Velocity and attenuation characteristics of P-waves in periodically fractured media as inferred
- 格式:pdf
- 大小:529.60 KB
- 文档页数:6
浅海环境参数尤其是海底地声参数(包括海底的声速、密度、衰减系数和分层特征等)的获取,除采用海底采样、钻孔等方法进行局部测量外,利用声学方法进行海底参数遥感(地声反演),具有成本低、速度快、范围广等优点。
在深海,反演常通过多径传播的到达时间不同来进行,而在浅海,由于声信号与海水边界作用,使得传播变得十分复杂,通过多径到达结构来进行反演己不太合适。
比较可行的方法是通过阵列获取声信号在时域、频域、空域的幅度和相位信息,并通过有效的寻优过程,得到与接收数据匹配的环境信息。
因此,很多研究者将目光投向了匹配场处理研究。
1973年,Ingenito (1973)进行了模式分离实验,其在浅海中使用垂直阵对简正波模式进行分离和识别,同时利用模式衰减与海底沉积层衰减特性相联系的理论,通过简单的数据拟合确定了海底吸收系数,这是首次将匹配场处理理论应用于海底参数的反演。
而利用声场确定海洋声速的海洋声层析概念,首先是由Munk 和Wunsch(1979)提出的,他们考察了水声信号到达时间与传播路径声速分布的关系。
进入上世纪80年代以后,反演理论有了快速的发展,各种研究成果和实验结果不断涌现。
Rubano(1980)利用不同位置的爆炸声源测量了群速分布、模式形状和传播损失,并通过匹配方法得到了三层海底地声模型的参数。
Zhou (1985)采用与Rubano类似的实验情况,通过群速分布特性和简正波测量结果(80-120Hz)得到了远黄海局部海域的地声参数。
Rajan等(1987)和Lynch 1991)采用群速度分布曲线来反演海底地声属性,并采用线性扰动反演技术比较了窄带和宽带(20-120Hz)反演结果。
Tolsoty等(1991)利用模拟数据,考虑全三维海洋变化性,提出并设计了一种海洋声层析的新方法,即沿感兴趣的海洋体积周围从飞机上投放爆炸物(低频宽带声源),用傅里叶分量与波动方程的解相匹配进行反演。
Diachok等(1995)将宽带全场反演的其它方法和实验处理结果收集在关于海洋环境参数反演的专著中。
随机斑块饱和孔隙介质模型研究未晛【摘要】为研究介观尺度下斑块饱和对地震波传播规律的影响,对随机斑块饱和孔隙介质模型(Continuous Random Model of Patchy Saturation,简称CRM)进行了研究并提出改进模型MCRM.利用MCRM模型研究了介观尺度下气、水两相流体非均匀饱和时纵波速度频散和衰减特征,并对实验测量的数据进行了模拟分析.结果表明:①MCRM与CRM模型的纵波速度高低频极限相同且具有相同的衰减峰值,但前者特征频率增大,衰减曲线收窄;②MCRM与White模型有相同的高、低频极限,但MCRM模型的频散曲线变化相对缓慢、衰减峰值稍小;③利用MCRM模型能够模拟渗透率、含水饱和度、频率等参数对速度频散和衰减的影响,并能解释实验室测量的高、低孔隙度砂岩频散、衰减数据.该研究成果有助于更好地理解岩石的黏弹性行为,提高定量地震解释的精度.%To study the influence of patchy saturation on seismic wave propagation under mesoscopic scale,we investigate the continuous random model of patchy saturation,usually called CRM for short,and propose modified continuous random model (MCRM).Dispersion and attenuation characteristics of P-wave in inhomogeneous saturated porous media with gas and water are investigated by MCRM.Then,we compared the simulation results of three models with experimental ones and obtained the following conclusions.MCRM and CRM are provided with the same P-wave velocities at low or high frequency limits and the same attenuation peak,while the characteristic frequency of MCRM gets bigger and the attenuation curve of MCRM is narrowed.MCRM and White`s model are also with the same P-wave velocities at low or high frequency limits,while dispersion curve of MCRM changes slowly,and attenuation peak of MCRM is slightly smaller.MCRM can simulate the effects of permeability,water saturation and frequency on the dispersion and attenuation and can explain the measured data of sandstone samples with high or low porosity.This study can help to better understand the viscoelastic behavior of rocks and improve the accuracy of quantitative seismic interpretation.【期刊名称】《石油物探》【年(卷),期】2017(056)003【总页数】10页(P319-327,337)【关键词】随机斑块饱和;孔隙介质;纵波频散特征;统计特征;敏感参数【作者】未晛【作者单位】中国石油天然气股份有限公司勘探开发研究院,北京100083【正文语种】中文【中图分类】P631岩石孔隙中流体的流动是地震波衰减和速度或弹性模量频散的重要原因,并且其影响随着孔隙流体组分及其在岩石中的分布变化而变化。
中心频率法估算地层吸收参数魏文;李红梅;穆玉庆;王树刚;王红【摘要】本文针对储层含气性检测,提出了利用中心频率估算地层吸收参数(地层Q值)的方法。
该方法首先利用S变换对地震信号进行时频域转换,得到能量分布函数;然后基于该函数,计算中心频率及其与地层Q值之间的关系,获得地层等效Q 值,进而得到单套地层Q值。
模型正演表明,含气层中心频率变小,在地层Q值参数剖面上表现为强吸收异常,从而验证了应用中心频率法估算地层Q值检测气层的可行性。
将该方法应用于东营凹陷永安地区实际资料中,估算的地层Q值比较真实地反映了地层吸收特征,提高了气层检测的精度。
【期刊名称】《石油地球物理勘探》【年(卷),期】2012(047)005【总页数】5页(P735-739)【关键词】品质因子;吸收衰减;S变换;中心频率;气层检测【作者】魏文;李红梅;穆玉庆;王树刚;王红【作者单位】中国石化胜利油田分公司物探研究院,山东东营257022;中国石化胜利油田分公司物探研究院,山东东营257022;中国石化胜利油田西部新区研究中心,山东东营257022;中国石化胜利油田分公司物探研究院,山东东营257022;中国石化胜利油田分公司物探研究院,山东东营257022【正文语种】中文【中图分类】P631实际地层介质并非是理想的完全弹性介质。
当地震波在地层中传播时引起的能量衰减方式有两类:一类是与地震波传播特性有关的衰减,包括球面扩散、散射及透射损失等,这部分能量在地震资料处理时已对其进行补偿;另一类是地层本身的固有衰减,即地层的吸收,这种介质本身所固有的吸收特性通常用品质因子Q来描述[1,2],Q值与介质的结构、孔隙度以及孔隙流体的性质密切相关。
在由固态、液态、气态物质构成的多相介质中,对吸收性质影响最显著的是气态物质,在岩石孔隙饱和液中掺入少量气态物质,可以明显提高对纵波能量的吸收,导致地震波的高频成分很快衰减,因此地层吸收参数是检测储层含气性的一个重要参数[3~6]。
absorbent felt 吸水毛毯accepts 良浆,合格品actuating signal 驱动/作用信号absorber 吸收器,吸收剂,access time 存取时间,选取时actuator 驱动器,执行机构 减震器激励器absorbing capacity 吸收能力accessibility 可及度adapter 接合器,连接器,接头~ tower 吸收塔accessory 附件,零件~ pad 防震垫 a. c. commutator 整流式交流~ polymer 加成聚合物~ power 吸收能力~ product 加成产物~ quality 吸收性能,吸收能力accidental error 偶(然误)差~ reaction 加成反应absorption 吸收作用accumulation 累积,蓄积,additive 添加剂~ ability 吸收能力~ reaction 加成反应~ band 吸收光带accumulator 储存槽,回收槽adherence 粘附~ coefficient 吸收系数adherent 粘附的~ measurement 吸收测定~ acid 回收酸adhesion 粘附(现象),粘附力~ rate 吸收率~ relief 储存槽排气,回收adhesive 粘附剂,粘合剂,胶粘~ spectrum 吸收光谱槽排气absorptive capacity 吸收能力accuracy 准确(度、性),~ capacity 粘附能力,胶粘度absorptivity 吸收能力,吸收率~(glassine) tape 胶(带)纸accelerant 催速剂,促进剂acidic 酸的,酸性的adiabatic condition 绝热状态acidification 酸化(作用)~ cement 速凝水泥acidity 酸度~ efficiency 绝热效率~ oxidation 加速氧化~ control 酸度控制~ expansion 绝热膨胀~ weathering 人工加速风干acoustic insulation 隔音~ throttling 绝热调节~ properties 声学性质adjective color 间接染料accelerator 加速器,促进剂across grain 横纹理adjustable bow curved rollacceptability 合格率activated carbon 活性碳 (可调)弧形辊,(可调)acceptable fiber 合格纤维activation 活化作用 弓形辊accepted chips 合格木片active surface 活性表面~ orifice 可调锐板~ product 合格产品activity 活化度~ speed motor 调速电动机~ stock 合格浆料actual volume 有效/实际容积adjusting color 调色acceptance sampling system~ weight 实际/有效重量~ device 调节装置合格率抽样系统actuation time 动作时间~ screw 调节螺旋air intake 进风口,空气入口air seal 气封allowable current 容许电流~ jet/nozzle 空气喷嘴~ separator 吹(气分)离器~ deviation/error 容许误差~ knife coating 气刀涂布~ spring 气垫~ load 容许负荷~ knife mark 气刀痕(纸病)~ stripping 空气脱吸/抽提alloy 合金~-lay drying 热风干燥~ tight 不透气的~ steel 合金钢~ line 空气管道~ trap 空气阱alum 明矾~ loaded headbox 气垫网前箱alumina 氧化铝气垫式压力流浆箱~ vent 排气口ambient conditions 环境条件,~operated automatic controller alcohol 乙醇,酒精 外界条件气动自控aldehyde 醛~ temperature 环境温度~ loaded tension device 气动~ resin 聚醛树脂ammeter 安培计,电流表张力装置alkali 碱ammonia 氨~ operated humidity controller ~ filler 碱性填料~ water 氨水气动调湿控制器~ recovery 碱回收ammonium base 铵基~ operated thermostat 气动~ extract 碱抽提物~ base liquor 铵基蒸煮液恒温器~ extraction 碱抽提amorphous 无定形的~ outlet flue 排气管~ lignin 碱木素~ resin 无定形松香~ permeability 透气性/度~ ratio 碱比amphiphatic 偶极性~ permeability tester 透气度~ treatment 碱处理amphoteric 两性的测定仪alkaline bleach liquor 碱性漂液~ reaction 两性反应~ piping 风管~ cleavage 碱性分裂/裂解~ surface reactive agent 两性~ preheater 空气预热器~ degradation 碱性降解 表面活性剂~ proof 不透气的,密封的~ extraction 碱抽提amplifier 放大器~ press 空气(加压)压榨~ filler 碱性填料amplitude(of shake) 振幅~-deflection roll 抗挠辊~-flocculant 防絮凝剂annealing temperature 退火温度annular 环形的,输状的~ vessel 环纹导管anode 阳极~ protection 阳极保护anti-crawl agent 防滑动剂~ valve 角阀anhydrous 无水的~ alcohol 无水酒精anion 阴离子~ exchange resin 阴离子交换树脂anionic starch 阴离子淀粉analysis of variance 方差分析analytical balance 分析天平anchor bolt 地脚螺栓anenometer 风速计angle cutting machine 斜切机~ steel 角钢~ blower 鼓风机~ blowing roll 热风辊allowable limit 允许极限allowance 允许公差,允许量analog signal 模拟信号analogy 模拟,类似~ test 老化试验aid 促进剂,辅助剂air bells (水印辊构成的)气泡~ blade 气刀~blast system 鼓风系统,风选系统~ bleed press 抽气压榨,吸风压榨agglutinant 烧结剂,凝聚剂aggregate 聚集体agitating valve 搅拌桨agitation 搅拌(作用)aging quality 耐久性,老化性能~ resistance 抗老化性能after dryer 后部烘缸组~ sizing 后施胶,表面施胶~ treatment 表面处理aged wood 老化材agglomerate 附聚,附聚物agglomeration 附聚/烧结(作用) 污水处理法,(污水)三级处理aerate 曝气,充气aerated lagoon 曝气塘 aerobic 需氧的~ treatment 充氧处理afforestation 造林addition compound 加成化合物adjusting control 调节控制器admission valve 进气阀,进浆阀adsorb 吸附间,信息发送时间adult wood 成年材advanced water treatment--AWTaccelerating agent 催速剂,促进剂加速老化 精密(度、性) 电动机聚积,储积,堆积 蓄电池,污热水槽~velocity pressure 气流速度压力剂,粘着剂,胶粘的 绝热情况~ dryer 空气干燥器,热风干燥器~ pressure 空气压力~ purification 碱处理,碱净化amylaceous 淀粉的~ ejector 空气喷射器~ quality 空气/大气质量~ reducing agent 碱性还原剂amylase 淀粉酶~ entrainment 空气含量~ regulator 空气调节器~ sizing 碱性施胶anastatic transfer 凸版转印法~ escape valve 排气阀,放空阀~ removing roll 排气辊,~ solution 碱性溶液anaerobic 厌氧的~ exhauster 排风机 (伏辊上方)小压辊~ wash 碱洗涤~ treatment 厌氧处理~ filter 空气过滤器~ reservoir 贮气箱/槽,气库alkalinity 碱度,碱性analog 类似,模拟~ float dryer 气垫/托干燥装置~ resistance 空气阻力alkaloid 生物碱~ computer 模拟计算机~ float table 气托堆纸台~ roll 压纸辊all purpose computer 通用~ speed /draw system 车速和~ foil 热风气翼~ scrubber 空气洗涤器,电子计算机 牵引力模拟控制系统~ heater 空气加热器净气器alkylation 烷(基)化~ sensor 模拟传感器apparent density 表观密度ascending chromatography attenuation 衰减作用~ specific gravity 表观比重 上行色谱(分离)法attrition mill 磨浆机,磨碎机自动数纸装置~ specific volume 表观体积ash content 灰分含量~ sheet feeder 自动续纸器~ viscosity 表观粘度~ tester 灰分试验器(纸浆取样)钻取法~ sheet handling machineappearance 外观aspect ratio 纵横比(值)autoclave 高压釜,高压锅自动码纸机appendage 附属部分,附件asphalt 沥青auto cut-out 自动断路(器)~ stuff box 自动调节箱appendix 附录~ coating 沥青涂布automatic control 自动控制~ temperature controller application valve 控制阀~ emulsion 沥青乳胶~ electric feed 电控自动装料 自动控制器applicator 上涂装置,施胶装置~ felt 沥青油毛毡~ data processing 数据自动~ roll 施胶辊,上料辊~ laminator 沥青层压机 处理applying felt 专用毛毯~ roofing 油毡线~ feed 自动进料/喂料~ wire guide (roll)approach flow system 纸机流送~ saturated felt 沥青纸,油毡纸~ felt guide 毛毯自动校正器系统~ size 沥青胶料automation 自动化apron board 下唇板,裙板asphaltum 沥青auto-oxidation 自动氧化~ conveyor 带式运输机auto-panel 自动控制指示板~ dryer 带式干燥机aspiration 抽气auto-slice 真空刮刀aquapulper 水力碎浆机aspirator 抽气机~ knife grinder 自动磨刀机auxiliaries 辅助装置aqueous 含水的,液态的,水成的assay 鉴定,分析~ line 自动线arc foil 弧形案板,弧形脱水板~ procedure 分析程序~ logging 自动记录~ equipment 辅助装置arching 搭桥assembly 机组,成套设备,~ operation 自动操作~ separator 辅助分离器area of bars 打浆面积 联动装置,基团,组~ pick-up 自动递纸装置,~ strainer 辅助滤带/筛浆机areal (dried) weight 定量assimulation 同化(作用) 自动引纸装置available alkali 有效碱arithmetic and logic unit 算数与assistant superintended~ plant 自动化工厂/车间~ capacity 有效容量 逻辑装置车间副主任~ crosssection 有效截面arithmetic mean 算术平均 控制器average fiber length 纤维平均~ unit 运算器asymmetry 不对称(现象)~ pressure vent 自动排气阀arrester 制动片,制动机构at maximum temperature 保温~ lubrication 自动注油arresting device 制动机构~ pressure 平均压力art cover 装饰面板~ humidity 大气湿度~ production 自动化生产~ velocity 平均速度artificial aging 人工老化~ pressure 大气压力~ proportioning and metering avometer 安伏欧计,万能表~ fiber 人工纤维atomization 雾化device 自动配浆箱三用电表artists board 绘图纸板atomizer 喷雾器,雾化器axial 轴向/ axis 轴asbestos sheet 石棉板attachment 附件~ sampler 自动取样器~ bond 主键,轴键~ washer 石棉垫圈attenuant 稀释剂,衰减器~ sorter 自动选纸机~ flow pump 轴流泵bagging 装填~ machine 装填机喷射冷凝器baggy 膨胀~ leg 大气腿balance 平衡,天平,秤,差额~ pressure 大气压(力)~ point 平衡点barrier 防护,屏障~ weight 平衡铊~ coating 防护涂层,涂布底层~ bridge 平衡电桥~ material 防护涂层材料bale 捆,包~ sheet 防护涂层,涂布底层~ breaker 拆捆机,拆包机barring 起楞,起横纹(纸病)~ press 打包机base 碱,底座,基准,基~ pulper 浆板离解机~ plate 底座,底板~ room 打包工段~ stock 原纸baled news 成捆废报纸~ weight 定量baling 打捆,打包~ engine 打浆机~ pressure 打浆压力~ rate 打浆速度~ schedule 打浆程序bed frame 底座机架,底刀盒座auger method (for sampling pulp)~ felt stretcher 毛毯自动张紧器~flashing apparatus 自动闪蒸设备~ fraction collector 自动分选机~regulating device 自动调节装置~ timing device 时间自动控制器~ tip time service 自动定时转换自动校网器,成型网自动校正器auxiliary air 补给空气,二次风~ guide (roll)自动导辊/校正辊~ pressure controller 压力自动~ programming 自动程序设计~ increment 平均增量~ white 底色aspirated pit(pair)闭塞纹孔(对)asynchronous motor 异步电动机atmospheric conditions 大气状态barometric jet condenser 大气压beat 打浆beatability 打浆性能Baume 波美(度)beading (细)粒化~ additive 打浆添加剂~ bar 打浆刀~ bar crossing number 打浆机beaer 烧杯beam 横梁,杆,射线bearing 轴承~ housing 轴承座beater 打浆机~ capacity 打浆机容量刀片互相接触次数~ effect 打浆效应beater trough 打浆机浆池/槽~ tub 打浆机浆池/槽~ tube ( 打浆机)浆槽~ vat 打浆机浆槽beaterman 打浆工beating 打浆~ coefficient 打浆系数~ degree 打浆度 长度~ line 打包线,包装线~ press 包装/打包压紧机~ wire 打捆用铁丝ball bearing 滚珠轴承,球轴承~ mill (refiner )球磨机~ valve 球(心)阀band 带,(光)谱带,光带~ conveyer 带式运输机~ stock 封签纸用纸浆banding 包扎~ machine 包扎机bandless beater roll (打浆机)无轮辐飞刀辊banger (飞刀辊侧面)挡浆板bank stock 钞票纸浆料bar 棒,刀barber dryer 热风干燥机~ drying 热风干燥barometer 气压表,气压计~ diagram 方块(流程)图~ resistance 抗阻塞性能,deckle edged ~ 毛边纸板friction glazed ~ 摩擦压光纸板bristle mark 毛刷痕(纸病)bristol 光泽纸brittle 发脆~ heart 心材filled ~ 加填料纸板~ pulp ~ 全化学浆纸板flexible ~ 柔软纸板fourdrinier ~长网纸机抄制的纸板friction ~ 摩擦纸板folding box ~ 折叠纸盒用纸板double box ~ 双层箱纸板drawing/illustration ~绘图纸板duplex (machine) ~ 双面异色纸板duplication ~ 复印纸板facing ~ 外层纸板fiber/hard ~ 纤维板composite ~ 复合纸板,多层纸板container ~ 盒用纸板corrugated ~ 瓦楞纸板~ container ~ 瓦楞箱纸板cover ~ 封面纸板cushion ~ 瓦楞包装纸板calibrated ~ 标准纸板carton ~ 盒用纸板case ~ 箱板纸cast coated ~ 铸涂纸板cellular ~ 瓦楞纸板combination ~ 多层纸板asphalt ~ 沥青纸板,防潮纸板bleached food ~食品包装漂白纸板bristol ~ 光泽纸板bulking ~ 松厚纸板calender ~ 日历纸板calender bark ~ 日历牌纸板binding machine 图书装订机binding 结合,粘合~ power 结合本领,粘合本领~ tape 粘胶带art ~ 铜版纸板asbestos ~ 石棉纸板 bevel gear 斜齿轮,伞齿轮 bias 偏斜,偏压bibliometer 吸水性能测定仪bin 料仓binary system 二进制,二元物系binder 胶粘剂,粘合剂,夹子~ strength 弯曲强度~ test 弯曲试验benzene 苯benzine 挥发油,汽油 benzoate 苯(甲)酸酯 benzyl alcohol 苯甲醇~ number (纸板)弯曲值~ stiffness 弯曲挺度~ resistance 弯曲挺度~ stress 弯曲应力bed roll (下)支撑辊,底辊barometric condenser 大气压冷凝器basic dye(stuff) 碱性染料~ size 碱性胶(料)~ starch 碱性淀粉~ causticization 间歇苛化~ weight (纸张)定量basicity 碱性,碱度basis weight (纸张)定量~ weight controller 定量自控器~ charge 打浆机装料~ production 成批生产~ pulper 间歇式水力碎浆机~ roll 纸卷,未加工卷筒纸~ causticizer 间歇苛化器~ charging 间歇装料~ operation 间歇操作~ processing 间歇式加工~ help 打浆机助手~ knife 打浆机飞刀片~ roll 打浆辊,飞刀辊~ roll pressure 打浆辊压力~ chest 打浆机浆池bathing 汽蒸~ system 间歇(式)系统~ weight scale 定量秤batch 成批,间歇式~ beating 间歇打浆~ furnish 打浆机内浆料组成 里加填料~ plate 打浆机底刀~ pressure regulating balance 打浆平衡压力的调整~ coloring/ed 打浆机内染色~ drag 打浆机制动器~ filling 打浆机装料~ floor 打浆工段~ tackle 打浆机刀间接触~ test 打浆浆料检测bleeder 排气阀,排放支管~ hole 抽气孔~ sized 打浆机内施胶~ stuff test 打浆浆料检测blind 盲板~ press 盲孔压榨辊~ turbine 抽气透平机bleeding 放气,放空,脱色, 褪色,表面处理成效~ of waste liquor 黑液排放~ resistance(沥青纸的)抗流性blemish 沾污blend 混合,配浆,配料blender 混合器blending chest 混合浆池~ tank 混合槽blip 尖峰显示blister 泡,起泡,气泡,水泡~ up 堵住 粘合阻力~ compression test 耐湿粘 压试验blistering 起泡block 木段,阻塞,粘合~ cut 椭圆形裂口(纸病)~ pick 鼓包(纸病)blow 吹,放浆,放料,放锅~ bin 喷放槽~ box 毛毯真空吸水箱~ down 放浆,放料,放锅blocking 粘合~ resistance 粘合阻力blotting capacity 吸墨性能~ paper test 吸墨纸试验boss 轮毂,凸起部位~ machine tender 抄纸工长bottom couch (roll)下伏辊~ cotter shaft (切纸机)底刀轴bioassay 生物鉴定biochemical 生物化学的,生化的biochemistry 生物化学biocide 杀菌剂biodegradable 生物降解的biodegradation 生物降解(作用)bio-disc (处理废水用)生物圆盘bio-filter (处理废水用)生物滤池biological control 生物控制~ (effluent) treatment (废水) 生物处理bi-winder 垂直式双卷复卷机black ash 黑灰~ liquor 黑液~ lead 石墨~ oxygen demand 生物耗氧量biosynthesis 生物合成bioxide 二氧化物bite 纵切圆刀咬合量装置blade 刀口,桨叶~ agitator 桨叶搅拌器~ clamp 刀夹~ liquor injector 黑液喷射装置~ liquor measuring tank 黑液 计量槽~ liquor recovery unit 黑液回收~ (type) sensor 刀式浓度传感器~ width 刀宽blank assay 空白试验gasket board 垫圈纸板~ coating 刮刀涂布~ cut /mark 刮刀伤痕(纸病)~ holder 刀架~ scratch 刮刀伤痕(纸病)gauffered ~ 皱纹纸板glazed ~ 高光泽纸板grained ~ 木纹纸板blast furnace 鼓风炉,高炉bleach 漂白blank news 空白废新闻纸~ test 空白试验blanket 毛毡,掩盖~ cylinder 毛毯烘缸~ marks 毛毯痕(纸病)blanks 空白废纸~ consumption 漂液消耗(量)~ demand 漂剂需用量~ liquor 漂液~ mixing 漂液混合~ tank/tub 漂白槽bleachable 可漂的bleachability 漂白性能, 可漂性,漂率~ requirement 漂液需用量, 漂率,漂白率~ scale 漂渣斑点(纸病)~ sludge 漂液残渣 bleachery 漂白工段 bleaching 漂白~ action 漂白反应~ agent 漂白剂~ test 漂率试验bleached stock chest 漂白浆池~ yield 漂白得率 bleacher 漂白池bleed 排放,析抽,纸边裁切~ trim 书本切边board formation 纸板的成形bob 线垂,垂标坠~ apparatus 漂白设备~ department 漂白工段/车间~ properties 漂白性能~ schedule 漂白程序body stock 原纸bogus 仿造纸,伪造纸~ box 底刀盒~ knife 底刀刀片~ hole 气孔(纸病)~ knife 底刀刀片bedplate 底刀床/座,(削片 机)的大三角保护板~ drive 皮带传动~ feeder 带式给料器~ filter 带式过滤机Bel Baie former Bel-Baie 夹网 成型器bell 气泡形成的针眼,孔洞~ bar 底刀~ tension 皮带张力belt 带,皮带~ conveyer 皮带运输机~ line refining 喷放系统磨浆~ liquor 黑液,废液~ mark (气)泡痕(纸病)~ moulding 吹气成形~ tightener 皮带张紧器~ down steam 喷放过程中的 蒸汽~ line 喷放管道~ pit gases 喷放池排气~ roll 引纸辊,领纸辊~ stack 排气管~ tank 喷放锅~ off line 喷放管道,排污管~ off valve 喷放阀,通风阀~ pipe 喷放管,风管,喷焊管~ pit 喷放池 纸板分层,气泡的形成~ down pressure 喷放压力~ floor 放浆操作楼面~ of chips 风送木片~ test (瓦楞纸的)戳穿试验~-through steam 蒸汽吹净blower 鼓风机,送风机blowing 放浆,放料,放锅, 系数(即亮度)blush coating 红染涂布board 纸板absorbing ~ 吸收纸板~ out 喷放blue glass method 蓝玻璃试验法~ print 蓝图~reflectance factor 蓝光反射~ of bonds 结合键裂断breakdown 故障,事故~ voltage 击穿电压album ~ 相册纸板antique ~ 仿古纸板anti-tarnish ~ 防锈纸板breakage 裂断~ loading 打浆机装料,打浆机~ washer (打浆机内)沉沙盘~(type) trap 倒钟式汽水分离器capability 能力,性能,容量capacitance 电容capacitor 电容器capacity 容量,能力,功率capillarity 毛细作用,毛细现象~ tube 毛细管capital cost 投资总额~ investment 基建投资~ sheet 屋顶用纸板~ of coverage 覆盖能力capillary 毛细管,毛细的~ absorption 毛细吸收~ penetration 毛细渗透~ percolation 毛细渗透cantilever 悬臂~ crane 悬臂起重机~ type 悬臂式cantilevered design 悬臂式设计cap screw 带帽螺钉~ stock 瓶盖用纸板camshaft 凸轮轴camber 中高~ control 控制中高cambered roll 中高辊cambium / cambia 形成层canal dryer 隧道式干燥室bruise 压溃,分裂,捣碎bruising 挫击,压溃,分裂calorimetry 量热学,量热法~ stock 粗浆,未漂浆~ stock chest 漂前浆池,粗浆池~ stock screen 漂前筛浆机~ stock washer 漂前洗浆机calorimeter 热量计broomed end 帚化的端部brooming 帚化brown groundwood 褐色磨木浆~ rot 褐斑,褐色腐朽(树病)~ size 褐色胶,褐色松香胶~ slivers 褐色木条bromine number 溴值~ test 溴试验bronze crepe 金色皱纹纸~ speck 铜斑(点),铜尘埃(纸病)~ spot 铜斑(点),铜尘埃(纸病)broom corn 高梁~ storage chest 损纸浆池broken edge 破损纸边~ fiber 破碎纤维~ twill 破斜纹~-up stock 分散的浆料brominated lignin 溴化木素broad-leaf wood 阔叶木broke 损纸~ beater 损纸打浆机~ bundle 损纸捆~ pulper 损纸碎浆机~ reclamation 损纸回收indicator ~ 指示盘用纸板ivory ~ 象牙白纸板kraft ~ 牛皮纸板~ liner ~ 牛皮箱纸板imitation chromo ~ 仿彩色纸板mould machine~圆网纸机抄制纸板no test ~ 低耐破度纸板non-bending ~不弯曲纸板packaging ~ 包装用纸板lightweight liner~轻重量挂面纸板manila ~ 马尼拉纸板,单面纸板marble ~ 大理石纹纸板mechanical pulp~磨木浆制成的纸板 箱纸板pulp lined straw ~化学浆挂面草纸板reed ~ 苇浆纸板punch ~ 打孔纸板patent ~ 特制/上等白纸板perforated oil filtration ~多孔性 滤油纸板plain shell ~ 单一浆料制成的specialty ~ 特种纸板test liner ~ 箱板纸,高耐破度纸板white ~ 白纸板board and