=90°,∴DE2=EC2+CD2,∴18=(2+CD)2+CD2,解得:CD=﹣,CD=﹣﹣(不合题意舍去),故答案为:﹣.8.如图,△ABC和△ADE均为等腰直角三角形,连接CD、BE,点F、G分别为DE、BE 的中点,连接FG.在△ADE旋转的过程中,当D、E、C三点共线时,若AB=3,AD=2,则线段FG的长为.解:连接BD,∠BAD=90°﹣∠BAE,∠CAE=90°﹣∠BAE,∴∠BAD=∠CAE.又AD=AE,AB=AC,∴△ADB≌△AEC(SAS).∴BD=CE,∠ADB=∠AEC=135°,∴∠BDC=135°﹣45°=90°.∵△ABC和△ADE均为等腰直角三角形,AB=3,AD=2,∴DE=2,BC=3.设BD=x,则DC=2+x,在Rt△BDC中,利用勾股定理BD2+DC2=BC2,所以x2+(2+x)2=18,解得x1=﹣﹣(舍去),x2=﹣+.∵点F、G分别为DE、BE的中点,∴FG=BD=.故答案为.9.如图,△ACD和△BCE都是等腰直角三角形,∠ACD=∠BCE=90°,AE交CD于点F,BD分别交CE、AE于点G、H.试猜测线段AE和BD的数量和位置关系,并说明理由.解:猜测AE=BD,AE⊥BD;理由如下:∵∠ACD=∠BCE=90°,∴∠ACD+∠DCE=∠BCE+∠DCE,即∠ACE=∠DCB,又∵△ACD和△BCE都是等腰直角三角形,∴AC=CD,CE=CB,在△ACE与△DCB中,∴△ACE≌△DCB(SAS),∴AE=BD,∠CAE=∠CDB;∵∠AFC=∠DFH,∠FAC+∠AFC=90°,∴∠DHF=∠ACD=90°,∴AE⊥BD.故线段AE和BD的数量相等,位置是垂直关系.10.如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足为F.(1)求证:△ABC≌△ADE;(2)求∠FAE的度数;(3)求证:CD=2BF+DE.证明:(1)∵∠BAD=∠CAE=90°,∴∠BAC+∠CAD=90°,∠CAD+∠DAE=90°,∴∠BAC=∠DAE,在△BAC和△DAE中,,∴△BAC≌△DAE(SAS);(2)∵∠CAE=90°,AC=AE,∴∠E=45°,由(1)知△BAC≌△DAE,∴∠BCA=∠E=45°,∵AF⊥BC,∴∠CFA=90°,∴∠CAF=45°,∴∠FAE=∠FAC+∠CAE=45°+90°=135°;(3)延长BF到G,使得FG=FB,∵AF⊥BG,∴∠AFG=∠AFB=90°,在△AFB和△AFG中,,∴△AFB≌△AFG(SAS),∴AB=AG,∠ABF=∠G,∵△BAC≌△DAE,∴AB=AD,∠CBA=∠EDA,CB=ED,∴AG=AD,∠ABF=∠CDA,∴∠G=∠CDA,∵∠GCA=∠DCA=45°,在△CGA和△CDA中,,∴△CGA≌△CDA(AAS),∴CG=CD,∵CG=CB+BF+FG=CB+2BF=DE+2BF,∴CD=2BF+DE.11.已知△ABC和△ADE都是等边三角形,点D在射线BF上,连接CE.(1)如图1,BD与CE是否相等?请说明理由;(2)如图1,求∠BCE的度数;(3)如图2,当D在BC延长线上时,连接BE,△ABE、△CDE与△ADE的面积有怎样的关系?并说明理由.解:(1)BD=CE,理由如下:∵△ABC和△ADE是都是等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE,∠ABC=∠ACB=60°,∴∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴BD=CE;(2)∵△ABD≌△ACE,∴∠ABD=∠ACE=60°,∴∠BCE=120°;+S△CDE=S△ADE,理由如下:(3)S△ABE∵△ABC和△ADE是都是等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE,∠ABC=∠ACB=60°,∴∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),=S△ACE,∠ABC=∠ACE=60°,∴S△ABD∴∠ECD=180°﹣∠ACB﹣∠ACE=60°,∴∠ABC=∠ECD,∴AB∥CE,=S△ABC,∴S△ABE+S△CDE=S△ADE+S△ACD,∵S△ACE+S△CDE=S△ADE+S△ACD,∴S△ABD+S△ACD+S△CDE=S△ADE+S△ACD,∴S△ABC+S△CDE=S△ADE.∴S△ABE12.如图,在△ABC中,分别以AB、AC为腰向外侧作等腰Rt△ADB与等腰Rt△AEC,∠DAB=∠EAC=90°,连接DC、EB相交于点O.(1)求证:BE⊥DC;(2)若BE=BC.①如图1,G、F分别是DB、EC中点,求的值.②如图2,连接OA,若OA=2,求△DOE的面积.(1)证明:∵∠DAB=∠EAC=90°,∴∠EAB=∠CAD,在△BAE和△DAC中,,∴△BAE≌△DAC(SAS),∴∠ABE=∠ADC,∵∠BAD=90°,∴∠DOB=90°,即BE⊥DC;(2)解:①取DE的中点H,连接GH、FH,∵点G是BD的中点,∴GH∥BE,GH=BE,同理,FH∥CD,FH=CD,∵BE=CD.BE⊥DC,∴GH=FH,GH⊥FH,∴△HGF为等腰直角三角形,∴GF=GH,∵GH=BE,∴GF=BE,∵BE=BC,∴=;②作AM⊥BE于M,AN⊥CD于N,在△BAE和△BAC中,,∴△BAE≌△BAC(SSS),∴∠BAE=∠BAC=135°,∴∠DAE=135°﹣90°=45°,即∠OAD+∠OAE=45°,∵△BAE≌△DAC,∴AM=AN,又AM⊥BE,AN⊥CD,∴OA平分∠BOC,∴∠BOA=∠COA=45°,∴∠DOA=∠EOA=135°,∴∠ODA+∠OAD=45°,∴∠OAE=∠ODA,∴△ODA∽△OAE,∴=,即OD•OE=OA2=4,∴△DOE的面积=×OD•OE=2.13.如图(1),在△ABC中,∠ACB为锐角,点D为射线BC上一动点,连接AD,以AD 为一边在AD的右侧作等腰直角△ADF,∠ADE=∠AED=45°,∠DAE=90°,AD=AE,解答下列问题:(1)如果AB=AC,∠BAC=90°,∠ABC=∠ACB=45°.①当点D在线段BC上时(与点B不重合),如图(2),线段CE、BD之间的数量关系为CE=BD;位置关系为CE⊥BD;(不用证明)②当点D在线段BC的延长线上时,如图(3),①中的结论是否仍然成立,请写出结论并说明理由.(2)如果AB≠AC,∠BAC≠90°,点D在线段BC上运动.试探究:当△ABC满足一个什么条件时,CE⊥BD(点C、E重合除外)?请写出条件,并借助图(4)简述CE⊥BD成立的理由.解:(1)①CE与BD位置关系是CE⊥BD,数量关系是CE=BD.理由:如图(2),∵∠BAD=90°﹣∠DAC,∠CAE=90°﹣∠DAC,∴∠BAD=∠CAE.又BA=CA,AD=AE,∴△ABD≌△ACE(SAS),∴∠ACE=∠B=45°且CE=BD.∵∠ACB=∠B=45°,∴∠ECB=45°+45°=90°,即CE⊥BD.故答案为:CE=BD;CE⊥BD.②当点D在BC的延长线上时,①的结论仍成立.如图(3),∵∠DAE=90°,∠BAC=90°,∴∠DAE=∠BAC,∴∠DAB=∠EAC,又AB=AC,AD=AE,∴△DAB≌△EAC(SAS),∴CE=BD,且∠ACE=∠ABD.∵∠BAC=90°,AB=AC,∴∠ABC=45°,∴∠ACE=45°,∴∠BCE=∠ACB+∠ACE=90°,即CE⊥BD;(2)如图(4)所示,当∠BCA=45°时,CE⊥BD.理由:过点A作AG⊥AC交BC于点G,∴AC=AG,∠AGC=45°,即△ACG是等腰直角三角形,∵∠GAD+∠DAC=90°=∠CAE+∠DAC,∴∠GAD=∠CAE,又∵DA=EA,∴△GAD≌△CAE(SAS),∴∠ACE=∠AGD=45°,∴∠BCE=∠ACB+∠ACE=90°,即CE⊥BD.14.(注意:本题中的说理过程中的每一步必须注明理由,否则不得分)如图1,在△ABC 中,∠ACB为锐角,点D为射线BC上一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.(1)如果AB=AC,∠BAC=90°;①当点D在线段BC上时(与点B不重合),如图2,线段CF、BD所在直线的位置关系为CF⊥BD,线段CF、BD的数量关系为CF=BD;②当点D在线段BC的延长线上时,如图3,①中的结论是否仍然成立?并说明理由;(2)如图4,如果AB≠AC,∠BAC是锐角,点D在线段BC上,当∠ACB满足什么条件时,CF⊥BC(点C、F不重合),并说明理由.解:(1)①正方形ADEF中,AD=AF,∵∠BAC=∠DAF=90°,∴∠BAD=∠CAF,又∵AB=AC,∴△DAB≌△FAC(SAS),∴CF=BD,∠B=∠ACF,∴∠ACB+∠ACF=90°,即CF⊥BD.故答案为:CF⊥BD,CF=BD;②当点D在BC的延长线上时①的结论仍成立.理由如下:由正方形ADEF得AD=AF,∠DAF=90°.∵∠BAC=90°,∴∠DAF=∠BAC,∴∠DAB=∠FAC,又∵AB=AC,∴△DAB≌△FAC(SAS),∴CF=BD,∠ACF=∠ABD.∵∠BAC=90°,AB=AC,∴∠ABC=45°,∴∠ACF=45°,∴∠BCF=∠ACB+∠ACF=90°.即CF⊥BD;(2)当∠ACB=45°时,CF⊥BD.理由如下:过点A作AG⊥AC交CB的延长线于点G,则∠GAC=90°,∵∠ACB=45°,∠AGC=90°﹣∠ACB,∴∠AGC=90°﹣45°=45°,∴∠ACB=∠AGC=45°,∴AC=AG,∵∠DAG=∠FAC(同角的余角相等),AD=AF,∴△GAD≌△CAF(SAS),∴∠ACF=∠AGC=45°,∴∠BCF=∠ACB+∠ACF=45°+45°=90°,即CF⊥BC.15.