非线性动力学演示文稿
- 格式:ppt
- 大小:2.17 MB
- 文档页数:60
即non-linear 是指输出输入既不是正比例也不是反比例的情形。
如宇宙形成初的混沌状态。
自变量与变量之间不成线性关系,成曲线或抛物线关系或不能定量,这种关系叫非线性关系。
“线性”与“非线性”,常用于区别函数y = f (x)对自变量x的依赖关系。
线性函数即一次函数,其图像为一条直线。
其它函数则为非线性函数,其图像不是直线。
线性,指量与量之间按比例、成直线的关系,在空间和时间上代表规则和光滑的运动;而非线性则指不按比例、不成直线的关系,代表不规则的运动和突变。
如问:两个眼睛的视敏度是一个眼睛的几倍?很容易想到的是两倍,可实际是 6-10倍!这就是非线性:1+1不等于2。
非线性关系虽然千变万化,但还是具有某些不同于线性关系的共性。
线性关系是互不相干的独立关系,而非线性则是相互作用,而正是这种相互作用,使得整体不再是简单地等于部分之和,而可能出现不同于"线性叠加"的增益或亏损。
激光的生成就是非线性的!当外加电压较小时,激光器犹如普通电灯,光向四面八方散射;而当外加电压达到某一定值时,会突然出现一种全新现象:受激原子好像听到“向右看齐”的命令,发射出相位和方向都一致的单色光,就是激光。
迄今为止,对非线性的概念、非线性的性质,并没有清晰的、完整的认识,对其哲学意义也没有充分地开掘。
线性:从相互关联的两个角度来界定,其一:叠加原理成立;其二:物理变量间的函数关系是直线,变量间的变化率是恒量。
在明确了线性的含义后,相应地非线性概念就易于界定:其—,“定义非线性算符N(φ)为对一些a、b或φ、ψ不满足L(aφ+bψ)=aL(φ)+bL(ψ)的算符”,即叠加原理不成立,这意味着φ与ψ间存在着耦合,对(aφ+bψ)的*作,等于分别对φ和ψ*作外,再加上对φ与ψ的交叉项(耦合项)的*作,或者φ、ψ是不连续(有突变或断裂)、不可微(有折点)的。
其二,作为等价的另—种表述,我们可以从另一个角度来理解非线性:在用于描述—个系统的一套确定的物理变量中,一个系统的—个变量最初的变化所造成的此变量或其它变量的相应变化是不成比例的,换言之,变量间的变化率不是恒量,函数的斜率在其定义域中有不存在或不相等的地方,概括地说,就是物理变量间的一级增量关系在变量的定义域内是不对称的。
第四章 运动稳定性和分叉一、自治系统平衡点的稳定性由于实际系统总有干扰或误差,稳定性的意义在于任何初始扰动导致随后的运动任意小,稳定性包括三种:稳定、渐近稳定和不稳定。
稳定性的定义具有多个,Lyapunov 意义的稳定性是其中最基本的一个,它包括线性系统的稳定性问题。
线性系统稳定性属于全局稳定性,而非线性系统的稳定性是一个局部性概念。
考察如下自治系统n n R R U f u f u→⊂=:)(, (1)式中U 为定义域,是欧氏空间中的一个子集,平衡点满足0)(=s u f 。
可将平衡点或周期解的稳定性化为零解的稳定性问题。
一般地,例如对于一般非自治系统),(u t f u= ,其周期解为)(t u s ,令s u x u +=,可得),(),()(),(s s s u t f u x t f t u u t f x-+=-= ,此时该方程的零解对应于原系统的平衡点或周期解。
1.Lyapunov 直接方法(1)Lyapunov 函数单值可微函数),,,()(21n u u u V u V =,满足0)0(=V ,其定义域为{}H u u U ≤=,0>=const H (这里⋅表示连续系统的范数,⋅表示离散系统的范数)。
[定义1] 若在U 内恒有0)(≥u V ——正常号函数;0)(≤u V ——负常号函数,统称为常号函数,否则称为变号函数。
[定义2] 当且仅当0=u 时,0)0(=V ,称正常号函数为正定函数;负常号函数为负定函数,统称为定号函数。
若00=≠=u V 时,称正常号函数为半正定函数;称负常号函数为半负定函数,统称为半定号函数。
例1.232221321),,(u u u u u u V ++=,正定函数 2221321),,(u u u u u V +=,正常号函数,除)0,0,0(外,还有),0,0(3u 使0=V232221321),,(u u u u u u V -+=,变号函数例2.2132********)()()(),,(u u u u u u u u u V -+-+-=,当321u u u ==时,0=V ,所以V 常正。
第二章 SDOF 自治系统的定性分析一、基本概念0),(=+u u p u(1)令uu u u ==21,将之化为状态方程的形式 )(),(221u f u u u p uu u=⎩⎨⎧-== 或 (2)这里f (u )为向量场。
初初始条件为20021001)()(u t u u t u ==,(3)1.相空间、广义相空间、相轨线、积分曲线、相图相空间特性应从物理意义出发,在相空间尚未选定之前,微分方程本身不能确定系统的可能运动,例如21dudu ,相图特点:(1)上半平面,021>=u u ,相轨线从左到右;(2)下半平面,021<=u u,相轨线从左到右;(3)横坐标,∞→⎪⎪⎭⎫⎝⎛=0122u du du ,轨线与横轴正交。
2.定理:若),;(00u t t u u= 是方程(2)的解,对任意常数0t ,),0;(00u t t u u -= 仍是其解。
证明:对任何时刻/t ,有()()///|)()(|)(|)(00/0t t t t t t t t t u f t t u f dtt du dt t t du =-==-=-==- (5)表明:上式在任意瞬时恒成立,故),0;(00u t t u u-= 是解。
说明:自治系统在相空间的轨线只与初始值有关,与初始时刻的选取无关。
因此,今后令00=t ,初始条件(3)成为2010)0()0(u u u u ==,(6)例1:对自治系统0=+u u,t u sin =是其解,)sin(0t t u -=还是其解。
若取t u cos -=,此时20π=t 。
推论:经过相空间中的每一点(奇点除外),自治系统有一条且仅有一条相轨线(只有唯一轨线通过)。
证明:设方程(2)有两条轨线),,(1010u t t u u =,),,(2020u t t u u =有公共点,即在时刻1T 和2T 有),,(),,(2020210101u t T u u t T u =(7)因),,(101021u t T T t u u -+=还是方程(2)的解,因此下式成立22|),,(|),,(2020101021T t T t u t t u u t T T t u ===-+(8)根据Cauchy 定理:若在),(00u t 的邻域f 对u 的偏导数存在并连续,对t 的单边偏导数存在并连续,则),(u t f u = 在相当小的区间],0[δ内存在唯一解(过同一初始值的解是唯一的)。