box lining 纸板和纸箱衬里sheet ~ 平板纸板single face corrugated ~ 单面瓦楞 纸板solid ~ 单一浆种纸板~ damper 毛刷润湿辊~ doctor 毛刷刮刀~ glazing 刷磨光~ mark 刷痕(纸病)~ filler 纸板芯层brush 毛刷~ coating 刷涂布~ dampener 刷式润湿器~ smoothing 刷平辊brushing machine 刷涂机brushless coating 无刷涂布bubble 气泡,泡沫~ moistening machine 毛刷润湿机~ out (纤维)的分离~ polishing machine 毛刷磨光机~ roll 刷辊bucking 弯曲,弯折~ strength 弯曲强度,浸渍强度buffer 缓冲,缓冲剂,缓冲器~ action 缓冲作用~ level 气泡水平仪~ marks 气泡痕(纸病)~ scrubber 泡沫洗涤塔bubbling 冒泡,沸腾built-in strain 内部应变~ solution 缓冲溶液buffering agent 缓冲剂buffing machine 磨光机building stone 结构基团,结构基石~ tag 仿标签纸boiler 锅炉,蒸煮器~ scale 锅炉结垢,锅炉水垢~corrugating medium 仿瓦楞原纸~ back lining 仿封面衬~ bristol 仿光泽纸bolting 筛选,栓接~ machine 筛选机bond 结合键,证券,粘合~ moment 键矩boiling curve 蒸煮曲线~ point 沸点bolometer 辐射热计bolter 筛,栓bookkeeping machine 薄记计算机bone dry 绝干~ glue 骨胶bonnet valve 帽状阀~ dry weight 绝干重量bonded area 结合面积bonding 粘合,结合~ agent 粘合剂~ strength 粘合强度,结合强度bore 内径,孔,膛,穿孔,钻孔boring 钻孔,钻取~ method (of pulp sampling ) (纸浆取样)钻孔法boom 梁,吊杆~ crane 吊杆起重机~ stick 悬挂杆bulkiness 松厚(性)bulking pressure 测松厚的压力~ thickness 体积厚度,堆积厚度~ value 松度值,松厚值bulk handling 散装处理~ index 松厚指数~ modulus 体积模数~ storage 散装贮存bundle 捆,扎,束bundling press 打包机buoyancy 浮力bulky 松厚,庞大bull knotter 圆筒除节机~ screen 粗筛bunch tube flowbox 束管式流浆箱bumper 防震器,减震器~ lathe 刻石刀床~ number 刻石刀号码burring 刻石~ cycle 刻石周期buret(te) 滴定管,量管,玻璃量杯burnisher 磨光机burnishing 磨光burr 刻石刀,刻石锉轮~ schedule 刻石程序burst 破裂(度),耐破度~ factor 耐破因子~ index 耐破指数breaker 破碎机,碎纸机~ trap 碎纸机捕砂槽~ vat 碎纸机槽breaking factor 断裂因子~ length 裂断长~ bar 破碎机/碎纸机刀片~ beater 半浆机~ drum 鼓式碎纸机~ roll (纸板用)切割辊~ weight 裂断重量breast roll 胸辊~ board 胸板~ box 网前箱~ load 裂断负荷~ roll (纸板用)切割辊~ strain 裂断应变~ strength 裂断强度brightening 显白,显亮~ agent 增白剂brightness 白度,亮度~ reversion 回色,返色breathe 换气bridge crane 桥式吊车bridging (of chips) 搭桥brightener 增白剂~crush finish 压光润湿,压纹装饰~ crushing(压光机)压溃(纸病)~ cut 压光割口(纸病)~ tester 亮度测定仪brilliance 光泽,明度brilliancy 光泽,明亮Brinnell's hardness 布氏硬度~ stack 压光辊组~ staining 压光机染色~ scale 压光尘埃(纸病)~ section 压光部~ operator 压光工~ sizing 压光施胶~ stack crumbs 压光辊碎(纸)屑~ spot 压光斑(点)(纸病)~ agent 压光助剂calibrate 校准,标定,刻度calibrated scale 标定刻度calibrating weight 校准重量~ train 压光机组calendered 压光机处理的calendering 压光~ vellum finish 压光表面平滑处理 厚度与定量控制器calibration 校准,标定caliper 厚度~ (gage) 卡规~ and basis weight controller ~ doctor 压光机刮刀~ finish(ed) 压光装饰~ marking 压光痕(纸病)~ pick 粘压光辊briquetting 压块,压制成块classifier 分离器,澄清器,筛分器clarified liquor 澄清液~ water 澄清水clarifier 澄清器clarify 澄清clasp machine 订书机classification 筛分/分选(作用),分类~ mark 夹痕~ truck 带夹器的小车clamping length 夹具距离~ rings 固定圆环clappet valve 逆止阀clarification 澄清checking 核对,检查clack steel plate 复合钢板~ digester 复合钢板蒸煮锅cladding 复合,复盖 Claflin refiner 大锥度精磨机clamp 夹,夹板,压板,钳chart 图表chattering of rolls 辊筒跳动check 核对,校核,抑制,抑止~ damper 风挡~ plate 挡板~ valve 单向阀,止逆阀charcoal 木炭charge 装,装料,充电,电荷charger 加料器,装锅器 charging door 装料口~ floor 装料楼面~ hopper 装料斗changing of wire 换网~ valve 转换阀char 炭,烧焦characteristic curve 特性曲线~ test 特性测定,特性试验characteristics 特性chalking 白垩处理,粉化chamber dryer 干燥室chamotte 耐火粘土~ brick 粘土耐火砖change of deckle 更换定边带changeover switch 转换开关~ length 链长~ marks ( 纸张)线痕(纸病)~ peeler 链式剥皮机~ reaction 连锁反应chainlike cell 链状细胞chalk 白垩carbocyclic compound 碳环化合物carbohydrate 碳水化合物carbolic acid 石炭酸chain barker 链式剥皮机~ conveyer 链式运输机~ drive 链式传动~ repair 大修capsule 胶囊,小室carbide 碳化物calorific capacity 热容~ blackening(压光)黑道(纸病)~ blackened (压光)黑道(纸病)~ bowl 压光辊~ broke 压光损纸~ coating 压光涂布causticizing efficiency 苛化率cavitation 空化(作用)cavity 腔C.C.roll 可控中高辊~ cooling 压光机冷却caustic soda 烧碱,火碱,苛性钠causticity 苛化度causticization 苛化作用~ sap 细胞液~ wall lignin 细胞壁木素cellular filter 蜂窝状过滤器celluloid 赛璐珞,假象牙cell 细胞~ cavity 细胞腔~ membrane( 细)胞膜~ space ratio 细胞空隙率Cellu-sizer 压力式纤维筛分器Celsius scale 摄氏(温度)表, 摄氏温标~ thermometer 摄氏温度计cellulon 纤维制品cellulose 纤维素~ copolymer 纤维素共聚物~wadding 纤维素填絮/填充物~ stock 芯层浆料~ winding 轴式卷取centigrade scale 摄氏温标, 摄氏(温度)表cemented steel 渗碳钢cementing substance 粘合剂center ply 芯层,中间层~ rewind 轴式卷取复卷法~ starch 氯化淀粉~ stock washer 氯化段洗浆机chlorinating agent 氯化剂chlorination 氯化(作用)~ thermometer 摄氏温度计centipoise 厘泊central board 中央控制板chlorinated lime 漂白粉~ cell 制氯电解池~ compound 氯化物~ consumption 氯耗,耗氯量~number 氯价~ tower 氯化塔chlorinator 氯化器~ with injector 喷射(式)氯化器chlofine 氯,氯气chlorite 亚氯酸盐~ dioxide 二氧化氯~ requirement 需氯量~ resistant 抗氯性~ still 氯气发生器~ stress 内部应力bulge resistance (纸板)抗破裂度bulging 膨胀,渗水~ monoxide 一氧化碳~ steel 碳钢carbonation 碳化(作用)carbonization 碳化(作用)bulk 松厚(度)~ density 松厚密度,体积比重~ factor 松厚率,松厚因子carbon dioxide 二氧化碳~ middles 卡板纸芯层~ tube 卷筒芯,纸卷芯carload 汽车载重~ lot 汽车载重量carbonized roll 表面经碳化的辊子cardboard case 薄纸板箱~ finish 光泽加工~ linings 卡板纸衬里carry bag 手携纸袋~ clear signal 进位消除信号carrying roll 引纸辊,导辊,传递辊carry-over of stock (打浆机)回浆carriage panel 车厢车顶用纸板carrier drum 复卷机底辊,支承辊~ roll 导网辊~ system of sorting 选料传送带系统~ evaporator 圆盘蒸发器~ system 阶梯式串联系统 (烘缸送汽)分段降压系统case hardening 表面硬化,表层硬化carton 卡片纸板,纸盒~ label 纸盒招贴纸cartoning machine 制盒机cascade 阶梯式,串联,连锁cassawa starch 木薯粉cheese roll 弧形辊,弓形辊,舒展辊~ wrapper 奶酪包装纸chelate 螯合~ hardening steel 渗碳钢~ label 箱用标记纸casing 套,英国包装纸标准 尺寸(36*46英寸)~ bond 化学链~ composition 化学成分~ consumption 化学药品消耗量~ degradation 化学降解chelation 螯合作用chemical affinity 化学亲合势/能~ agent 化学药剂~ barking 化学剥皮~ resistance 化学阻力~ screenings 化学浆筛渣~ structure 化学结构~ efficiency 化学(反应)效率~ filter 化学滤毒器~ makeup 补充药品~ recovery 化学药品回收,碱回收~ ratio 耐破比值~ tester 耐破度测定仪bursting pressure 耐破压力~ strain 耐破应变~ iron 铸铁~ steel 铸钢~ iron roll 铸铁辊casting 铸造~ strength 耐破应力bush 轴套,套筒cast coating 铸涂~ film 挤铸薄膜,铸制薄膜~ reactivation 催化剂再生~ recovery 催化剂回收~ regeneration 催化剂再生catalytic action 催化作用catalyzer 催化剂~ iron roll 铸铁辊catalysis 催化作用catalyst 催化剂~ carrier 催化剂载体~ type 链轨式,履带式cathode 阴极~ ray 阴极射线~ ray tube 阴极射线管~exchange resin 阳离子交换树脂catchall (tank) 捕集槽catcher 捕集器caterpillar grinder 链式磨木机cationic 阳离子的~ size 阳离子型施胶剂~ starch 阳离子淀粉cat's eye 椭圆孔(纸病)cation 阳离子~ exchange 阳离子交换~ exchanger 阳离子交换剂chief constituents 主要组分~ engineer 总工程师chilled iron roll 冷铸铁辊chill(ed) roll 冷铸辊catwalk ( 操作)走台caustic 碱性的,苛性的~ alkali 苛性碱~ extraction 碱抽提~ belt feeder 木片皮带给料器~ bin 木片仓,竹片仓~ charging with packer 机械装锅chime rings 凸出圆环chimney 烟囱chip 木片,切片~ assorting machine 木片筛~ duster 木片除尘机~ elevator 木片提升机~ classification 木片筛分~ classifier 木片筛分器~ dimensions 木片规格~ dust 木屑,木片碎屑~ detector 厚度探测器~ profiler 厚度调节器calorifere 加热器,发热器centralized instrument panel 仪表中央控制盘centricleaner 锥形除渣器centriclone 锥形除渣器~ efficiency 热效应~ value 热值,卡值central processor 中央(信息) 处理机~ classifier 离心式分选机~ exhauster 离心式抽风机~ fan 离心式风机centriffler 两段除渣器centrifiner 立式除渣器centrifugal 离心式~ blower 离心式鼓风机~cleaner 锥形除渣器,离心净浆机centri-sorter 旋翼筛~ scrubber 离心式除尘器~ separator 离心分离器~ vacuum compressor 离心式 真空压缩机centripress drainer 离心压榨脱水机centrifugation 离心(分离)centrifuge 离心机ceramics 陶瓷(制品)chaff cutter 切草机chain 链,链条,(悬竿式 干燥机用)送棒链ceramic coating 瓷釉涂布~ suction box cover 真空箱陶瓷面板~ tile 瓷砖chromium oxide 氧化铬chromometer 比色计chromophore 发色团chromophoric group 发色基团chrome nickle steel 镍铬钢~ steel 铬钢~ wire 铬网~ yellow 铬黄~ wrapper 卷烟包装纸cinder 炉渣,矿渣~ dust 炉灰cipher 密码,(纸张)水印chuck 夹盘,夹头churn 搅拌器,乳化器chute 斜槽,送料槽cigarette tissue machine 卷烟纸机circuit 电路,回路,线路~ break 断路~ filtration 离心过滤~ force 离心力~ pump 离心泵~ screen 离心式筛浆机/圆筛~charging without packer 自然装锅~ water 冷凝水 conditioned 经调整处理的 conditioner 调节器,毛毯洗涤器 conditioning 调整处理,调湿 ~ of stone surface 石面调整coin wrap 硬币包装纸 cold acid system 冷酸系统 ~ flow (纸张)冷裂(纸病)condenser 冷凝器,电容器,聚光器 ~ tissue machine 电容器纸机 condensing vessel 冷凝器 ~ action 内聚(作用),粘合(作用) ~ force 内聚力,粘合力,粘附力 cohesive force 粘合力,粘附力 ~ strength 粘合强度,粘附强度 coil 蛇(形)管,盘纸 coiled pipe 蛇(形)管~of volumetric expansion 容积配置系数 ~ of wetness 增粘系数 coextrusion coating 共挤(压)涂布 coffer dam 白水沟堰板 cogging joint 齿状连接 cohesion 内聚力,内聚现象,粘合 code 代码 ~ signal 编码代号coefficient of absorption 吸收系数 ~ of hydration 水化系数~ of linear expansion 线性膨胀系数 ~ of roughness 粗糙度~ weight 涂层重量 cock 旋塞,塞阀 cockle cuts 皱裂(纸病)~ finish 粗装饰,波纹整饰 cockling 起皱 COD value 化学需氧量 ~ slip 涂布泥浆 ~ slurry 涂布泥浆 ~ stock 涂布原纸 ~ strength 涂布强度~-to-fiber bond 涂层与纤维结合力 ~ vehicle 涂料载体 ~ stand 筛选设备机架 cleaning 清洗,净化,洗净 ~ by dry process 干法净化 ~ by wet process 湿法净化 ~ doctor (除污)刮刀 coating skip 涂料跑漏 ~ coated 白土涂布coated blanks 白土涂布纸(未经超级压光) clean out 清洗,清扫 ~ -out door 清洗排放闸门 ~ -out valve 清洗排放阀 cleaner 净化器,除渣器classify 筛分,分选,分类,区分claw 爪子~ wrench 爪型板钳clay 白土,高岭土~ coat 白土涂料,白土涂层chloroacetic acid 氯醋酸chlorophyll 叶绿素choke valve 阻气阀chromate 铬酸盐chromaticity 色度~ diagram 色度图chromato gram 色谱chopped reed 苇片~ straw 草片chopper 切断装置chopping 切断chrome brick 铬砖coated tough check 涂布商标纸coater 涂布机abrasive ~ 砂纸涂布机chromatographic analysis色谱分析,色层分析~ techique 色层分析法,色谱法arch bed brush ~ 刷式拱形~asphalt ~ 沥青涂布机bar ~ 刮棒涂布机bead ~ 液滴涂布机air brush ~ 气刷涂布机~ blade ~ 气刀涂布机~ doctor ~ 气刀涂布机~ knife ~ 气刀涂布机 刷式双面涂布机cast ~ 涂铸机casting drum ~ 鼓式涂铸机curtain ~ 幕帘式涂布机belt type cast ~ 带式涂布机bent blade ~ 韧性/软刮刀涂布机blade ~ 刮刀涂布机brush type double ~doctor kiss ~ 刮刀吻合式涂布机double (roll) ~ 双辊涂布机~ side ~ 双面涂布机drum ~ 鼓式涂布机cylinder (type brush)~刷式圆筒涂布机dandy ~罗纹辊/水印辊涂布机dip ~ 浸渍涂布机式涂布机command 指令~ type cast ~ 鼓式涂铸机duplex ~ 双面涂布机facsimile ~ 传真纸涂布机off-machine ~ 机外涂布机microjet ~ 喷射式气刷涂布机offset rotogravure ~ 胶辊转印 夹网成型器compactibility 紧密性commanding point 调度站commercial match 商品对比~ run 大/工业规模试生产compact(wire) former 紧凑式commutator 整流子,整流器,转向器~ test 化学试验chemically stable 化学稳定性chemi-finer 高浓单动盘磨机~ groundwood 化学机械木浆chemipulp hot acid system ~-to-wood ratio 化学药剂与木材 的比值~ treatment 化学处理~ wood (pulp) 化学木浆chemisorption 化学吸着chest 槽,池,箱chief chemist 总化学师cleanliness 洁净度 热酸回收系统~ system 热酸回收系统chemipulper 管式连续蒸煮器chemism 化学机理~ -way valve 安全阀clearance 刀距,间隙cleavage 裂开,分裂,离解clipped cut 切边不整齐cleanpac 锥形除渣器cleantrap 低压(大型)除渣器clear cutting 净切边~ liquor 澄清液close formation 紧密组织~ grain 细致纹理~ grained wood 紧密木材~ piling 密堆clipper seam 夹缝clockwise rotation 顺时针旋转clog 堵塞clone 接枝~ frame (supercalender)双侧机架 (超级压光机)~ headbox 封闭式流浆箱/网前箱~ hood 全封闭汽罩,封闭罩closed air-cushioned headbox 封闭式气垫流浆箱~ circuit 闭合电路,封闭系统~ cycle 全封闭~ journal type dandy roll ~ -up surface 表面紧密~ vessel 密闭容器closeness 紧密度 封闭轴领式罗纹辊~ loop 封闭线路,封闭系统~ loop control 封闭线路控制系统~ ring 闭环~ refining 冷磨~ rolled steel 冷轧钢collapsable shaft 变径轴collar 轴环cold blow 冷法喷放~ caustic 冷碱~ grinding 冷磨~ pressed finish 冷压装饰~ grinder 木片磨浆机~ groundwood 木片磨木浆~ yard 木片贮存场chipper 削片机~ disc/disk (削片机)刀盘~ knife 削片刀~ hopper 装锅漏斗~ meter 木片装锅计量器~ recrusher 木片再碎机~ stock 粗浆chloride 氯化物chlorinate 氯化,氯化物closure 贴封, 封闭体cloth finish 布纹装饰~ spout (削片机)喂料口chipperman 削片工chisel edge 刀口,刀刃chloric acid 氯酸cloudy water 浓白水cloverotor pump 纤维离解风送机clump 浆块clupak (微皱)伸性纸clothing 造纸机贵重器材 (指毛毯、铜网、塑料网)clotted fibers 块凝纤维, 浆块clotting 结块coagulate 凝结,凝结物coagulating 凝结~ agent 凝结剂coagulation 凝结(作用)~ installation 微皱伸性装置cluster setting 分组配置clutch 离合器coagulant 凝结剂~ finish 粗纹装饰~ grained wood 疏松木材~ mesh wire 粗目网~ screen 粗筛~ bath 凝结浴coal sheet 煤块~ tar 煤焦油,柏油coarse fiber bundle 粗纤维束~ tag 涂布标签纸~ screening 粗筛渣coatability 涂布性能coated blank 涂布卡片纸~ both sides 双面涂布~ bristol 涂布光泽纸~ glassine 涂布半透明纸~ postcard stock 涂布明信片纸colorimetric test 比色试验colorimetry 比色法coloring material 色料~ matter 色素,有色物质colorant 染色剂colored poster 彩色标语纸~ printings 彩色印刷纸colorimeter 色度计circular chart 圆形(表盘)记录纸~ cutter 圆盘切料机~ former 双曲网成形装置~ break 断路,电开关,断路器~ diagram 电路图,线路(图)~ system 循环系统~ water 循环水circumferential speed 圆周速度cistern 槽~ swing saw 摆动圆锯circulating air 循环空气/热风~ pump 循环泵~ stock chamber 溢流箱roll ~ 辊式涂布机printing ~ 辊印式涂布机reverse roll ~ 逆转辊式涂布机clack valve 瓣阀, 逆止阀~ metal 复合金属板photographic emulsion coater 照相纸涂布机~ grade clay 涂料白土~ clay 白土涂料~ color preparation 涂料配置~ content 涂料量~ defect 涂布缺陷~ flexibility 涂布柔软性~ formula(e) 涂料配方~ receptivity 涂布合格率~ kitchen 涂料配制室~ lump 涂料块~ machine 涂布机~ material 涂料~ mixture 涂布剂~ pick 涂料粘辊~ raw stock 涂布原纸compressor 压缩机~ gun 压缩空气枪computer 计算机~ control 计算机控制compression strength 压缩强度~stroke 压缩冲程~ wood 受压木compressive strain 压缩应变~ body stock 涂布原纸rollflex ~ 挠曲辊式涂布机smoothing roll ~ 平滑辊式~spray ~ 喷雾涂布机transfer roll ~ 转送辊式涂布机~ bond 涂层结合强度wire-wound rod ~ 钢丝缠绕 刮棒式涂布机coating 涂布~ adhesive 涂料rod coater 棒式涂布机chromatography 色谱分析,色层分析~slitting knife 盘刀,复卷机固定刀~ film 涂(料)层~ base 涂布原纸~ blister 涂料泡(纸病)。
Microwave FiltersA filter is a two-port network used to control the frequency response at a certain point in an RF or microwave system by providing transmission at frequencies within the passband of the filter and attenuation in the stopband of the filter. Typical frequency responses include low-pass, high-pass, bandpass, and band-reject characteristics. Applications can be found in virtually any type of RF or microwave communication, radar, or test and measurement system.The development of filter theory and practice began in the years preceding World War II by pioneers such as Mason, Sykes, Darlington, Fano, Lawson, and Richards. The image parameter method of filter design was developed in the late 1930s and was useful for low-frequency filters in radio and telephony. In the early 1950s a group at Stanford Research Institute, consisting of G. Matthaei, L. Young, E. Jones, S. Cohn, and others, became very active in microwave filter and coupler development. A voluminous handbook on filters and couplers resulted from this work and remains a valuable reference . Today, most microwave filter design is done with sophisticated computer-aided design (CAD) packages based on the insertion loss method.Because of continuing advances in network synthesis with distributed elements, the use of low-temperature superconductors and other new materials, and the incorporation of active devices in filter circuits, microwave filter design remains an active research area.We begin our discussion of filter theory and design with the frequency characteristics of periodic structures, which consist of a transmission line or wave guide periodically loaded with reactive elements. These structures are of interest in themselves because of their application to slow-wave components and traveling-wave amplifier design, and also because they exhibit basic passband-stopband responses that lead to the image parameter method of filter design.Filters designed using the image parameter method consist of a cascade of simpler two-port filter sections to provide the desired cutoff frequencies and attenuation characteristics but do not allow the specification of a particular frequency response over the complete operating range. Thus, although the procedure is relatively simple, the design of filters by the image parameter method often must be iterated many times to achieve the desired results.A more modern procedure, called the insertion loss method, uses network synthesis techniques to design filters with a completely specified frequency response.The designs simplified by beginning with low-pass filter prototypes that are normalized in terms of impedance and frequency. Transformations are then applied to convert the prototype designs to the desired frequency range and impedance level.Both the image parameter and insertion loss methods of filter design lead to circuits using lumped elements (capacitors and inductors). For microwave applications such designs usually must be modified to employ distributed elements consisting of transmission line sections. The Richards transformation and the Kuroda identities provide this step.The subject of microwave filters is quite extensive due to the importance of these components in practical systems and the wide variety of possible implementations. Here we can treat only the basic principles and some of the more common filter designs .1、Bandstop and Bandpass Filters Using Quarter-Wave ResonatorsWe know that quarter-wave open-circuited or short-circuited transmission line stubs look like series or parallel resonant circuits, respectively. We can therefore use such stubs in shunt along a transmission line to implement bandpass or bandstop filters,as shown in Figure1. Quarter-wavelength sections of line between the stubs act as admittance inverters to effectively convert alternate shunt resonators to series resonators.The stubs and the transmission line sections are λ/4 long at the center frequency, ω0.For narrow bandwidths the response of such a filter using N stubs is essentially the same as that of a coupled line filter using N + 1 sections. The internal impedance of the Stub filters Z0,while in the case of he coupled line filter end sections are required to transform the impedance level. This makes the stub filter more compact and easier to design.A disadvantage, however, is that a filter using stub resonators often requires characteristic impedances that are difficult to realize in practice.We first consider a bandstop filter using N open-circuited stubs, as shown in Figure 1a. The design equations for the required stub characteristic impedances, Z0n, will be derived in terms of the element values of a low-pass prototype through the use of an equivalent circuit. The analysis of the bandpass version, using short-circuited stubs, follows the same procedure, so the design equations for this