背景:一次小组合作探究课上,小明将两个正方形按如图所示的位置摆放(点E、A、D在同一条直线上),发现BE=DG且BE⊥DG.小组讨论后,提出了下列三个问题,请你帮助解答:(1)将正方形AEFG绕点A按逆时针方向旋转(如图1),还能得到BE=DG吗?若能,请给出证明;若不能,请说明理由;(2)把背景中的正方形分别改成菱形AEFG和菱形ABCD,将菱形AEFG绕点A按顺时针方向旋转(如图2),试问当∠EAG与∠BAD的大小满足怎样的关系时,背景中的结论BE=DG仍成立?请说明理由;(3)把背景中的正方形分别改写成矩形AEFG和矩形ABCD,且,AE=4,AB=8,将矩形AEFG绕点A按顺时针方向旋转(如图3),连接DE,BG.小组发现:在旋转过程中,DE2+BG2的值是定值,请求出这个定值.(1)证明:∵四边形AEFG为正方形,∴AE=AG,∠EAG=90°,又∵四边形ABCD为正方形,∴AB=AD,∠BAD=90°,∴∠EAB=∠GAD,∴△AEB≌△AGD(SAS),∴BE=DG;(2)当∠EAG=∠BAD时,BE=DG,理由如下:∵∠EAG=∠BAD,∴∠EAB=∠GAD,又∵四边形AEFG和四边形ABCD为菱形,∴AE=AG,AB=AD,∴△AEB≌△AGD(SAS),∴BE=DG;(3)解:方法一:过点E作EM⊥DA,交DA的延长线于点M,过点G作GN⊥AB交AB于点N,由题意知,AE=4,AB=8,∵=,∴AG=6,AD=12,∵∠EMA=∠ANG,∠MAE=∠GAN,∴△AME∽△ANG,设EM=2a,AM=2b,则GN=3a,AN=3b,则BN=8﹣3b,∴ED2=(2a)2+(12+2b)2=4a2+144+48b+4b2,GB2=(3a)2+(8﹣3b)2=9a2+64﹣48b+9b2,∴ED2+GB2=13(a2+b2)+208=13×4+208=260.方法二:如图2,设BE与DG交于Q,BE与AG交于点P,∵,AE=4,AB=8∴AG=6,AD=12.∵四边形AEFG和四边形ABCD为矩形,∴∠EAG=∠BAD,∴∠EAB=∠GAD,∵,∴△EAB∽△GAD,∴∠BEA=∠AGD,∴A,E,G,Q四点共圆,∴∠GQP=∠PAE=90°,∴GD⊥EB,连接EG,BD,∴ED2+GB2=EQ2+QD2+GQ2+QB2=EG2+BD2,∴EG2+BD2=42+62+82+122=260.。
模型构建专题:“手拉手”模型【考点导航】目录【典型例题】【类型一共顶点的等边三角形】【类型二共顶点的等腰直角三角形】【类型三共顶点的一般等腰三角形】【典型例题】【类型一共顶点的等边三角形】1(2023·全国·八年级假期作业)如图所示,△ABC和△ADE都是等边三角形,且点B、A、E在同一直线上,连接BD交AC于M,连接CE交AD于N,连接MN.(1)求证:BD=CE;(2)求证:△ABM≌△ACN;(3)求证:△AMN是等边三角形.【答案】(1)证明见解析(2)证明见解析(3)证明见解析【分析】(1)由已知条件等边三角形,可知AB=AC,AD=AE,∠BAC=∠DAE,进一步求证∠BAD=∠CAE,从而△ABD≌△ACE(SAS),所以BD=CE.(2)由(1)知△ABD≌△ACE,得∠ABM=∠CAN,由点B、A、E共线,得∠CAN=60°=∠BAC,进一步求证△ABM≌△ACN(ASA).(3)由△ABM≌△ACN,得AM=AN,而∠CAN=60°,所以△AMN是等边三角形.【详解】(1)∵△ABC和△ADE都是等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=60°,∴∠BAD=∠CAE.在△ABD和△ACE中,AB=AC∠BAD=∠CAE AD=AE∴△ABD≌△ACE(SAS),∴BD=CE.(2)由(1)知△ABD≌△ACE,∴∠ABM=∠ACN.∵点B、A、E在同一直线上,且∠BAC=∠DAE=60°,∴∠CAN=60°=∠BAC.在△ABM和△ACN中,∠BAM=∠CAN AB=AC∠ABM=∠ACN∴△ABM≌△ACN(ASA).(3)由(2)知△ABM≌△ACN,∴AM=AN,∵∠CAN=60°,∴△AMN是等边三角形.【点睛】本题主要考查等边三角形的性质和判定、全等三角形判定和性质;将等边三角形的条件转化为相等线段和等角,选择合适的方法判定三角形全等是解题的关键.【变式训练】1(2023春·山西运城·八年级统考期中)如图,点C为线段AB上一点,△DAC、△ECB都是等边三角形,AE、DC交于点M,DB、EC交于点N,DB、AE交于点P,连接MN,下列说法正确的个数有个.①MN∥AB;②∠DPM=60°;③∠DAP=∠PEC;④△ACM≌△DCN;⑤若∠DBE=30°,则∠AEB=90°.【答案】①②③④⑤【分析】根据等边三角形的性质得到AC=CD,BC=CE,∠ACD=∠BCE=60°,得到∠ACE=∠BCE,∠DCE=60°,根据平行线的判定定理得到AD∥CE,根据平行线的性质得到∠DAP=∠PEC,故③正确;根据全等三角形的性质得到∠CAE=∠CDB,根据三角形的内角和得到∠DPM=∠ACM=60°,故②正确,推出△ACM≌△DCN,故④正确;根据全等三角形的性质得到CM=CN,得到△CMN是等边三角形,求得∠CMN=60°,根据平行线的判定定理得到MN∥AB,故①正确;根据三角形的内角和得到∠AEB= 90°.故⑤正确.【详解】解:∵△DAC 、△ECB 都是等边三角形,∴AC =CD ,BC =CE ,∠ACD =∠BCE =60°,∴∠ADC =∠DCE =60°,∴∠ACE =∠BCD ,∠DCE =60°,∴AD ∥CE ,∴∠DAP =∠PEC ,故③正确;在△ACE 与△BCD 中,AC =CD∠ACE =∠BCD CE =CB,∴△ACE ≌△BCD SAS ,∴∠CAE =∠CDB ,∵∠PMD =∠AMC ,∴∠DPM =∠ACM =60°,故②正确,在△ACM 与△DCN 中,∠CAM =∠CDNAC =CD ∠ACM =∠DCN =60°,∴△ACM ≌△DCN ,故④正确;∴CM =CN ,∴△CMN 是等边三角形,∴∠CMN =60°,∴∠CMN =∠ACD ,∴MN ∥AB ,故①正确;∵∠DBE =30°,∠BPE =∠APD =60°,∴∠AEB =90°.故⑤正确;故答案为:①②③④⑤.【点睛】本题考查了全等三角形的判定和性质,等边三角形的性质,平行线的判定,熟练掌握全等三角形的判定和性质是解题的关键.2(2023秋·四川凉山·八年级统考期末)如图,C 为线段AE 上一动点(不与点A ,E 重合),在AE 同侧分别作等边△ABC 和等边△CDE ,AD 与BE 交于点O ,AD 与BC 交于点P ,BE 与CD 交于点Q ,连结PQ.求证:(1)AD =BE ;(2)△CPQ 为等边三角形;【答案】(1)见解析;(2)见解析.【分析】(1)由等边三角形的性质可知AC =BC ,CD =CE ,∠ACB =∠DCE =60°,从而可求出∠ACD =∠BCE ,即可利用“SAS ”证明△ADC ≌△BEC ,即得出AD =BE ;(2)由等边三角形的性质可知∠ACB =∠DCE =60°,AC =BC ,即可求证∠ACP =∠BCQ =60°.再根据△ADC ≌△BEC 可得出∠CAP =∠CBQ ,利用“ASA ”证明△APC ≌△BQC ,据此即可证明结论成立.【详解】(1)证明:∵△ABC 和△CDE 都是等边三角形,∴AC =BC ,CD =CE ,∠ACB =∠DCE =60°,∵∠ACD =∠ACB +∠BCD ,∠BCE =∠DCE +∠BCD ,∴∠ACD =∠BCE ,∴AC =BC∠ACD =∠BCE CD =CE,∴△ADC ≌△BEC (SAS ),∴AD =BE ;(2)证明:∵△ABC 和△CDE 是等边三角形,∴∠ACB =∠DCE =60°,AC =BC ,∴∠BCQ =180°-∠ACP -∠ECD =60°,∴∠ACP =∠BCQ =60°.∵△ADC ≌△BEC∴∠CAP =∠CBQ .∴∠CAP =∠CBQAC =BC∠ACP =∠BCQ∴△APC ≌△BQC ASA .∴CP =CQ ,又∵∠PCQ =60°,∴△CPQ 为等边三角形.【点睛】本题考查等边三角形的性质,全等三角形的判定和性质.熟练掌握全等三角形的判定条件是解题关键.3(2021春·广东佛山·八年级校考阶段练习)已知图1是边长分别为a 和b a >b 的两个等边三角形纸片ABC 和三角形C DE 叠放在一起(C 与C 重合)的图形.(1)将△C DE 绕点C 按顺时针方向旋转30°,连接AD ,BE .如图2:在图2中,线段BE 与AD 之间具有怎样的大小关系?证明你的结论;(2)若将上图中的△C DE ,绕点C 按顺时针方向任意旋转一个角度α,连接AD 、BE ,如图3:在图3中,线段BE 与AD 之间具有怎样的大小关系?证明你的结论:(3)根据上面的操作过程,请你猜想当α为多少度时,线段AD 的长度最大,最大是多少?当α为多少度时,线段AD 的长度最小,最小是多少?请直接写出答案.【答案】(1)BE =AD ,证明见解析(2)BE =AD ,证明见解析(3)当α为180度时,线段AD 的长度最大,最大值为a +b ;当α为0度或360度时,线段AD 的长度最小,最小值为a -b .【分析】(1)先由等边三角形判断出AC =BC ,CE =CD ,再由旋转判断出∠BCE =∠ACD ,进而判断出△BCE ≌△ACD ,即可得出结论;(2)同(1)的方法,即可得出结论;(3)当点D 在AC 的延长线上时,AD 最大,最大值为a +b ,当点D 在线段AC 上时,AD 最小,最小值为a -b ,即可得出结论.【详解】(1)解:BE =AD证明:∵点C 与C 1重合,△ABC 和△C 1DE ,∴△ABC 和△CDE 都是等边三角形,∴AC =BC ,CE =CD ,由旋转知,∠BCE =∠ACD =30°,在△BCE 和△ACD 中,BC =AC∠BCE =∠ACD CE =CD,∴△BCE ≌△ACD (SAS ),∴BE =AD ,(2)解:BE =AD ,证明:∵△ABC 和△CDE 都是等边三角形,∴AC =BC ,CE =CD ,由旋转知,∠BCE =∠ACD ,在△BCE 和△ACD 中,BC =AC∠BCE =∠ACD CE =CD,∴△BCE ≌△ACD (SAS ),∴BE =AD ;(3)解:当点D 在AC 的延长线上时,AD 最大,最大值为AC +CD =a +b ,如图,∴当α为180度时,线段AD 的长度最大,最大值为a +b ,当点D 在线段AC 上时,AD 最小,最小值为AC -CD =a -b ,如图,∴当α为0度或360度时,线段AD的长度最小,最小值为a-b.【点睛】此题是三角形综合题,主要考查了等边三角形的性质,全等三角形的判定和性质,判断出△BCE≌△ACD是解本题的关键.4(2023春·广东梅州·七年级校考期末)【初步感知】(1)如图1,已知ΔABC为等边三角形,点D为边BC上一动点(点D不与点B,点C重合).以AD为边向右侧作等边ΔADE,连接CE.求证:ΔABD≌ΔACE;【类比探究】(2)如图2,若点D在边BC的延长线上,随着动点D的运动位置不同,猜想并证明:①AB与CE的位置关系为:;②线段EC、AC、CD之间的数量关系为:;【拓展应用】(3)如图3,在等边ΔABC中,AB=3,点P是边AC上一定点且AP=1,若点D为射线BC上动点,以DP 为边向右侧作等边ΔDPE,连接CE、BE.请问:PE+BE是否有最小值?若有,请直接写出其最小值;若没有,请说明理由.【答案】(1)见解析(2)平行EC=AC+CD(3)有最小值,5【分析】(1)由ΔABC和ΔADE是等边三角形,推出AB=AC,AD=AE,∠BAC=∠DAE=60°,又因为∠BAC=∠DAE,则∠BAC-∠DAC=∠DAE-∠DAC,即∠BAD=∠CAE,从而利用“SAS”证明ΔABD≌ΔACE;(2)①由(1)得ΔABD≌ΔACE(SAS),得出∠B=∠ACE=60°,CE=BD,∠BAC=∠ACE,则AB∥CE;②因为CE=BD,AC=BC,所以CE=BD=BC+CD=AC+CD;(3)在BC上取一点M,使得DM=PC,连接EM,可证ΔEPC≌ΔEDM(SAS),EC=EM,求得∠CEM= 60°,得出ΔCEM是等边三角形,则∠ECD=60°,即点E在∠ACD角平分线上运动,在射线CD上截取CP =CP,当点E与点C重合时,BE+PE=BE+P E≥BP =5,进而解答此题.【详解】(1)证明:∵ΔABC和ΔADE是等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=60°,∵∠BAC=∠DAE,∴∠BAC-∠DAC=∠DAE-∠DAC 即∠BAD=∠CAE在ΔABD和ΔACE中,AB=AC∠BAD=∠CAE AD=AE,∴ΔABD≌ΔACE(SAS);(2)平行,EC=AC+CD,理由如下:由(1)得ΔABD≌ΔACE(SAS),∴∠B=∠ACE=60°,CE=BD,∴∠BAC=∠ACE,∴AB∥CE,∵CE=BD,AC=BC,∴CE=BD=BC+CD=AC+CD;(3)有最小值,理由如下:如图,在射线BC上取一点M,使得DM=PC,连接EM,∵ΔABC和ΔDPE是等边三角形,∴PE=ED,∠DEP=∠ACB=60°,∴∠ACD=180°-∠ACB=180°-60°=120°,∴∠ACD+∠DEP=120°+60°=180°,由三角形内角和为180°,可知:∠PCE+∠CEP+∠EPC=180°,∠ECD+∠CDE+∠CED=180°,∴∠PCE+∠CEP+∠EPC+∠ECD+∠CDE+∠CED=360°,又∵∠PCE+∠ECD+∠CEP+∠CED=∠ACD+∠DEP=180°,∴∠EPC+∠CDE=360°-180°=180°,∵∠EDM+∠CDE=180°,∴∠EPC=∠EDM,在ΔEPC和ΔEDM中,PE=ED∠EPC=∠EDM PC=DM,ΔEPC≌ΔEDM(SAS),∴EC=EM,∠PEC=∠DEM,∵∠PEC+∠CED=∠DEP=60°,∴∠CEM=∠DEM+∠CED=60°,∴ΔCEM是等边三角形,∴∠ECD=60°,∠ACE=180°-∠ECD-∠ACB=180°-60°-60°=60°,即点E在∠ACD的角平分线上运动,在射线CD上截取CP =CP,连接EP ,在ΔCEP和ΔCEP 中,PC=P C∠PCE=∠P CE=60°CE=CE,ΔCEP≌ΔCEP (SAS),∴PE=P E,由三角形三边关系可知,BE+P E≥BP ,即当点E与点C重合,BE+P E=BP 时,PE+BE有最小值BP ,∵BP =BE+CP =BC+CP=3+2=5,∴BE+PE=BE+P E≥BP =5,∴BE+PE最小值为5.【点睛】本题考查三角形综合,全等三角形的判定,正确添加辅助线、掌握相关图形的性质定理是解题的关键.【类型二共顶点的等腰直角三角形】90°.(1)【猜想】:如图1,点E在BC上,点D在AC上,线段BE与AD的数量关系是,位置关系是.(2)【探究】:把△DCE绕点C旋转到如图2的位置,连接AD,BE,(1)中的结论还成立吗?说明理由;(3)【拓展】:把△DCE绕点C在平面内自由旋转,若AC=5,CE=22,当A,E,D三点在同一直线上时,则AE的长是.【答案】(1)BE=AD,BE⊥AD(2)成立,理由见解析(3)21+2或21-2【分析】(1)利用等腰直角三角形的性质得出AC=BC,EC=DC,再作差,得出BE=AD,再用∠ACB= 90°,即可得出结论;(2)先由旋转的旋转得出∠BCE=∠ACD,进而判断出△BCE≌△ACD SAS,得出BE=AD,∠CAD=∠CBE,AC与BE交于M,AD与BE交于N,利用全等的性质和对顶角相等进而得出∠MAN+∠AMN=90°,即可得出结论;(3)分两种情况,①当点E在线段AD上时,如图3,过点C作CM⊥AD于M,求出CM=EM=12DE= 2,再用勾股定理求出AM,利用线段的加减即可得出结论;②当点D在线段AE上时,如图4,过点C作CN⊥AE于N,求出CM=EM=12DE=2,再由勾股定理求出根据勾股定理得,AN,利用线段的加减即可得出结论.【详解】(1)∵△ABC和△DCE都是等腰直角三角形,∴AC=BC,EC=DC,∴AC-DC=BC-EC,∴BE=AD,点E在BC上,点D在AC上,且∠ACB=90°,∴BE⊥AD,故:BE=AD,BE⊥AD;(2)成立;如图2,AC与BE交于M,AD与BE交于N,由题意可知:∵∠ACB=∠DCE=90°,∴∠ACB+∠ACE=∠DCE+∠CE,∴∠BCE=∠ACD,在△BCE与△ACD中:BC=AC∠BCE=∠ACD CE=CD∴△BCE≌△ACD SAS,∴BE=AD,∠CAD=∠CBE,又∵∠ACB=90°,∠BMC=∠AMN,在△ANM中,∴∠MAN+∠AMN=∠CBE+∠BMC=90°,∴∠ANM=90°,∴BE⊥AD,所以结论成立;(3)①当点E在线段AD上时,如图3,过点C作CM⊥AD于M,∵△DCE是等腰直角三角形,且CE=22,∴DE=CE2+CD2=4,∵CM⊥AD,∴CM=EM=12DE=2,在Rt△ACM中,AC=5,∴AM=AC2-CM2=52-22=21,∴AE=AM-EM=21-2;②当点D在线段AE上时,如图4,过点C作CN⊥AE于N,∵△DCE是等腰直角三角形,且CE=22,∴DE=CE2+CD2=4,∵CN⊥AD,∴CN =NE =12DE =2,在Rt △ACN 中,AC =5,∴AN =AC 2-CN 2=52-22=21,∴AE =AN +NE =21+2,综上,AE 的长为21-2或21+2,故答案为:21-2或21+2.【点睛】此题是几何变换综合题,主要考查了等腰直角三角形的性质,旋转的旋转,全等三角形的判定和性质,勾股定理,作出辅助线构造出直角三角形是解本题的关键.【变式训练】1(2023·全国·九年级专题练习)如图,在等腰直角三角形ABC 和DEC 中,∠BCA =∠DCE =90°,点E 在边AB 上,ED 与AC 交于点F ,连接AD .(1)求证:△BCE ≌△ACD ;(2)求证:AB ⊥AD .【答案】(1)见解析(2)见解析【分析】(1)根据∠BCA =∠DCE =90°,可得∠BCE =∠ACD ,再由等腰直角三角形的性质可得BC =AC ,CE =CD ,可证明△BCE ≌△ACD ,即可求证;(2)根据△BCE ≌△ACD ,可得∠B =∠CAD ,从而得到∠CAD +∠CAE =90°,即可求证.【详解】(1)证明:∵∠BCA =∠DCE =90°,∴∠BCE +∠ECA =∠ECA +∠ACD =90°,∴∠BCE =∠ACD ,∵△ABC 和△DEC 是等腰直角三角形,∴BC =AC ,CE =CD ,在△BCE 和△ACD 中,BC =AC∠BCE =∠ACD CE =CD,∴△BCE ≌△ACD SAS ;(2)证明:∵△BCE ≌△ACD ,∴∠B =∠CAD ,∵∠ACB =90°,∴∠B +∠CAE =90°,∴∠CAD +∠CAE =90°,即∠DAE =90°,∴AB ⊥AD .【点睛】本题主要考查了全等三角形的判定和性质,等腰直角三角形的性质,熟练掌握全等三角形的判定和性质,等腰直角三角形的性质是解题的关键.2(2023春·八年级课时练习)(1)问题发现:如图1,△ABC与△CDE均为等腰直角三角形,∠ACB=∠DCE=90°,则线段AE、BD的数量关系为,AE、BD所在直线的位置关系为;(2)深入探究:在(1)的条件下,若点A,E,D在同一直线上,CM为△DCE中DE边上的高,请判断∠ADB 的度数及线段CM,AD,BD之间的数量关系,并说明理由.