case are presented without detailed derivation.FIGURE1 Bandstop and bandpass filters using shunt transmission line resonators (θ= π/2)at the centerfrequency). (a) Bandstop filter. (b) Bandpass filter.As indicated in Figure 2a, an open-circuited stub can be approximated as a series LC resonator when its length is near 90◦. The input impedance of an open-circuitedFIGURE 2 Equivalent circuit for the bandstop filter of Figure 8.47a. (a) Equivalent circuit of an open-circuited stub for θ near π/2. (b) Equivalent filtercircuit using resonatorsand admittance inverters. (c) Equivalent lumped-element bandstop filter.transmission line of characteristic impedance Z0n isZ = −jZ 0n cot θ,where θ = π/2 for ω = ω0. If we let ω = ω0+ ∆ω, where ∆ω<<ω0, then θ = (π/2),(1 + ∆ω/ω0), a nd this impedance can be approximated asZ = jZ 0n tan02ωωπ∆≈0002)(ωωωπ-n jZ (1) for frequencies in the vicinity of the center frequency, ω0. The impedance of a series LC circuit is)(22)(10000ωωωωωωωωωωω-≈-=≈-=+=n n n n n n n jL C L j C L j C j L j Z (2)where LnCn= 1/ω02 .Equating (1) and (2) gives the characteristic impedance of the stub in terms of the resonator parameters:πωn L Z 004= (3) Then, if we consider the quarter-wave sections of line between the stubs as ideal admittance inverters, the bandstop filter of Figure 1a can be represented by the equivalent circuit of Figure 2b. Next, the circuit elements of this equivalent circuit can be related to those of the lumped-element bandstop filter prototype of Figure 2c. With reference to Figure 2b, the admittance Y seen looking toward the L 2C 2 resonator is .10110222)1/11(1)/1(1-++++=Z C j L j C j L j Y Z ωωωω (4)The admittance at the corresponding point in the circuit of Figure 2c is10'1'1'2'2)/11(/11-++++=Z L j C j C j L j Y ωωωω (5) These two results will be equivalent if the following conditions are satisfied:'2'222'1'11120,1C L C L L C C L Z == (6) Since L n C n = L n ’C n ’=1/ω02,these results can be solved for Ln'22'120201,L L L Z L ==ω (7)Using (3) and the impedance-scaled bandstop filter elements gives the stub characteristic impedances as∆==∆==20'200210'10200144,44g Z L Z g Z L Z Z ππωππω (8)where ∆ = (ω2− ω1)/ω0is the fractional bandwidth of the filter. It is easy to show that the general result for the characteristic impedances of abandstop filter is . ∆=n n g Z Z π004 (9)For a bandpass filter using short-circuited stub resonators the corresponding result is n n g Z Z 400∆=π (10)These results only apply to filters having input and output impedances of Z0 and so cannot be used for equal-ripple designs with N even.EXAMPLE 1 BANDSTOP FILTER DESIGNDesign a bandstop filter using three quarter-wave open-circuit stubs. The center frequency is 2.0 GHz, the bandwidth is 15%, and the impedance is 50Ω. Use an equal-ripple response, with a 0.5 dB ripple level.SolutionThe fractional bandwidth is ∆ = 0.15.Then the characteristic impedances of the stubs can befound from (9). The results are listed in the following table:n gn Z0n(Ω)1 1.5963 265.92 1.0967 265.93 1.5963 265.9The filter circuit is shown in Figure1a, with all stubs and transmission line sections λ/4 long at 2.0 GHz. The calculated attenuation forthis filteris shown in Figure 3;the ripplein the passbands is somewhat greaterthan 0.5 dB as aresult of the approximations involved in the development of the design equations.FIGURE3 Amplitude response of the bandstop filterof Example 1.The performance of quarter-wave resonator filters can be improved by allowing the characteristic impedances of the interconnecting lines to be variable; then an exact correspondence with coupled line bandpass or bandstop filters can be demonstrated.2、Bandpass Filters Using Capacitively Coupled Series Resonators Another type of bandpass filter that can be conveniently fabricated in microstrip or stripline form is the capacitive-gap coupled resonator filter shown in Figure 4. An Nth-order filter of this form will use N resonant series sections of transmission line with N + 1 capacitive gaps between them. These gaps can be approximated as series capacitors; The flter can then be modeled as shown in Figure 4(b).FIGURE4 Development of the equivalence of a capacitive-gap coupled resonator bandpass filter to the coupled line bandpass filter (a) The capacitive-gap coupled resonator bandpassfilter. (b)Transmission line model. (c) Transmission line model with nagative-sectionsforming admittance inverters (φi/2 < 0) (d) Equivalent circuit using inverters and λ/2 resonators (φ= πat ω0).The resonators are approximately λ/2 long at the centerfrequency, ω0.Next, we redraw the equivalent circuit of Figure 8.50b with negative-length transmission line sections on either side of the series capacitors. The lines of lengthφ will be λ/2 long at ω0, so the electrical length θiof the ith section in Figures 4a, b is12121+Φ+Φ+=i i i πθ N i ...,3,2,1= (11) with φi< 0. The reason for doing this is that the combination of series capacitor and negative-length transmission lines forms the equivalent circuit of an admittance inverter, as seen from Figure 4c. In order for this equivalence to be valid, the following relationship must hold between the electrical length of the lines and the capacitive susceptance:)2arctan(0i i B Z -=Φ (12)T hen the resulting inverter constant can be related to the capacitive susceptance as 20)(1i i i J Z J B -= (13) T he capacitive-gap coupled filter can then be modeled as shown in Figure 4d. Now consider the equivalent circuit shown in Figure 8.45b for a coupled line bandpass filter.Since these two circuits are identical (as φ = 2θ = π at the center frequency), we can use the results from the coupled line filter analysis to complete the present problem. Thus,we can use (10) to find the admittance inverter constants, Ji, from the low-pass prototype values, gi, and the fractional bandwidth, Ω. As in the case of the coupled line filter,there will be N + 1 inverter constants for an Nth-order filter. Then (13) can be used to find the susceptance, Bi, for the ith coupling gap. Finally, the electrical length of the resonator sections can be found from (11) and (12):)]2arctan()2[arctan(21100++-=i i i B Z B Z πθ EXAMPLE 8.9 CAPACITIVEL Y COUPLED SERIESRESONATOR BANDPASSFILTER DESIGND esign a bandpass filter using capacitive coupled series resonators, with a 0.5 dB equal-ripple passband characteristic. The center frequency is 2.0 GHz, the band-width is 10%, and the impedance is 50Ω. At least 20 dB of attenuation is required at 2.2 GHz.SolutionWe first determine the order of the filter to satisfy the attenuation specification at2.2 GHz. Using formula to convert to normalized frequency gives91.1)2.20.20.22.2(1.01)(100=-=-∆←ωωωωω Then ⎢cωω⎢-1=1.91-1.0=0.91F rom the Figure , we see that N = 3 should satisfy the attenuation specification at2.2 GHz. The low-pass prototype values are given in this Table .The calculated amplitude response is plotted in Figure 5. The specifications of this filter are the same as the coupled line bandpass filter of Example1.FIGURE5 A mplitude response for the capacitive-gap coupled seriesresonator bandpass filter of example 23、Bandpass Filters Using Capacitively Coupled Shunt ResonatorsA related type of bandpass filter is shown in Figure 6, where short-circuited shunt resonators are capacitively coupled with series capacitors.FIGURE6 A bandpass filter using capacitively coupled shunt stub resonatorsAn N th-order filter will use N stubs, which are slightly shorter than λ/4 at the filter center frequency. The short-circuited stub resonators can be made from sections of coaxial line using ceramic materials having a very high dielectric constant and low loss, resulting in a very compact design even at UHF frequencies . Such filters are often referred to as ceramic resonator filters and are among the most common types of RF bandpass filters used in portable wireless systems.Most cellular telephones, GPS receivers, and other wireless devices employ two or more filters of this type.微波滤波器微波滤波器的理论和实践始于第二次世界大战前几年,开拓者有Mason, Sykes, Darlington, Fano, Lawson,和Richards。
·90·兵工自动化Ordnance Industry Automation2021-0540(5)doi: 10.7690/bgzdh.2021.05.020基于爆炸冲击波的战斗部炸点位置预测肖师云,陈文,刘俞平,黄丽玲(重庆红宇精密工业集团有限公司研究一所,重庆 402760)摘要:为解决侵彻战斗部在建筑物等目标内部爆炸后的爆炸位置难以测定的问题,提出一种基于爆炸冲击波超压测试数据的炸点预测方法。