【答案】(1)AE=BD,AE⊥BD;(2)∠ADB=90°,AD=2CM+BD;理由见解析【分析】(1)延长AE交BD于点H,AH交BC于点O.只要证明△ACE≌△BCD SAS,即可解决问题;(2)由△ACE≌△BCD,结合等腰三角形的性质和直角三角形的性质,即可解决问题.【详解】解:(1)如图1中,延长AE交BD于点H,AH交BC于点O,∵△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,∴AC=BC,CD=CE,∴∠ACE+∠ECB=∠BCD+∠ECB=90°,∴∠ACE=∠BCD,∴△ACE≌△BCD(SAS),∴AE=BD,∠CAE=∠CBD,∵∠CAE+∠AOC=90°,∠AOC=∠BOH,∴∠BOH+∠CBD=90°,∴∠AHB=90°,∴AE⏊BD.故答案为:AE=BD,AE⏊BD.(2)∠ADB=90°,AD=2CM+BD;理由如下:如图2中,∵△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,∴∠CDE=∠CED=45°,∴∠AEC=180°-∠CED=135°,由(1)可知:△ACE≌△BCD,∴AE=BD,∠BDC=∠AEC=135°,∴∠ADB=∠BDC-∠CDE=135°-45°=90°;在等腰直角三角形DCE中,CM为斜边DE上的高,∴CM=DM=ME,∴DM=2CM,∴AD=DE+AE=2CM+BD.【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的性质等知识,解题的关键是正确寻找全等三角形解决问题.3(2023·山东枣庄·统考二模)感知:如图①,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,点B在线段AD上,点C在线段AE上,我们很容易得到BD=CE,不需证明.(1)探究:如图②,将△ADE绕点A逆时针旋转α(0<α<90°),连接BD和CE,此时BD=CE是否依然成立?若成立,写出证明过程;若不成立,说明理由.(2)应用:如图③,当△ADE绕点A逆时针旋转,使得点D落在BC的延长线上,连接CE.求:①∠ACE的度数;②若AB=AC=32,CD=3,则线段DE的长是多少?【答案】(1)BD=CE成立,证明见解析(2)①45° ②310【分析】(1)只需要利用SAS证明△ABD≌△ACE即可证明BD=CE;(2)①由等腰直角三角形的性质得到∠ABC=∠ACB=45°,再证明△ABD≌△ACE即可得到∠ABD=∠ACE=45°;②先由勾股定理得到BC=6,由全等三角形的性质得到∠ACE=∠ABD=45°,BD=CE,则∠BCE=90°,CE=9;则DE=CE2+CD2=310.【详解】(1)解:BD=CE成立,证明如下:∵△ABC和△ADE都是等腰直角三角形,∴AB=AC,AD=AE,由旋转的性质可得∠BAD=∠CAE,∴△ABD≌△ACE SAS,∴BD=CE;(2)解:①∵△ABC和△ADE都是等腰直角三角形,∴∠ABC=∠ACB=45°,∠BAC=∠DAE=90°,∴∠BAD=∠CAE,∵AB=AC,∠BAD=CAE,AD=AE,∴△ABD≌△ACE SAS,∴∠ABD=∠ACE=45°;②∵AB=AC=32,∴BC=AB2+AC2=6,∵△ACE≌△ABD,∴∠ACE=∠ABD=45°,BD=CE,∴∠BCE=∠ACB+∠ACE=90°,CE=BD=BC+CD=6+3=9;∴DE=CE2+CD2=92+32=310.【点睛】本题主要考查了全等三角形的性质与判定,勾股定理,等腰直角三角形的性质,熟知全等三角形的性质与判定条件是解题的关键.【类型三共顶点的一般等腰三角形】1(2023春·山东泰安·七年级校考开学考试)如图,△ABC与△CDE都是等腰三角形,AC=BC,CD=CE,∠ACB=∠DCE=42°,AD、BE相交于点M.(1)试说明:AD=BE;(2)求∠AMB的度数.【答案】(1)见解析(2)42°【分析】(1)由“SAS”可证△ACD≌△BCE,可得BE=AD;(2)根据全等三角形的性质可得∠CAD=∠CBE,再利用三角形内角和定理计算∠AMB.【详解】(1)解:证明:∵∠ACB=∠DCE,∴∠ACD=∠BCE,在△ACD和△BCE中,CA=CB∠ACD=∠BCE CD=CE,∴△ACD≌△BCE(SAS),∴AD=BE;(2)∵△ACD≌△BCE,∴∠CAD=∠CBE,∵∠BAC+∠ABC=180°-42°=138°,∴∠BAM+∠ABM=∠BAC-∠CAD+∠ABC+∠CBE=∠BAC+∠ABC=138°,∴∠AMB=180°-138°=42°.【点睛】本题考查了全等三角形的判定和性质,三角形内角和,证明三角形全等是解题的关键.【变式训练】1(2023秋·辽宁抚顺·八年级统考期末)如图,已知△ABC中,AB≠AC≠BC.分别以AB、AC为腰在AB左侧、AC右侧作等腰三角形ABD.等腰三角形ACE,连接CD、BE.(1)如图1,当∠BAD=∠CAE=60°时,①△ABD、△ACE的形状是;②求证:BE=DC.(2)若∠BAD=∠CAE≠60°,①如图2,当AB=AD,AC=AE时,BE=DC是否仍然成立?请写出你的结论并说明理由;②如图3,当AB=DB,AC=EC时,BE=DC是否仍然成立?请写出你的结论并说明理由.【答案】(1)①等边三角形;②证明见解析(2)①成立,理由见解析;②不成立,理由见解析【分析】(1)①根据有一个内角是60度的等腰三角形是等边三角形即可求解;②根据等边三角形的性质可得AB=AD,AE=AC,∠DAB=∠CAE=60°,证明△BAE≌△DAC,根据全等三角形的性质即可证明;(2)①证明△BAE≌△DAC,根据全等三角形的性质即可得出结论;②根据已知可得△BAE与△DAC不全等,即可得出结论.【详解】(1)①∵△ABD是等腰三角形,△ACE是等腰三角形,∠BAD=∠CAE=60°∴△ABD、△ACE是等边三角形,故答案为:等边三角形.②证明:∵△ABD、△ACE是等边三角形,∴AB=AD,AE=AC,∠DAB=∠CAE=60°,∵∠DAC=∠DAB+∠BAC,∠BAE=∠CAE+∠BAC,∴∠DAC=∠BAE,在△BAE与△DAC中,∵AB=AD∠BAE=∠DAC AE=AC,∴△BAE≌△DAC SAS.∴BE=DC.(2)①当AB=AD,AE=AC时,成立.理由:如图,∵AB=AD,∠BAE=∠DAC,AE=AC,∴△BAE≌△DAC SAS,∴BE=DC;②当AB=DB,AC=EC时,不成立.理由:如图,∵∠BAD=∠CAE≠60°,∴AB=DB≠AD,AC=EC≠AE,∴△BAE与△DAC不全等,∴BE≠DC.【点睛】本题考查全等三角形的判定与性质,等腰三角形的性质,等边三角形的判定与性质等,熟练掌握全等三角形的判定与性质是解题的关键.2(2023秋·全国·八年级专题练习)定义:顶角相等且顶点重合的两个等腰三角形叫做“同源三角形”,我们称这两个顶角为“同源角”.如图,△ABC 和△CDE 为“同源三角形”,AC =BC ,CD =CE ,∠ACB 与∠DCE 为“同源角”.(1)如图1,△ABC 和△CDE 为“同源三角形”,试判断AD 与BE 的数量关系,并说明理由.(2)如图2,若“同源三角形”△ABC 和△CDE 上的点B ,C ,D 在同一条直线上,且∠ACE =90°,则∠EMD =°.(3)如图3,△ABC 和△CDE 为“同源三角形”,且“同源角”的度数为90°时,分别取AD ,BE 的中点Q ,P ,连接CP ,CQ ,PQ ,试说明△PCQ 是等腰直角三角形.【答案】(1)AD =BE ,详见解析(2)45(3)详见解析【分析】(1)由“同源三角形”的定义可证∠ACD =∠BCE ,然后根据SAS 证明△ACD ≌△BCE 即可;(2)由“同源三角形”的定义和∠ACE =90°可求出∠DCE =ACB =45°,由(1)可知△ACD ≌△BCE ,得∠ADC =∠BEC ,然后根据“8”子三角形即可求出∠EMD 的度数;(3)由(1)可知△ACD ≌△BCE ,可得∠CAQ =∠CBP ,BE =AD .根据SAS 证明△ACQ ≌△BCP ,可得CQ =CP ,∠ACQ =∠BCP ,进而可证结论成立.【详解】(1)AD =BE .理由:因为△ABC 和△CDE 是“同源三角形”,所以∠ACB =∠DCE ,所以∠ACD =∠BCE .在△ACD 和△BCE 中,AC =BC ,∠ACD =∠BCE ,CD =CE ,所以△ACD ≌△BCE SAS .所以AD =BE .(2)∵△ABC 和△CDE 是“同源三角形”,∴∠ACB =∠DCE .∵∠ACE =90°,∴∠DCE =ACB =45°.由(1)可知△ACD ≌△BCE ,∴∠ADC =∠BEC .∵∠MOE =∠COD ,∴∠EMD =∠DCE =45°.故答案为:45;(3)由(1)可知△ACD ≌△BCE ,所以∠CAQ =∠CBP ,BE =AD .因为AD ,BE 的中点分别为Q ,P ,所以AQ =BP .在△ACQ 和△BCP 中,CA =CB ,∠CAQ =∠CBP ,AQ =BP ,所以△ACQ ≌△BCP SAS ,所以CQ =CP ,∠ACQ =∠BCP .又因为∠BCP +∠PCA =90°,所以∠ACQ +∠PCA =90°.所以∠PCQ =90°,所以△PCQ 是等腰直角三角形.【点睛】本题考查了新定义,全等三角形的判定与性质,等腰直角三角形的判定,三角形内角和定理等知识,熟练掌握全等三角形的判定与性质是解答本题的关键.3(2023春·辽宁丹东·七年级统考期末)(1)如图1,两个等腰三角形△ABC 和△ADE 中,AB =AC ,AD =AE ,∠BAC =∠DAE ,连接BD ,CE .则△ADB ≌,此时线段BD 和线段CE 的数量关系式;(2)如图2,两个等腰直角三角形△ABC 和△ADE 中,AB =AC ,AD =AE ,∠BAC =∠DAE =90°,连接BD ,CE ,两线交于点P ,请判断线段BD 和线段CE 的关系,并说明理由;(3)如图3,分别以△ABC 的两边AB ,AC 为边向△ABC 外作等边△ABD 和等边△ACE ,连接BE ,CD ,两线交于点P .请直接写出线段BE 和线段CD 的数量关系及∠PBC +∠PCB 的度数.【答案】(1)△AEC ,BD =CE ;(2)BD =CE 且BD ⊥CE ;(3)CD =BE ,∠PBC +∠PCB =60°【分析】(1)先判断出∠DAB =∠EAC ,进而判断出△ADB ≌△AEC ,即可得出结论;(2)先判断出△DAB ≌△EAC ,得出BD =CE ,∠DBA =∠ECA ,进而判断出∠DBC +∠ECB ,即可得出结论;(3)先判断出△ACD ≌△AEB ,得出CD =BE ,∠ADC =∠ABE ,进而求出∠BPD =60°,最后用三角形外角的性质,即可得出结论.【详解】解:(1)∵∠DAE =∠BAC ,∴∠DAE +∠BAE =∠BAC +∠BAE .即∠DAB =∠EAC ,在△ADB 和△AEC 中,AD =AE∠DAB =∠EAC AB =AC,∴△ADB ≌△AEC SAS ,∴BD =CE ,故答案为:△AEC ,BD =CE ;(2)BD =CE 且BD ⊥CE ;理由如下:∵∠DAE =∠BAC =90°,∴∠DAE +∠BAE =∠BAC +∠BAE .即∠DAB =∠EAC .在△DAB 和△EAC 中,AD =AE∠DAB =∠EAC AB =AC,∴△ADB ≌△AEC SAS ,∴BD =CE ,∠DBA =∠ECA ,∵∠ECA +∠ECB +∠ABC =90°,∴∠DBA +∠ECB +∠ABC =90°,即∠DBC +∠ECB =90°,∴∠BPC =180°-(∠DBC +∠ECB )=90°,∴BD ⊥CE ,综上所述:BD =CE 且BD ⊥CE ;(3)如图3所示,BE =CD ,∠PBC +∠PCB =60°,理由如下:∵△ABD 和△ACE 是等边三角形,∴AD =AB ,AC =AE ,∠ADB =∠ABD =∠BAD =∠CAE =60°,∴∠BAD +∠BAC =∠CAE +∠BAC ,∴∠CAD =∠EAB ,在△ACD 和△AEB 中,AD =AB ∠CAD =∠EAB AC =AE,∴△ACD ≌△AEB (SAS ),∴CD =BE ,∠ADC =∠ABE ,∴∠BPD =180°-∠PBD -∠BDP=180°-∠ABE -∠ABD -∠BDP=180°-∠ABD -∠ABE +∠BDP=180°-∠ABD -∠ADC +∠BDP=180°-∠ABD -∠ADB=60°,∴∠PBC +∠PCB =∠BPD =60°.【点睛】此题是三角形综合题,主要考查了等腰三角形的性质,等腰直角三角形的性质,等边三角形的性质,三角形的内角和定理,三角形外角的性质,判断出△ADB ≌△AEC 是解本题的关键.。
等腰直角三角形旋转的手拉手模型问题
“胡学数学”,陪伴每一天、成长每一天。
每周一到周六晚上9点,不见不散。
每天十分钟,越学越轻松。
—————————————————————
【题目】
两个等腰直角三角形ACB、DCE如图放置,现将△DCE绕C点旋转,连接AD、BE。
结合下列四个图形猜测线段AD、BE的数量位置关系并说明理由。
—————————————————————
分析:首先分类,三种情况,根据等腰得两组边相等,根据旋转得两边夹角相等,用SAS判定全等(手拉手全等模型)得AD=BE。
利用三角形全等得对应角相等结合对顶角相等,三角形中另一角也相等,(蝴蝶形证垂直)从而证出AD⊥BE。
证垂直还可以利用等腰等量代换,深层为方程思想
—————————————————————
手拉手全等模型:
蝴蝶形证垂直:
等量代换证垂直:
—————————————————————
—————————————————————
后两种同理,体会此模型中的两种方法和旋转变换中的不变性—————————————————————。
初中几何经典模型总结(手拉手模型)展开全文模型可以让同学更快的进入到几何之中,产生兴趣。
也是近来学习初中几何不可或缺的一种重要方法。
下面给大家介绍一种经典几何模型---手拉手模型,这也是历年数学中考常考的几何压轴题型之一。
手拉手模型的概念:1、手的判别:判断左右:将等腰三角形顶角顶点朝上,正对读者,读者左边为左手顶点,右边为右手顶点。
2、手拉手模型的定义:定义: 两个顶角相等且有共顶点的等腰三角形形成的图形。
(左手拉左手,右手拉右手)例如:3、手拉手模型的重要结论三个固定结论:结论1:△ABC≌△AB'C'(SAS)BC=B'C'(左手拉左手等于右手拉右手)结论2:∠BOB'=∠BAB'(用四点共圆证明)结论3: AO平分∠BOC'(用四点共圆证明)例题解析:类型一共顶点的等腰直角三角形中的手拉手例1:已知:如图△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°.求证:BD=CE.分析:要证BD=CE可转化为证明△BAE≌△CAD,由已知可证AB=AC,AE=AD,∠BAC=∠EAD=90°,因为∠BAC ∠CAE=∠EAD ∠CAE,即可证∠BAE=∠CAD,符合SAS,即得证.解答:证明:∵△ABC与△AED均为等腰直角三角形,∴AB=AC,AE=AD,∠BAC=∠EAD=90°,∴∠BAC ∠CAE=∠EAD ∠CAE,即∠BAE=∠CAD,在△BAE与△CAD中,AB=AC,∠BAE=∠CAD,AE=AD∴△BAE≌△CAD(SAS),∴BD=CE.类型二共顶点的等边三角形中的手拉手例2:图1、图2中,点B为线段AE上一点,△ABC与△BED都是等边三角形。
(1)如图1,求证:AD=CE;(2)如图2,设CE与AD交于点F,连接BF.①求证:∠CFA=60°;②求证:CF BF=AF.分析:(1)如图1,利用等边三角形性质得:BD=BE,AB=BC,∠ABC=∠DBE=60°,再证∠ABD=∠CBE,根据SAS证明△ABD≌△CBE 得出结论;(2)①如图2,利用(1)中的全等得:∠BCE=∠DAB,根据两次运用外角定理可得结论;②如图3,作辅助线,截取FG=CF,连接CG,证明△CFG是等边三角形,并证明△ACG≌△BCF,由线段的和得出结论.解答:证明:(1)如图1,∵△ABC与△BED都是等边三角形,∴BD=BE,AB=BC,∠ABC=∠DBE=60°,∴∠ABC ∠CBD=∠DBE ∠CBD,即∠ABD=∠CBE,在△ABD和△CBE中,AB=AC∠ABD=∠CBEBD=BE,∴△ABD≌△CBE(SAS),∴AD=CE,(2)①如图2,由(1)得:△ABD≌△CBE,∴∠BCE=∠DAB,∵∠ABC=∠BCE ∠CEB=60°,∴∠ABC=∠DAB ∠CEB=60°,∵∠CFA=∠DAB ∠CEB,∴∠CFA=60°,②如图3,在AF上取一点G,使FG=CF,连接CG,∵∠AFC=60°,∴△CGF是等边三角形,∴∠GCF=60°,CG=CF,∴∠GCB ∠BCE=60°,∵∠ACB=60°,∴∠ACG ∠GCB=60°,∴∠ACG=∠BCE,∵AC=BC,∴△ACG≌△BCF,∴AG=BF,∵AF=AG GF,∴AF=BF CF.类型三共顶点正方形中的手拉手例3:如图,两个正方形ABCD与DEFG,连结CE、AG,二者相交于点H。
等腰直角三角形手拉手的旋转例:已知,在△ABC 中,∠BAC=90°,AB=AC,点D 在直线BC 上一动点(点D 不与B 、C 重合),以AD 为边作正方形ADEF ,连接CF ,如图,当点D 在线段BC 上时,求证:(1)CF=BD;(2)CF ⊥BD;分析:根据等腰直角三角形的性质求出∠ABC=∠ACB=45°,正方形的性质可得AD=AF, ∠DAF=90°,然后利用同角的余角相等求出∠BAD=∠CAF ,再利用“边角边”证明△ABD 和△ACF 全等,根据全等三角形对应边相等可得CF=BD ,全等三角形的对应角相等可得∠ACF=∠ABD ,然后求出∠BCF==90°,再根据垂直的定义证明即可.证明:(1)∵∠BAC=90°,AB=AC ,∴∠ABC=∠ACB=45°,∵四边形ADEF 是正方形,∴AD=AF,∠DAF==90°,∵∠BAD+∠CAD=∠BAC=90°,∠CAF+∠CAD=∠DAF=90°,∴∠BAD=∠CAF,在△ABD 和△ACF 中,AB AC BAD CAF AD AF =⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△ACF ,所以CF=BD.(2)∠ACF=∠ABD,∴∠BCF=∠ACB+∠ACF=45°+45°=90°,∴CF ⊥BD;总结:(1)两个相似的共直角顶点的等腰直角三角形,旋转所形成的全等三角形相对孤立的边的关系是垂直且相等,如图,△BCD ≌△ECA ,则AE=BD.AE ⊥BD,(2)延伸:两个共顶点的全等三角形旋转90°时,对应的孤立边的位置关系是垂直且相等,如图,BC=DE.BC⊥DE.练习:1.如图,△ACD和△BCE都是等腰直角三角形,∠ACD=∠BCE=90°,AE交CD于点F,BD 分别交CE、AE于点G、H.试猜测线段AE和BD的数量和位置关系,并说明理由2.