基于爆炸冲击波传播速度与冲击波超压衰减规律,构建冲击波到达时间与传播距离的数学模型,将超定非线性方程组的最小二乘解转换为无约束多元非线性函数的极值求解,应用MATLAB软件的fminsearch函数计算获取炸点坐标,并应用实爆试验数据对比分析计算结果与实测结果。
结果表明:该方法具有可行性,用于末端动态速度小于476.42 m/s,战斗部炸点预测的偏差在1.5 m以内。
关键词:爆炸冲击波;冲击波超压;炸点位置;最小二乘解中图分类号:TJ414 文献标志码:APrediction of Warhead Explosion Position Based on Blast Shock WaveXiao Shiyun, Chen Wen, Liu Yuping, Huang Liling(No. 1 Research Institute, Chongqing Hongyu Precision Industry Group Co., Ltd., Chongqing 402760, China) Abstract: In order to solve the problem that it is difficult to determine the explosion position of the penetrating warhead after it explodes inside buildings and other targets, a method for predicting the explosion position based on the over pressure test data of blast shock wave was proposed. Based on the law of shock wave propagation velocity and attenuation of shock wave over pressure, the mathematical model of shock wave arrival time and propagation distance were established, and the least square solution of over-determined nonlinear equations was converted into the extreme solution of unconstrained multivariate nonlinear function, and the fminsearch function of MATLAB software was used to calculate the coordinates of the explosion position. The results of calculation and measurement were compared with those of real explosion test data. The results show that the method is feasible, and its terminal daynamis velocity is less than 476.42 m/s, the its predication deviation for warhead explosion point is within 1.5 m.Keywords: blast shock wave; shock wave over pressure; explosion position; least square solution0引言战斗部炸点3维坐标是弹药武器进行靶场测试的重要参数,是爆炸威力评估的重要特征参量[1]。
第23卷 第1期实验流体力学V ol.23,N o.1 2009年03月Journal of Experiments in Fluid MechanicsMar.,2009 文章编号:167229897(2009)0120040206D 300mm ×3420mm 圆管内旋转流流场的LDV 实验测量张 静,宋健斐,魏耀东,时铭显(中国石油大学(北京)化工学院,北京 102249) 摘要:利用激光多普勒测速仪(LDV )对直径D 300mm ×3420mm 圆管内的旋转流场进行了实验测量,重点测量切向速度与轴向速度的分布以及湍流强度分布。
测量结果表明圆管内的旋转流是Rankine 涡结构形态,旋转流强度沿轴向存在着明显的衰减特性,且最大切向速度的径向位置沿轴向逐渐向内移动,即由上游的刚性涡逐渐向下游的准自由涡和刚性涡组合过渡;轴向速度的分布存在着很大的不均匀性,在r =0.5R 区域存在一个轴向速度的低速区,甚至出现上行,但在轴向位置z >10R 后轴向速度全部向下,并向均匀分布发展;圆管内的切向湍流强度比轴向湍流强度大一倍,两者的湍流强度在准自由涡区径向分布比较平均,中心刚性涡区域的湍流强度比较高,而且随轴向位置的变化衰减不明显。
关键词:圆管;激光多普勒测速仪;旋转流流场;衰减;湍流强度 中图分类号:T Q051.8 文献标识码:AMeasurement of the swirling flow field in the circular pipe withthe diameter 300mm ×3240mm by LDVZHANGJing ,S ONGJian 2fei ,WEI Y ao 2dong ,SHI Ming 2xian(Department of Chemical Engineering ,China University of Petroleum ,Beijing 102249,China ) Abstract :The flow field in the circular pipe with the diameter 300mm and the length 3420mm was mea 2sured by laser Doppler velocimeter (LDV ).The distribution of the tangential and axial velocities and the turbu 2lence intensity were obtained.The results show the tangential velocity distribution exhibites the expected combi 2nation of the Rankine type v ortex :the inner forced v ortex and the outer free v ortex.The intensity of the swirling flow has the obvious attenuation characteristic along the axial position and the radial position of the maximum tangential velocity in the cross section gradually m oves towards the geometrical center of the circular pipe ,namely the upstream forced v ortex gradually transits to the combination of the quasi 2free v ortex and the forced v ortex in the downstream.And the axial velocity distribution presents non 2uniformity and reveals a low speed area in the r =0.5R region ,even the axial velocity appears upward.But the axial velocity is com pletely down 2ward in the region below z >10R and developing to the even distribution.The tangential and axial turbulence intensities have the identical magnitude.The radial distributions of them are quite average except in the central region and basically invariable along the axial position. K ey w ords :circular pipe ;laser Doppler velocimeter ;swirling flow field ;attenuation ;turbulence intensity收稿日期:2008201204;修订日期:2008203228基金项目:国家重点基础研究发展规划项目(2004C B217803);国家自然科学基金(20876170).作者简介:张 静(19822),女,山东郓城人,硕士生.研究方向:石油化工过程装备.E 2mail :s ongjf @0 引 言 旋转流广泛存在于工业应用的各个领域中,如旋风分离器、水力旋流分离器和燃烧喷嘴等设备。
Velocity and attenuation characteristics of P-waves in periodically fractured media as inferred from numerical creep and relaxation testsMarco Milani ∗(University of Lausanne),J.Germ´a n Rubino (University of Lausanne),Tobias M.M¨u ller (CSIRO),Beatriz Quintal (University of Lausanne),and Klaus Holliger (University of Lausanne)SUMMARYSeismic velocity dispersion and attenuation associated with wave-induced pressure diffusion in heterogeneous rocks are often modeled with Biot’s equations of poroelasticity.For complex geometries and large compressibility contrasts these seismic characteristics are difficult to quantify by analytical methods.Therefore,numerical upscaling procedures provide an effective means to compute these parameters.However,the computed seismic signatures are only meaningful if the numerical domain is at least of the size of the representative elementary volume (REV).To understand the meaning of an REV in the context heterogeneous poroelastic structures,we draw from corresponding analogies with elastic composites.We argue that an REV is attained if attenuation and velocity dispersion determined by numerical creep and relaxation tests coincide.In this work,we explore how to define an adequate REV size in periodically fractured media.To do so,we com-pare the discrepancies between attenuation and velocity dis-persion inferred from creep and relaxation tests for synthetic rock samples of increasing size and thus increasing numbers of periodically recurring structural elements.INTRODUCTIONWave-induced fluid flow (WIFF)at mesoscopic scales takes place when a seismic wave travels across a porous medium containing heterogeneities larger than the pore size but smaller than the predominant wavelengths.The propagation of seis-mic waves may then generates strong fluid pressure gradients,which in turn leads to fluid flow and thus results in frictional energy dissipation.Indeed,there is evidence to suggest that mesoscopic WIFF is likely to be the dominant P-wave attenu-ation mechanism throughout the shallower parts of the Earth’s crust (e.g.,Pride et al.,2004).Quantifying the effects of mesoscopic WIFF is a difficult task.Although the corresponding seismic signatures can be mod-eled in the framework of Biot’s (1962)theory of poroelasticity,numerical simulations of this kind are computationally very expensive.The primary reason for this is that the spatial scales at which pressure diffusion occurs,are very small as compared to seismic wavelengths.Recent upscaling approaches based on Biot’s (1941)consolidation equations provide an effective means to alleviate this problem (e.g.,Wenzlau et al.,2010;Quintal et al.,2011;Rubino et al.,2013b).These numerical techniques are based on the application of creep (e.g.,Quintal et al.,2011;Rubino et al.,2013b)or relaxation (e.g.,Wenzlau et al.,2010;Quintal et al.,2012)tests to synthetic rock samples corresponding to a representative elementary volume (REV)ofthe considered medium.Following Hill’s (1963)classic definition,an REV in the given context corresponds to the minimum volume for which (i)the rock physical properties are statistically stationary and repre-sentative of the whole medium and (ii)the estimated seismic attributes are independent of the applied boundary conditions.The latter implies that the results obtained from creep and re-laxation tests must be equivalent.If the size of the consid-ered synthetic rock sample is smaller than that characterizing an REV ,differences in the seismic properties inferred from creep and relaxation tests arise.This effect,which is a di-rect consequence of differences in the applied boundary con-ditions,is well known in the composite material community (e.g.Huet,1995,1999;Ostoja-Starzewski,2006;Drago and Pindera,2007),but largely unexplored in the context of het-erogeneous porous media.For the case of the periodic me-dia considered in this study,these discrepancies emphasize the fundamental differences between an REV and repeating unit cells (RUCs),which in turn are composed by fundamen-tal blocks (Figure 1).Periodic heterogeneous media are com-posed through a side-by-side assembly of RUCs into an in-finitely extended array.The apparent seismic attributes (e.g.,Huet,1995)obtained