如图,已知F是正方形ABCD中BC边上一点,延长AB到E,使得BE=BF,试用旋转的性质说明:AF=CE且AF⊥CE.3.(1)如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=90°.①当点D在AC上时,如下面图1,线段BD、CE有怎样的数量关系和位置关系?直接写出你猜想的结论;②将下面图1中的△ADE绕点A顺时针旋转α角(0°<α<90°),如下面图2,线段BD、CE 有怎样的数量关系和位置关系?请说明理由.(2)当△ABC和△ADE满足下面甲、乙丙中的哪个条件时,使线段BD、CE在(1)中的位置关系仍然成立?不必说明理由.甲:AB︰AC=AD︰AE=1,∠BAC=∠DAE≠90°;乙:AB︰AC=AD︰AE≠1,∠BAC=∠DAE=90°;丙:AB︰AC=AD︰AE≠1,∠BAC=∠DAE≠90°.1.2100027377分析:由于条件可知CD=AC,BC=CE,且可求得∠ACE=∠DCB,所以△ACE≌△DCB,即AE=BD,∠CAE=∠CDB;又因为对顶角相等即∠AFC=∠DFH,所以∠DHF=∠ACD=90°,即AE⊥BD.解:猜测AE=BD,AE⊥BD;理由如下:∵∠ACD=∠BCE=90°,∴∠ACD+∠DCE=∠BCE+∠DCE,即∠ACE=∠DCB,又∵△ACD和△BCE都是等腰直角三角形,∴AC=CD,CE=CB,在△ACE 与△DCB 中,AC DC ACE DCB EC BC =⎧⎪∠=∠⎨⎪=⎩∴△ACE ≌△DCB(SAS),∴AE=BD ,∠CAE=∠CDB ;∵∠AFC=∠DFH ,∠FAC+∠AFC=90°,∴∠DHF=∠ACD=90°,∴AE ⊥BD . 2.3. 分析:(1)①BD=CE ,BD ⊥CE .根据全等三角形的判定定理SAS 推知△ABD ≌△ACE ,然后由全等三角形的对应边相等证得BD=CE 、对应角相等∠ABF=∠ECA ;然后在△ABD 和△CDF 中,由三角形内角和定理可以求得∠CFD=90°,即BD ⊥CF ;②BD=CE ,BD ⊥CE .根据全等三角形的判定定理SAS 推知△ABD ≌△ACE ,然后由全等三角形的对应边相等证得BD=CE 、对应角相等∠ABF=∠ECA ;作辅助线(延长BD 交AC 于F ,交CE 于H )BH 构建对顶角∠ABF=∠HCF ,再根据三角形内角和定理证得∠BHC=90°;(2)根据结论①、②的证明过程知,∠BAC=∠DFC (或∠FHC=90°)时,该结论成立了,所以本条件中的∠BAC=∠DAE≠90°不合适.解:(1)①结论:BD=CE ,BD ⊥CE ;②结论:BD=CE ,BD ⊥CE…1分理由如下:∵∠BAC=∠DAE=90°∴∠BAC-∠DAC=∠DAE-∠DAC ,即∠BAD=∠CAE∵AB=AC ,AD=AE ,∴△ABD ≌△ACE (SAS ).∴BD=CE ,延长BD交AC于F,交CE于H.在△ABF与△HCF中,∵∠ABF=∠HCF,∠AFB=∠HFC∴∠CHF=∠BAF=90°∴BD⊥CE.(2)结论:乙.AB:AC=AD:AE,∠BAC=∠DAE=90°。
手拉手模型,巧妙解决数学题!
以微课堂
公益课堂,奥数国家级教练
与四位特级教师联手执教。
构造手拉手模型巧妙解题的方法思路
我们已经知道全等型手拉手模型有以下三个特征:共顶点、双等腰、顶角相等。
一个核心巧记结论:左手拉左手=右手拉右手
判断左右手:将等腰三角形顶角顶点朝上,正对读者,读者左边为左手顶点,右边为右手顶点。
由于AB=AC,则△ABC就是“双等腰”中的一个等腰三角形,A 是“共顶点”,因此我们可以以AD为一腰,构造一个等腰△ADE,只
要∠DAE=∠BAC就符合手拉手模型了,如图:
注意:上图中在△ABC中,B是“左手”,C是“右手”,以AD
为一腰构造等腰三角形时,在AD两侧都可以构造,也就是D可以作“左手”,也可以作“右手”,具体选择那一侧要根据实际需要去选取,记住:左手拉左手=右手拉右手.
①中:△ADB≌△AEC,DB=EC;
②中:△ADC≌△AEB,DC=EB;
③中:△ADB≌△AEC,DB=EC;
④中:△ADC≌△AEB,DC=EB.
构造好手拉手模型以后,我们再根据模型的结论去解题,就轻松多了!
下面通过例题来分析讲解。
【分析】直接求CD的最大值显然不现实,所以我们要将线段CD 进行转化,可以通过构造“手拉手模型”来实现线段的转化。
△BAD
是等腰直角三角形,D是“左手”,A是“右手”,B是“共顶点”,可以以BC为一腰构造等腰直角三角形,由于D是“左手”,所以C 必须也是“左手”,因此只有如图所示一种构造方式,才能满足“左手拉左手,右手拉右手”.
《以微课堂》,由江苏省数学名师、数学奥林匹克国家一级教练
员,联手四名特级教师共同打造。
等腰直角三角形与正方形手拉手例:已知,在△ABC中,∠BAC=90°,AB=AC,点D在直线BC上一动点(点D不与B、C重合),以AD为边作正方形ADEF,连接CF,(1)如图1,当点D在线段BC上时,求证:①CF=BD;②CF⊥BD;(2)如图2,当点D在线段BC的延长线上时,其他条件不变,线段CF与BD的上述关系是否还成立?请直接写出结论即可(不必证明);(3)如图3,当点D在线段的反向延长线上,且点A、F在直线BC的两端,其他条件不变,线段CF与BD的上述关系是否还成立?若成立,请证明你的结论;若不成立,请说明理由.分析:(1)根据等腰直角三角形的性质求出∠ABC=∠ACB=45°,正方形的性质可得AD=AF, ∠DAF=90°,然后利用同角的余角相等求出∠BAD=∠CAF,再利用“边角边”证明△ABD和△ACF全等,根据全等三角形对应边相等可得CF=BD,全等三角形的对应角相等可得∠ACF=∠ABD,然后求出∠BCF==90°,再根据垂直的定义证明即可;(2)结论仍然成立;(3)同(1)可证△ABD和△ACF全等,根据全等三角形对应边相等可得CF=BD,全等三角形对应角相等可得∠ACF=∠ABD=135°,然后求出∠BCF=90°,再根据垂直的定义证明即可.解:(1)∵∠BAC=90°,AB=AC,∴∠ABC=∠ACB=45°,∵四边形ADEF是正方形,∴AD=AF,∠DAF==90°,∵∠BAD+∠CAD=∠BAC=90°,∠CAF+∠CAD=∠DAF=90°,∴∠BAD=∠CAF,在△ABD和△ACF中,AB ACBAD CAF AD AF=⎧⎪∠=∠⎨⎪=⎩,∴△ABD≌△ACF,所以①CF=BD,∠ACF=∠ABD, ∴∠BCF=∠ACB+∠ACF=45°+45°=90°,∴②CF⊥BD;(2)当点D在线段延长线上时,线段CF与BD的上述关系仍然成立;(3)当点D在线段BC的反向延长线上,且点A、F在直线BC的两侧,线段CF与BD的上述关系仍然成立.理由:同理可证,△ABD≌△ACF,∴CF=BD,∠ACF=∠ABD=180°-45°=135°,∵∠ACB=45°,∴∠BCF=∠ACF-∠ACB=135°-45°=90°,∴CF⊥BD.总结:两个等腰直角三角形共直角顶点为手拉手模型之一,如图,其中有等腰直角三角形和正方形共直角顶点,相当于两个等腰直角三角形“手拉手”,因为正方形其中一个对角线与两边就可形成等腰直角三角形,所以有全等三角形及其性质的应用练习:在△ABC中,AB=AC,∠BAC=90︒,点D在射线BC上(与B、C两点不重合),以AD为边作正方形ADEF,使点E与点B在直线AD的异侧,射线BA与射线CF相交于点G.(1)若点D在线段BC上,如图1.①依题意补全图1;②判断BC与CG的数量关系与位置关系,并加以证明;(2)若点D在线段BC的延长线上,且G为CF中点,连接GE,AB2,则GE的长为_______,并简述求GE长的思路.图1 备用图解:(1) ①补全图形,如图1所示.图1②BC 和CG 的数量关系:BC CG =,位置关系:BC CG ⊥.证明: 如图1.∵︒=∠=90,BAC AC AB ,∴︒=∠=∠45ACB B ,︒=∠+∠9021.∵射线BA 、CF 的延长线相交于点G ,∴︒=∠=∠90BAC CAG .∵四边形ADEF 为正方形,∴︒=∠+∠=∠9032DAF ,AF AD =.∴31∠=∠.∴△ABD ≌△ACF .∴︒=∠=∠45ACF B .∴45B G ∠=∠=︒,90BCG ∠=︒.∴BC CG =,BC CG ⊥. (2) 10GE =思路如下:a . 由G 为CF 中点画出图形,如图2所示.b . 与②同理,可得BD=CF ,BC CG =,BC CG ⊥;c . 由2=AB ,G 为CF 中点,可得2====CD FG CG BC ;d . 过点A 作AM BD ⊥于M ,过点E 作EN FG ⊥于N ,可证△AMD ≌△FNE ,可得1AM FN ==,NE 为FG 的垂直平分线,FE EG =;e . 在Rt △AMD 中,1AM =,3MD =,可得10AD =10GE FE AD ===。
等腰直角三角形手拉手模型的补全例:如图1,在△ABC 中,CA =CB ,∠ACB =90°,D 是△ABC 内部一点,∠ADC =135°,将线段CD 绕点C 逆时针旋转90°得到线段CE ,连接DE .(1)① 依题意补全图形;② 请判断∠ADC 和∠CDE 之间的数量关系,并直接写出答案.(2)在(1)的条件下,连接BE ,过点C 作CM ⊥DE ,请判断线段CM ,AE 和BE 之间的数量关系,并说明理由.(3)如图2,在正方形ABCD 中,AB =2,如果PD =1,∠BPD =90°,请直接写出点A 到BP 的距离. DA B C PDC A B图1 图2分析:(1)②∠ADC +∠CDE =180°.根据旋转的性质即可解答(2)根据旋转的性质,可证明A 、D 、E 三点在同一条直线上,得到AE=AD+DE ,再根据旋转,实质得到两个等腰直角三角形手牵手相似,则可证明△ACD≌△BCE,得到AD=BE ,又CD=CE,∠DCE=90°,CM⊥DE,得到DE=2CM ,∴AE=BE+2CM.(3)作AF⊥BP 于F ,此图可看成不完整的等腰直角三角形手牵手,则相当于△ADP 绕点A 顺时针旋转90°,∴作AH⊥BP 于H ,如图,形成三角形△ABD 和△AHP 手牵手,∴△ABH≌△ADP,∴BP=BH+HP=PD+2AF,在Rt△BPD 中借助勾股定理可得31AF -=解:(1)① 依题意补全图形(如下图);② ∠ADC+∠CDE=180°.(2)线段CM,AE和BE之间的数量关系是AE=BE+2CM,理由如下:∵ 线段CD绕点C逆时针旋转90°得到线段CE,∴ CD=CE,∠DCE=90°.∴ ∠CDE=∠CED=45°.又∵ ∠ADC=135°,∴ ∠ADC+∠CDE=180°,∴ A、D、E三点在同一条直线上.∴ AE=AD+DE.又∵ ∠ACB=90°,∴ ∠ACB-∠DCB=∠DCE-∠DCB,即∠ACD=∠BCE.又∵ AC=BC,CD=CE,∴ △ACD≌△BCE.∴ AD=BE.∵ CD=CE,∠DCE=90°,CM⊥DE.∴ DE=2CM.∴ AE=BE+2CM.(3)点A到BP的距离为312.总结:在等腰直角三角形顶角顶点的基础上,出现了一个利用腰形成的三角形时,往往借助等线段、共端点考虑用旋转的思路构造此三角形旋转90°利用等腰三角形另一腰形成三角形解决问题练习:(1)问题发现:如图1,△ACB和△DCE均为等边三角形,点A、D、E在同一直线上,连接BE.填空:①∠AEB的度数为_______;②线段AD、BE之间的数量关系为______________.(2)拓展探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°点A、D、E在同一直线上,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段AM、AE、BE之间的数量关系,并说明理由.(3)解决问题在正方形ABCD中,CD=2,若点P满足PD=1,且∠BPD=90°,请直接写出点A到BP的距离.。
【中考专题】『手拉手模型』,经典结论大总结手拉手模型大家都非常熟悉了,今天我们为大家整理归类常见的手拉手模型的构造及相关结论1.左右手的判别:顶点朝上,左边顶点为左手,右边顶点为右手2.手拉手模型图两个顶点相等且共顶点的等腰三角形手拉手(左手拉左手,右手拉右手)3.手拉手经典结论①△ABD≌△ACE②BD=CE,且夹角等于∠BAC(或其补角)③AO平分∠BOE(或其外角)证明:①∵AB=AC,AD=AE且∠BAD=∠BAC+∠DAC=∠EAD+∠DAC=∠CAE∴△ABD≌△ACE(SAS)②∵△ABD≌△ACE(SAS)∴BD=CE,∠BDA =∠CEA∵∠BDA +∠DOE =∠CEA+∠DAE∴∠DOE=∠DAE=∠BAC③∵△ABD≌△ACE(SAS)∴底边BD=CE,△ABD与△ACE面积相等;∴高:A到BD距离=A到CE的距离∴AO平分∠BOE怎么样,坚持看到了这里相信你已经完全掌握了吧接下来,一道亮点颇多的题目送给你们希望大家做的开心愉快模型一△ABC为等边三角形,∠BPC=120°结论:PB+PC=PA证明方法图:证明:延长PC至D,使得CD=BP、∠ABP+∠ACP=180º,∠ACD+∠ACP =180º,可得∠ABP=∠ACD可得△ABP≌△ACD则△APD为等边三角形则PC+PB=PC+CD=PA模型二:△ABC为等腰直角三角形,∠BPC=90°结论:PB+PC=√2PA证明方法图:(证明过程略)模型三△ABC为顶角为120°的等腰三角形,∠BPC=60°结论:PB+PC=√3PA证明方法图:(证明过程略)模型四△ABC为等腰直角三角形,∠BPC=90°结论:PB-PC=√2PA证明方法图:(证明过程略)模型五:△ABC为等边三角形,∠BPC=150°结论:PB^2+PC^2=PA^2证明方法图:(证明过程略)模型六:△ABC为等腰直角三角形,∠BPC=135°结论:PB^2+2PC^2=PA^2证明方法图:(证明过程略)看完了这些是不是蠢蠢欲动了让我们一起创造手拉手拯救“单身狗”吧例题:(1)如图1,点P是等边三角形ABC内的一点,PA=4,PB=3,PC=5,求∠BPA.(2)如图2,点P是正方形ABCD内的一点,PA=3,PB=2√2,PC=5,求∠BPA.。
等腰直角三角形手拉手模型的补全例:如图1,在△ABC 中,CA =CB ,∠ACB =90°,D 是△ABC 内部一点,∠ADC =135°,将线段CD 绕点C 逆时针旋转90°得到线段CE ,连接DE .(1)① 依题意补全图形;② 请判断∠ADC 和∠CDE 之间的数量关系,并直接写出答案.(2)在(1)的条件下,连接BE ,过点C 作CM ⊥DE ,请判断线段CM ,AE 和BE 之间的数量关系,并说明理由.(3)如图2,在正方形ABCD 中,ABPD =1,∠BPD =90°,请直接写出点A 到BP 的距离. DA B C PDC A B图1 图2分析:(1)②∠ADC +∠CDE =180°.根据旋转的性质即可解答(2)根据旋转的性质,可证明A 、D 、E 三点在同一条直线上,得到AE=AD+DE ,再根据旋转,实质得到两个等腰直角三角形手牵手相似,则可证明△ACD≌△BCE,得到AD=BE ,又CD=CE,∠DCE=90°,CM⊥DE,得到DE=2CM ,∴AE=BE+2CM.(3)作AF⊥BP 于F ,此图可看成不完整的等腰直角三角形手牵手,则相当于△ADP 绕点A 顺时针旋转90°,∴作AH⊥BP于H ,如图,形成三角形△ABD 和△AHP 手牵手,∴△ABH≌△ADP,∴BP=BH+HP=PD+2AF,在Rt△BPD 中借助勾股定理可得AF =解:(1)① 依题意补全图形(如下图);② ∠ADC+∠CDE=180°.(2)线段CM,AE和BE之间的数量关系是AE=BE+2CM,理由如下:∵ 线段CD绕点C逆时针旋转90°得到线段CE,∴ CD=CE,∠DCE=90°.∴ ∠CDE=∠CED=45°.又∵ ∠ADC=135°,∴ ∠ADC+∠CDE=180°,∴ A、D、E三点在同一条直线上.∴ AE=AD+DE.又∵ ∠ACB=90°,∴ ∠ACB-∠DCB=∠DCE-∠DCB,即∠ACD=∠BCE.又∵ AC=BC,CD=CE,∴ △ACD≌△BCE.∴ AD=BE.∵ CD=CE,∠DCE=90°,CM⊥DE.∴ DE=2CM.∴ AE=BE+2CM.(3)点A到BP.总结:在等腰直角三角形顶角顶点的基础上,出现了一个利用腰形成的三角形时,往往借助等线段、共端点考虑用旋转的思路构造此三角形旋转90°利用等腰三角形另一腰形成三角形解决问题练习:(1)问题发现:如图1,△ACB和△DCE均为等边三角形,点A、D、E在同一直线上,连接BE.填空:①∠AEB的度数为_______;②线段AD、BE之间的数量关系为______________.(2)拓展探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°点A、D、E在同一直线上,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段AM、AE、BE之间的数量关系,并说明理由.(3)解决问题在正方形ABCD中,,若点P满足PD=1,且∠BPD=90°,请直接写出点A到BP的距离.。
初中数学经典几何模型专题05 手拉手模型构造全等三角形【专题说明】两个具有公共顶点的相似多边形,在绕着公共顶点旋转的过程中,产生伴随的全等或相似三角形,这样的图形称作共点旋转模型;为了更加直观,我们形象的称其为“手拉手”模型。
【知识总结】【基本模型】一、等边三角形手拉手-出全等图1 图2图3 图4二、等腰直角三角形手拉手-出全等两个共直角顶点的等腰直角三角形,绕点C旋转过程中(B、C、D不共线)始终有①△BCD≌△ACE;②BD⊥AE(位置关系)且BD=AE(数量关系);③FC平分∠BFE;图1图2图3图41、如图,点C在线段AB上,△DAC和△DBE都是等边三角形,求证:△DAB≌△DCE;DA∥EC.2、已知:△ACB和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,连结AE,BD交于点O,AE与DC交于点0,AE与DC交于点M,BD与AC交于点N.3、已知,在△ABC中,AB=AC,点P平面内一点,将AP绕A顺时针旋转至AQ,使∠QAP=∠BAC,连接BQ、CP,⑴若点P在△ABC内部,求证BQ=CP;⑵若点P在△ABC外部,以上结论还成立吗?4、如图,点G是正方形ABCD对角线CA的延长线上任意一点,以线段AG为边作一个正方形AEFG,线段EB和GD相交于点H.若AB=√2,AG=1,则EB=________________.5、已知正方形ABCD和正方形AEFG有一个公共点,点G、E分别在线段AD、AB上,若将正方形AEFG 绕点A按顺时针方向旋转,连接DG,在旋转的过程中,你能否找到一条线段的长与线段DG的长度始终相等?并说明理由。