by applying different boundary condi-tions to RUCs are known to converge asymptotically to the effective attributes characterizing the corresponding REV for increasing RUC size.The rate of this convergence depends on the relative volume fraction as well as on the contrasts with regard to the elastic moduli between the various components of the considered heterogeneous medium (e.g.,Ostoja-Starzewski,2006;Drago and Pindera,2007).In the present work,we focus on the case of periodically frac-tured media.Due to the strong contrast between the elastic moduli of the fractures and their embedding matrix,this sce-nario is expected to produce very significant attenuation and velocity dispersion due to WIFF.The main objective is to de-fine the fundamental characteristics of REVs in periodically fractured media.To this end,we analyze the convergence of the seismic P-wave attenuation and phase velocity obtained by applying a homogeneous stress (creep test)or a homogeneous displacement (relaxation test)to the boundaries of RUCs com-posed of an increasing number of fundamental blocks.We also explore the sensitivity of the effects related to the dif-fering boundary conditions to changes in the compressibility contrasts between the fractures and their embedding matrix as well as to variations in the relative volume fraction occupied by the fractures.D o w n l o a d e d 04/08/15 t o 223.128.10.202. R e d i s t r i b u t i o n s u b j e c t t o SE G l i c e n s e o r c o p y r i g h t ; s e e T e r m s o f U s e a t h t t p ://l i b r a r y .s e g .o r g /METHODOLOGYThe effects of WIFF at the mesoscopic scale can be described by Biot’s (1941)quasi-static poroelastic equations.The mo-tivation for neglecting the inertial forces in Biot’s (1962)dy-namic equations is that WIFF at this scale is controlled by the fluid pressure diffusion.The system of the two coupled equa-tions,one describing the stress equilibrium within the porous sample and the other describing the Darcy’s flow,is given in the space-frequency domain by∇·σ=0,(1)i ωηκw =−∇p f ,(2)where w is the relative fluid-solid displacement.The total stress tensor σof the material and the pore fluid pressure p f are (e.g.,Biot,1941,1962)σi j =λU ∇·u +K U B ∇·wδi j +2µεi j u,(3)p f =−K U B∇·u +1α∇·w,(4)where εi j u=1/2(∂u i /∂x j +∂u j /∂x i )is the strain tensor of the solid phase and u denotes the solid displacement.The so-called Biot-Willis constant and the undrained Lam´e parameter,αand λU ,are given byα=1−K mK s,(5)λU =K U −23µ.(6)The undrained bulk and shear moduli K U and µ,and Skemp-ton’s (1954)coefficient B can be expressed in terms of the porosity φ,the dry frame bulk and shear moduli K m and µm ,the grain bulk modulus K s ,and the fluid bulk modulus K f asB =αα+K m φ1K f−1K s,(7)K U =K m,(8)µ=µm .(9)In order to estimate WIFF effects,we compute the stress and strain fields by solving the equations (1)to (4)under proper boundary conditions.We consider a two-dimensional [0,L x ]×[0,L z ]porous rock sample which is hydraulically sealed and laterally confined.This implies that fluid is not allowed to flow into or out of the numerical sample and that the solid phase is neither allowed to move on the lower boundary nor to have horizontal displacements on the lateral ones.For the creep tests,a global mean stress state is generated in the sample by imposing along the top boundary a time-harmonic stress with amplitudeσzz =−σ0zz ,(10)while for the relaxation tests,a global strain with amplitudeεzz =−u 0z L z,(11)xFigure 1:Schematic representation of a periodically fractured medium and two RUCs composed by 1×1and 3×3fundamental blocks enclosed by green and red rectangles.is generated by imposing along the top boundary a time-harmonic displacement of amplitude u 0z .The derivation of the equiv-alent viscoelastic properties of a poroelastic medium involves an upscaling procedure,which relates the resulting stresses and strains through a spatial average over the heterogeneous porous sample as <σzz (ω)>=1VVσzz (ω)d V ,(12)<εzz (ω)>=1VVεzz (ω)d V ,(13)where V denotes the initial volume of the sample.The equiv-alent undrained complex plane-wave modulus for vertical di-rection of propagation,and the corresponding P-wave phasevelocity V p (ω)and inverse quality factor Q −1p (ω)are given byH (ω)=<σzz (ω)><εzz (ω)>,(14)V p (ω)= ℜ<ρ>H (ω)−1,(15)Q −1p (ω)=ℑH (ω)ℜH (ω).(16)The average bulk density of the porous sample <ρ>is de-fined as <ρ>=1V V [φρf +(1−φ)ρs ]d V ,(17)where ρf and ρs are the densities of the fluid and the solid grains,respectively.D o w n l o a d e d 04/08/15 t o 223.128.10.202. R e d i s t r i b u t i o n s u b j e c t t o SE G l i c e n s e o r c o p y r i g h t ; s e e T e r m s o f U s e a t h t t p ://l i b r a r y .s e g .o r g /FRACTURED MEDIAWe consider a poroelastic model corresponding to a water-saturated sandstone containing periodically distributed meso-scopic fractures (Figure 1).The fractures are modeled by thin compliant rectangles of high porosity and permeability em-bedded in a stiff background of low porosity and permeabil-ity (Table 1).Following the methodology outlined above,we seek to determine the minimum number of fundamental blocks that are required to define an REV .To do so,we compare the equivalent P-wave phase velocity and inverse quality factor ob-tained by applying creep and relaxation tests to RUCs of in-creasing size.We define a fundamental block corresponding to the RUC of minimum size as denoted by the green rectangle in Figure 1.This choice is consistent with undrained boundary conditions,because of the symmetry of such media,which im-plies that no fluid flow occurs at the extremities of the RUCs.The size of this RUC is 9.84×2.46cm and that of the fracture is 4.84×0.06cm.The corresponding fracture volume fraction is ∼1.2%.Grainbulk modulus,K s 37GPa density,ρs 2650Kg/m 3Fluidbulk modulus,K f 2.25GPa density,ρf 1000Kg/m 3viscosity,η1.0·10−3Pa ·sBackgroundbulk modulus,K b m 26.0GPa shear modulus,µb m 31.0GPa porosity,φb 0.10pemeability,κb 1.0mD Fracture bulk modulus,K fm 0.03GPashear modulus,µfm 0.02GPaporosity,φf 0.80pemeability,κf 100DTable 1:Material and fluid properties of the fractures and theirembedding matrix.Adopted from Rubino et al.(2013a).Figure 2shows the P-wave phase velocities and inverse qual-ity factors for creep (blue curves)and relaxation (red curves)tests applied to RUCs containing 1×1,4×4,and 48×48funda-mental blocks.In general,we observe that the boundary con-dition effects mostly affect the results for creep tests.More-over,the results obtained with the creep tests tend to con-verge to those of the relaxation tests for increasing RUC size.Conversely,boundary condition effects are negligible in the case of relaxation tests as the results are independent of the RUC size.Interestingly,for phase velocity these effects are more pronounced in the low-frequency limit (∼0.1Hz)than in the high-frequency limit (∼1MHz).In fact,a relative dif-ference of ∼34%is found between creep and relaxation tests for a RUC composed of 1×1fundamental block in the low-frequency limit,whereas a relative difference of ∼3%is seen in the high-frequency limit.The small discrepancies,for asmall fracture volume fraction observed between the two tests in the high-frequency limit are expected and in agreement with results of related studies in elastic composites (e.g.Ostoja-Starzewski,2006).In the high-frequency limit,heterogeneous poroelastic media can be effectively replaced by a heteroge-neous elastic composite (e.g.,Johnson,2001).Figure 2b also shows that the amount of attenuation obtained with a creep test for the RUC composed of 1×1fundamental block is ∼3.5times higher than that obtained with relaxation tests at the peak frequency.The transition frequency at which maximum at-tenuation occurs does not seem to be significantly affected by boundary condition effects.Figure 2:(a)P-wave phase velocity and (b)inverse quality factor for creep (blue curves)and relaxation (red curves)tests.SENSITIVITY TO THE RELATIVE VOLUME FRACTION AND THE ELASTIC CONTRASTExtending related studies on elastic composites (e.g.Ostoja-Starzewski,2006;Drago and Pindera,2007)to the poroelastic framework,we perform an exhaustive sensitivity analysis con-sidering different fracture