6、已知:如图在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C、D、E三点在同一直线上,连接BD,BE.以下四个结论:①BD=CE;②BD⊥CE;③∠ACE+∠BDC=45°;④BE2=2(AD2+AB2)其中结论正确的个数是_______【基础训练】1、已知△ABC为等边三角形,点D为直线BC上一动点(点D不与点B,点C重合).以AD为边作等边三角形ADE,连接CE.如图1,当点D在边BC上时,求证:△ABD≌△ACE;直接判断结论BC=DC+CE是否成立(不需要证明);如图2,当点D在边BC的延长线上时,其他条件不变,请写出BC、DC、CE之间存在的数量关系,并写出证明过程.2、如图,△ACB与△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,点D为AB边上的一点.若DE=13,BD=12,求线段AB的长.3、如图,点A、B、C在一条直线上,△ABD,△BCE均为等边三角形,连接AE和CD,AE分别交CD,BD于点M,P,CD交BE于点Q,连接PQ,BM.下面结论:△ABE≌△DBC;∠DMA=60°;△BPQ为等边三角形;MB平分∠AMC.其中正确的有____________4、如图1,CA=CB,CD=CE,∠ACB=∠DCE=α,AD、BE相交于点M,连接CM.求证:BE=AD;用含α的式子表示∠AMB的度数;当α=90°时,取AD、BE的中点分别为点P、Q,连接CP,CQ,PQ,如图2,判断△CPQ的形状,并加以证明.【巩固提升】1、已知△ABC和△BDE都是等腰直角三角形,∠ACB=∠BED=90°,AB=2BD,连接CE.(1)如图1,若点D在AB边上,点F是CE的中点,连接BF.当AC=4时,求BF的长;(2)如图2,将图1中的△BDE绕点B按顺时针方向旋转,使点D在△ABC的内部,连接AD,取AD 的中点M,连接EM并延长至点N,使MN=EM,连接CN.求证:CN⊥CE.2、如图,△ABC中AB=AC=5,tan∠ACB=,点D为边BC上的一动点(不与点B、C重合),将线段AD绕点A顺时针旋转得AE,使∠DAE=∠BAC,DE与AB交于点F,连接BE.(1)求BC的长;(2)求证∠ABE=∠ABC;(3)当FB=FE时,求CD的长.3、如图1,在△ABC中,∠ACB=90°,AC=BC,D为AB上一点,连接CD,将CD绕点C顺时针旋转90°至CE,连接AE.(1)求证:△BCD≌△ACE;(2)如图2,连接ED,若CD=2,AE=1,求AB的长;(3)如图3,若点F为AD的中点,分别连接EB和CF,求证:CF⊥EB.4、如图,△ABC和△EDC都是等腰直角三角形,C为它们的公共直角顶点,连接AD、BE,点F为线段AD的中点,连接CF.(1)如图1,当D点在BC上时,试判断线段BE、CF的关系,并证明你的结论;(2)如图2,把△DEC绕C点顺时针旋转一个锐角,其他条件不变时,请探究BE、CF的关系并直接写出结论.5、如图1,在△ABC中,AB=AC,∠BAC=90°,D、E分别是AB、AC边的中点.将△ABC绕点A顺时针旋转a角(0°<a<180°),得到△AB′C′(如图2),连接DB',EC'.(1)探究DB'与EC'的数量关系,并结合图2给予证明;(2)填空:①当旋转角α的度数为时,则DB'∥AE;②在旋转过程中,当点B',D,E在一条直线上,且AD=时,此时EC′的长为.6、如图,∠AOB=120°,OC平分∠AOB,∠MCN=60°,CM与射线OA相交于M点,CN与直线BO相交于N点.把∠MCN绕着点C旋转.(1)如图1,当点N在射线OB上时,求证:OC=OM+ON;(2)如图2,当点N在射线OB的反向延长线上时,OC与OM,ON之间的数量关系是(直接写出结论,不必证明)专题05 手拉手模型构造全等三角形答案【专题说明】两个具有公共顶点的相似多边形,在绕着公共顶点旋转的过程中,产生伴随的全等或相似三角形,这样的图形称作共点旋转模型;为了更加直观,我们形象的称其为“手拉手”模型。
初中数学几何模型之——手拉手模型,跟我学-应对中考轻松自
如
一、模型一:手拉手模型----旋转型全等
(1)等边三角形
手拉手-等边旋转
【条件】:△OAB和△OCD均为等边三角形;
【结论】:①△OAC≌△OBD;②∠AEB=60°;③OE平分∠AED
(2)等腰直角三角形
手拉手-等腰直角旋转
【条件】:△OAB和△OCD均为等腰直角三角形;
【结论】:①△OAC≌△OBD;②∠AEB=90°;③OE平分∠AED
(3)顶角相等的两任意等腰三角形
手拉手-等腰旋转
【条件】:△OAB和△OCD均为等腰三角形;且∠COD=∠AOB
【结论】:①△OAC≌△OBD;②∠AEB=∠AOB;③OE平分∠AED
二、模型二:手拉手模型----旋转型相似
(1)一般情况
【条件】:CD∥AB,将△OCD旋转至右图的位置
【结论】:①右图中△OCD∽△OAB→→→△OAC∽△OBD;
②延长AC交BD于点E,必有∠BEC=∠BOA
(2)特殊情况
【条件】:CD∥AB,∠AOB=90° 将△OCD旋转至右图的位置
【结论】:①右图中△OCD∽△OAB→→→△OAC∽△OBD;
②延长AC交BD于点E,必有∠BEC=∠BOA;
③BD/AC=OD/OC=OB/OA=tan∠OCD;
④BD⊥AC;
⑤连接AD、BC,必有AD2+BC2=AB2+CD2;
⑥S△BCD=1/2AC×BD。
等腰直角三角形手拉手的旋转
例:已知,在△ABC中,∠BAC=90°,AB=AC,点D在直线BC上一动点(点D不与B、C重合),以AD为边作正方形ADEF,连接CF,如图,当点D在线段BC上时,求证:(1)CF=BD;(2)CF⊥BD;
分析:根据等腰直角三角形的性质求出∠ABC=∠ACB=45°,正方形的性质可得AD=AF, ∠DAF=90°,然后利用同角的余角相等求出∠BAD=∠CAF,再利用“边角边”证明△ABD和△ACF全等,根据全等三角形对应边相等可得CF=BD,全等三角形的对应角相等可得∠ACF=∠ABD,然后求出∠BCF==90°,再根据垂直的定义证明即可.
证明:(1)∵∠BAC=90°,AB=AC,∴∠ABC=∠ACB=45°,
∵四边形ADEF是正方形,∴AD=AF,∠DAF==90°,
∵∠BAD+∠CAD=∠BAC=90°,∠CAF+∠CAD=∠DAF=90°,∴∠BAD=∠CAF,
在△ABD和△ACF中,
AB AC
BAD CAF
AD AF
=
⎧
⎪
∠=∠
⎨
⎪=
⎩
,∴△ABD≌△ACF,
所以CF=BD.
(2)∠ACF=∠ABD,
∴∠BCF=∠ACB+∠ACF=45°+45°=90°,∴CF⊥BD;
总结:(1)两个相似的共直角顶点的等腰直角三角形,旋转所形成的全等三角形相对孤立的边的关系是垂直且相等,如图,△BCD≌△ECA,则AE=BD.AE⊥BD,
(2)延伸:两个共顶点的全等三角形旋转90°时,对应的孤立边的位置关系是垂直且相等,如图,BC=DE.BC⊥DE.
练习:1.如图,△ACD和△BCE都是等腰直角三角形,∠ACD=∠BCE=90°,AE交CD于点F,BD 分别交CE、AE于点G、H.试猜测线段AE和BD的数量和位置关系,并说明理由
2.如图,已知F是正方形ABCD中BC边上一点,延长AB到E,使得BE=BF,试用旋转的性质说
明:AF=CE且AF⊥CE.
3.(1)如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=90°.
①当点D在AC上时,如下面图1,线段BD、CE有怎样的数量关系和位置关系?直接写出你猜想的结论;
②将下面图1中的△ADE绕点A顺时针旋转α角(0°<α<90°),如下面图2,线段BD、CE 有怎样的数量关系和位置关系?请说明理由.
(2)当△ABC和△ADE满足下面甲、乙丙中的哪个条件时,使线段BD、CE在(1)中的位置关系仍然成立?不必说明理由.
甲:AB︰AC=AD︰AE=1,∠BAC=∠DAE≠90°;
乙:AB︰AC=AD︰AE≠1,∠BAC=∠DAE=90°;
丙:AB︰AC=AD︰AE≠1,∠BAC=∠DAE≠90°.
1.2100027377
分析:由于条件可知CD=AC,BC=CE,且可求得∠ACE=∠DCB,所以△ACE≌△DCB,即AE=BD,∠CAE=∠CDB;又因为对顶角相等即∠AFC=∠DFH,所以∠DHF=∠ACD=90°,即AE⊥BD.解:猜测AE=BD,AE⊥BD;
理由如下:
∵∠ACD=∠BCE=90°,
∴∠ACD+∠DCE=∠BCE+∠DCE,
即∠ACE=∠DCB,
又∵△ACD和△BCE都是等腰直角三角形,
∴AC=CD,CE=CB,
在△ACE 与△DCB 中,
AC DC ACE DCB EC BC =⎧⎪∠=∠⎨⎪=⎩
∴△ACE ≌△DCB(SAS),
∴AE=BD ,∠CAE=∠CDB ;
∵∠AFC=∠DFH ,∠FAC+∠AFC=90°,
∴∠DHF=∠ACD=90°,
∴AE ⊥BD .
2.
3.
分析:(1)①BD=CE ,BD ⊥CE .根据全等三角形的判定定理SAS 推知△ABD≌△ACE ,然后由全等三角形的对应边相等证得BD=CE 、对应角相等∠ABF=∠ECA ;然后在△ABD 和△CDF 中,由三角形内角和定理可以求得∠CFD=90°,即BD ⊥CF ;
②BD=CE ,BD ⊥CE .根据全等三角形的判定定理SAS 推知△ABD≌△ACE ,然后由全等三角形的对应边相等证得BD=CE 、对应角相等∠ABF=∠ECA ;作辅助线(延长BD 交AC 于F ,交CE 于H )BH 构建对顶角∠ABF=∠HCF ,再根据三角形内角和定理证得∠BHC=90°;
(2)根据结论①、②的证明过程知,∠BAC=∠DFC (或∠FHC=90°)时,该结论成立了,所以本条件中的∠BAC=∠DAE≠90°不合适.
解:(1)①结论:BD=CE ,BD ⊥CE ;
②结论:BD=CE ,BD ⊥CE…1分
理由如下:∵∠BAC=∠DAE=90°
∴∠BAC-∠DAC=∠DAE-∠DAC ,即∠BAD=∠CAE
∵AB=AC ,AD=AE ,∴△ABD ≌△ACE (SAS ).
∴BD=CE ,
延长BD交AC于F,交CE于H.
在△ABF与△HCF中,
∵∠ABF=∠HCF,∠AFB=∠HFC
∴∠CHF=∠BAF=90°
∴BD⊥CE.
(2)结论:乙.AB:AC=AD:AE,∠BAC=∠DAE=90°。