volume fractions and dry frame elas-tic contrasts between the fractures and their embedding matrix.In general,previous studies indicate that boundary conditions effects generate higher discrepancies in the case of strong elas-tic contrasts and relative volume fractions around 50%.We therefore perform creep and relaxation tests on a RUC composed of 1×1fundamental block.This corresponds to the case where boundary condition effects generate the high-est discrepancies (Figure 2).We consider 4sets of parame-D o w n l o a d e d 04/08/15 t o 223.128.10.202. R e d i s t r i b u t i o n s u b j e c t t o SE G l i c e n s e o r c o p y r i g h t ; s e e T e r m s o f U s e a t h t t p ://l i b r a r y .s e g .o r g /ters for 4poroelastic models,each having a different contrast of the dry frame elastic moduli between the fracture and the background (Table 2).The remaining material and fluid prop-erties remain unchanged (Table 1).We then vary the length and thickness of the fracture,which in turn results in fracture volume fractions ranging from 0.05%to 95%for each set of models.The overall size of the fundamental block is equal to that used previously.K fmK b m K f mµfm µb m µf mset 10.03GPa ∼8670.02GPa ∼1550set 20.30GPa ∼870.20GPa ∼155set 31.20GPa ∼220.80GPa ∼39set 43.00GPa∼92.00GPa∼16Table 2:Fracture drained frame bulk and shear moduliand their corresponding ratio with respect to the background values for the four cases considered in this study.Figure 3:Relative differences between the equivalent P-wave phase velocities inferred from creep and relaxation tests as functions of the fracture volume fraction in the low-(dashed curves)and high-frequency (solid curves)limits.The different colors denote the results obtained for various elastic contrasts between the fractures and their embedding matrix (Table 2).Figure 3shows the relative difference between the P-wave phase velocities in the low-(dashed curves)and high-frequency (solid curves)limits inferred from creep and relaxation tests as func-tions of the fracture volume fraction.In general,we see that boundary condition effects generate relative differences in phase velocity.These differences diminish as we reduce the contrasts between the dry frame elastic moduli of the fracture and the background.As expected,the maximum discrepancies result for relative volume fractions of ∼50%.Interestingly,the dis-crepancies arising in the low-frequency limit (dashed curves)turn out to be systematically higher than,or at most equal to,those produced in the high-frequency limit (solid curves).We also notice that the relative differences in phase velocity in the low-frequency limit tend to approach those in the high-frequency limit as the fracture volume fraction increases and the contrast of the elastic moduli is reduced.The reason is that WIFF between the fracture and the background is not signifi-cant in these cases.This is shown in Figure 4for set 2with a fracture volume fraction of ∼80%(Figures 4a and b)and for set 4with a fracture volume fraction of ∼50%(Figures 4c and d).Figure 4:P-wave phase velocity and inverse quality factor for creep (blue curves)and relaxation (red curves)tests cor-responding to (a and b)set 2with a relative volume fraction of ∼80%and (c and d)to set 4with a relative volume fraction of ∼50%.CONCLUSIONSWe have analyzed boundary condition effects on the estimation of seismic attenuation and velocity dispersion for periodically fractured poroelastic media.Interestingly,the seismic signa-tures obtained with creep tests were found to depend on the RUC size,with a tendency to converge to the results obtained with relaxation tests with increasing RUC size.Conversely,the corresponding results from relaxation tests turned out to be independent of the size of the RUC.For the phase velocity,the discrepancies between the values inferred from the creep and relaxation tests were more important in the low-frequency limit.These differences tended to increase with the elastic con-trast between the fractures and the background,reaching max-imum values at fracture volume fractions around 50%.These findings have direct and important implications for the numer-ical modelling of seismic signatures in fractured media as well as corresponding laboratory experiments.ACKNOWLEDGMENTSThis work is supported by a grant from the Swiss National Science Foundation.D o w n l o a d e d 04/08/15 t o 223.128.10.202. R e d i s t r i b u t i o n s u b j e c t t o SE G l i c e n s e o r c o p y r i g h t ; s e e T e r m s o f U s e a t h t t p ://l i b r a r y .s e g .o r g //10.1190/segam2014-1091.1EDITED REFERENCESNote: This reference list is a copy-edited version of the reference list submitted by the author. Reference lists for the 2014 SEG Technical Program Expanded Abstracts have been copy edited so that references provided with the online metadata for each paper will achieve a high degree of linking to cited sources that appear on the Web.REFERENCESBiot, M., 1941, General theory of three-dimensional consolidation: Journal of Applied Physics, 12, no. 2,155–164, /10.1063/1.1712886. Biot, M., 1962, Mechanics of deformation and acoustic propagation in porous media : Journal of AppliedPhysics, 33, no. 4, 1482–1498, /10.1063/1.1728759. Drago, A., and M.-J. Pindera, 2007, Micro-macromechanical analysis of heterogeneous materials :Macroscopically homogeneous versus periodic microstructures: Composites Science and Technology, 67, no. 6, 1243–1263, /10.1016/pscitech.2006.02.031. Hill, R., 1963, Elastic properties of reinforced solids: some theoretical principles: Journal of theMechanics and Physics of Solids, 11, no. 5, 357–372, /10.1016/0022-5096(63)90036-X . Huet, C., 1995, Bounds and hierarchies for the overall properties of viscoelastic heterogeneous andcomposite materials: Archives of Mechanics, 47, 1125–1155. Huet, C., 1999, Coupled size and boundary-condition effects in viscoelastic heterogeneous and compositebodies: Mechanics of Materials, 31, no. 12, 787–829, /10.1016/S0167-6636(99)00038-1. Johnson, D., 2001, Theory of frequency dependent acoustics in patchy-saturated porous media : TheJournal of the Acoustical Society of America, 110, no. 2, 682–694, /10.1121/1.1381021. Ostoja-Starzewski, M., 2006, Material spatial randomness: From statistical to representative volumeelement: Probabilistic Engineering Mechanics, 21, no. 2, 112–132, /10.1016/j.probengmech.2005.07.007. Pride, S., J. Berryman, and J. Harris, 2004, Seismic attenuation due to wave-induced flow: Journal ofGeophysical Research, 109, no. B1, B01201, /10.1029/2003JB002639. Quintal , B., H. Steeb, M. Frehner, and S. Schmalholz, 2011, Quasi-static finite element modeling ofseismic attenuation and dispersion due to wave-induced fluid flow in poroelastic media: Journal of Geophysical Research, 116, no. B1, B01201, /10.1029/2010JB007475. Quintal , B., H. Steeb, M. Frehner, S. Schmalholz, and E. H. Saenger, 2012, Pore fluid effects on S-waveattenuation caused by wave-induced fluid flow: Geophysics, 77, no. 3, L13–L23, /10.1190/geo2011-0233.1. Rubino, J., L. Guarracino, T. Müller, and K. Holliger, 2013a, Do seismic waves sense fractureconnectivity?: Geophysical Research Letters, 40, 1–5. Germán Rubino, J., L. B. Monachesi, T. M. Müller, L. Guarracino, and K. Holliger, 2013b, Seismicwave attenuation and dispersion due to wave-induced fluid flow in rocks with strong permeability fluctuations: The Journal of the Acoustical Society of America, 134, 4742–4751, /10.1121/1.4824967.D o w n l o a d e d 04/08/15 t o 223.128.10.202. R e d i s t r i b u t i o n s u b j e c t t o SE G l i c e n s e o r c o p y r i g h t ; s e e T e r m s o f U s e a t h t t p ://l i b r a r y .s e g .o r g /Skempton, A., 1954, The pore-pressure coefficients A and B: Geotechnique, 4, no. 4, 143–147,/10.1680/geot.1954.4.4.143.Wenzlau, F., J. Altmann, and T. Müller, 2010, Anisotropic dispersion and attenuation due to wave-induced fluid flow: quasi-static finite-element modeling in poroelastic solids: Journal of Geophysical Research, 115, B7, B07204, /10.1029/2009JB006644.D o w n l o a d e d 04/08/15 t o 223.128.10.202. R e d i s t r i b u t i o n s u b j e c t t o SE G l i c e n s e o r c o p y r i g h t ; s e e T e r m s o f U s e a t h t t p ://l i b r a r y .s e g .o r g /。